51
|
Berga-Bolaños R, Sharma A, Steinke FC, Pyaram K, Kim YH, Sultana DA, Fang JX, Chang CH, Xue HH, Heller NM, Sen JM. β-Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation. BMC Immunol 2015; 16:62. [PMID: 26482437 PMCID: PMC4615569 DOI: 10.1186/s12865-015-0121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023] Open
Abstract
Background Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cell effector subsets in the thymus during development is also unclear. In this report we show that β-catenin dependent mechanisms direct differentiation of iNKT2 and iNKT17 subsets but not iNKT1 cells. Methods To study the role for β-catenin in lung inflammation we utilize mice with conditional deletion and enforced expression of β-catenin in a well-established mouse model for IL-25-dependen lung inflammation. Results Specifically, we demonstrate that conditional deletion of β-catenin permitted development of mature iNKT1 cells while impeding maturation of iNKT2 and 17 cells. A role for β-catenin expression in promoting iNKT2 and iNKT17 subsets was confirmed when we noted that enforced transgenic expression of β-catenin in iNKT cell precursors enhanced the frequency and number of iNKT2 and iNKT17 cells at the cost of iNKT1 cells. This effect of expression of β-catenin in iNKT cell precursors was cell autonomous. Furthermore, iNKT2 cells acquired greater capability to produce type-2 cytokines when β-catenin expression was enhanced. Discussion This report shows that β-catenin deficiency resulted in a profound decrease in iNKT2 and iNKT17 subsets of iNKT cells whereas iNKT1 cells developed normally. By contrast, enforced expression of β-catenin promoted the development of iNKT2 and iNKT17 cells. It was important to note that the majority of iNKT cells in the thymus of C57BL/6 mice were iNKT1 cells and enforced expression of β-catenin altered the pattern to iNKT2 and iNKT17 cells suggesting that β-catenin may be a major factor in the distinct pathways that critically direct differentiation of iNKT effector subsets. Conclusions Thus, we demonstrate that β-catenin expression in iNKT cell precursors promotes differentiation toward iNKT2 and iNKT17 effector subsets and supports enhanced capacity to produce type 2 and 17 cytokines which in turn augment lung inflammation in mice.
Collapse
Affiliation(s)
- Rosa Berga-Bolaños
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Archna Sharma
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.,Present addresses: Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Farrah C Steinke
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yeung-Hyen Kim
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dil A Sultana
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.,Present addresses: Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Jessie X Fang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hai-Hui Xue
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jyoti Misra Sen
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
52
|
Berga-Bolaños R, Zhu WS, Steinke FC, Xue HH, Sen JM. Cell-autonomous requirement for TCF1 and LEF1 in the development of Natural Killer T cells. Mol Immunol 2015; 68:484-9. [PMID: 26490636 DOI: 10.1016/j.molimm.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
Natural killer T (NKT) cells develop from common CD4(+) CD8(+) thymocyte precursors. Transcriptional programs that regulate the development of NKT cells in the thymus development remain to be fully delineated. Here, we demonstrate a cell-intrinsic requirement for transcription factors TCF1 and LEF1 for the development of all subsets of NKT cells. Conditional deletion of TCF1 alone results in a substantial reduction in NKT cells. The remaining NKT cells are eliminated when TCF1 and LEF1 are both deleted. These data reveal an essential role for TCF1 and LEF1 in development of NKT cells.
Collapse
Affiliation(s)
- Rosa Berga-Bolaños
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Wandi S Zhu
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Farrah C Steinke
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, United States
| | - Hai-Hui Xue
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242, United States
| | - Jyoti Misra Sen
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
53
|
Guo X, Zhang R, Liu J, Li M, Song C, Dovat S, Li J, Ge Z. Characterization of LEF1 High Expression and Novel Mutations in Adult Acute Lymphoblastic Leukemia. PLoS One 2015; 10:e0125429. [PMID: 25942645 PMCID: PMC4420493 DOI: 10.1371/journal.pone.0125429] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023] Open
Abstract
Aberrant activation of the Wnt pathway plays a pathogenetic role in tumors and has been associated with adverse outcome in acute lymphoblastic leukemia (ALL). Lymphoid enhancer binding factor 1 (LEF1), a key mediator of Wnt signaling, has been linked to leukemic transformation, and LEF1 mutations have been identified in T-ALL. Here we found LEF1 is highly expressed in 25.0% adult ALL patients and LEF1 high expression was associated with high-risk leukemia factors (high WBC, Philadelphia chromosome positive, complex karyotype), shorter event-free survival (EFS), and high relapse rates in patients with B-ALL. LEF1 high expression is also associated with high mutation rate of Notch1 and JAK1 in T-ALL. We identified 2 novel LEF1 mutations (K86E and P106L) in 4 of 131 patients with ALL, and those patients with high-risk ALL (high WBC, complex karyotype). These results suggest a role for LEF1 mutations in leukemogenesis. We further explored the effect of the mutations on cell proliferation and found both mutations significantly promoted the proliferation of ALL cells. We also observed the effect of LEF1 and its mutations on the transcription of its targets, c-MYC and Cyclin D1. We found LEF1 increased the promoter activity of its targets c-MYC and Cyclin D1, and LEF1 K86E and P106L mutants further significantly enhanced this effect. We also observed that the c-MYC and Cyclin D1 mRNA levels were significantly increased in patients with LEF1 high expression compared with those with low expression. Taken together, our findings indicate high LEF1 expression and mutation are associated with high-risk leukemia and our results also revealed that LEF1 high expression and/or gain-of-function mutations are involved in leukemogenesis of ALL.
Collapse
Affiliation(s)
- Xing Guo
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
| | - Run Zhang
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
| | - Juan Liu
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
| | - Min Li
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
| | - Chunhua Song
- Pennsylvania State University Medical College, Department of Pediatrics, Hershey, 17033, PA, United States of America
| | - Sinisa Dovat
- Pennsylvania State University Medical College, Department of Pediatrics, Hershey, 17033, PA, United States of America
| | - Jianyong Li
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
| | - Zheng Ge
- The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Department of Hematology, Nanjing, 210029, China
- Pennsylvania State University Medical College, Department of Pediatrics, Hershey, 17033, PA, United States of America
| |
Collapse
|
54
|
Akeus P, Langenes V, Kristensen J, von Mentzer A, Sparwasser T, Raghavan S, Quiding-Järbrink M. Treg-cell depletion promotes chemokine production and accumulation of CXCR3(+) conventional T cells in intestinal tumors. Eur J Immunol 2015; 45:1654-66. [PMID: 25754875 DOI: 10.1002/eji.201445058] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent tumor types worldwide and tumor-infiltrating T cells are crucial for anti-tumor immunity. We previously demonstrated that Treg cells from CRC patients inhibit transendothelial migration of conventional T cells. However, it remains unclear if local Treg cells affect lymphocyte migration into colonic tumors. By breeding APC(Min/+) mice with depletion of regulatory T cells mice, expressing the diphtheria toxin receptor under the control of the FoxP3 promoter, we were able to selectively deplete Treg cells in tumor-bearing mice, and investigate the impact of these cells on the infiltration of conventional T cells into intestinal tumors. Short-term Treg-cell depletion led to a substantial increase in the frequencies of T cells in the tumors, attributed by both increased infiltration and proliferation of T cells in the Treg-cell-depleted tumors. We also demonstrate a selective increase of the chemokines CXCL9 and CXCL10 in Treg-cell-depleted tumors, which were accompanied by accumulation of CXCR3(+) T cells, and increased IFN-γ mRNA expression. In conclusion, Treg-cell depletion increases the accumulation of conventional T cells in intestinal tumors, and targeting Treg cells could be a possible anti-tumor immunotherapy, which not only affects T-cell effector functions, but also their recruitment to tumors.
