51
|
Bogdan C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue micro-environment and metabolism. Cytokine X 2020; 2:100041. [PMID: 33604563 PMCID: PMC7885870 DOI: 10.1016/j.cytox.2020.100041] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Leishmania are protozoan parasites that predominantly reside in myeloid cells within their mammalian hosts. Monocytes and macrophages play a central role in the pathogenesis of all forms of leishmaniasis, including cutaneous and visceral leishmaniasis. The present review will highlight the diverse roles of macrophages in leishmaniasis as initial replicative niche, antimicrobial effectors, immunoregulators and as safe hideaway for parasites persisting after clinical cure. These multiplex activities are either ascribed to defined subpopulations of macrophages (e.g., Ly6ChighCCR2+ inflammatory monocytes/monocyte-derived dendritic cells) or result from different activation statuses of tissue macrophages (e.g., macrophages carrying markers of of classical [M1] or alternative activation [M2]). The latter are shaped by immune- and stromal cell-derived cytokines (e.g., IFN-γ, IL-4, IL-10, TGF-β), micro milieu factors (e.g., hypoxia, tonicity, amino acid availability), host cell-derived enzymes, secretory products and metabolites (e.g., heme oxygenase-1, arginase 1, indoleamine 2,3-dioxygenase, NOS2/NO, NOX2/ROS, lipids) as well as by parasite products (e.g., leishmanolysin/gp63, lipophosphoglycan). Exciting avenues of current research address the transcriptional, epigenetic and translational reprogramming of macrophages in a Leishmania species- and tissue context-dependent manner.
Collapse
Key Words
- (L)CL, (localized) cutaneous leishmaniasis
- AHR, aryl hydrocarbon receptor
- AMP, antimicrobial peptide
- Arg, arginase
- Arginase
- CAMP, cathelicidin-type antimicrobial peptide
- CR, complement receptor
- DC, dendritic cells
- DCL, diffuse cutaneous leishmaniasis
- HO-1, heme oxygenase 1
- Hypoxia
- IDO, indoleamine-2,3-dioxygenase
- IFN, interferon
- IFNAR, type I IFN (IFN-α/β) receptor
- IL, interleukin
- Interferon-α/β
- Interferon-γ
- JAK, Janus kinase
- LPG, lipophosphoglycan
- LRV1, Leishmania RNA virus 1
- Leishmaniasis
- Macrophages
- Metabolism
- NCX1, Na+/Ca2+ exchanger 1
- NFAT5, nuclear factor of activated T cells 5
- NK cell, natural killer cell
- NO, nitric oxide
- NOS2 (iNOS), type 2 (or inducible) nitric oxide synthase
- NOX2, NADPH oxidase 2 (gp91 or cytochrome b558 β-subunit of Phox)
- Nitric oxide
- OXPHOS, mitochondrial oxidative phosphorylation
- PKDL, post kala-azar dermal leishmaniasis
- Phagocyte NADPH oxidase
- Phox, phagocyte NADPH oxidase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOCS, suppressor of cytokine signaling
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-beta
- TLR, toll-like receptor
- Th1 (Th2), type 1 (type2) T helper cell
- Tonicity
- VL, visceral leishmaniasis
- mTOR, mammalian/mechanistic target of rapamycin
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
52
|
Chanyalew M, Abebe M, Endale B, Girma S, Tasew G, van Zandbergen G, Ritter U, Gadisa E, Aseffa A, Laskay T. Enhanced production of pro-inflammatory cytokines and chemokines in Ethiopian cutaneous leishmaniasis upon exposure to Leishmania aethiopica. Cytokine 2020; 145:155289. [PMID: 32951968 DOI: 10.1016/j.cyto.2020.155289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 11/18/2022]
Abstract
The clinical course and outcome of cutaneous leishmaniasis (CL) vary due to the infecting Leishmania species and host genetic makeup that result in different immune responses against the parasites. The host immune response to Leishmania aethiopica (L.aethiopica), the causative agent of CL in Ethiopia, is poorly understood. To contribute to the understanding of the protective immune response in CL due to L.aethiopica, we characterized the cytokine response to L. aethiopica in patients with the localized form of CL (LCL) and age-and sex-matched apparently healthy controls. By applying a whole blood based in vitro culture we found enhanced release of TNF, IL-6, MCP-1 or CCL2, IP-10 or CXCL10, MIP-1β or CCL4 and IL-8 or CXCL8- but not of IL-10CL patients in response to L. aethiopica compared to the controls. No difference was observed between LCL cases and controls in the secretion of these cytokines and chemokines in whole blood cultures treated with the TLR-ligands LPS, MALP-2 or polyI: C. The observed increased secretion of the pro-inflammatory cytokines/chemokines reflects an enhanced response against the parasites by LCL patients as compared to healthy controls rather than a generally enhanced ability of blood leukocytes from LCL patients to respond to microbial constituents. Our findings suggest that the enhanced production of pro-inflammatory cytokines/chemokines is associated with localized cutaneous leishmaniasis caused by L.aethiopica.
Collapse
Affiliation(s)
- Menberework Chanyalew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia.
| | - Markos Abebe
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Birtukan Endale
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Selfu Girma
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Geremew Tasew
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia; Leishmaniasis Research Laboratory, Ethiopia Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen D-63225, Germany.
| | - Uwe Ritter
- Regensburg Center for Interventional Immunology (RCI), Institute of Immunology, University Medical Center Regensburg, University of Regensburg, D-93053 Regensburg, Germany.
| | - Endalamaw Gadisa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Research and Innovation Division, Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, D-23560 Lübeck, Germany.
| |
Collapse
|
53
|
Aoki JI, Muxel SM, Laranjeira-Silva MF, Zampieri RA, Müller KE, Nerland AH, Floeter-Winter LM. Dual transcriptome analysis reveals differential gene expression modulation influenced by Leishmania arginase and host genetic background. Microb Genom 2020; 6:mgen000427. [PMID: 32886592 PMCID: PMC7643972 DOI: 10.1099/mgen.0.000427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
The outcome of Leishmania infection is strongly influenced by the host's genetic background. BALB/c mice are susceptible to Leishmania infection, while C57BL/6 mice show discrete resistance. Central to the fate of the infection is the availability of l-arginine and the related metabolic processes in the host and parasite. Depending on l-arginine availability, nitric oxide synthase 2 (NOS2) of the host cell produces nitric oxide (NO) controlling the parasite growth. On the other hand, Leishmania can also use host l-arginine for the production of polyamines through its own arginase activity, thus favouring parasite replication. Considering RNA-seq data, we analysed the dual modulation of host and parasite gene expression of BALB/c or C57BL/6 mouse bone marrow-derived macrophages (BMDMs) after 4 h of infection with Leishmania amazonensis wild-type (La-WT) or L. amazonensis arginase knockout (La-arg-). We identified 12 641 host transcripts and 8282 parasite transcripts by alignment analysis with the respective Mus musculus and L. mexicana genomes. The comparison of BALB/c_La-arg-versus BALB/c_La-WT revealed 233 modulated transcripts, with most related to the immune response and some related to the amino acid transporters and l-arginine metabolism. In contrast, the comparison of C57BL/6_La-arg-vs. C57BL/6_La-WT revealed only 30 modulated transcripts, including some related to the immune response but none related to amino acid transport or l-arginine metabolism. The transcriptome profiles of the intracellular amastigote revealed 94 modulated transcripts in the comparison of La-arg-_BALB/c vs. La-WT_BALB/c and 45 modulated transcripts in the comparison of La-arg-_C57BL/6 vs. La-WT_C57BL/6. Taken together, our data present new insights into the impact of parasite arginase activity on the orchestration of the host gene expression modulation, including in the immune response and amino acid transport and metabolism, mainly in susceptible BALB/c-infected macrophages. Moreover, we show how parasite arginase activity affects parasite gene expression modulation, including amino acid uptake and amastin expression.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | - Karl Erik Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Drammen Hospital, Drammen, Norway
| | | | | |
Collapse
|
54
|
Pessenda G, da Silva JS. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol 2020; 42:e12722. [PMID: 32294247 DOI: 10.1111/pim.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a neglected infectious disease with clinical presentations ranging from asymptomatic or mild symptoms to chronic infection and eventual death. The mechanisms of disease susceptibility and pathology have been extensively studied, but there are no steadfast rules regarding leishmaniasis. A Th1 response is usually associated with infection control, while a predominant Th2 response is detrimental to the patient. In this scenario, the enzymes arginase and inducible nitric oxide synthase represent two possible pathways of immune response. While the former contributes to parasite replication, the latter is crucial for its control. In the present review, we collected study results that associate arginase expression in patients and in experimental models with disease susceptibility/chronicity and show some proposed mechanisms that explain the role of arginase in maintaining Leishmania infection, including polyamine and thiol synthesis, tissue-resident macrophage (TRM) proliferation and activation and T-cell suppression and exhaustion.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto, Brazil
| |
Collapse
|
55
|
The different faces of the NLRP3 inflammasome in cutaneous Leishmaniasis: A review. Cytokine 2020; 147:155248. [PMID: 32807586 DOI: 10.1016/j.cyto.2020.155248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Cutaneous leishmaniasis (CL) is a vector-borne parasitic disease caused by Protozoa of the genus Leishmania. Clinical manifestations of this disease are the result of a complex interplay of diverse factors, including the genetic background and the immune status of the host. Understanding the impact of these factors on the CL pathology may provide new targets to manage the infection and improve clinical outcome. The NLRP3 inflammasome, an innate immune complex of several cell types, seems to be involved in the CL physiopathology. Current studies of its role show contradictory effects of this complex on the evolution of Leishmania infection in mice and humans. In this review, we discuss the data regarding different roles of the NLRP3 inflammasome in murine and human CL.
