51
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
52
|
Natural Products for the Management and Prevention of Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8324696. [PMID: 29681985 PMCID: PMC5846366 DOI: 10.1155/2018/8324696] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Among all types of cancer, breast cancer is one of the most challenging diseases, which is responsible for a large number of cancer related deaths. Hormonal therapy, surgery, chemotherapy, and radiotherapy have been used as treatment of breast cancer, for a very long time. Due to severe side effects and multidrug resistance, these treatment approaches become increasingly ineffective. However, adoption of complementary treatment approach can be a big solution for this situation, as it is evident that compounds derived from natural source have a great deal of anticancer activity. Natural compounds can fight against aggressiveness of breast cancer, inhibit cancerous cell proliferation, and modulate cancer related pathways. A large number of research works are now focusing on the natural and dietary compounds and trying to find out new and more effective treatment strategies for the breast cancer patients. In this review, we discussed some significant natural chemical compounds with their mechanisms of actions, which can be very effective against the breast cancer and can be more potent by their proper modifications and further clinical research. Future research focusing on the natural anti-breast-cancer agents can open a new horizon in breast cancer treatment, which will play a great role in enhancing the survival rate of breast cancer patients.
Collapse
|
53
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
54
|
Genistein: Its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119:13-22. [PMID: 29065980 DOI: 10.1016/j.critrevonc.2017.09.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/23/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Genistein is an isoflavone present in soy and is known to have multiple molecular effects, such as the inhibition of inflammation, promotion of apoptosis, and modulation of steroidal hormone receptors and metabolic pathways. Since these molecular effects impact carcinogenesis, cancer propagation, obesity, osteoporosis, and metabolic syndromes, genistein plays an important role in preventing and treating common disorders. The role of genistein has not been adequately evaluated in all these clinical settings. This review summarizes some of the known molecular effects of genistein and its potential role in health maintenance and treatment.
Collapse
|
55
|
Baranek M, Belter A, Naskręt-Barciszewska MZ, Stobiecki M, Markiewicz WT, Barciszewski J. Effect of small molecules on cell reprogramming. MOLECULAR BIOSYSTEMS 2017; 13:277-313. [PMID: 27918060 DOI: 10.1039/c6mb00595k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The essential idea of regenerative medicine is to fix or replace tissues or organs with alive and patient-specific implants. Pluripotent stem cells are able to indefinitely self-renew and differentiate into all cell types of the body which makes them a potent substantial player in regenerative medicine. The easily accessible source of induced pluripotent stem cells may allow obtaining and cultivating tissues in vitro. Reprogramming refers to regression of mature cells to its initial pluripotent state. One of the approaches affecting pluripotency is the usage of low molecular mass compounds that can modulate enzymes and receptors leading to the formation of pluripotent stem cells (iPSCs). It would be great to assess the general character of such compounds and reveal their new derivatives or modifications to increase the cell reprogramming efficiency. Many improvements in the methods of pluripotency induction have been made by various groups in order to limit the immunogenicity and tumorigenesis, increase the efficiency and accelerate the kinetics. Understanding the epigenetic changes during the cellular reprogramming process will extend the comprehension of stem cell biology and lead to potential therapeutic approaches. There are compounds which have been already proven to be or for now only putative inducers of the pluripotent state that may substitute for the classic reprogramming factors (Oct3/4, Sox2, Klf4, c-Myc) in order to improve the time and efficiency of pluripotency induction. The effect of small molecules on gene expression is dosage-dependent and their application concentration needs to be strictly determined. In this review we analysed the role of small molecules in modulations leading to pluripotency induction, thereby contributing to our understanding of stem cell biology and uncovering the major mechanisms involved in that process.