Collapse
Affiliation(s)
- Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Veronica Langenes
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jonas Kristensen
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Astrid von Mentzer
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
55
|
Nie W, Lv Y, Yan L, Guan T, Li Q, Guo X, Liu W, Feng M, Xu G, Chen X, Lv H. Discovery and characterization of functional modules and pathogenic genes associated with the risk of coronary artery disease. RSC Adv 2015. [DOI: 10.1039/c5ra01920f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
An integrated network biology approach for identifying disease risk functional modules and risk pathogenic genes for associated with CAD risk.
Collapse
|
56
|
Sharma A, Berga-Bolaños R, Sen JM. T cell factor-1 controls the lifetime of CD4+ CD8+ thymocytes in vivo and distal T cell receptor α-chain rearrangement required for NKT cell development. PLoS One 2014; 9:e115803. [PMID: 25536344 PMCID: PMC4275257 DOI: 10.1371/journal.pone.0115803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/26/2014] [Indexed: 11/21/2022] Open
Abstract
Natural killer T (NKT) cells are a component of innate and adaptive immune systems implicated in immune, autoimmune responses and in the control of obesity and cancer. NKT cells develop from common CD4+ CD8+ double positive (DP) thymocyte precursors after the rearrangement and expression of T cell receptor (TCR) Vα14-Jα18 gene. Temporal regulation and late appearance of Vα14-Jα18 rearrangement in immature DP thymocytes has been demonstrated. However, the precise control of lifetime of DP thymocytes in vivo that enables distal rearrangements remains incompletely defined. Here we demonstrate that T cell factor (TCF)-1, encoded by the Tcf7 gene, is critical for the extended lifetime of DP thymocytes. TCF-1-deficient DP thymocytes fail to undergo TCR Vα14-Jα18 rearrangement and produce significantly fewer NKT cells. Ectopic expression of Bcl-xL permits Vα14-Jα18 rearrangement and rescues NKT cell development. We report that TCF-1 regulates expression of RORγt, which regulates DP thymocyte survival by controlling expression of Bcl-xL. We posit that TCF-1 along with its cofactors controls the lifetime of DP thymocytes in vivo.
Collapse
Affiliation(s)
- Archna Sharma
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Rosa Berga-Bolaños
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
| | - Jyoti Misra Sen
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States of America
- * E-mail:
| |
Collapse
|
57
|
Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14:529-45. [PMID: 25060579 PMCID: PMC4153685 DOI: 10.1038/nri3702] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells acquire their ultimate identities by activating combinations of transcription factors that initiate and sustain expression of the appropriate cell type-specific genes. T cell development depends on the progression of progenitor cells through three major phases, each of which is associated with distinct transcription factor ensembles that control the recruitment of these cells to the thymus, their proliferation, lineage commitment and responsiveness to T cell receptor signals, all before the allocation of cells to particular effector programmes. All three phases are essential for proper T cell development, as are the mechanisms that determine the boundaries between each phase. Cells that fail to shut off one set of regulators before the next gene network phase is activated are predisposed to leukaemic transformation.
Collapse
Affiliation(s)
- Mary A Yui
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| | - Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
58
|
Akeus P, Langenes V, von Mentzer A, Yrlid U, Sjöling Å, Saksena P, Raghavan S, Quiding-Järbrink M. Altered chemokine production and accumulation of regulatory T cells in intestinal adenomas of APC(Min/+) mice. Cancer Immunol Immunother 2014; 63:807-19. [PMID: 24777614 PMCID: PMC11028549 DOI: 10.1007/s00262-014-1555-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022]
Abstract
Tumor progression in the colon moves from aberrant crypt foci to adenomatous polyps to invasive carcinomas. The composition of the tumor-infiltrating leukocyte population affects the ability of the immune system to fight the tumor. T cell infiltration into colorectal adenocarcinomas, particularly T helper 1 (Th1) type T cells as well as increased regulatory T cell (Treg) frequencies, is correlated with improved prognosis. However, whether Th1 cells and Tregs are already present at the adenoma stage is not known. In this study, the APC(Min/+) mouse model of intestinal adenomatous polyposis was used to investigate tumor-associated lymphocyte subsets and the mechanisms of their accumulation into gastrointestinal adenomas. Compared to unaffected tissue, adenomas accumulated CD4(+)FoxP3(+) putative Treg in parallel with lower frequencies of conventional T cells and B cells. The accumulation of Treg was also observed in human adenomatous polyps. Despite high Treg numbers, the function of conventional T cells present in the APC(Min/+) adenomas was not different from those in the unaffected tissue. Adenomas displayed an altered chemokine balance, with higher CCL17 and lower CXCL11 and CCL25 expression than in the unaffected tissue. In parallel, CXCR3(+) Tregs were largely absent from adenomas. The data indicate that already in early stages of tumor development, the balance of lymphocyte-recruiting chemokines is altered possibly contributing to the observed shift toward higher frequencies of Treg.
Collapse
Affiliation(s)
- Paulina Akeus
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Box 435, 405 30, Gothenburg, Sweden,
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Nagel S, Meyer C, Kaufmann M, Drexler HG, MacLeod RAF. Deregulated FOX genes in Hodgkin lymphoma. Genes Chromosomes Cancer 2014; 53:917-33. [PMID: 25043849 DOI: 10.1002/gcc.22204] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 12/27/2022] Open
Abstract
FOX genes encode transcription factors which regulate basic developmental processes during embryogenesis and in the adult. Several FOX genes show deregulated expression in particular malignancies, representing oncogenes or tumor suppressors. Here, we screened six Hodgkin lymphoma (HL) cell lines for FOX gene activity by comparative microarray profiling, revealing overexpression of FOXC1 and FOXD1, and reduced transcription of FOXN3, FOXO1, and FOXP1. In silico expression analyses of these FOX gene candidates in HL patient samples supported the cell line data. Chromosomal analyses demonstrated an amplification of the FOXC1 locus at 6p25 and a gain of the FOXR2 locus at Xp11, indicting genomic aberrations for their upregulation. Comparative expression profiling and ensuing stimulation experiments revealed implementation of the TGFβ- and WNT-signaling pathways in deregulation of FOXD1 and FOXN3. Functional analysis of FOXP1 implicated miR9 and miR34a as upstream regulators and PAX5, TCF3, and RAG2 as downstream targets. A similar exercise for FOXC1 revealed repression of MSX1 and activation of IPO7, both mediating inhibition of the B-cell specific homeobox gene ZHX2. Taken together, our data show that aberrantly expressed FOX genes and their downstream targets are involved in the pathogenesis of HL via deregulation of B-cell differentiation and may represent useful diagnostic markers and/or therapeutic targets.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
60
|
A cocktail method for promoting cardiomyocyte differentiation from bone marrow-derived mesenchymal stem cells. Stem Cells Int 2014; 2014:162024. [PMID: 25101130 PMCID: PMC4094872 DOI: 10.1155/2014/162024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/26/2014] [Accepted: 04/16/2014] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence supports the argument that bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into cardiomyocyte-like cells in an appropriate cellular environment, but the differentiation rate is low. A cocktail method was designed: we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (SalB), and cardiomyocyte lysis medium (CLM) in inducing MSCs to acquire the phenotypical characteristics of cardiomyocytes. The fourth-passage MSCs were treated with 5-aza, SalB, CLM, 5-aza+salB, 5-aza+CLM, SalB+CLM, and 5-aza+SalB+CLM for 2 weeks. Immunofluorescence results showed that cTnT expression in the 5-aza+salB+CLM group was stronger than other groups. Real-time qPCR and Western blotting analyses showed that cTnT, alpha-cardiac actin, mef-2c, Cx43, and GSK-3beta expression increased while beta-catenin expression decreased. The salB+5-aza+CLM group had the most evident effects. SalB combined with 5-aza and CLM improved cardiomyocyte differentiation from MSCs. In the MSCs differentiation process, the Wnt/beta-catenin signaling pathway had been inhibited.