Collapse
|
56
|
Saresella M, Basilico N, Marventano I, Perego F, La Rosa F, Piancone F, Taramelli D, Banks H, Clerici M. Leishmania infantum infection reduces the amyloid β 42-stimulated NLRP3 inflammasome activation. Brain Behav Immun 2020; 88:597-605. [PMID: 32335194 DOI: 10.1016/j.bbi.2020.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of the NLRP3 inflammasome has been shown to play a major role in the neuroinflammation that accompanies Alzheimer's disease (AD); interventions that down regulate the NLRP3 inflammasome could thus be beneficial in AD. Parasite infections were recently shown to be associated with improved cognitive functions in Apolipoprotein E4 (ApoE4)-expressing members of an Amazonian tribe. We verified in an in vitro model whether Leishmania infantum infection could reduce NLRP3. Results obtained in an initial experimental model in which PBMC were LPS primed and nigericin-stimulated showed that L. infantum infection significantly reduced ASC-speck formation (i.e. intracellular inflammasome proteins assembly), as well as the production of activated caspase 5 and IL-1β, but increased that of activated caspase 1 and IL-18. Moreover, L. infantum infection induced the generation of an anti-inflammatory milieu by suppressing the production of TNFα and increasing that of IL-10. These results were replicated when cells that had been LPS-primed were stimulated with Aβ42 and infected with L. infantum. Results herein indicate that Leishmania infection favors an anti-inflammatory milieu, which includes the down-regulation of NLRP3 inflammasome activation, possibly to facilitate its survival inside host cells. A side effect of Leishmaniasis would be the hampering of neuroinflammation; this could play a protective role against AD development.
Collapse
Affiliation(s)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy.
| | | | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20100 Milan, Italy.
| | | | | | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milan, Italy.
| | - Helen Banks
- Centre for Research on Health and Social Care Management (Cergas), SDA Bocconi School of Management, Milan 20100, Italy.
| | - Mario Clerici
- IRCCS Fondazione don Carlo Gnocchi, 20148 Milan, Italy; Department of Physiopathology and Transplants, University of Milan, 20122 Milan, Italy.
| |
Collapse
|
57
|
Harrington V, Gurung P. Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunol Rev 2020; 297:53-66. [PMID: 32564424 DOI: 10.1111/imr.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Leishmaniasis is a global health problem that affects more than 2 billion people worldwide. Recent advances in research have demonstrated critical roles for cytoplasmic sensors and inflammasomes during Leishmania spp. infection and pathogenesis. Specifically, several studies have focused on the role of nod-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammasome-associated cytokines IL-1β and IL-18 in leishmaniasis. Despite these studies, our understanding of the priming and activation events that lead to NLRP3 inflammasome activation during Leishmania spp. infection is limited. Furthermore, whether NLRP3 plays a protective or pathogenic role during Leishmania spp. infection is far from resolved, with some studies showing a protective role and others showing a pathogenic role. In this review, we performed a critical review of the literature to provide a current update on priming and activating signals required for NLRP3 inflammasome activation during Leishmania spp. infection. Finally, we provide a thorough review of the literature to reconcile differences in the observed protective vs pathogenic roles of the NLRP3 inflammasome during Leishmania spp. infection.
Collapse
Affiliation(s)
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
58
|
Cardoso TM, Lima JB, Bonyek-Silva Í, Nunes S, Feijó D, Almeida H, Silva J, Barral A, Boaventura V, Borges VM, Zamboni DS, Pedreira de Carvalho L, Carvalho EM, Tavares NM, Brodskyn C. Inflammasome Activation by CD8 + T Cells from Patients with Cutaneous Leishmaniasis Caused by Leishmania braziliensis in the Immunopathogenesis of the Disease. J Invest Dermatol 2020; 141:209-213.e2. [PMID: 32544477 DOI: 10.1016/j.jid.2020.05.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Thiago Marconi Cardoso
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Prof Edgar Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - Instituto Nacional de Ciência e Tecnologia em - Doenças Tropicais (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), Salvador, Bahia, Brazil
| | - Jonilson B Lima
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB)
| | - Ícaro Bonyek-Silva
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Sara Nunes
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Daniel Feijó
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Hugo Almeida
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Juliana Silva
- Serviço de Imunologia, Hospital Universitário Prof Edgar Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Aldina Barral
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Instituto de Investigação de Imunologia (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), São Paulo, Brazil
| | - Viviane Boaventura
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Dario S Zamboni
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Pedreira de Carvalho
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Prof Edgar Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - Instituto Nacional de Ciência e Tecnologia em - Doenças Tropicais (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Prof Edgar Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais - Instituto Nacional de Ciência e Tecnologia em - Doenças Tropicais (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), Salvador, Bahia, Brazil
| | - Natalia M Tavares
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Instituto de Investigação de Imunologia (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), São Paulo, Brazil
| | - Cláudia Brodskyn
- Fiocruz-BA, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Faculdade de Medicina da Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Instituto de Investigação de Imunologia (Conselho Nacional de Pesquisa/Ministério da Ciência e Tecnologia), São Paulo, Brazil.
| |
Collapse
|
59
|
Amorim EADS, de França ÁA, Pereira VRA, Brelaz-de-Castro MCA. IL-1 family and Cutaneous Leishmaniasis: A poorly understood relationship. Cytokine Growth Factor Rev 2020; 57:85-92. [PMID: 32540132 DOI: 10.1016/j.cytogfr.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/02/2023]
Abstract
The cytokines of the interleukin (IL) -1 family act in the initiation of an effective immune response in Leishmania infection, represented mainly by the T helper 1 (Th1) profile, in addition to being associated with disease exacerbation and controversial contributions in the Th2 responses. The family also includes members who self-regulate inflammation, such as antagonists and anti-inflammatory cytokines, most of which have not yet been studied in Cutaneous Leishmaniasis (CL) in humans. Here we summarize findings about what is known so far about the role of these cytokines in mice, the main study model, and in humans. We reinforce the importance of studies of these cytokines as new targets in the context of CL.
Collapse
Affiliation(s)
- Ester Alves da Silva Amorim
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Áquila Alcântara de França
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Valéria Rêgo Alves Pereira
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| | - Maria Carolina Accioly Brelaz-de-Castro
- Federal University of Pernambuco (UFPE), Academic Center of Vitória (CAV), Rua do Alto do Reservatório s/n, Bela Vista, Vitória de Santo Antão, Pernambuco, PE, 55608-680, Brazil; Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Moraes Rego, s/n - Cidade Universitária, 50670-420, Recife, Pernambuco, Brazil.