Collapse
Affiliation(s)
- M Baranek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - A Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Z Naskręt-Barciszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - M Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - W T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| | - J Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego str. 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
56
|
Singh AK, Sharma N, Ghosh M, Park YH, Jeong DK. Emerging importance of dietary phytochemicals in fight against cancer: Role in targeting cancer stem cells. Crit Rev Food Sci Nutr 2017; 57:3449-3463. [DOI: 10.1080/10408398.2015.1129310] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Kumar Singh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, R. S. Pura, Jammu, India
| | - Mrinmoy Ghosh
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| | | | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
57
|
Russo GL, Vastolo V, Ciccarelli M, Albano L, Macchia PE, Ungaro P. Dietary polyphenols and chromatin remodeling. Crit Rev Food Sci Nutr 2017; 57:2589-2599. [DOI: 10.1080/10408398.2015.1062353] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Viviana Vastolo
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Marco Ciccarelli
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Luigi Albano
- Dipartimento di Scienze Mediche Traslazionali, UniversitàdegliStudi di Napoli ‘Federico II’, Napoli, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Napoli, Italy
| | - Paola Ungaro
- Istituto di Endocrinologia ed Oncologia Sperimentale ‘G. Salvatore’, Consiglio Nazionaledelle Ricerche, Napoli, Italy
| |
Collapse
|
58
|
Fernández-Bedmar Z, Anter J, Alonso-Moraga A, Martín de las Mulas J, Millán-Ruiz Y, Guil-Luna S. Demethylating and anti-hepatocarcinogenic potential of hesperidin, a natural polyphenol ofCitrusjuices. Mol Carcinog 2017; 56:1653-1662. [DOI: 10.1002/mc.22621] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jaouad Anter
- Department of Genetics, Campus Rabanales; University of Cordoba; Cordoba Spain
| | | | | | - Yolanda Millán-Ruiz
- Department of Comparative Pathology, Campus Rabanales; University of Cordoba; Cordoba Spain
| | - Silvia Guil-Luna
- Department of Comparative Pathology, Campus Rabanales; University of Cordoba; Cordoba Spain
- Department of Oncology; Maimonides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital; University of Córdoba; Cordoba Spain
| |
Collapse
|
59
|
Hammerling U, Bergman Laurila J, Grafström R, Ilbäck NG. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association. Crit Rev Food Sci Nutr 2016; 56:614-34. [PMID: 25849747 DOI: 10.1080/10408398.2014.972498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC.
Collapse
Affiliation(s)
- Ulf Hammerling
- a Cancer Pharmacology & Computational Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| | - Jonas Bergman Laurila
- b Sahlgrenska Biobank, Gothia Forum, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Roland Grafström
- c Institute of Environmental Medicine, The Karolinska Institute , Stockholm , Sweden.,d Knowledge Intensive Products and Services, VTT Technical Research Centre of Finland , Turku , Finland
| | - Nils-Gunnar Ilbäck
- e Clinical Microbiology & Infectious Medicine, Department of Medical Sciences, Uppsala University and Uppsala Academic Hospital , Uppsala , Sweden
| |
Collapse
|
60
|
Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, Kong ANT. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 2016; 29:2071-2095. [PMID: 27989132 DOI: 10.1021/acs.chemrestox.6b00413] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic research tools, including next-generation sequencing technologies, many dietary phytochemicals are shown to modify and reverse aberrant epigenetic/epigenome changes, potentially leading to cancer prevention/treatment. Thus, the beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.
Collapse
Affiliation(s)
- Wenji Li
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Renyi Wu
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - John Gaspar
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
61
|
DNA methylation-based variation between human populations. Mol Genet Genomics 2016; 292:5-35. [PMID: 27815639 DOI: 10.1007/s00438-016-1264-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.
Collapse
|
62
|
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z, Lu L. Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res 2016; 114:1-12. [PMID: 27697644 DOI: 10.1016/j.phrs.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification, and other patterns. These processes are associated with carcinogenesis and cancer progression. Thus, epigenetic modification-related enzymes, such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), as well as some related proteins, including methyl-CpG binding proteins (MBPs) and DNMT1-associated protein (DMAP 1), are considered as potential targets for cancer prevention and therapy. Numerous natural compounds, mainly derived from Chinese herbs and chemically ranging from polyphenols and flavonoids to mineral salts, inhibit the growth and development of various cancers by targeting multiple genetic and epigenetic alterations. This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect. A subset of these compounds, such as curcumin and resveratrol, affect multiple epigenetic processes, including DNMT inhibition, HDAC inactivation, MBP suppression, HAT activation, and microRNA modulation. Other compounds also regulate epigenetic modification processes, but the underlying mechanisms and clear targets remain unknown. Accordingly, further studies are required.