Collapse
|
61
|
Abstract
T, B, and NK lymphocytes are generated from pluripotent hematopoietic stem cells through a successive series of lineage restriction processes. Many regulatory components, such as transcription factors, cytokines/cytokine receptors, and signal transduction molecules orchestrate cell fate specification and determination. In particular, transcription factors play a key role in regulating lineage-associated gene programs. Recent findings suggest the involvement of epigenetic factors in the maintenance of cell fate. Here, we review the early developmental events during lymphocyte lineage determination, focusing on the transcriptional networks and epigenetic regulation. Finally, we also discuss the developmental relationship between acquired and innate lymphoid cells.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan,
| |
Collapse
|
62
|
García-Castro B, Alvarez-Zavala M, Riveros-Magaña AR, Ortíz-Lazareno PC, Ratkovich-González S, Hernández-Flores G, Bravo-Cuellar A, Jave-Suarez LF, Aguilar-Lemarroy A. Restoration of WNT4 inhibits cell growth in leukemia-derived cell lines. BMC Cancer 2013; 13:557. [PMID: 24274766 PMCID: PMC4222640 DOI: 10.1186/1471-2407-13-557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 11/22/2013] [Indexed: 01/29/2023] Open
Abstract
Background WNT signaling pathways are significantly altered during cancer development. Vertebrates possess two classes of WNT signaling pathways: the “canonical” WNT/β-catenin signaling pathway, and the “non-canonical” pathways including WNT/Ca2+ and WNT/Planar cell polarity [PCP] signaling. WNT4 influences hematopoietic progenitor cell expansion and survival; however, WNT4 function in cancer development and the resulting implications for oncogenesis are poorly understood. The aim of this study was twofold: first, to determine the expression of WNT4 in mature peripheral blood cells and diverse leukemia-derived cells including cell lines from hematopoietic neoplasms and cells from patients with leukemia; second, to identify the effect of this ligand on the proliferation and apoptosis of the blast-derived cell lines BJAB, Jurkat, CEM, K562, and HL60. Methods We determined WNT4 expression by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) in peripheral blood mononuclear cells (PBMCs) and T- and B-lymphocytes from healthy individuals, as well as from five leukemia-derived cell lines and blasts derived from patients with leukemia. To analyze the effect of WNT4 on cell proliferation, PBMCs and cell lines were exposed to a commercially available WNT4 recombinant human protein. Furthermore, WNT4 expression was restored in BJAB cells using an inducible lentiviral expression system. Cell viability and proliferation were measured by the addition of WST-1 to cell cultures and counting cells; in addition, the progression of the cell cycle and the amount of apoptosis were analyzed in the absence or presence of WNT4. Finally, the expression of WNT-pathway target genes was measured by qRT-PCR. Results WNT4 expression was severely reduced in leukemia-derived cell lines and blasts derived from patients with leukemia. The exposure of cell lines to WNT4 recombinant protein significantly inhibited cell proliferation; inducing WNT4 expression in BJAB cells corroborated this observation. Interestingly, restoration of WNT4 expression in BJAB cells increased the accumulation of cells in G1 phase, and did not induce activation of canonical WNT/β-catenin target genes. Conclusions Our findings suggest that the WNT4 ligand plays a role in regulating the cell growth of leukemia-derived cells by arresting cells in the G1 cell cycle phase in an FZD6-independent manner, possibly through antagonizing the canonical WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Beatriz García-Castro
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Sierra Mojada No, 800, Col, Independencia, 44340 Guadalajara, Jalisco, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Identification of interconnected markers for T-cell acute lymphoblastic leukemia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:210253. [PMID: 23956970 PMCID: PMC3727179 DOI: 10.1155/2013/210253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a complex disease, resulting from proliferation of differentially arrested immature T cells. The molecular mechanisms and the genes involved in the generation of T-ALL remain largely undefined. In this study, we propose a set of genes to differentiate individuals with T-ALL from the nonleukemia/healthy ones and genes that are not differential themselves but interconnected with highly differentially expressed ones. We provide new suggestions for pathways involved in the cause of T-ALL and show that network-based classification techniques produce fewer genes with more meaningful and successful results than expression-based approaches. We have identified 19 significant subnetworks, containing 102 genes. The classification/prediction accuracies of subnetworks are considerably high, as high as 98%. Subnetworks contain 6 nondifferentially expressed genes, which could potentially participate in pathogenesis of T-ALL. Although these genes are not differential, they may serve as biomarkers if their loss/gain of function contributes to generation of T-ALL via SNPs. We conclude that transcription factors, zinc-ion-binding proteins, and tyrosine kinases are the important protein families to trigger T-ALL. These potential disease-causing genes in our subnetworks may serve as biomarkers, alternative to the traditional ones used for the diagnosis of T-ALL, and help understand the pathogenesis of the disease.
Collapse
|
64
|
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153:307-19. [PMID: 23582322 DOI: 10.1016/j.cell.2013.03.035] [Citation(s) in RCA: 2792] [Impact Index Per Article: 253.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023]
Abstract
Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.
Collapse
Affiliation(s)
- Warren A Whyte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Kimura Y, Arakawa F, Kiyasu J, Miyoshi H, Yoshida M, Ichikawa A, Niino D, Sugita Y, Okamura T, Doi A, Yasuda K, Tashiro K, Kuhara S, Ohshima K. The Wnt signaling pathway and mitotic regulators in the initiation and evolution of mantle cell lymphoma: Gene expression analysis. Int J Oncol 2013; 43:457-68. [PMID: 23760751 DOI: 10.3892/ijo.2013.1982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
Abstract
For an accurate understanding of mantle cell lymphoma (MCL), molecular behavior could be staged into two major events: lymphomagenesis with the t(11;14) translocation (initiation), and evolution into a more aggressive form (transformation). Unfortunately, it is still unknown which genes contribute to each event. In this study, we performed cDNA microarray experiments designed based on the concept that morphologically heterogeneous MCL samples would provide insights into the role of aberrant gene expression for both events. A total of 15 MCLs were collected from the files, which include a total of 237 MCL patients confirmed by histology as CCND1-positive. We posited four stepwise morphological grades for MCL: MCL in situ, MCL with classical form (cMCL), MCL with aggressive form (aMCL), and MCL with intermediate morphology between classical and aggressive forms at the same site (iMCL). To identify genes involved in initiation, we compared the tumor cells of MCL in situ (n=4) with normal mantle zone B lymphocytes (n=4), which were selected by laser microdissection (LMD). To identify genes contributing to transformation, we selected the overlapping genes differentially expressed between both cMCL (n=4) vs. aMCL (n=5) and classical vs. aggressive areas in iMCL (n=2) obtained by LMD. A significant number of genes (n=23, p=0.016) belonging to the Wnt signaling pathway were differentially expressed in initiation. This specific activation was confirmed by immuno-histochemistry, as MCL in situ had nuclear localization of phosphorylated-β-catenin with high levels of cytoplasmic Wnt3 staining. For transformation, identified 60 overlapping genes included a number of members of the p53 interaction network (CDC2, BIRC5 and FOXM1), which is known to mediate cell cycle progression during the G2/M transition. Thus, we observe that the Wnt signaling pathway may play an important role in initial lymphomagenesis in addition to t(11;14) translocations, and that specific mitotic regulators facilitate transformation into more aggressive forms.