| |
Collapse
|
60
|
Regli IB, Passelli K, Martínez-Salazar B, Amore J, Hurrell BP, Müller AJ, Tacchini-Cottier F. TLR7 Sensing by Neutrophils Is Critical for the Control of Cutaneous Leishmaniasis. Cell Rep 2020; 31:107746. [DOI: 10.1016/j.celrep.2020.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
|
61
|
de Carvalho RVH, Zamboni DS. Inflammasome Activation in Response to Intracellular Protozoan Parasites. Trends Parasitol 2020; 36:459-472. [PMID: 32298633 DOI: 10.1016/j.pt.2020.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic complexes that assemble in response to cellular stress or upon sensing microbial molecules, culminating in cytokine processing and an inflammatory form of cell death called pyroptosis. Inflammasomes are usually composed of a sensor molecule, an adaptor protein, and an inflammatory caspase, such as Caspase-1, which cleaves and activates multiple substrates, including Gasdermin-D, pro-IL-1β, and pro-IL-18. Ultimately, inflammasome activation promotes inflammation and restriction of the microbial infection. In recent years, many studies have addressed the role of inflammasomes during fungal, bacterial, viral, and parasitic diseases, revealing sophisticated aspects of the host-pathogen interaction. In this review, we summarize recent advances on inflammasome activation in response to intracellular parasites, including Leishmania spp., Plasmodium spp., Trypanosoma cruzi, and Toxoplasma gondii.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
62
|
Bastos DSS, Miranda BM, Fialho Martins TV, Guimarães Ervilha LO, Souza ACF, de Oliveira Emerick S, Carneiro da Silva A, Novaes RD, Neves MM, Santos EC, de Oliveira LL, Marques-da-Silva EDA. Lipophosphoglycan-3 recombinant protein vaccine controls hepatic parasitism and prevents tissue damage in mice infected by Leishmania infantum chagasi. Biomed Pharmacother 2020; 126:110097. [PMID: 32203891 DOI: 10.1016/j.biopha.2020.110097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 μg + two boosters of 20 μg). The mice were challenged two weeks after the last immunization. KEY FINDINGS Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | | | | | | | | |
Collapse
|
63
|
Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, Varet H, Bussotti G, Xing Y, Milon G, Weil R, Meng G, Späth GF. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep 2020; 30:1870-1882.e4. [DOI: 10.1016/j.celrep.2020.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
64
|
Gatto M, Borim PA, Wolf IR, Fukuta da Cruz T, Ferreira Mota GA, Marques Braz AM, Casella Amorim B, Targino Valente G, de Assis Golim M, Venturini J, Araújo Junior JP, Pontillo A, Sartori A. Transcriptional analysis of THP-1 cells infected with Leishmania infantum indicates no activation of the inflammasome platform. PLoS Negl Trop Dis 2020; 14:e0007949. [PMID: 31961876 PMCID: PMC6994165 DOI: 10.1371/journal.pntd.0007949] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/31/2020] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is caused by intracellular parasites transmitted to vertebrates by sandfly bites. Clinical manifestations include cutaneous, mucosal or visceral involvement depending upon the host immune response and the parasite species. To assure their survival inside macrophages, these parasites developed a plethora of highly successful strategies to manipulate various immune system pathways. Considering that inflammasome activation is critical for the establishment of a protective immune response in many parasite infections, in this study we determined the transcriptome of THP-1 cells after infection with L. infantum, with a particular focus on the inflammasome components. To this end, the human cell line THP-1, previously differentiated into macrophages by PMA treatment, was infected with L. infantum promastigotes. Differentiated THP-1 cells were also stimulated with LPS to be used as a comparative parameter. The gene expression signature was determined 8 hours after by RNA-seq technique. Infected or uninfected THP-1 cells were stimulated with nigericin (NIG) to measure active caspase-1 and TNF-α, IL-6 and IL-1β levels in culture supernatants after 8, 24 and 48 hours. L. infantum triggered a gene expression pattern more similar to non-infected THP-1 cells and very distinct from LPS-stimulated cells. Some of the most up-regulated genes in L. infantum-infected cells were CDC20, CSF1, RPS6KA1, CD36, DUSP2, DUSP5, DUSP7 and TNFAIP3. Some up-regulated GO terms in infected cells included cell coagulation, regulation of MAPK cascade, response to peptide hormone stimulus, negative regulation of transcription from RNA polymerase II promoter and nerve growth factor receptor signaling pathway. Infection was not able to induce the expression of genes associated with the inflammasome signaling pathway. This finding was confirmed by the absence of caspase-1 activation and IL-1β production after 8, 24 and 48 hours of infection. Our results indicate that L. infantum was unable to activate the inflammasomes during the initial interaction with THP-1 cells. Visceral leishmaniasis, caused by Leishmania infantum, is a disease that affects millions of people worldwide. The entry of microorganisms into the host is commonly associated with activation of a multiprotein platform called inflammasome whose assembly culminates in caspase-1 activation and IL-1β production. ILβ activates other cells and effector mechanisms leading to clearance of pathogens. However, the involvement of inflammasomes in the human infection with L. infantum is poorly known. To investigate the parasite-host interaction is fundamental to understand the immunopathogenesis of visceral leishmaniasis and to allow the development of new therapeutic strategies. In this study, we used RNA-seq, a tool that allowed to investigate the global gene expression of THP-1 cells, which is a macrophage-like human cell line, infected with L. infantum. By using computational analysis, this approach allowed us to evaluate the expression of genes that compose the inflammasomes pathway and other gene networks and signaling pathways triggered after infection. This analysis indicated that, unlike species causing cutaneous leishmaniasis, L. infantum did not induce the expression of genes of inflammasome pathways, nor caspase-1 activation or IL-1β production, possibly reflecting a parasite strategy to manipulate immune system and therefore, to allow its survival inside the cells.
Collapse
Affiliation(s)
- Mariana Gatto
- Tropical Diseases Department, Botucatu Medical School – UNESP, Botucatu, Brazil
- * E-mail:
| | | | - Ivan Rodrigo Wolf
- Bioprocess and Biotechnology Department, Agronomic Sciences School – UNESP, Botucatu, Brazil
| | - Taís Fukuta da Cruz
- Microbiology and Immunology Department, Biosciences Institute - UNESP, Botucatu, Brazil
| | | | | | | | | | | | | | | | | | - Alexandrina Sartori
- Tropical Diseases Department, Botucatu Medical School – UNESP, Botucatu, Brazil
| |
Collapse
|
65
|
Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci Rep 2019; 9:19841. [PMID: 31882833 PMCID: PMC6934472 DOI: 10.1038/s41598-019-56305-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The fate of Leishmania infection can be strongly influenced by the host genetic background. In this work, we describe gene expression modulation of the immune system based on dual global transcriptome profiles of bone marrow-derived macrophages (BMDMs) from BALB/c and C57BL/6 mice infected with Leishmania amazonensis. A total of 12,641 host transcripts were identified according to the alignment to the Mus musculus genome. Differentially expressed genes (DEGs) profiling revealed a differential modulation of the basal genetic background between the two hosts independent of L. amazonensis infection. In addition, in response to early L. amazonensis infection, 10 genes were modulated in infected BALB/c vs. non-infected BALB/c macrophages; and 127 genes were modulated in infected C57BL/6 vs. non-infected C57BL/6 macrophages. These modulated genes appeared to be related to the main immune response processes, such as recognition, antigen presentation, costimulation and proliferation. The distinct gene expression was correlated with the susceptibility and resistance to infection of each host. Furthermore, upon comparing the DEGs in BMDMs vs. peritoneal macrophages, we observed no differences in the gene expression patterns of Jun, Fcgr1 and Il1b, suggesting a similar activation trends of transcription factor binding, recognition and phagocytosis, as well as the proinflammatory cytokine production in response to early L. amazonensis infection. Analysis of the DEG profile of the parasite revealed only one DEG among the 8,282 transcripts, indicating that parasite gene expression in early infection does not depend on the host genetic background.
Collapse
|
66
|
de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, Silva ALN, da Silva PF, Frantz FG, Lorenzon LB, Souza MM, Almeida F, Cantanhêde LM, Ferreira RDGM, Cruz AK, Zamboni DS. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun 2019; 10:5273. [PMID: 31754185 PMCID: PMC6872735 DOI: 10.1038/s41467-019-13356-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Djalma S Lima-Junior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Vinícius G da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Dilucca
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamara S Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Catarina V Horta
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrick F da Silva
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiani G Frantz
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas B Lorenzon
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Michel Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
67
|
Amorim CF, Novais FO, Nguyen BT, Misic AM, Carvalho LP, Carvalho EM, Beiting DP, Scott P. Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis. Sci Transl Med 2019; 11:eaax4204. [PMID: 31748229 PMCID: PMC7068779 DOI: 10.1126/scitranslmed.aax4204] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Patients infected with Leishmania braziliensis develop chronic lesions that often fail to respond to treatment with antiparasite drugs. To determine whether genes whose expression is highly variable in lesions between patients might influence disease outcome, we obtained biopsies of lesions from patients before treatment with pentavalent antimony and performed transcriptomic profiling on these clinical samples. We identified genes that were highly variably expressed between patients, and the variable expression of these genes correlated with treatment outcome. Among the most variable genes in all the patients were components of the cytolytic pathway, and the expression of these genes correlated with parasite load in the skin. We demonstrated that treatment failure was linked to the cytolytic pathway activated during infection. Using a host-pathogen marker profile of as few as three genes, we showed that eventual treatment outcome could be predicted before the start of treatment in two separate cohorts of patients with cutaneous leishmaniasis (n = 21 and n = 25). These findings raise the possibility of point-of-care diagnostic screening to identify patients at high risk of treatment failure and provide a rationale for a precision medicine approach to drug selection in cutaneous leishmaniasis. This work more broadly demonstrates the value of identifying genes of high variability in other diseases to better understand and predict diverse clinical outcomes.
Collapse
Affiliation(s)
- Camila Farias Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Ba T Nguyen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA
| | - Lucas P Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia 40110-060, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, 40296-710, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia 40110-060, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, 40296-710, Brazil
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA.
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA 19104-4539, USA.
| |
Collapse
|
68
|
Misra P, Singh S. Site specific microbiome of Leishmania parasite and its cross-talk with immune milieu. Immunol Lett 2019; 216:79-88. [PMID: 31678358 DOI: 10.1016/j.imlet.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Microbiota consists of commensal, symbiotic and pathogenic microorganisms found in all multicellular organisms. These micro-organisms are found in or on many parts of the body, including the intestinal tract, skin, mouth, and the reproductive tract. This review focuses on interplay of site specific microbiota, vector microbiota along with immune response and severity of Leishmaniasis. Herein, we have reviewed and summarized the counter effect of microbiome post infection with the Leishmania parasite. We have studied skin microbiome along with the gut microbiome of sand-fly which is the vector for transmission of this disease. Our major focus was to understand the skin and gut microbiome during Leishmania infection,their interaction and effect on immunological responses generated during the infection.Moreover, systems biology approach is envisioned to enumerate bacterial species in skin microbiota and Phlebotmus gut microbiota during Leishmania infection.