Collapse
Affiliation(s)
- Zhiying Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
63
|
Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural Compounds: Role in Reversal of Epigenetic Changes. BIOCHEMISTRY (MOSCOW) 2016; 80:972-89. [PMID: 26547065 DOI: 10.1134/s0006297915080027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hallmarks of carcinogenesis are characterized by alterations in the expression of multiple genes that occur via genetic and epigenetic alterations, leading to genome rearrangements and instability. The reversible process of epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression that alter phenotype without any change in the DNA sequence, is recognized as a key mechanism in cancer cell metabolism. Recent advancements in the rapidly evolving field of cancer epigenetics have shown the anticarcinogenic potential of natural compounds targeting epigenetic mechanism as a common molecular approach for cancer treatment. This review summarizes the potential of natural chemopreventive agents to reverse cancer-related epigenetic aberrations by regulating the activity of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. Furthermore, there is impetus for determining novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents that exhibit similar properties, for improving the therapeutic aspects of cancer.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Biotechnology, IMS Engineering College, U. P. 201009, India.
| | | | | | | |
Collapse
|
64
|
Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
65
|
Dewi FN, Wood CE, Willson CJ, Register TC, Lees CJ, Howard TD, Huang Z, Murphy SK, Tooze JA, Chou JW, Miller LD, Cline JM. Effects of Pubertal Exposure to Dietary Soy on Estrogen Receptor Activity in the Breast of Cynomolgus Macaques. Cancer Prev Res (Phila) 2016; 9:385-95. [PMID: 27006379 PMCID: PMC4932899 DOI: 10.1158/1940-6207.capr-15-0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Abstract
Endogenous estrogens influence mammary gland development during puberty and breast cancer risk during adulthood. Early-life exposure to dietary or environmental estrogens may alter estrogen-mediated processes. Soy foods contain phytoestrogenic isoflavones (IF), which have mixed estrogen agonist/antagonist properties. Here, we evaluated mammary gland responses over time in pubertal female cynomolgus macaques fed diets containing either casein/lactalbumin (n = 12) or soy protein containing a human-equivalent dose of 120 mg IF/day (n = 17) for approximately 4.5 years spanning menarche. We assessed estrogen receptor (ER) expression and activity, promoter methylation of ERs and their downstream targets, and markers of estrogen metabolism. Expression of ERα and classical ERα response genes (TFF1, PGR, and GREB1) decreased with maturity, independent of diet. A significant inverse correlation was observed between TFF1 mRNA and methylation of CpG sites within the TFF1 promoter. Soy effects included lower ERβ expression before menarche and lower mRNA for ERα and GREB1 after menarche. Expression of GATA-3, an epithelial differentiation marker that regulates ERα-mediated transcription, was elevated before menarche and decreased after menarche in soy-fed animals. Soy did not significantly alter expression of other ER activity markers, estrogen-metabolizing enzymes, or promoter methylation for ERs or ER-regulated genes. Our results demonstrate greater ER expression and activity during the pubertal transition, supporting the idea that this life stage is a critical window for phenotypic modulation by estrogenic compounds. Pubertal soy exposure decreases mammary ERα expression after menarche and exerts subtle effects on receptor activity and mammary gland differentiation. Cancer Prev Res; 9(5); 385-95. ©2016 AACR.
Collapse
Affiliation(s)
- Fitriya N Dewi
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina. Primate Research Center, Bogor Agricultural University, Bogor, Indonesia.
| | - Charles E Wood
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia J Willson
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cynthia J Lees
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Timothy D Howard
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Janet A Tooze
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeff W Chou
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
66
|
Shankar E, Kanwal R, Candamo M, Gupta S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Semin Cancer Biol 2016; 40-41:82-99. [PMID: 27117759 DOI: 10.1016/j.semcancer.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The influence of diet and environment on human health has been known since ages. Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet as potent antioxidants and cancer chemopreventive agents. In past few decades, the role of epigenetic alterations such as DNA methylation, histone modifications and non-coding RNAs in the regulation of mammalian genome have been comprehensively addressed. Although the effects of dietary phytochemicals on gene expression and signaling pathways have been widely studied in cancer, the impact of these dietary compounds on mammalian epigenome is rapidly emerging. The present review outlines the role of different epigenetic mechanisms in the regulation and maintenance of mammalian genome and focuses on the role of dietary phytochemicals as epigenetic modifiers in cancer. Above all, the review focuses on summarizing the progress made thus far in cancer chemoprevention with dietary phytochemicals, the heightened interest and challenges in the future.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Mario Candamo
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|
67
|
Taormina G, Mirisola MG. Longevity: epigenetic and biomolecular aspects. Biomol Concepts 2016; 6:105-17. [PMID: 25883209 DOI: 10.1515/bmc-2014-0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity.