Collapse
Affiliation(s)
- Yoshizo Kimura
- Department of Pathology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wang LP, Chen SW, Zhuang SM, Li H, Song M. Galectin-3 accelerates the progression of oral tongue squamous cell carcinoma via a Wnt/β-catenin-dependent pathway. Pathol Oncol Res 2013; 19:461-74. [PMID: 23519607 DOI: 10.1007/s12253-013-9603-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to elucidate the clinicopathological significance and mechanism of action of galectin-3 in oral tongue squamous cell carcinoma (OTSCC). Here, the expression of galectin-3 was quantified in OTSCC (n = 68) and paired OTSCC and normal surrounding tissues (n = 10) using immunohistochemical staining. Tca8113 OTSCC cells were transfected with a plasmid expressing galectin-3 cDNA or siRNA against galectin-3. Cell proliferation, migration and invasion were measured using the MTT assay, Matrigel-coated Transwell migration assay and wound healing assay. The effect of galectin-3 on the Wnt/β-catenin signaling pathway and epithelial mesenchymal transition (EMT) were investigated using a plasmid expressing the Wnt antagonist dickkopf 1 (DKK1) and Western blotting. Galectin-3 was expressed at significantly higher levels in OTSCC than the normal adjacent tissues; galectin-3 expression correlated strongly with pathological stage, pathological grade and lymph node invasion in OTSCC. Overexpression of galectin-3 promoted Tca8113 cell proliferation, migration and invasion, upregulated Wnt protein expression, activated β-catenin and induced the EMT; knockdown of galectin-3 had the opposite effects. Co-transfection of Tca8113 cells overexpressing galectin-3 with the Wnt antagonist DKK1 reduced the ability of galectin-3 to increase cell proliferation, migration and invasion, reduced upregulation of Wnt, inhibited β-catenin activation and abrogated the EMT, demonstrating that the Wnt/β-catenin signaling pathway mediated the effects of galectin-3. Galectin-3 plays an important role in the progression of OTSCC via activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Li-Ping Wang
- State Key Laboratory of Oncology in South China and Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Dong Road, Guangzhou 510060, People's Republic of China
| | | | | | | | | |
Collapse
|
67
|
Abstract
Wnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in β-catenin expression. β-catenin accumulation was inhibited by the canonical antagonist dickkopf-1 (DKK1) and by the noncanonical agonist Wnt5a. Whole genome expression analysis demonstrated that Wnt3a and Wnt5a regulated distinct patterns of gene expression in MKs, and revealed a further interplay between canonical and noncanonical Wnt pathways. Fetal liver cells derived from low-density-lipoprotein receptor-related protein 6-deficient mice (LRP6(-/-)), generated dramatically reduced numbers of MKs in culture of lower ploidy (2N and 4N) than wild-type controls, implicating LRP6-dependent Wnt signaling in MK proliferation and maturation. Finally, in wild-type mature murine fetal liver-derived MKs, Wnt3a potently induced proplatelet formation, an effect that could be completely abrogated by DKK1. These data identify novel extrinsic regulators of proplatelet formation, and reveal a profound role for Wnt signaling in platelet production.
Collapse
|
68
|
Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012; 18:1778-85. [PMID: 23142822 PMCID: PMC3518679 DOI: 10.1038/nm.2984] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cell (HSC) self renewal and lineage commitment depend on complex interactions with the microenvironment. The ability to maintain or expand HSCs for clinical applications or basic research has been substantially limited because these interactions are not well defined. Recent evidence suggests that HSCs reside in a low-perfusion, reduced-nutrient niche and that nutrient-sensing pathways contribute to HSC homeostasis. Here we report that suppression of the mTOR pathway, an established nutrient sensor, combined with activation of canonical Wnt-β-catenin signaling, allows for the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that the combination of two clinically approved medications that together activate Wnt-β-catenin and inhibit mTOR signaling increases the number (but not the proportion) of long-term HSCs in vivo.
Collapse
Affiliation(s)
- Jian Huang
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
69
|
The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 2012; 37:813-26. [PMID: 23103132 DOI: 10.1016/j.immuni.2012.08.009] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 07/06/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
The TCF-1 and LEF-1 transcription factors are known to play critical roles in normal thymocyte development. Unexpectedly, we found that TCF-1-deficient (Tcf7(-/-)) mice developed aggressive T cell malignancy, resembling human T cell acute lymphoblastic leukemia (T-ALL). LEF-1 was aberrantly upregulated in premalignant Tcf7(-/-) early thymocytes and lymphoma cells. We further demonstrated that TCF-1 directly repressed LEF-1 expression in early thymocytes and that conditional inactivation of Lef1 greatly delayed or prevented T cell malignancy in Tcf7(-/-) mice. In human T-ALLs, an early thymic progenitor (ETP) subtype was associated with diminished TCF7 expression, and two of the ETP-ALL cases harbored TCF7 gene deletions. We also showed that TCF-1 and LEF-1 were dispensable for T cell lineage commitment but instead were required for early thymocytes to mature beyond the CD4(-)CD8(-) stage. TCF-1 thus has dual roles, i.e., acting cooperatively with LEF-1 to promote thymocyte maturation while restraining LEF-1 expression to prevent malignant transformation of developing thymocytes.
Collapse
|
70
|
Roozen PPC, Brugman MH, Staal FJT. Differential requirements for Wnt and Notch signaling in hematopoietic versus thymic niches. Ann N Y Acad Sci 2012; 1266:78-93. [PMID: 22901260 DOI: 10.1111/j.1749-6632.2012.06626.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
All blood cells are derived from multipotent stem cells, the so-called hematopoietic stem cells (HSCs), that in adults reside in the bone marrow. Most types of blood cells also develop there, with the notable exception of T lymphocytes that develop in the thymus. For both HSCs and developing T cells, interactions with the surrounding microenvironment are critical in regulating maintenance, differentiation, apoptosis, and proliferation. Such specialized regulatory microenvironments are referred to as niches and provide both soluble factors as well as cell-cell interactions between niche component cells and blood cells. Two pathways that are critical for early T cell development in the thymic niche are Wnt and Notch signaling. These signals also play important but controversial roles in the HSC niche. Here, we review the differences and similarities between the thymic and hematopoietic niches, with particular focus on Wnt and Notch signals, as well as the latest insights into regulation of these developmentally important pathways.
Collapse
Affiliation(s)
- Paul P C Roozen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Stem cell gene SALL4 has been well characterized for its essential role in developmental events as well as embryonic stem cell pluripotency maintenance. Several current reports now shed new light on its functions in regulating hematopoietic cell self-renewal and differentiation. In this review we attempt to summarize SALL4 roles for normal hematopoiesis, and how the knowledge obtained can be used to develop advanced cell therapies. RECENT FINDINGS SALL4 may act as a critical controller to regulate the fate of hematopoietic cells. In normal bone marrow, SALL4 is selectively expressed in primitive hematopoietic precursors and rapidly downregulated following differentiation. Of particular interest, SALL4 isoforms are able to stimulate large scale ex-vivo expansion of hematopoietic stem/progenitor cells (HSCs/HPCs). The SALL4 expanded HSCs/HPCs retain multilineage repopulation and long-term engraftment activities, which are clinically meaningful. The stem cell self-renewal mediated by SALL4 is linked to epigenetic machinery. SUMMARY The emerging knowledge about how SALL4 regulates HSC behavior may be used in the near future to develop advanced cell therapies, for example, through large-scale stem cell expansion ex vivo.
Collapse
|
72
|
Zhou X, Xue HH. Cutting edge: generation of memory precursors and functional memory CD8+ T cells depends on T cell factor-1 and lymphoid enhancer-binding factor-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:2722-6. [PMID: 22875805 PMCID: PMC3437003 DOI: 10.4049/jimmunol.1201150] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell factor (TCF)-1 and lymphoid enhancer-binding factor (LEF)-1 transcription factors have redundant roles in promoting thymocyte maturation. TCF-1 has been recently shown to critically regulate memory CD8+ T cell differentiation and persistence. The complete spectra of regulatory roles for TCF-1 and LEF-1 in CD8+ T cell responses are yet unknown. We conditionally targeted LEF-1, and by combination with germline deletion of TCF-1, we found that loss of both factors completely abrogated the generation of KLR G1(lo)IL-7Rα+ memory precursors in effector CD8+ T cell populations in response to Listeria monocytogenes infection. Whereas CD8+ effectors deficient for TCF-1 and LEF-1 retained the capacity to express IFN-γ, granzyme B, and perforin, they were defective in TNF-α production. In the memory phase, the Ag-specific CD8+ T cells lacking TCF-1 and LEF-1 exhibited an effector phenotype and were severely impaired in secondary expansion upon rechallenge. Thus, TCF-1 and LEF-1 cooperatively regulate generation of memory precursors and protective memory CD8+ T cells.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Immunology, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Immunology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
73
|
Cain CJ, Rueda R, McLelland B, Collette NM, Loots GG, Manilay JO. Absence of sclerostin adversely affects B-cell survival. J Bone Miner Res 2012; 27:1451-61. [PMID: 22434688 PMCID: PMC3377789 DOI: 10.1002/jbmr.1608] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased osteoblast activity in sclerostin-knockout (Sost(-/-)) mice results in generalized hyperostosis and bones with small bone marrow cavities resulting from hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B-cell development. In this study, we investigated whether high bone mass environments affect B-cell development via the utilization of Sost(-/-) mice, a model of sclerosteosis. We found the bone marrow of Sost(-/-) mice to be specifically depleted of B cells because of elevated apoptosis at all B-cell developmental stages. In contrast, B-cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B-cell defects in Sost(-/-) mice are non-cell autonomous, and this was confirmed by transplantation of wild-type (WT) bone marrow into lethally irradiated Sost(-/-) recipients. WT→Sost(-/-) chimeras displayed a reduction in B cells, whereas reciprocal Sost(-/-) →WT chimeras did not, supporting the idea that the Sost(-/-) bone environment cannot fully support normal B-cell development. Expression of the pre-B-cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost(-/-) mice, whereas the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells.