Collapse
Affiliation(s)
- Pragya Misra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
69
|
Ugurel E, Erdag E, Kucukali CI, Olcay A, Sanli E, Akbayir E, Kurtuncu M, Gunduz T, Yilmaz V, Tuzun E, Vural B. Enhanced NLRP3 and DEFA1B Expression During the Active Stage of Parenchymal Neuro-Behçet's Disease. In Vivo 2019; 33:1493-1497. [PMID: 31471397 DOI: 10.21873/invivo.11629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Neurological symptoms (neuro-Behçet's disease; NBD) occur in a fraction of Behçet's disease (BD) patients and often present with parenchymal brain lesions and clinical exacerbations. Our aim was to identify genes associated with attack and remission periods of NBD. MATERIALS AND METHODS Microarray analysis was performed using peripheral blood mononuclear cell (PBMC) samples obtained during attack and remission periods of five NBD patients. Expression levels of the most significantly up-regulated genes were measured with real-time PCR using PBMC samples of 15 NBD patients and 20 healthy controls. RESULTS During NBD attacks, the most remarkably up-regulated genes were defensin alpha 1B (DEFA1B) and NLR family, pyrin domain containing 3 (NLRP3). Real time PCR studies showed significantly increased DEFA1B and NLRP3 expression levels during attacks. CONCLUSION Immunological factors showing the most significant increase in expression during NBD attacks were primarily associated with innate immunity functions. DEFA1B and NLRP3 can be used as biomarkers for estimation of disease activity in NBD.
Collapse
Affiliation(s)
- Elif Ugurel
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Erdag
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ayca Olcay
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Sanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Murat Kurtuncu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gunduz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Burcak Vural
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
70
|
da Silva GAV, de Mesquita TGR, de Souza Encarnação HV, do Espírito Santo Junior J, da Costa Sabino K, de Aguiar Neres I, de Almeida SA, de Souza MLG, Talhari S, Ramasawmy R. A polymorphism in the IL1B gene (rs16944 T/C) is associated with cutaneous leishmaniasis caused by Leishmania guyanensis and plasma cytokine interleukin receptor antagonist. Cytokine 2019; 123:154788. [PMID: 31357078 DOI: 10.1016/j.cyto.2019.154788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022]
Abstract
Nod-like Receptor Protein3 (NLRP3) inflammasome in macrophages infected with Leishmania sp. enhances the secretion of IL-1β. Excess IL-1β production is linked to disease severity in patients with cutaneous leishmaniasis (CL) caused by L. mexicana. Blockade of the NLRP3 inflammasome in cell cultures from skin biopsies of patients with CL caused by L. braziliensis inhibited the release of IL-1β. We hypothesized that common single nucleotide polymorphisms in the IL1B and in its receptor antagonist IL1RN genes may be predictive of CL caused by L. guyanensis. The SNPs -511T/C (rs16944) and +3954C/T (rs1143634) of the IL1B and IL1RN VNTR (rs2234663) were assessed in 881 patients with CL and 837 healthy controls by PCR-RFLP and direct PCR respectively. Plasma cytokines levels were also assayed. The plasma levels of IL-1β were higher in patients compared to control subjects. In contrast, increased plasma levels of IL-1Ra were observed in controls. The rs16944 C/C genotype was more common among the patients (OR = 1.5 [95%CI 1.1-2.0]; P = 0.004) and the C allele suggests susceptibility to CL (OR = 1.2 [95%CI 1.1-1.4]; P = 0.003). The rs16944 C/C genotype shows a tendency to correlate with lower levels of the IL-1Ra cytokine. Low levels of IL-1Ra cytokine and rs16944 C/C genotype seem to confer susceptibility to L. guyanensis-infection in the Amazonas.
Collapse
Affiliation(s)
| | | | | | | | - Karolina da Costa Sabino
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Isaac de Aguiar Neres
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | - Mara Lúcia Gomes de Souza
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Sinésio Talhari
- Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Faculdade de Medicina, Universidade de Nilton Lins, Manaus, Amazonas, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Universidade Federal do Amazonas, Manaus, Brazil; Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil; Faculdade de Medicina, Universidade de Nilton Lins, Manaus, Amazonas, Brazil.
| |
Collapse
|
71
|
Leishmania major degrades murine CXCL1 - An immune evasion strategy. PLoS Negl Trop Dis 2019; 13:e0007533. [PMID: 31260451 PMCID: PMC6625741 DOI: 10.1371/journal.pntd.0007533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/12/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Leishmaniasis is a global health problem with an estimated report of 2 million new cases every year and more than 1 billion people at risk of contracting this disease in endemic areas. The innate immune system plays a central role in controlling L. major infection by initiating a signaling cascade that results in production of pro-inflammatory cytokines and recruitment of both innate and adaptive immune cells. Upon infection with L. major, CXCL1 is produced locally and plays an important role in the recruitment of neutrophils to the site of infection. Herein, we report that L. major specifically targets murine CXCL1 for degradation. The degradation of CXCL1 is not dependent on host factors as L. major can directly degrade recombinant CXCL1 in a cell-free system. Using mass spectrometry, we discovered that the L. major protease cleaves at the C-terminal end of murine CXCL1. Finally, our data suggest that L. major metalloproteases are involved in the direct cleavage and degradation of CXCL1, and a synthetic peptide spanning the CXCL1 cleavage site can be used to inhibit L. major metalloprotease activity. In conclusion, our study has identified an immune evasion strategy employed by L. major to evade innate immune responses in mice, likely reservoirs in the endemic areas, and further highlights that targeting these L. major metalloproteases may be important in controlling infection within the reservoir population and transmittance of the disease. Our study discovered a highly specific role for L. major metalloprotease in cleaving and degrading murine CXCL1. Indeed, L. major metalloprotease did not cleave murine CXCL2 or human CXCL1, CXCL2 and CXCL8. CXCL1 is a critical chemokine required for neutrophil recruitment to the site of infection; thus, we propose that this metalloprotease may have evolved to evade immune responses specifically in the murine host. We have further identified that the C-terminal end on CXCL1 is targeted for cleavage by the L. major metalloprotease. Finally, this cleavage site information was used to design peptides that are able to inhibit CXCL1 degradation by L. major. Our study highlights an immune evasion strategy utilized by L. major to establish infection within a murine host.
Collapse
|
72
|
Gupta G, Santana AK, Gomes CM, Turatti A, Milanezi CM, Bueno Filho R, Fuzo C, Almeida RP, Carregaro V, Roselino AM, Silva JS. Inflammasome gene expression is associated with immunopathology in human localized cutaneous leishmaniasis. Cell Immunol 2019; 341:103920. [DOI: 10.1016/j.cellimm.2019.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 12/22/2022]
|
73
|
Carvalho AM, Novais FO, Paixão CS, de Oliveira CI, Machado PRL, Carvalho LP, Scott P, Carvalho EM. Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania braziliensis Infection. J Invest Dermatol 2019; 140:246-249.e2. [PMID: 31252034 DOI: 10.1016/j.jid.2019.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Augusto M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Paulo Roberto Lima Machado
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Lucas P Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil.
| |
Collapse
|
74
|
Chaves MM, Sinflorio DA, Thorstenberg ML, Martins MDA, Moreira-Souza ACA, Rangel TP, Silva CLM, Bellio M, Canetti C, Coutinho-Silva R. Non-canonical NLRP3 inflammasome activation and IL-1β signaling are necessary to L. amazonensis control mediated by P2X7 receptor and leukotriene B4. PLoS Pathog 2019; 15:e1007887. [PMID: 31233552 PMCID: PMC6622556 DOI: 10.1371/journal.ppat.1007887] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/11/2019] [Accepted: 06/03/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of individuals worldwide. P2X7 receptor has been linked to the elimination of Leishmania amazonensis. Biological responses evoked by P2X7 receptor activation have been well-documented, including apoptosis, phagocytosis, cytokine release, such as IL-1β. It was demonstrated that NLRP3 inflammasome activation and IL-1β signaling participated in resistance against L. amazonensis. Furthermore, our group has shown that L. amazonensis elimination through P2X7 receptor activation depended on leukotriene B4 (LTB4) production and release. Therefore, we investigated whether L. amazonensis elimination by P2X7 receptor and LTB4 involved NLRP3 inflammasome activation and IL-1β signaling. We showed that macrophages from NLRP3-/-, ASC-/-, Casp-1/11-/-, gp91phox-/- , and IL-1R-/- mice treated with ATP or LTB4 did not decrease parasitic load as was observed in WT mice. When ASC-/- macrophages were treated with exogenous IL-1β, parasite killing was noted, however, we did not see parasitic load reduction in IL-1R-/- macrophages. Similarly, macrophages from P2X7 receptor-deficient mice treated with IL-1β also showed decreased parasitic load. In addition, when we infected Casp-11-/- macrophages, neither ATP nor LTB4 were able to reduce parasitic load, and Casp-11-/- mice were more susceptible to L. amazonensis infection than were WT mice. Furthermore, P2X7-/-L. amazonensis-infected mice locally treated with exogenous LTB4 showed resistance to infection, characterized by lower parasite load and smaller lesions compared to untreated P2X7-/- mice. A similar observation was noted when infected P2X7-/- mice were treated with IL-1β, i.e., lower parasite load and smaller lesions compared to P2X7-/- mice. These data suggested that L. amazonensis elimination mediated by P2X7 receptor and LTB4 was dependent on non-canonical NLRP3 inflammasome activation, ROS production, and IL-1β signaling. Leishmania spp. is a protozoan parasite that infects human and causes several diseases. Leishmania amazonensis causes cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL). Leishmania parasites preferentially infect macrophages. In macrophages, several mechanisms have been described as controlling L. amazonensis infection. Here, we showed that P2X7 receptor and LTB4 eliminated L. amazonensis in macrophages by a pathway dependent on non-canonical NLRP3 inflammasome activation and IL-1β signaling.