Collapse
|
68
|
Gangisetty O, Murugan S. Epigenetic Modifications in Neurological Diseases: Natural Products as Epigenetic Modulators a Treatment Strategy. ADVANCES IN NEUROBIOLOGY 2016; 12:1-25. [PMID: 27651245 DOI: 10.1007/978-3-319-28383-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epigenetic modifications, including DNA methylation, covalent histone modifications, and small noncoding RNAs, play a key role in regulating the gene expression. This regulatory mechanism is important in cellular differentiation and development. Recent advances in the field of epigenetics extended the role of epigenetic mechanisms in controlling key biological processes such as genome imprinting and X-chromosome inactivation. Aberrant epigenetic modifications are associated with the development of many diseases. The role of epigenetic modifications in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington disease, epilepsy, and multiple sclerosis is rapidly emerging. The use of epigenetic modifying drugs to treat these diseases has been the interest in recent years. A number of natural products having diverse mechanism of action are used for drug discovery. For many years, natural compounds have been used to treat various neurodegenerative diseases, but the use of such compounds as epigenetic modulators to reverse or treat neurological diseases are not well studied. In this chapter, we mainly focus on how various epigenetic modifications play a key role in neurodegenerative diseases, their mechanism of action, and how it acts as a potential therapeutic target for epigenetic drugs to treat these diseases will be discussed.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Endocrine Research Facility, Department of Animal Sciences, Rutgers University, 67 Poultry Farm Lane, New Brunswick, NJ, 08901, USA.
| | - Sengottuvelan Murugan
- Hematology/Oncology Division, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Philadelphia, 19104, PA, USA.
| |
Collapse
|
69
|
Atrian F, Lelièvre SA. Mining the epigenetic landscape of tissue polarity in search of new targets for cancer therapy. Epigenomics 2015; 7:1313-25. [PMID: 26646365 DOI: 10.2217/epi.15.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture. We present emerging information on the epigenetic control of the polarity axis, a central feature of epithelial architecture created by the orderly distribution of multiprotein complexes at cell-cell and cell-extracellular matrix contacts and altered upon cancer onset (with apical polarity loss), invasive progression (with basolateral polarity loss) and metastatic development (with basoapical polarity imbalance). This information combined with the impact of polarity-related proteins on epigenetic mechanisms of cancer enables us to envision how to guide the choice of drugs specific for distinct epigenetic modifiers, in order to halt cancer development and counter the consequences of polarity alterations.
Collapse
Affiliation(s)
- Farzaneh Atrian
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, 625 Harrison Street, Lynn Hall, West Lafayette, IN 47906, USA
| |
Collapse
|
70
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
71
|
Specific serum carotenoids are inversely associated with breast cancer risk among Chinese women: a case-control study. Br J Nutr 2015; 115:129-37. [PMID: 26482064 DOI: 10.1017/s000711451500416x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous epidemiological studies have revealed the anti-cancer effect of dietary circulating carotenoids. However, the protective role of specific individual circulating carotenoids has not been elucidated. The purpose of this study was to examine whether serum carotenoids, including α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin, could lower the risk for breast cancer among Chinese women. A total of 521 women with breast cancer and age-matched controls (5-year interval) were selected from three teaching hospitals in Guangzhou, China. Concentrations of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin were measured using HPLC. Unconditional logistic regression models were used to calculate OR and 95% CI using quartiles defined in the control subjects. Significant inverse associations were observed between serum α-carotene, β-carotene, lycopene, lutein/zeaxanthin and the risk for breast cancer. The multivariate OR for the highest quartile of serum concentration compared with the lowest quartile were 0·44 (95% CI 0·30, 0·65) for α-carotene, 0·27 (95% CI 0·18, 0·40) for β-carotene, 0·41 (95% CI 0·28, 0·61) for lycopene and 0·26 (95% CI 0·17, 0·38) for lutein/zeaxanthin. However, no significant association was found between serum β-cryptoxanthin and the risk for breast cancer. Stratified analysis by menopausal status and oestrogen receptor (ER)/progesterone receptor (PR) showed that serum α-carotene, β-carotene, lycopene and lutein/zeaxanthin were inversely associated with breast cancer risk among premenopausal women and among all subtypes of ER or PR status. The results suggest a protective role of α-carotene, β-carotene, lycopene and lutein/zeaxanthin, but not β-cryptoxanthin, in breast cancer risk.
Collapse
|
72
|
Abstract
Oral squamous cell carcinoma (OSCC) is a multistep process which is modulated by several endogenous and environmental factors. Epigenetic changes have been found to be equally responsible for OSCC as genetic changes. A plethora of genes showing hypermethylation have been discovered in OSCC. Since these changes are reversible, a lot of emphasis is on using the natural compounds for their ability to cause demethylation which could lead to reactivation of the inactivated tumor suppressor genes. This review encompasses the promoter hypermethylation of tumor suppressor genes in OSCC and its possible reversal using natural compounds. In addition, new compounds which could be screened for their demethylating ability have also been proposed.