Collapse
Affiliation(s)
- Corey J Cain
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | | | | | | | | | | |
Collapse
|
74
|
Sharma A, Chen Q, Nguyen T, Yu Q, Sen JM. T cell factor-1 and β-catenin control the development of memory-like CD8 thymocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:3859-68. [PMID: 22492686 DOI: 10.4049/jimmunol.1103729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Innate memory-like CD8 thymocytes develop and acquire effector function during maturation in the absence of encounter with Ags. In this study, we demonstrate that enhanced function of transcription factors T cell factor (TCF)-1 and β-catenin regulate the frequency of promyelocytic leukemia zinc finger (PLZF)-expressing, IL-4-producing thymocytes that promote the generation of eomesodermin-expressing memory-like CD8 thymocytes in trans. In contrast, TCF1-deficient mice do not have PLZF-expressing thymocytes and eomesodermin-expressing memory-like CD8 thymocytes. Generation of TCF1 and β-catenin-dependent memory-like CD8 thymocytes is non-cell-intrinsic and requires the expression of IL-4 and IL-4R. CD8 memory-like thymocytes migrate to the peripheral lymphoid organs, and the memory-like CD8 T cells rapidly produce IFN-γ. Thus, TCF1 and β-catenin regulate the generation of PLZF-expressing thymocytes and thereby facilitate the generation of memory-like CD8 T cells in the thymus.
Collapse
Affiliation(s)
- Archna Sharma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
75
|
Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H. Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 2012; 90:279-306. [PMID: 22553915 DOI: 10.1139/o2012-013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin is a major component of biologically important mucosal fluids and of the specific granules of neutrophils. Understanding its biological function is essential for understanding neutrophil- and mucosal-mediated immunity. In this review, we reevaluate the in vivo functions of human lactoferrin (hLF) emphasizing in vivo studies and in vitro studies performed in biologically relevant fluids. We discuss the evidence in the literature that supports (or does not support) proposed roles for hLF in mucosal immunity and in neutrophil function. We argue that the current literature supports a microbiostatic role, but not a microbicidal role, for hLF in vivo. The literature also supports a role for hLF in inhibiting colonization and infection of epithelial surfaces by microorganisms and in protecting tissues from neutrophil-mediated damage. Using this information, we briefly discuss hLF in the context of the complex biological fluids in which it is found.
Collapse
Affiliation(s)
- David B Alexander
- Laboratory of Nanotoxicology Project, Nagoya City University, 3-1 Tanabedohri, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | | | |
Collapse
|
76
|
Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS One 2012; 7:e30359. [PMID: 22363428 PMCID: PMC3281831 DOI: 10.1371/journal.pone.0030359] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 12/14/2011] [Indexed: 01/23/2023] Open
Abstract
The Wnt/β-catenin pathway plays a crucial role in the pathogenesis of various human cancers. In multiple myeloma (MM), aberrant auto-and/or paracrine activation of canonical Wnt signaling promotes proliferation and dissemination, while overexpression of the Wnt inhibitor Dickkopf1 (DKK1) by MM cells contributes to osteolytic bone disease by inhibiting osteoblast differentiation. Since DKK1 itself is a target of TCF/β-catenin mediated transcription, these findings suggest that DKK1 is part of a negative feedback loop in MM and may act as a tumor suppressor. In line with this hypothesis, we show here that DKK1 expression is low or undetectable in a subset of patients with advanced MM as well as in MM cell lines. This absence of DKK1 is correlated with enhanced Wnt pathway activation, evidenced by nuclear accumulation of β-catenin, which in turn can be antagonized by restoring DKK1 expression. Analysis of the DKK1 promoter revealed CpG island methylation in several MM cell lines as well as in MM cells from patients with advanced MM. Moreover, demethylation of the DKK1 promoter restores DKK1 expression, which results in inhibition of β-catenin/TCF-mediated gene transcription in MM lines. Taken together, our data identify aberrant methylation of the DKK1 promoter as a cause of DKK1 silencing in advanced stage MM, which may play an important role in the progression of MM by unleashing Wnt signaling.
Collapse
|
77
|
Rothenberg EV. Transcriptional drivers of the T-cell lineage program. Curr Opin Immunol 2012; 24:132-8. [PMID: 22264928 DOI: 10.1016/j.coi.2011.12.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 12/31/2011] [Indexed: 11/28/2022]
Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most transcription factors needed to establish T-cell lineage identity also have crossover roles in other hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory circuits required for T-cell specification. But new advances illuminate the roles of three of the most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
78
|
Abstract
The canonical Wnt signaling pathway is evolutionarily conserved and plays key roles during development of many organ systems. This pathway utilizes TCF/LEF transcription factors, β-catenin coactivator, and TLE/GRG corepressors to achieve balanced regulation of its downstream gene expression. It is well established that several Wnt ligands and their effector proteins are crucial for normal T cell development. Recent studies have also revealed critical requirements for TCF-1 in generation and persistence of functional memory CD8(+) T cells, and in promoting Th2-differentiation and suppressing Th17-differentiation of activated CD4(+) T cells. Activation of β-catenin facilitated CD8(+) memory T cell formation, with enhanced protective capacity and extended survival of CD4(+) CD25(+) regulatory T cells. Upregulation of Wnt ligands was observed in Drosophila in response to Toll signaling as well as in mammalian dendritic cells and macrophages upon microbial stimulation. These new findings suggest that modulating the activity of Wnt pathway may be a powerful approach to enhance protective immunity and treat autoimmune diseases.
Collapse
Affiliation(s)
- Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
79
|
Muranski P, Borman ZA, Kerkar SP, Klebanoff CA, Ji Y, Sanchez-Perez L, Sukumar M, Reger RN, Yu Z, Kern SJ, Roychoudhuri R, Ferreyra GA, Shen W, Durum SK, Feigenbaum L, Palmer DC, Antony PA, Chan CC, Laurence A, Danner RL, Gattinoni L, Restifo NP. Th17 cells are long lived and retain a stem cell-like molecular signature. Immunity 2011; 35:972-85. [PMID: 22177921 PMCID: PMC3246082 DOI: 10.1016/j.immuni.2011.09.019] [Citation(s) in RCA: 357] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 09/03/2011] [Accepted: 09/16/2011] [Indexed: 02/06/2023]
Abstract
Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.