Collapse
Affiliation(s)
- Mariana M. Chaves
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Debora A. Sinflorio
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Maria Luiza Thorstenberg
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | | | | | - Thuany Prado Rangel
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Claudia L. M. Silva
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Maria Bellio
- Microbiology Institute Paulo de Goés, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
| | - Claudio Canetti
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
- * E-mail: (CC); (RCS)
| | - Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro/RJ, Brazil
- * E-mail: (CC); (RCS)
| |
Collapse
|
75
|
Zamboni DS, Sacks DL. Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Curr Opin Microbiol 2019; 52:70-76. [PMID: 31229882 DOI: 10.1016/j.mib.2019.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
The inflammasomes are multi-molecular platforms that are activated in host cell cytoplasm when the innate immune cells are infected with pathogens or exposed to damage signals. Many independent groups reported that Leishmania infection trigger activation of the NLRP3 inflammasome in macrophages for restriction of intracellular parasite replication. Accordingly, Leishmania can dampen NLRP3 activation as an evasion strategy. In vivo, the NLRP3 inflammasome can promote parasite clearance, but the failure to eliminate parasites in the tissues together with sustained inflammasome activation can promote IL-1β-mediated disease pathology. In this review, we discuss the recent data regarding activation of the NLRP3 inflammasome in response to Leishmania and the beneficial and detrimental effects of the inflammasome during development of Leishmaniasis.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
76
|
Borbón TY, Scorza BM, Clay GM, Lima Nobre de Queiroz F, Sariol AJ, Bowen JL, Chen Y, Zhanbolat B, Parlet CP, Valadares DG, Cassel SL, Nauseef WM, Horswill AR, Sutterwala FS, Wilson ME. Coinfection with Leishmania major and Staphylococcus aureus enhances the pathologic responses to both microbes through a pathway involving IL-17A. PLoS Negl Trop Dis 2019; 13:e0007247. [PMID: 31107882 PMCID: PMC6527190 DOI: 10.1371/journal.pntd.0007247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is a parasitic disease causing chronic, ulcerating skin lesions. Most humans infected with the causative Leishmania protozoa are asymptomatic. Leishmania spp. are usually introduced by sand flies into the dermis of mammalian hosts in the presence of bacteria from either the host skin, sand fly gut or both. We hypothesized that bacteria at the dermal inoculation site of Leishmania major will influence the severity of infection that ensues. A C57BL/6 mouse ear model of single or coinfection with Leishmania major, Staphylococcus aureus, or both showed that single pathogen infections caused localized lesions that peaked after 2–3 days for S. aureus and 3 weeks for L. major infection, but that coinfection produced lesions that were two-fold larger than single infection throughout 4 weeks after coinfection. Coinfection increased S. aureus burdens over 7 days, whereas L. major burdens (3, 7, 28 days) were the same in singly and coinfected ears. Inflammatory lesions throughout the first 4 weeks of coinfection had more neutrophils than did singly infected lesions, and the recruited neutrophils from early (day 1) lesions had similar phagocytic and NADPH oxidase capacities. However, most neutrophils were apoptotic, and transcription of immunomodulatory genes that promote efferocytosis was not upregulated, suggesting that the increased numbers of neutrophils may, in part, reflect defective clearance and resolution of the inflammatory response. In addition, the presence of more IL-17A-producing γδ and non-γδ T cells in early lesions (1–7 days), and L. major antigen-responsive Th17 cells after 28 days of coinfection, with a corresponding increase in IL-1β, may recruit more naïve neutrophils into the inflammatory site. Neutralization studies suggest that IL-17A contributed to an enhanced inflammatory response, whereas IL-1β has an important role in controlling bacterial replication. Taken together, these data suggest that coinfection of L. major infection with S. aureus exacerbates disease, both by promoting more inflammation and neutrophil recruitment and by increasing neutrophil apoptosis and delaying resolution of the inflammatory response. These data illustrate the profound impact that coinfecting microorganisms can exert on inflammatory lesion pathology and host adaptive immune responses. Cutaneous leishmaniasis (CL) is a vector-borne ulcerating skin disease affecting several million people worldwide. The causative Leishmania spp. protozoa are transmitted by infected phlebotomine sand flies. During a sand fly bite, bacteria can be coincidentally inoculated into the dermis with the parasite. Staphylococcus aureus is the most common bacterium in CL skin lesions. Symptomatic CL is characterized by papulonodular skin lesions that ulcerate and resolve with scarring, although most cutaneous Leishmania infections are asymptomatic. We sought to explore factors that determine whether infection with a cutaneous Leishmania species would result in symptomatic CL rather than asymptomatic infection. We hypothesized that local bacteria promote the development of symptomatic CL lesions during infection with Leishmania major. We discovered that cutaneous lesions were significantly larger in mice inoculated simultaneously with S. aureus and L. major than in mice infected with either organism alone. Coinfection led to increased S. aureus growth in skin lesions, whereas L. major parasite numbers were unchanged by coinfection. The size of the exacerbated lesion correlated with early increased numbers of neutrophils and elevated levels of proinflammatory cytokines IL-1β and IL-17A during the first 7 days, and with sustained increases in IL-17A through 28 days of coinfection. Neutralizing antibody experiments suggested IL-17A was partially responsible for lesion exacerbation during coinfection, whereas IL-1β was important for both control of early lesion exacerbation and promotion of IL-17A production. These data suggest that treatment of symptomatic CL targeting the parasite, local commensal bacteria, and host proinflammatory IL-17A immune responses might improve the outcome of CL.
Collapse
Affiliation(s)
- Tiffany Y. Borbón
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Breanna M. Scorza
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Gwendolyn M. Clay
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
| | | | - Alan J. Sariol
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Jayden L. Bowen
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Bayan Zhanbolat
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Corey P. Parlet
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Diogo G. Valadares
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Brasilia, Brazil
| | - Suzanne L. Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - William M. Nauseef
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO, United States of America
| | - Fayyaz S. Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Mary E. Wilson
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States of America
- Medical Scientist Training Program and the Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Immunology, University of Iowa, Iowa City, IA, United States of America
- Interdisciplinary Ph.D. Program in Molecular Medicine, University of Iowa, Iowa City, IA, United States of America
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa City, IA, United States of America
- Iowa Inflammation Program, Department of Internal Medicine, University of Iowa, Iowa City, IA, United States of America
- Veterans’ Affairs Medical Center, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
77
|
Oualha R, Barhoumi M, Marzouki S, Harigua-Souiai E, Ben Ahmed M, Guizani I. Infection of Human Neutrophils With Leishmania infantum or Leishmania major Strains Triggers Activation and Differential Cytokines Release. Front Cell Infect Microbiol 2019; 9:153. [PMID: 31134162 PMCID: PMC6524560 DOI: 10.3389/fcimb.2019.00153] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
Leishmaniases are neglected diseases, caused by intracellular protozoan parasites of the Leishmania (L.) genus. Although the principal host cells of the parasites are macrophages, neutrophils are the first cells rapidly recruited to the site of parasites inoculation, where they play an important role in the early recognition and elimination of the parasites. The nature of early interactions between neutrophils and Leishmania could influence the outcome of infection. Herein we aimed to evaluate whether different Leishmania strains, responsible for distinct clinical manifestations, could influence ex vivo functional activity of neutrophils. Human polymorphonuclear leukocytes were isolated from 14 healthy volunteers and the ex vivo infection of these cells was done with two L. infantum and one L. major strains. Infection parameters were determined and neutrophils activation was assessed by oxidative burst, degranulation, DNA release and apoptosis; cytokine production was measured by a multiplex flow cytometry analysis. Intracellular amastigotes were rescued to determine Leishmania strains survival. The results showed that L. infantum and L. major promastigotes similarly infected the neutrophils. Oxidative burst, neutrophil elastase, myeloperoxidase activity and apoptosis were significantly increased in infected neutrophils but with no differences between strains. The L. infantum-infected neutrophils induced more DNA release than those infected by L. major. Furthermore, Leishmania strains induced high amounts of IL-8 and stimulated the production of IL-1β, TNF-α, and TGF-β by human neutrophils. We observed that only one strain promoted IL-6 release by these neutrophils. The production of TNF-α was also differently induced by the parasites strains. All these results demonstrate that L. infantum and L. major strains were able to induce globally a similar ex vivo activation and apoptosis of neutrophils; however, they differentially triggered cytokines release from these cells. In addition, rescue of intracellular parasites indicated different survival rates further emphasizing on the influence of parasite strains within a species on the fate of infection.