Collapse
|
73
|
Ferrini K, Ghelfi F, Mannucci R, Titta L. Lifestyle, nutrition and breast cancer: facts and presumptions for consideration. Ecancermedicalscience 2015; 9:557. [PMID: 26284121 PMCID: PMC4531134 DOI: 10.3332/ecancer.2015.557] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide, and the high incidence of this cancer coupled with improvements in initial treatments has led to an ever-increasing number of breast cancer survivors. Among the prospective epidemiological studies on diet and breast cancer incidence and recurrence, to date, there is no association that is strong, reproducible and statistically significant, with the exception of alcohol intake, overweight, and weight gain. Nevertheless, many beliefs about food and breast cancer persist in the absence of supporting scientific evidence. After a comprehensive review regarding the role of lifestyle on breast cancer outcomes and a thorough study of the dissemination field including mass media, clinical institutions, and academic figures, we briefly reported the most common presumptions and also facts from the literature regarding lifestyle, nutrition, and breast cancer. The randomised controlled trial is the best study-design that could provide direct evidence of a causal relationship; however, there are methodological difficulties in applying and maintaining a lifestyle intervention for a sufficient period; consequently, there is a lack of this type of study in the literature. Instead, it is possible to obtain indirect evidence from observational prospective studies. In this article, it becomes clear that for now the best advice for women’s health is to follow the World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) recommendations on diet, nutrition, physical activity, and weight management for cancer prevention, because they are associated with a lower risk of developing most types of cancer, including breast cancer. Despite current awareness of the role of nutrition in cancer outcomes, there is inadequate translation from research findings into clinical practice. We suggest the establishment of a multidisciplinary research consortium to demonstrate the real power of lifestyle interventions.
Collapse
Affiliation(s)
- Krizia Ferrini
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy ; Università degli Studi di Pavia, 27100, Italy
| | - Francesca Ghelfi
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy ; Università degli Studi di Parma, 43121, Italy
| | - Roberta Mannucci
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy
| | - Lucilla Titta
- SmartFood Program, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|
74
|
Rai M, Jogee PS, Agarkar G, dos Santos CA. Anticancer activities of Withania somnifera: Current research, formulations, and future perspectives. PHARMACEUTICAL BIOLOGY 2015; 54:189-197. [PMID: 25845640 DOI: 10.3109/13880209.2015.1027778] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Cancer, being a cause of death for major fraction of population worldwide, is one of the most studied diseases and is being investigated for the development of new technologies and more accurate therapies. Still the currently available therapies for cancer have many lacunae which affect the patient's health severely in the form of side effects. The natural drugs obtained from the medicinal plants provide a better alternative to fight against this devastating disease. Withania somnifera L. Dunal (Solanaceae), a well-known Ayurvedic medicinal plant, has been traditionally used to cure various ailments for centuries. OBJECTIVES Considering the immense potential of W. somnifera, this review provides a detail account of its vital phytoconstituents and summarizes the present status of the research carried out on its anticancerous activities, giving future directions. METHODS The sources of scientific literature were accessed from various electronic databases such as PubMed, Google Scholar, Science Direct, and library search. RESULTS Various parts of W. somnifera especially the roots with its unique contents have been proved effective against different kinds of cancers. The most active components withanolides and withaferins along with a few other metabolites including withanone (WN) and withanosides have been reported effective against different types of cancer cell lines. CONCLUSION This herb holds an important place among various anticancer medicinal plants. It is very essential to further screen and to investigate different formulations for anticancer therapy in vitro as well as in vivo in combination with established chemotherapy.
Collapse
Affiliation(s)
- Mahendra Rai
- a Department of Biotechnology , SGB Amravati University , Amravati , Maharashtra , India and
| | - Priti S Jogee
- a Department of Biotechnology , SGB Amravati University , Amravati , Maharashtra , India and
| | - Gauravi Agarkar
- a Department of Biotechnology , SGB Amravati University , Amravati , Maharashtra , India and
| | - Carolina Alves dos Santos
- b Department of Chemical Engineering , Polytechnic School, University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
75
|
Jiménez-Chillarón JC, Nijland MJ, Ascensão AA, Sardão VA, Magalhães J, Hitchler MJ, Domann FE, Oliveira PJ. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling. Epigenetics 2015; 10:259-73. [PMID: 25774863 DOI: 10.1080/15592294.2015.1020267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations.