Collapse
Affiliation(s)
- Pawel Muranski
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | - Zachary A. Borman
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | - Sid P. Kerkar
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | | | - Yun Ji
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | | | | | - Robert N. Reger
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | - Zhiya Yu
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | - Steven J. Kern
- Functional Genomics and Proteomics Facility, Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | | | - Gabriela A. Ferreyra
- Functional Genomics and Proteomics Facility, Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Wei Shen
- Laboratory of Molecular Immunoregulation, NCI, Fredrick, MD
| | - Scott K. Durum
- Laboratory of Molecular Immunoregulation, NCI, Fredrick, MD
| | - Lionel Feigenbaum
- Science Applications International Corporation (SAIC), NCI, Frederick, MD
| | - Douglas C. Palmer
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | - Paul A. Antony
- Department of Microbiology and Immunology, Department of Pathology, and the Tumor Immunology and Immunotherapy Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chi-Chao Chan
- National Eye Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892
| | - Arian Laurence
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Robert L. Danner
- Functional Genomics and Proteomics Facility, Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA
| | - Luca Gattinoni
- National Cancer Institute, CRC10 Room 3W5816, Bethesda, MD, 20892, USA
| | | |
Collapse
|
80
|
Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2011; 26:414-21. [PMID: 22173215 DOI: 10.1038/leu.2011.387] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A strict balance between self-renewal and differentiation of hematopoietic stem cells (HSCs) is required in order to maintain homeostasis, as well as to efficiently respond to injury and infections. Numbers and fate decisions made by progenitors derived from HSC must also be carefully regulated to sustain large-scale production of blood cells. The complex Wnt family of molecules generally is thought to be important to these processes, delivering critical signals to HSC and progenitors as they reside in specialized niches. Wnt proteins have also been extensively studied in connection with malignancies and are causatively involved in the development of several types of leukemias. However, studies with experimental animal models have produced contradictory findings regarding the importance of Wnt signals for normal hematopoiesis and lymphopoiesis. Here, we will argue that dose dependency of signaling via particular Wnt pathways accounts for much, if not all of this controversy. We conclude that there seems little doubt that Wnt proteins are required to sustain normal hematopoiesis, but are likely to be presented in carefully controlled gradients in a tissue-specific manner.
Collapse
|
81
|
Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol 2011; 24:1433-43. [PMID: 21685909 DOI: 10.1038/modpathol.2011.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lymphoid-enhancer-binding factor 1 (LEF1), coupling with β-catenin, functions as a key nuclear mediator of WNT/β-catenin signaling, which regulates cell proliferation and survival. LEF1 has an important role in lymphopoiesis, and is normally expressed in T and pro-B cells but not mature B cells. However, gene expression profiling demonstrates overexpression of LEF1 in chronic lymphocytic leukemia, and knockdown of LEF1 decreases the survival of the leukemic cells. So far, the data on LEF1 expression in B-cell lymphomas are limited. This study represents the first attempt to assess LEF1 by immunohistochemistry in a large series (290 cases) of B-cell lymphomas. Strong nuclear staining of LEF1 was observed in virtually all neoplastic cells in 92 of 92 (100%) chronic lymphocytic leukemia/small lymphocytic lymphomas including two CD5- cases, with strongest staining in cells with Richter's transformation. LEF1 also highlighted the morphologically inconspicuous small lymphocytic lymphoma component in three composite lymphomas. All 53 mantle cell lymphomas, 31 low-grade follicular lymphomas and 31 marginal zone lymphomas, including 3 CD5+ cases, were negative. In 12 grade 3 follicular lymphomas, LEF1 was positive in a small subset (5-15%) of cells. Diffuse large B-cell lymphoma, however, demonstrated significant variability in LEF1 expression with overall positivity in 27 of 71 (38%) cases. Our results demonstrate that nuclear overexpression of LEF1 is highly associated with chronic lymphocytic leukemia/small lymphocytic lymphoma, and may serve as a convenient marker for differential diagnosis of small B-cell lymphomas. The expression of β-catenin, the coactivator of LEF1 in WNT signaling, was examined in 50 chronic lymphocytic leukemia/small lymphocytic lymphomas, of which 44 (88%) showed negative nuclear staining. The findings of universal nuclear overexpression of LEF1 but lack of nuclear β-catenin in the majority of chronic lymphocytic leukemia/small lymphocytic lymphoma suggest that the pro-survival function of LEF1 in this disease may be independent of WNT/β-catenin signaling.
Collapse
|
82
|
Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, Rozenblatt-Rosen O, Meyerson M, Neel BG, Hatakeyama M. SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell 2011; 43:45-56. [PMID: 21726809 DOI: 10.1016/j.molcel.2011.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/04/2011] [Accepted: 05/08/2011] [Indexed: 12/11/2022]
Abstract
Deregulation of SHP2 is associated with malignant diseases as well as developmental disorders. Although SHP2 is required for full activation of RAS signaling, other potential roles in cell physiology have not been elucidated. Here we show that SHP2 dephosphorylates parafibromin/Cdc73, a core component of the RNA polymerase II-associated factor (PAF) complex. Parafibromin is known to act as a tumor suppressor that inhibits cyclin D1 and c-myc by recruiting SUV39H1 histone methyltransferase. However, parafibromin can also act in the opposing direction by binding β-catenin, thereby activating promitogenic/oncogenic Wnt signaling. We found that, on tyrosine dephosphorylation by SHP2, parafibromin acquires the ability to stably bind β-catenin. The parafibromin/β-catenin interaction overrides parafibromin/SUV39H1-mediated transrepression and induces expression of Wnt target genes, including cyclin D1 and c-myc. Hence, SHP2 governs the opposing functions of parafibromin, deregulation of which may cause the development of tumors or developmental malformations.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Pangrazio A, Boudin E, Piters E, Damante G, Iacono NL, D'Elia AV, Vezzoni P, Van Hul W, Villa A, Sobacchi C. Identification of the first deletion in the LRP5 gene in a patient with autosomal dominant osteopetrosis type I. Bone 2011; 49:568-71. [PMID: 21600326 PMCID: PMC3149657 DOI: 10.1016/j.bone.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 10/28/2022]
Abstract
In the last decade, the low-density lipoprotein receptor-related protein 5 (LRP5) gene, coding for a coreceptor in the canonical Wnt signalling pathway, has been shown to play an important role in regulating bone mass and to be involved in the pathogenesis of several bone disorders. Here we describe a patient who presented with a clinical picture of Autosomal Dominant Osteopetrosis type I (ADO I), in whom we could identify the first deletion in the LRP5 gene causing increased bone mass. This mutation caused the in-frame deletion of two amino acids in the fourth blade of the first propeller of the protein, namely the highly conserved glycine at position 171 and the following glutamate residue. In vitro studies suggested that the pathogenic effect of this novel mutation could be due to a decreased inhibition of Wnt signalling by the antagonistic proteins sclerostin and Dickkopf-1, encoded respectively by the SOST and DKK1 genes, in the presence of mutated LRP5. Our results highlight an increasing molecular heterogeneity in LRP5-related bone diseases.
Collapse
Affiliation(s)
- Alessandra Pangrazio
- Institute of Genetic and Biomedical Research (IRGB) - Milan Section, National Research Council, 20138 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Italy
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | - Elke Piters
- Department of Medical Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | - Giuseppe Damante
- Azienda Ospedaliero-Universitaria di Udine, Istituto di Genetica, 33100 Udine, Italy
| | - Nadia Lo Iacono
- Institute of Genetic and Biomedical Research (IRGB) - Milan Section, National Research Council, 20138 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Italy
| | | | - Paolo Vezzoni
- Institute of Genetic and Biomedical Research (IRGB) - Milan Section, National Research Council, 20138 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Italy
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, 2610 Antwerp, Belgium
| | - Anna Villa
- Institute of Genetic and Biomedical Research (IRGB) - Milan Section, National Research Council, 20138 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Italy
| | - Cristina Sobacchi
- Institute of Genetic and Biomedical Research (IRGB) - Milan Section, National Research Council, 20138 Milan, Italy
- Istituto Clinico Humanitas IRCCS, 20089 Rozzano, Italy
- Corresponding author at: Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano (MI), Italy. Fax: + 39 0282245191.
| |
Collapse
|
84
|
Prlic M, Bevan MJ. Cutting edge: β-catenin is dispensable for T cell effector differentiation, memory formation, and recall responses. THE JOURNAL OF IMMUNOLOGY 2011; 187:1542-6. [PMID: 21724993 DOI: 10.4049/jimmunol.1100907] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms that regulate mature T cell fate and enable cells to differentiate into memory T cells are largely unknown. Memory T cells share certain key features with stem cells: they both have the ability to self-renew and are long-lived. The Wnt-β-catenin signaling pathway is a key player in regulating stem cell self-renewal and differentiation. We generated a conditional knockout mouse that specifically lacks β-catenin in mature T cells and report in this article that β-catenin is not involved in regulating effector versus memory T cell differentiation. β-catenin-deficient memory T cells were phenotypically and functionally indistinguishable from control cells and made normal recall responses. β-catenin deficiency does not affect T cell migration, T cell function in a model of chronic infection, or lymphopenia-induced proliferation. Together, our data suggest that self-renewal and differentiation are regulated differently in memory T cells compared with epithelial and hematopoietic stem cells.