Collapse
Affiliation(s)
- Rafeh Oualha
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, Tunis, Tunisia
| | - Mourad Barhoumi
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Soumaya Marzouki
- Laboratory of Transmission, Control and Immunobiology of Infections - LR16IPT02, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Melika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infections - LR16IPT02, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology - LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
78
|
de Carvalho RVH, Silva ALN, Santos LL, Andrade WA, de Sá KSG, Zamboni DS. Macrophage priming is dispensable for NLRP3 inflammasome activation and restriction of Leishmania amazonensis replication. J Leukoc Biol 2019; 106:631-640. [PMID: 31063608 DOI: 10.1002/jlb.ma1118-471r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 12/23/2022] Open
Abstract
The NLRP3 inflammasome is activated in response to multiple stimuli and triggers activation of caspase-1 (CASP1), IL-1β production, and inflammation. NLRP3 activation requires two signals. The first leads to transcriptional regulation of specific genes related to inflammation, and the second is triggered when pathogens, toxins, or specific compounds damage cellular membranes and/or trigger the production of reactive oxygen species (ROS). Here, we assess the requirement of the first signal (priming) for the activation of the NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs) infected with Leishmania amazonensis. We found that BMDMs express the inflammasome components NLRP3, ASC, and CASP1 at sufficient levels to enable the assembly and activation of NLRP3 inflammasome in response to infection. Therefore, priming was not required for the formation of ASC specks, CASP1 activation (measured by fluorescent dye FAM-YVAD), and restriction of L. amazonensis replication via the NLRP3 inflammasome. By contrast, BMDM priming was required for CASP1 cleavage (p20) and IL-1β secretion, because priming triggers robust up-regulation of pro-IL-1β and CASP11 that are important for efficient processing of CASP1 and IL-1β. Taken together, our data shed light into the cellular and molecular processes involved in activation of the NLRP3 in macrophages by Leishmania, a process that is important for the outcome of Leishmaniasis.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo L Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Warrison A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keyla S G de Sá
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
79
|
Neutrophils Dampen Adaptive Immunity in Brucellosis. Infect Immun 2019; 87:IAI.00118-19. [PMID: 30804100 PMCID: PMC6479033 DOI: 10.1128/iai.00118-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Brucella organisms are intracellular stealth pathogens of animals and humans. The bacteria overcome the assault of innate immunity at early stages of an infection. Removal of polymorphonuclear neutrophils (PMNs) at the onset of adaptive immunity against Brucella abortus favored bacterial elimination in mice. This was associated with higher levels of interferon gamma (IFN-γ) and a higher proportion of cells expressing interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), compatible with M1 macrophages, in PMN-depleted B. abortus-infected (PMNd-Br) mice. At later times in the acute infection phase, the amounts of IFN-γ fell while IL-6, IL-10, and IL-12 became the predominant cytokines in PMNd-Br mice. IL-4, IL-1β, and tumor necrosis factor alpha (TNF-α) remained at background levels at all times of the infection. Depletion of PMNs at the acute stages of infection promoted the premature resolution of spleen inflammation. The efficient removal of bacteria in the PMNd-Br mice was not due to an increase of antibodies, since the immunoglobulin isotype responses to Brucella antigens were dampened. Anti-Brucella antibodies abrogated the production of IL-6, IL-10, and IL-12 but did not affect the levels of IFN-γ at later stages of infection in PMNd-Br mice. These results demonstrate that PMNs have an active role in modulating the course of B. abortus infection after the adaptive immune response has already developed.
Collapse
|
80
|
Rossi M, Fasel N. How to master the host immune system? Leishmania parasites have the solutions! Int Immunol 2019; 30:103-111. [PMID: 29294040 PMCID: PMC5892169 DOI: 10.1093/intimm/dxx075] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Infection by protozoan parasites of the genus Leishmania results in the development of leishmaniasis, an increasingly prevalent group of diseases affecting over 12 million people worldwide. Leishmaniasis can have very different outcomes ranging from cutaneous lesions, mucosal lesions to visceralization depending on the species of the infecting parasite and on the immune response developed by the host. As an obligate intracellular parasite, residing within macrophages, Leishmania evolved in strict contact with the host immune system, developing different mechanisms to evade or modulate the immune response. Various types of immune responses are observed during different Leishmania spp. infections, resulting in parasite clearance but also contributing to the pathogenesis, thus increasing the complexity of the course of the disease. Interestingly, depending on the type of leishmaniasis developed, opposite treatment strategies, which either boost or inhibit the inflammatory response, have shown efficacy. In this review, we summarize the contribution of different immune cell types to the development of the anti-leishmanial immune response and the parasite strategies to evade and modulate host immunity. Further, we discuss the involvement of co-infecting pathogens in the determination of the outcome of leishmaniasis and on the effectiveness of treatment and the implication of the immune response for treatment and vaccine development.
Collapse
Affiliation(s)
- Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Lausanne, Switzerland
| |
Collapse
|
81
|
Leishmania donovani evades Caspase 1 dependent host defense mechanism during infection. Int J Biol Macromol 2019; 126:392-401. [DOI: 10.1016/j.ijbiomac.2018.12.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 01/31/2023]
|
82
|
Giraud E, Martin O, Yakob L, Rogers M. Quantifying Leishmania Metacyclic Promastigotes from Individual Sandfly Bites Reveals the Efficiency of Vector Transmission. Commun Biol 2019; 2:84. [PMID: 30854476 PMCID: PMC6395631 DOI: 10.1038/s42003-019-0323-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/22/2019] [Indexed: 01/12/2023] Open
Abstract
Predicting how Leishmania will respond to control efforts requires an understanding of their transmission strategy. Using real-time quantitative PCR to quantify infectious metacyclic and non-metacyclic forms in mouse skin from single sandfly bites we show that most transmissions were highly enriched for infectious parasites. However, a quarter of sandflies were capable of transmitting high doses containing more non-infectious promastigotes from the vector's midgut. Mouse infections replicating "high" to "low" quality, low-dose transmissions confirmed clear differences in the pathology of the infection and their onward transmissibility back to sandflies. Borrowing methods originally developed to account for exposure heterogeneity among hosts, we show how these high-dose, low-quality transmitters act as super-spreading vectors, capable of inflating Leishmania transmission potential by as much as six-fold. These results highlight the hidden potential of transmission of mixed Leishmania promastigote stages on disease prevalence and the role of dose heterogeneity as an underlying strategy for efficient transmission.
Collapse
Affiliation(s)
- Emilie Giraud
- Department of Immunology and Infection, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.,Institut Pasteur, 25-28 rue du Dr Roux 75015, Paris, France
| | - Oihane Martin
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Laith Yakob
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Matthew Rogers
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
83
|
de Carvalho RVH, Andrade WA, Lima-Junior DS, Dilucca M, de Oliveira CV, Wang K, Nogueira PM, Rugani JN, Soares RP, Beverley SM, Shao F, Zamboni DS. Leishmania Lipophosphoglycan Triggers Caspase-11 and the Non-canonical Activation of the NLRP3 Inflammasome. Cell Rep 2019; 26:429-437.e5. [PMID: 30625325 PMCID: PMC8022207 DOI: 10.1016/j.celrep.2018.12.047] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of the NLRP3 inflammasome by Leishmania parasites is critical for the outcome of leishmaniasis, a disease that affects millions of people worldwide. We investigate the mechanisms involved in NLRP3 activation and demonstrate that caspase-11 (CASP11) is activated in response to infection by Leishmania species and triggers the non-canonical activation of NLRP3. This process accounts for host resistance to infection in macrophages and in vivo. We identify the parasite membrane glycoconjugate lipophosphoglycan (LPG) as the molecule involved in CASP11 activation. Cytosolic delivery of LPG in macrophages triggers CASP11 activation, and infections performed with Lpg1-/- parasites reduce CASP11/NLRP3 activation. Unlike bacterial LPS, purified LPG does not activate mouse CASP11 (or human Casp4) in vitro, suggesting the participation of additional molecules for LPG-mediated CASP11 activation. Our data identify a parasite molecule involved in CASP11 activation, thereby establishing the mechanisms underlying inflammasome activation in response to Leishmania species.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Warrison A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Djalma S Lima-Junior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Dilucca
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline V de Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kun Wang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Paula M Nogueira
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Jeronimo N Rugani
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Rodrigo P Soares
- Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, Brazil
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
84
|
Pro-inflammatory cytokine Interleukin-1β (IL-1β) controls Leishmania infection. Cytokine 2018; 112:27-31. [DOI: 10.1016/j.cyto.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022]
|
85
|
Varikuti S, Jha BK, Volpedo G, Ryan NM, Halsey G, Hamza OM, McGwire BS, Satoskar AR. Host-Directed Drug Therapies for Neglected Tropical Diseases Caused by Protozoan Parasites. Front Microbiol 2018; 9:2655. [PMID: 30555425 PMCID: PMC6284052 DOI: 10.3389/fmicb.2018.02655] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
The neglected tropical diseases (NTDs) caused by protozoan parasites are responsible for significant morbidity and mortality worldwide. Current treatments using anti-parasitic drugs are toxic and prolonged with poor patient compliance. In addition, emergence of drug-resistant parasites is increasing worldwide. Hence, there is a need for safer and better therapeutics for these infections. Host-directed therapy using drugs that target host pathways required for pathogen survival or its clearance is a promising approach for treating infections. This review will give a summary of the current status and advances of host-targeted therapies for treating NTDs caused by protozoa.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bijay Kumar Jha
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nathan M Ryan
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Gregory Halsey
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Omar M Hamza
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
86
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
87
|
Guimarães-Pinto K, Nascimento DO, Corrêa-Ferreira A, Morrot A, Freire-de-Lima CG, Lopes MF, DosReis GA, Filardy AA. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front Immunol 2018; 9:1569. [PMID: 30038622 PMCID: PMC6047053 DOI: 10.3389/fimmu.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated β-galactosidase (SA-β-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1β, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-β-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.