Collapse
|
76
|
Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 2015; 562:8-15. [PMID: 25701602 DOI: 10.1016/j.gene.2015.02.045] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 01/25/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022]
Abstract
Nutrigenomics is an area of epigenomics that explores and defines the rapidly evolving field of diet-genome interactions. Lifestyle and diet can significantly influence epigenetic mechanisms, which cause heritable changes in gene expression without changes in DNA sequence. Nutrient-dependent epigenetic variations can significantly affect genome stability, mRNA and protein expression, and metabolic changes, which in turn influence food absorption and the activity of its constituents. Dietary bioactive compounds can affect epigenetic alterations, which are accumulated over time and are shown to be involved in the pathogenesis of age-related diseases such as diabetes, cancer, and cardiovascular disease. Histone acetylation is an epigenetic modification mediated by histone acetyl transferases (HATs) and histone deacetylases (HDACs) critically involved in regulating affinity binding between the histones and DNA backbone. The HDAC-mediated increase in histone affinity to DNA causes DNA condensation, preventing transcription, whereas HAT-acetylated chromatin is transcriptionally active. HDAC and HAT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various diseases. The aim of this review was to evaluate the role of diet and dietary bioactive compounds on the regulation of HATs and HDACs in epigenetic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate, curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate can regulate HDAC and HAT activities and acetylation of histones and non-histone chromatin proteins, and their health benefits are thought to be attributed to these epigenetic mechanisms. The intake of dietary compounds that regulate epigenetic modifications can provide significant health effects and may prevent various pathological processes involved in the development of cancer and other life-threatening diseases.
Collapse
Affiliation(s)
- F Vahid
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - H Zand
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cell and Molecular Science and Nutrition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Nosrat-Mirshekarlou
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - R Najafi
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Hekmatdoost
- Department of Nutritional Sciences, Nutrition and Food Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Kader F, Ghai M. DNA methylation and application in forensic sciences. Forensic Sci Int 2015; 249:255-65. [PMID: 25732744 DOI: 10.1016/j.forsciint.2015.01.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/22/2015] [Accepted: 01/29/2015] [Indexed: 12/26/2022]
Abstract
DNA methylation of cytosine residues is a stable epigenetic alteration, beginning as early as foetal development in the uterus and continuously evolving throughout life. DNA methylation as well as other epigenetic modifications such as chromatin remodelling and histone modifications are indispensable in mammalian development. Methylation is to a large extent influenced by the ageing process, diets and lifestyle choices. Our understanding of this crucial modification may even contribute to the treatment and prevention of age-related illnesses in the very near future. Genome-wide methylation analysis using high throughput DNA technologies has discovered numerous differentially methylated regions (tDMRs) which differ in levels of methylation in various cell types and tissues. TDMRs have been useful in various applications, particularly medicine and forensic sciences. Forensic scientists are constantly seeking exciting and novel methods to aid in the reconstruction of crime scenes, and the analysis of tDMRs represents a new and reliable technique to identify biological fluids and tissues found at the scene of a violent act. Not only has research been able to unequivocally identify various fluids and tissues, but methods to determine the sex, age and phenotype of donors has been developed. New tDMRs in genes are being searched for consistently to serve as novel markers in forensic DNA analysis.
Collapse
Affiliation(s)
- Farzeen Kader
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
78
|
The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015; 7:922-47. [PMID: 25647662 PMCID: PMC4344568 DOI: 10.3390/nu7020922] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/04/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
Unlike the genome, the epigenome can be modified and hence some epigenetic risk markers have the potential to be reversed. Such modifications take place by means of drugs, diet or environmental exposures. It is widely accepted that epigenetic modifications take place during early embryonic and primordial cell development, but it is also important that we gain an understanding of the potential for such changes later in life. These “later life” epigenetic modifications in response to dietary intervention are the focus of this paper. The epigenetic modifications investigated include DNA methylation, histone modifications and the influence of microRNAs. The epigenotype could be used not only to predict susceptibility to certain cancers but also to assess the effectiveness of dietary modifications to reduce such risk. The influence of diet or dietary components on epigenetic modifications and the impact on cancer initiation or progression has been assessed herein.