Collapse
Affiliation(s)
- Martin Prlic
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
85
|
Werbowetski-Ogilvie TE, Schnerch A, Rampalli S, Mills CE, Lee JB, Hong SH, Levadoux-Martin M, Bhatia M. Evidence for the transmission of neoplastic properties from transformed to normal human stem cells. Oncogene 2011; 30:4632-44. [PMID: 21625212 DOI: 10.1038/onc.2011.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The in vivo relationship between human tumor cells and interacting normal cells in their local environment is poorly understood. Here, using a uniquely developed in vitro co-culture system for human embryonic stem cells (hESCs), we examined the interactions between transformed and normal human stem cells. Co-culture of transformed-hESCs (t-hESCs) with normal hESCs led to enhanced self-renewal and niche independence in normal hESCs. Global gene expression analysis of normal hESCs after timed exposure to t-hESCs indicated a transition of the molecular network controlling the hESC state, which included epigenetic changes, towards neoplastic features. These included enhanced pluripotent marker expression and a differentiation blockade as major hallmark changes. Functional studies revealed a loss in normal terminal differentiation programs for both hematopoiesis and neural lineages after normal stem cell co-culture with transformed variants. This transmission of neoplastic properties from t-hESCs to normal hESCs was dependent on direct cell-cell contact. Our study indicates that normal human stem cells can co-opt neoplastic cancer stem cell properties, raising the possibility that assimilation of healthy cells towards neoplastic behavior maybe a contributing feature of sustained tumorigenesis in vivo.
Collapse
Affiliation(s)
- T E Werbowetski-Ogilvie
- McMaster Stem Cell and Cancer Research Institute, Michael G. Degroote School of Medicine, Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Gene Expression Patterns in Different Wool Densities of Rex Rabbit Using cDNA Microarray. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60041-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
87
|
Yu Q, Sharma A, Ghosh A, Sen JM. T cell factor-1 negatively regulates expression of IL-17 family of cytokines and protects mice from experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3946-52. [PMID: 21339363 DOI: 10.4049/jimmunol.1003497] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Activated CD4 T cells are associated with protective immunity and autoimmunity. The manner in which the inflammatory potential of T cells and resultant autoimmunity is restrained is poorly understood. In this article, we demonstrate that T cell factor-1 (TCF1) negatively regulates the expression of IL-17 and related cytokines in activated CD4 T cells. We show that TCF1 does not affect cytokine signals and expression of transcription factors that have been shown to regulate Th17 differentiation. Instead, TCF1 regulates IL-17 expression, in part, by binding to the regulatory regions of the Il17 gene. Moreover, TCF1-deficient Th17 CD4 T cells express higher levels of IL-7Rα, which potentially promotes their survival and expansion in vivo. Accordingly, TCF1-deficient mice are hyperresponsive to experimental autoimmune encephalomyelitis. Thus, TCF1, a constitutively expressed T cell-specific transcription factor, is a critical negative regulator of the inflammatory potential of TCR-activated T cells and autoimmunity.
Collapse
Affiliation(s)
- Qing Yu
- Lymphocyte Development Unit, Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
88
|
Driessens G, Zheng Y, Locke F, Cannon JL, Gounari F, Gajewski TF. Beta-catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-γ1 phosphorylation. THE JOURNAL OF IMMUNOLOGY 2010; 186:784-90. [PMID: 21149602 DOI: 10.4049/jimmunol.1001562] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite the defined function of the β-catenin pathway in thymocytes, its functional role in peripheral T cells is poorly understood. We report that in a mouse model, β-catenin protein is constitutively degraded in peripheral T cells. Introduction of stabilized β-catenin into primary T cells inhibited proliferation and cytokine secretion after TCR stimulation and blunted effector cell differentiation. Functional and biochemical studies revealed that β-catenin selectively inhibited linker for activation of T cells phosphorylation on tyrosine 136, which was associated with defective phospholipase C-γ1 phosphorylation and calcium signaling but normal ERK activation. Our findings indicate that β-catenin negatively regulates T cell activation by a previously undescribed mechanism and suggest that conditions under which β-catenin might be inducibly stabilized in vivo would be inhibitory for T cell-based immunity.
Collapse
Affiliation(s)
- Gregory Driessens
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
89
|
Maier E, Hebenstreit D, Posselt G, Hammerl P, Duschl A, Horejs-Hoeck J. Inhibition of suppressive T cell factor 1 (TCF-1) isoforms in naive CD4+ T cells is mediated by IL-4/STAT6 signaling. J Biol Chem 2010; 286:919-28. [PMID: 20980261 DOI: 10.1074/jbc.m110.144949] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Wnt pathway transcription factor T cell factor 1 (TCF-1) plays essential roles in the control of several developmental processes, including T cell development in the thymus. Although previously regarded as being required only during early T cell development, recent studies demonstrate an important role for TCF-1 in T helper 2 (Th2) cell polarization. TCF-1 was shown to activate expression of the Th2 transcription factor GATA-binding protein 3 (GATA3) and thus to promote the development of IL-4-producing Th2 cells independent of STAT6 signaling. In this study, we show that TCF-1 is down-regulated in human naive CD4(+) T cells cultured under Th2-polarizing conditions. The down-regulation is largely due to the polarizing cytokine IL-4 because IL-4 alone is sufficient to substantially inhibit TCF-1 expression. The IL-4-induced suppression of TCF-1 is mediated by STAT6, as shown by electrophoretic mobility shift assays, chromatin immunoprecipitation, and STAT6 knockdown experiments. Moreover, we found that IL-4/STAT6 predominantly inhibits the shorter, dominant-negative TCF-1 isoforms, which were reported to inhibit IL-4 transcription. Thus, this study provides a model for an IL-4/STAT6-dependent fine tuning mechanism of TCF-1-driven T helper cell polarization.
Collapse
Affiliation(s)
- Elisabeth Maier
- Department of Molecular Biology, University of Salzburg, Hellbrunner Strasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
90
|
Lovatt M, Bijlmakers MJ. Stabilisation of β-catenin downstream of T cell receptor signalling. PLoS One 2010; 5. [PMID: 20862283 PMCID: PMC2940849 DOI: 10.1371/journal.pone.0012794] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/21/2010] [Indexed: 11/23/2022] Open
Abstract
Background The role of TCF/β-catenin signalling in T cell development is well established, but important roles in mature T cells have only recently come to light. Methodology/Principal Findings Here we have investigated the signalling pathways that are involved in the regulation of β-catenin in primary human T cells. We demonstrate that β-catenin expression is upregulated rapidly after T cell receptor (TCR) stimulation and that this involves protein stabilisation rather than an increase in mRNA levels. Similar to events in Wnt signalling, the increase in β-catenin coincides with an inhibition of GSK3, the kinase that is required for β-catenin degradation. β-catenin stabilisation in T cells can also be induced by the activation of PKC with phorbol esters and is blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and phospholipase C (PKC). Upon TCR signalling, β-catenin accumulates in the nucleus and, parallel to this, the ratio of TCF1 isoforms is shifted in favour of the longer β-catenin binding isoforms. However, phosphorylated β-catenin, which is believed to be inactive, can also be detected and the expression of Wnt target genes Axin2 and dickkopf is down regulated. Conclusions/Significance These data show that in mature human T cells, TCR signalling via PI3K and PKC can result in the stabilisation of β-catenin, allowing β-catenin to migrate to the nucleus. They further highlight important differences between β-catenin activities in TCR and Wnt signalling.