Collapse
Affiliation(s)
- Kamila Guimarães-Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Antonia Corrêa-Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | - Alessandra A Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
88
|
Sohrabi Y, Lipoldová M. Mannose Receptor and the Mystery of Nonhealing Leishmania major Infection. Trends Parasitol 2018; 34:354-356. [DOI: 10.1016/j.pt.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/27/2022]
|
89
|
Hartley MA, Eren RO, Rossi M, Prevel F, Castiglioni P, Isorce N, Desponds C, Lye LF, Beverley SM, Drexler SK, Fasel N. Leishmania guyanensis parasites block the activation of the inflammasome by inhibiting maturation of IL-1β. MICROBIAL CELL 2018; 5:137-149. [PMID: 29487860 PMCID: PMC5826701 DOI: 10.15698/mic2018.03.619] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The various symptomatic outcomes of cutaneous leishmaniasis relates to the type and potency of its underlying inflammatory responses. Presence of the cytoplasmic Leishmania RNA virus-1 (LRV1) within Leishmania guyanensis, worsens lesional inflammation and parasite burden, as the viral dsRNA genome acts as a potent innate immunogen stimulating Toll-Like-Receptor-3 (TLR3). Here we investigated other innate pattern recognition receptors capable of reacting to dsRNA and potentially contributing to LRV1-mediated inflammatory pathology. We included the cytoplasmic dsRNA sensors, namely, the RIG-like receptors (RLRs) and the inflammasome-dependent and -independent Nod-like-receptors (NLRs). Our study found no role for RLRs or inflammasome-dependent NLRs in the pathology of L. guyanensis infection irrespective of its LRV1-status. Further, neither LRV1-bearing L. guyanensis (LgyLRV1+) nor LRV1-negative L. guyanensis (LgyLRV1-) activated the inflammasome in vitro. Interestingly, similarly to L. donovani, L. guyanensis infection induced the up-regulation of the A20 protein, known to be involved in the evasion of inflammasome activation. Moreover, we observed that LgyLRV1+ promoted the transcription of inflammasome-independent NLRC2 (also called NOD2) and NLRC5. However, only NLRC2 showed some contribution to LRV1-dependent pathology. These data confirmed that the endosomal TLR3 pathway is the dominant route of LRV1-dependent signalling, thus excluding the cytosolic and inflammasome pathways. We postulate that avoidance of the inflammasome pathways is likely an important mechanism of virulence in Leishmania infection irrespective of the LRV1-status.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi O Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Patrik Castiglioni
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefan K Drexler
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
90
|
Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, de Castro W, Coutinho-Abreu IV, Bhattacharya P, Townsend S, Aslan H, Perkins A, Karmakar S, Ismail N, Karetnick M, Meneses C, Duncan R, Nakhasi HL, Valenzuela JG, Kamhawi S. Gut Microbes Egested during Bites of Infected Sand Flies Augment Severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe 2017; 23:134-143.e6. [PMID: 29290574 DOI: 10.1016/j.chom.2017.12.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022]
Abstract
Leishmania donovani parasites are the cause of visceral leishmaniasis and are transmitted by bites from phlebotomine sand flies. A prominent feature of vector-transmitted Leishmania is the persistence of neutrophils at bite sites, where they protect captured parasites, leading to enhanced disease. Here, we demonstrate that gut microbes from the sand fly are egested into host skin alongside Leishmania parasites. The egested microbes trigger the inflammasome, leading to a rapid production of interleukin-1β (IL-1β), which sustains neutrophil infiltration. Reducing midgut microbiota by pretreatment of Leishmania-infected sand flies with antibiotics or neutralizing the effect of IL-1β in bitten mice abrogates neutrophil recruitment. These early events are associated with impairment of parasite visceralization, indicating that both gut microbiota and IL-1β are important for the establishment of Leishmania infections. Considering that arthropods harbor a rich microbiota, its potential egestion after bites may be a shared mechanism that contributes to severity of vector-borne disease.
Collapse
Affiliation(s)
- Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Amritanshu B Joshi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lais Pereira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Anderson B Guimarães-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Waldionê de Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Iliano V Coutinho-Abreu
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Shannon Townsend
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Hamide Aslan
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alec Perkins
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Subir Karmakar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Nevien Ismail
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Morgan Karetnick
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Robert Duncan
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
91
|
Lee SH, Charmoy M, Romano A, Paun A, Chaves MM, Cope FO, Ralph DA, Sacks DL. Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in a Th1 immune environment. J Exp Med 2017; 215:357-375. [PMID: 29247046 PMCID: PMC5748861 DOI: 10.1084/jem.20171389] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The origin and functional specialization of dermal macrophages in cutaneous infections have been little studied. In this paper, we show that a strain of Leishmania major (L. major Seidman [LmSd]) that produces nonhealing cutaneous lesions in conventionally resistant C57BL/6 mice was more efficiently taken up by M2-polarized bone marrow (BM)-derived macrophages (BMDMs) in vitro and by mannose receptor (MR)hi dermal macrophages in vivo compared with a healing strain (L. major Friedlin V1). Both in steady and in T helper type 1 (Th1) cell-driven inflammatory states, the MRhi dermal macrophages showed M2 characteristics. The dermal macrophages were radio resistant and not replaced by monocytes or adult BM-derived cells during infection, but were locally maintained by IL-4 and IL-10. Notably, the favored infection of M2 BMDMs by LmSd in vitro was MR dependent, and genetic deletion of MR or selective depletion of MRhi dermal macrophages by anti-CSF-1 receptor antibody reversed the nonhealing phenotype. We conclude that embryonic-derived, MRhi dermal macrophages are permissive for parasite growth even in a strong Th1-immune environment, and the preferential infection of these cells plays a crucial role in the severity of cutaneous disease.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Melanie Charmoy
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mariana M Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | | | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
92
|
IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. J Invest Dermatol 2017; 138:1107-1115. [PMID: 29246797 DOI: 10.1016/j.jid.2017.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
Cutaneous leishmaniasis due to Leishmania braziliensis infection is an inflammatory disease in which skin ulcer development is associated with mononuclear cell infiltrate and high levels of inflammatory cytokine production. Recently, NLRP3 inflammasome activation and IL-1β production have been associated with increased pathology in murine cutaneous leishmaniasis. We hypothesized that cutaneous leishmaniasis patients have increased expression of NLRP3, leading to high levels of IL-1β production. In this article we show high production of IL-1β in biopsy samples and Leishmania antigen-stimulated peripheral blood mononuclear cells from patients infected with L. braziliensis and reduced IL-1β levels after cure. IL-1β production positively correlated with the area of necrosis in lesions and duration of the lesions. The main source of IL-1β was intermediate monocytes (CD14++CD16+). Furthermore, our murine experiments show that IL-1β production in response to L. braziliensis was dependent on NLRP3, caspase-1, and caspase-recruiting domain (ASC). Additionally, we observed an increased expression of the NLRP3 gene in macrophages and the NLRP3 protein in intermediate monocytes from cutaneous leishmaniasis patients. These results identify an important role for human intermediate monocytes in the production of IL-1β, which contributes to the immunopathology observed in cutaneous leishmaniasis patients.
Collapse
|
93
|
Regli IB, Passelli K, Hurrell BP, Tacchini-Cottier F. Survival Mechanisms Used by Some Leishmania Species to Escape Neutrophil Killing. Front Immunol 2017; 8:1558. [PMID: 29250059 PMCID: PMC5715327 DOI: 10.3389/fimmu.2017.01558] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood. Upon microbial infection, they are massively and rapidly recruited from the circulation to sites of infection where they efficiently kill pathogens. To this end, neutrophils possess a variety of weapons that can be mobilized and become effective within hours following infection. However, several microbes including some Leishmania spp. have evolved a variety of mechanisms to escape neutrophil killing using these cells as a basis to better invade the host. In addition, neutrophils are also present in unhealing cutaneous lesions where their role remains to be defined. Here, we will review recent progress in the field and discuss the different strategies applied by some Leishmania parasites to escape from being killed by neutrophils and as recently described for Leishmania mexicana, even replicate within these cells. Subversion of neutrophil killing functions by Leishmania is a strategy that allows parasite spreading in the host with a consequent deleterious impact, transforming the primary protective role of neutrophils into a deleterious one.