Collapse
|
79
|
Abstract
Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cutting-edge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
- Corresponding Author Contact Information: Division of Cancer Research and Training, Center to Eliminate Cancer Health Disparities, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA. Tele: 323-563-4853. Fax: 323-563-4859 ;
| |
Collapse
|
80
|
Hindy G, Ericson U, Hamrefors V, Drake I, Wirfält E, Melander O, Orho-Melander M. The chromosome 9p21 variant interacts with vegetable and wine intake to influence the risk of cardiovascular disease: a population based cohort study. BMC MEDICAL GENETICS 2014; 15:1220. [PMID: 25551366 PMCID: PMC4331503 DOI: 10.1186/s12881-014-0138-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023]
Abstract
Background Chromosome 9p21 variants are associated with cardiovascular disease (CVD) but not with any of its known risk markers. However, recent studies have suggested that the risk associated with 9p21 variation is modified by a prudent dietary pattern and smoking. We tested if the increased risk of CVD by the 9p21 single nucleotide polymorphism rs4977574 is modified by intakes of vegetables, fruits, alcohol, or wine, and if rs4977574 interacts with environmental factors on known CVD risk markers. Methods Multivariable Cox regression analyses were performed in 23,949 individuals from the population-based prospective Malmö Diet and Cancer Study (MDCS), of whom 3,164 developed CVD during 15 years of follow-up. The rs4977574 variant (major allele: A; minor allele: G) was genotyped using TaqMan® Assay Design probes. Dietary data were collected at baseline using a modified diet history method. Cross-sectional analyses were performed in 4,828 MDCS participants with fasting blood levels of circulating risk factors measured at baseline. Results Each rs4977574 G allele was associated with a 16% increased incidence of CVD (95% confidence interval (CI), 1.10–1.22). Higher vegetable intake (hazard ratio (HR), 0.95 [CI: 0.91–0.996]), wine intake (HR, 0.91 [CI: 0.86–0.96]), and total alcohol consumption (HR, 0.92 [CI: 0.86–0.98]) were associated with lower CVD incidence. The increased CVD incidence by the G allele was restricted to individuals with medium or high vegetable intake (Pinteraction = 0.043), and to non- and low consumers of wine (Pinteraction = 0.029). Although rs4977574 did not associate with any known risk markers, stratification by vegetable intake and smoking suggested an interaction with rs4977574 on glycated hemoglobin and high-density lipoprotein cholesterol (Pinteraction = 0.015 and 0.049, respectively). Conclusions Our results indicate that rs4977574 interacts with vegetable and wine intake to affect the incidence of CVD, and suggest that an interaction may exist between environmental risk factors and rs4977574 on known risk markers of CVD. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0138-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- George Hindy
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Lund, Sweden
| | - Ulrika Ericson
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Lund, Sweden
| | | | - Isabel Drake
- Nutrition Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Elisabet Wirfält
- Nutrition Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Lund, Sweden
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Lund, Sweden
| | | |
Collapse
|
81
|
Treviño LS, Wang Q, Walker CL. Hypothesis: Activation of rapid signaling by environmental estrogens and epigenetic reprogramming in breast cancer. Reprod Toxicol 2014; 54:136-40. [PMID: 25554384 DOI: 10.1016/j.reprotox.2014.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 12/30/2022]
Abstract
Environmental and lifestyle factors are considered significant components of the increasing breast cancer risk in the last 50 years. Specifically, exposure to environmental endocrine disrupting compounds is correlated with cancer susceptibility in a variety of tissues. In both human and rodent models, the exposure to ubiquitous environmental estrogens during early life has been shown to disrupt normal mammary development and cause permanent adverse effects. Recent studies indicate that environmental estrogens not only have the ability to disrupt estrogen receptor (ER) signaling, but can also reprogram the epigenome by altering DNA and histone methylation through rapid, nongenomic ER actions. We have observed xenoestrogen-mediated activation of several nongenomic signaling pathways and have identified a target for epigenetic reprogramming in MCF-7 breast cancer cells. These observations, in addition to data from the literature, support the hypothesis that activation of rapid signaling by environmental estrogens can lead to epigenetic reprogramming and contribute to the progression of breast cancer.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Quan Wang
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Cheryl L Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States.