Collapse
Affiliation(s)
- Matthew Lovatt
- Peter Gorer Department of Immunobiology, School of Medicine at Guy's, King's College and St Thomas' Hospitals, King's College London, Guy's Hospital, London, UK.
| | | |
Collapse
|
91
|
|
92
|
Tran DA, Wong TC, Schep AN, Drewell RA. Characterization of an Ultra-Conserved Putativecis-Regulatory Module at the Mammalian Telomerase Reverse Transcriptase Gene. DNA Cell Biol 2010; 29:499-508. [DOI: 10.1089/dna.2009.0994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Diana A. Tran
- Department of Biology, Harvey Mudd College, Claremont, California
| | - Terence C. Wong
- Department of Biology, Harvey Mudd College, Claremont, California
| | - Alicia N. Schep
- Department of Biology, Harvey Mudd College, Claremont, California
| | | |
Collapse
|
93
|
Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar APN. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres. Mol Cancer 2010; 9:212. [PMID: 20691072 PMCID: PMC2924313 DOI: 10.1186/1476-4598-9-212] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 08/06/2010] [Indexed: 02/06/2023] Open
Abstract
Background Recent evidence suggests that epithelial cancers, including colorectal cancer are driven by a small sub-population of self-renewing, multi-potent cells termed cancer stem cells (CSCs) which are thought to be responsible for recurrence of cancer. One of the characteristics of CSCs is their ability to form floating spheroids under anchorage-independent conditions in a serum-free defined media. The current investigation was undertaken to examine the role of Wnt/β-catenin pathway in regulating the growth and maintenance of colonospheres. Human colon cancer cells HCT-116 (p53 wild type; K-ras mutant), HCT-116 (p53 null; K-ras mutant) and HT-29 (p53 mutant) were used. Results Colonospheres formed in vitro exhibited higher expression of colon CSCs markers LGR5, CD44, CD166 and Musashi-1 along with putative CSC marker EpCAM, compared to the corresponding parental cancer cells and also exhibit the ability to form spheroids under extreme limiting dilution, indicating the predominance of CSCs in colonospheres. Colonospheres formed by HCT-116 cells show over 80% of the cells to be CD44 positive, compared to ≤ 1% in the corresponding parental cells. Additionally, colonospheres showed reduced membrane bound β-catenin but had increased levels of total β-catenin, cyclin-D1 and c-myc and down regulation of axin-1 and phosphorylated β-catenin. Increased expression of β-catenin was associated with a marked transcriptional activation of TCF/LEF. The latter was greatly decreased following down regulation of β-catenin by the corresponding siRNA, leading to a marked reduction in CD44 positive cells as well as colonospheres formation. In contrast, upregulation of c-myc, a down-stream effector of TCF/LEF greatly augmented the formation of colonospheres. Conclusion Our data suggest that colonospheres formed by colon cancer cell lines are highly enriched in CSCs and that Wnt/β-catenin pathway plays a critical role in growth and maintenance of colonospheres.
Collapse
Affiliation(s)
- Shailender S Kanwar
- Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
94
|
Buono M, Visigalli I, Bergamasco R, Biffi A, Cosma MP. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. ACTA ACUST UNITED AC 2010; 207:1647-60. [PMID: 20643830 PMCID: PMC2916128 DOI: 10.1084/jem.20091022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
Collapse
Affiliation(s)
- Mario Buono
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
| | | | | | | | | |
Collapse
|
95
|
Expression profile of WNT, FZD and sFRP genes in human hematopoietic cells. Leuk Res 2010; 34:946-9. [DOI: 10.1016/j.leukres.2010.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 11/24/2022]
|
96
|
Weisel KC, Kopp HG, Moore MA, Studer L, Barberi T. Wnt1 Overexpression Leads to Enforced Cardiomyogenesis and Inhibition of Hematopoiesis in Murine Embryonic Stem Cells. Stem Cells Dev 2010; 19:745-51. [DOI: 10.1089/scd.2008.0356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Katja C. Weisel
- University of Tübingen, Medical Center, Department of Hematology, Oncology and Immunology, Tübingen, Germany
| | - Hans-Georg Kopp
- University of Tübingen, Medical Center, Department of Hematology, Oncology and Immunology, Tübingen, Germany
| | - Malcolm A.S. Moore
- James Ewing Laboratory of Developmental Hematopoiesis, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lorenz Studer
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tiziano Barberi
- Department of Neurosciences, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
97
|
Dellett M, O'Hagan KA, Colyer HAA, Mills KI. Identification of gene networks associated with acute myeloid leukemia by comparative molecular methylation and expression profiling. BIOMARKERS IN CANCER 2010; 2:43-55. [PMID: 24179384 PMCID: PMC3783331 DOI: 10.4137/bic.s3185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Around 80% of acute myeloid leukemia (AML) patients achieve a complete remission, however many will relapse and ultimately die of their disease. The association between karyotype and prognosis has been studied extensively and identified patient cohorts as having favourable [e.g. t(8; 21), inv (16)/t(16; 16), t(15; 17)], intermediate [e.g. cytogenetically normal (NK-AML)] or adverse risk [e.g. complex karyotypes]. Previous studies have shown that gene expression profiling signatures can classify the sub-types of AML, although few reports have shown a similar feature by using methylation markers. The global methylation patterns in 19 diagnostic AML samples were investigated using the Methylated CpG Island Amplification Microarray (MCAM) method and CpG island microarrays containing 12,000 CpG sites. The first analysis, comparing favourable and intermediate cytogenetic risk groups, revealed significantly differentially methylated CpG sites (594 CpG islands) between the two subgroups. Mutations in the NPM1 gene occur at a high frequency (40%) within the NK-AML subgroup and are associated with a more favourable prognosis in these patients. A second analysis comparing the NPM1 mutant and wild-type research study subjects again identified distinct methylation profiles between these two subgroups. Network and pathway analysis revealed possible molecular mechanisms associated with the different risk and/or mutation sub-groups. This may result in a better classification of the risk groups, improved monitoring targets, or the identification of novel molecular therapies.
Collapse
Affiliation(s)
- Margaret Dellett
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | | | | | | |
Collapse
|
98
|
Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG, Klein PS. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2010; 119:3519-29. [PMID: 19959876 DOI: 10.1172/jci40572] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 10/19/2009] [Indexed: 01/21/2023] Open
Abstract
Hematopoietic stem cell (HSC) homeostasis depends on the balance between self renewal and lineage commitment, but what regulates this decision is not well understood. Using loss-of-function approaches in mice, we found that glycogen synthase kinase-3 (Gsk3) plays a pivotal role in controlling the decision between self renewal and differentiation of HSCs. Disruption of Gsk3 in BM transiently expanded phenotypic HSCs in a betta-catenin-dependent manner, consistent with a role for Wnt signaling in HSC homeostasis. However, in assays of long-term HSC function, disruption of Gsk3 progressively depleted HSCs through activation of mammalian target of rapamycin (mTOR). This long-term HSC depletion was prevented by mTOR inhibition and exacerbated by betta-catenin knockout. Thus, GSK-3 regulated both Wnt and mTOR signaling in mouse HSCs, with these pathways promoting HSC self renewal and lineage commitment, respectively, such that inhibition of Gsk3 in the presence of rapamycin expanded the HSC pool in vivo. These findings identify unexpected functions for GSK-3 in mouse HSC homeostasis, suggest a therapeutic approach to expand HSCs in vivo using currently available medications that target GSK-3 and mTOR, and provide a compelling explanation for the clinically prevalent hematopoietic effects observed in individuals prescribed the GSK-3 inhibitor lithium.
Collapse
Affiliation(s)
- Jian Huang
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Huelsken J, Held W. Canonical Wnt signalling plays essential roles. Eur J Immunol 2010; 39:3582-3; author reply 3583-4. [PMID: 19941311 DOI: 10.1002/eji.200838982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
100
|
|