Collapse
Affiliation(s)
- Ivo B Regli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Katiuska Passelli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
94
|
Dos Santos JC, Damen MSMA, Oosting M, de Jong DJ, Heinhuis B, Gomes RS, Araújo CS, Netea MG, Ribeiro-Dias F, Joosten LAB. The NOD2 receptor is crucial for immune responses towards New World Leishmania species. Sci Rep 2017; 7:15219. [PMID: 29123157 PMCID: PMC5680260 DOI: 10.1038/s41598-017-15412-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
American Tegumentary Leishmaniasis is a chronic infection caused by Leishmania protozoan. It is not known whether genetic variances in NOD-like receptor (NLR) family members influence the immune response towards Leishmania parasites and modulate intracellular killing. Using functional genomics, we investigated whether genetic variants in NOD1 or NOD2 influence the production of cytokines by human PBMCs exposed to Leishmania. In addition, we examined whether recognition of Leishmania by NOD2 contributes to intracellular killing. Polymorphisms in the NOD2 gene decreased monocyte- and lymphocyte-derived cytokine production after stimulation with L. amazonensis or L. braziliensis compared to individuals with a functional NOD2 receptor. The phagolysosome formation is important for Leishmania-induced cytokine production and upregulation of NOD2 mRNA expression. NOD2 is crucial to control intracellular infection caused by Leishmania spp. NOD2 receptor is important for Leishmania recognition, the control of intracellular killing, and the induction of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Michelle S M A Damen
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk J de Jong
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Bas Heinhuis
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carla Santos Araújo
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands. .,Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
95
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
96
|
How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2017; 430:217-237. [PMID: 28987733 DOI: 10.1016/j.jmb.2017.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
An immune response consists of a finely orchestrated interplay between initial recognition of potential microbial threats by the innate immune system and subsequent licensed adaptive immune neutralization. The initial recognition integrates environmental cues derived from pathogen-associated molecular patterns and cell-intrinsic damage-associated molecular patterns to contextualize the insult and inform a tailored adaptive response via T and B lymphocytes. While there are much data to support the role of transcriptional responses downstream of pattern recognition receptors in informing the adaptive immune response, markedly less attention has been paid to the role of post-translational responses to pathogen-associated molecular pattern and damage-associated molecular pattern recognition by the innate immune system, and how this may influence adaptive immunity. A well-characterized post-translational consequence of pattern recognition receptor signaling is the assembly of a multimeric signaling platform, termed the inflammasome, by members of the nucleotide-binding oligomerization domain (Nod), leucine-rich repeat-containing receptors (NLRs), and pyrin and HIN domain (PYHIN) families. Inflammasomes assemble in response to cytosolic perturbations, such as mitochondrial dysfunction and aberrant ion fluxes in the case of the canonical NLRP3 inflammasome or the presence of bacterial lipopolysaccharides in the case of the non-canonical inflammasome. Assembly of the inflammasome allows for the cleavage and activation of inflammatory caspases. These activated inflammatory caspases in turn cleave pro-form inflammatory cytokines into their mature bioactive species and lead to unconventional protein secretion and lytic cell death. In this review, we discuss evidence for inflammasome-mediated instruction and contextualization of infectious and sterile agents to the adaptive immune system.
Collapse
|
97
|
Clay GM, Valadares DG, Graff JW, Ulland TK, Davis RE, Scorza BM, Zhanbolat BS, Chen Y, Sutterwala FS, Wilson ME. An Anti-Inflammatory Role for NLRP10 in Murine Cutaneous Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2823-2833. [PMID: 28931602 DOI: 10.4049/jimmunol.1500832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/10/2017] [Indexed: 12/30/2022]
Abstract
The role of the nucleotide-binding domain and leucine-rich repeat containing receptor NLRP10 in disease is incompletely understood. Using three mouse strains lacking the gene encoding NLRP10, only one of which had a coincidental mutation in DOCK8, we documented a role for NLRP10 as a suppressor of the cutaneous inflammatory response to Leishmania major infection. There was no evidence that the enhanced local inflammation was due to enhanced inflammasome activity. NLRP10/DOCK8-deficient mice harbored lower parasite burdens at the cutaneous site of inoculation compared with wild-type controls, whereas NLRP10-deficient mice and controls had similar parasite loads, suggesting that DOCK8 promotes local growth of parasites in the skin, whereas NLRP10 does not. NLRP10-deficient mice developed vigorous adaptive immune responses, indicating that there was not a global defect in the development of Ag-specific cytokine production. Bone marrow chimeras showed that the anti-inflammatory role of NLRP10 was mediated by NLRP10 expressed in resident cells in the skin rather than by bone marrow-derived cells. These data suggest a novel role for NLRP10 in the resolution of local inflammatory responses during L. major infection.
Collapse
Affiliation(s)
- Gwendolyn M Clay
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Diogo G Valadares
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Joel W Graff
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246
| | - Tyler K Ulland
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242
| | - Richard E Davis
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Breanna M Scorza
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | | | - Yani Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| | - Fayyaz S Sutterwala
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242.,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and
| | - Mary E Wilson
- Interdisciplinary Program in Molecular and Cellular Biology, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242.,Veterans Affairs Medical Center, Iowa City, IA 52246.,Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
98
|
Lima-Junior DS, Mineo TWP, Calich VLG, Zamboni DS. Dectin-1 Activation during Leishmania amazonensis Phagocytosis Prompts Syk-Dependent Reactive Oxygen Species Production To Trigger Inflammasome Assembly and Restriction of Parasite Replication. THE JOURNAL OF IMMUNOLOGY 2017; 199:2055-2068. [PMID: 28784846 DOI: 10.4049/jimmunol.1700258] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/08/2017] [Indexed: 01/01/2023]
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of Leishmaniasis, a disease that can be lethal and affects 12 million people worldwide. Leishmania replicates intracellularly in macrophages, a process that is essential for disease progression. Although the production of reactive oxygen species (ROS) accounts for restriction of parasite replication, Leishmania is known to induce ROS upon macrophage infection. We have recently demonstrated NLRP3 inflammasome activation in infected macrophages, a process that is important for the outcome of infection. However, the molecular mechanisms responsible for inflammasome activation are unknown. In this article, we demonstrate that ROS induced via NADPH oxidase during the early stages of L. amazonensis infection is critical for inflammasome activation in macrophages. We identified that ROS production during L. amazonensis infection occurs upon engagement of Dectin-1, a C-type lectin receptor that signals via spleen tyrosine kinase (Syk) to induce ROS. Accordingly, inflammasome activation in response to L. amazonensis is impaired by inhibitors of NADPH oxidase, Syk, focal adhesion kinase, and proline-rich tyrosine kinase 2, and in the absence of Dectin-1. Experiments performed with Clec7a-/- mice support the critical role of Dectin-1 for inflammasome activation, restriction of parasite replication in macrophages, and mouse resistance to L. amazonensis infection in vivo. Thus, we reported that activation of the Dectin-1/Syk/ROS/NLRP3 pathway during L. amazonensis phagocytosis is important for macrophage restriction of the parasite replication and effectively accounts for host resistance to Leishmania infection.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Tiago W P Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil; and
| | - Vera L G Calich
- Department of Immunology, Institute of Biomedical Sciences, São Paulo University, São Paulo 05508-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| |
Collapse
|
99
|
Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, Misic AM, Bradley CW, Beiting DP, Rankin SC, Carvalho LP, Carvalho EM, Scott P, Grice EA. Cutaneous Leishmaniasis Induces a Transmissible Dysbiotic Skin Microbiota that Promotes Skin Inflammation. Cell Host Microbe 2017; 22:13-24.e4. [PMID: 28669672 DOI: 10.1016/j.chom.2017.06.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
Abstract
Skin microbiota can impact allergic and autoimmune responses, wound healing, and anti-microbial defense. We investigated the role of skin microbiota in cutaneous leishmaniasis and found that human patients infected with Leishmania braziliensis develop dysbiotic skin microbiota, characterized by increases in the abundance of Staphylococcus and/or Streptococcus. Mice infected with L. major exhibit similar changes depending upon disease severity. Importantly, this dysbiosis is not limited to the lesion site, but is transmissible to normal skin distant from the infection site and to skin from co-housed naive mice. This observation allowed us to test whether a pre-existing dysbiotic skin microbiota influences disease, and we found that challenging dysbiotic naive mice with L. major or testing for contact hypersensitivity results in exacerbated skin inflammatory responses. These findings demonstrate that a dysbiotic skin microbiota is not only a consequence of tissue stress, but also enhances inflammation, which has implications for many inflammatory cutaneous diseases.
Collapse
Affiliation(s)
- Ciara Gimblet
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacquelyn S Meisel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Loesche
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen D Cole
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Horwinski
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana M Misic
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles W Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley C Rankin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucas P Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador 40170-115, Brazil; Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador 40110-160, Brazil
| | - Edgar M Carvalho
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; Serviço de Imunologia, Complexo Hospitalar Prof. Edgard Santos, Universidade Federal da Bahia, Salvador 40170-115, Brazil; Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador 40110-160, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
100
|
Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS, Gonçalves AJS, Pereira LOR, Abreu L, De Oliveira MP. AIM2 inflammasome is associated with disease severity in tegumentary leishmaniasis caused by Leishmania (V.) braziliensis. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- R. B. Moreira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - C. Pirmez
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. de Oliveira-Neto
- Instituto Nacional de Infectologia; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. S. Aguiar
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - A. J. S. Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. O. R. Pereira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. Abreu
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. De Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| |
Collapse
|