| |
Collapse
|
82
|
Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention. Biotechnol Adv 2014; 32:1123-32. [DOI: 10.1016/j.biotechadv.2014.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
|
83
|
Pudenz M, Roth K, Gerhauser C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients 2014; 6:4218-72. [PMID: 25322458 PMCID: PMC4210915 DOI: 10.3390/nu6104218] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Isoflavones (IF) such as genistein are cancer preventive phytochemicals found in soy and other legumes. Epidemiological studies point to a reduced risk for hormone‑dependent cancers in populations following a typical Asian diet rich in soy products. IF act as phytoestrogens and prevent tumorigenesis in rodent models by a broad spectrum of bioactivities. During the past 10 years, IF were shown to target all major epigenetic mechanisms regulating gene expression, including DNA methylation, histone modifications controlling chromatin accessibility, and non-coding RNAs. These effects have been suggested to contribute to cancer preventive potential in in vitro and in vivo studies, affecting several key processes such as DNA repair, cell signaling cascades including Wnt-signaling, induction of apoptosis, cell cycle progression, cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), metastasis formation and development of drug-resistance. We here summarize the state-of-the-art of IF affecting the epigenome in major hormone-dependent, urogenital, and gastrointestinal tumor types and in in vivo studies on anti-cancer treatment or developmental aspects, and short-term intervention studies in adults. These data, while often requiring replication, suggest that epigenetic gene regulation represents an important novel target of IF and should be taken into consideration when evaluating the cancer preventive potential of IF in humans.
Collapse
Affiliation(s)
- Maria Pudenz
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Kevin Roth
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
84
|
Shukla S, Meeran SM, Katiyar SK. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett 2014; 355:9-17. [PMID: 25236912 DOI: 10.1016/j.canlet.2014.09.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
The growing interest in cancer epigenetics is largely due to the reversible nature of epigenetic changes which tend to alter during the course of carcinogenesis. Major epigenetic changes including DNA methylation, chromatin modifications and miRNA regulation play important roles in tumorigenic process. There are several epigenetically active synthetic molecules such as DNA methyltransferase (DNMTs) and histone deacetylases (HDACs) inhibitors, which are either approved or, are under clinical trials for the treatment of various cancers. However, most of the synthetic inhibitors have shown adverse side effects, narrow in their specificity and also expensive. Hence, bioactive phytochemicals, which are widely available with lesser toxic effects, have been tested for their role in epigenetic modulatory activities in gene regulation for cancer prevention and therapy. Encouragingly, many bioactive phytochemicals potentially altered the expression of key tumor suppressor genes, tumor promoter genes and oncogenes through modulation of DNA methylation and chromatin modification in cancer. These bioactive phytochemicals either alone or in combination with other phytochemicals showed promising results against various cancers. Here, we summarize and discuss the role of some commonly investigated phytochemicals and their epigenetic targets that are of particular interest in cancer prevention and cancer therapy.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Cancer Epigenetic Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226021, India
| | - Syed M Meeran
- Cancer Epigenetic Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226021, India
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA; Comprehensive Cancer Center, University of Alabama, Birmingham, AL 35294, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA.
| |
Collapse
|
85
|
Miceli M, Bontempo P, Nebbioso A, Altucci L. Natural compounds in epigenetics: a current view. Food Chem Toxicol 2014; 73:71-83. [PMID: 25139119 DOI: 10.1016/j.fct.2014.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 01/03/2023]
Abstract
The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.
Collapse
Affiliation(s)
- Marco Miceli
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Bontempo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Angela Nebbioso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Lucia Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Universita' di Napoli, Via L. De Crecchio 7, 80138 Napoli, Italy; Istituto di Genetica e Biofisica, Adriano Buzzati-Traverso, IGB, Via P. Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
86
|
Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Front Pharmacol 2014; 5:170. [PMID: 25076909 PMCID: PMC4100573 DOI: 10.3389/fphar.2014.00170] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023] Open
Abstract
Glutathione S-transferases (GSTs) are phase II drug detoxifying enzymes that play an essential role in the maintenance of cell integrity and protection against DNA damage by catalyzing the conjugation of glutathione to a wide variety of exo- and endogenous electrophilic substrates. Glutathione S-transferase P1 (GSTP1), the gene encoding the pi-class GST, is frequently inactivated by acquired somatic CpG island promoter hypermethylation in multiple cancer subtypes including prostate, breast, liver, and blood cancers. Epigenetically mediated GSTP1 silencing is associated with enhanced cancer susceptibility by decreasing its “caretaker” gene function, which tends to promote neoplastic transformation allowing cells to acquire additional alterations. Thus, this epigenetic alteration is now considered as a cancer biomarker but could as well play a driving role in multistep cancer development, especially well documented in prostate cancer development. The present review discusses applications of epigenetic alterations affecting GSTP1 in cancer medicine used alone or in combination with other biomarkers for cancer detection and diagnosis as well as for future targeted preventive and therapeutic interventions including by dietary agents.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg Luxembourg
| | - Tommy Karius
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul South Korea
| |
Collapse
|
87
|
Mielcarek-Kuchta D, Paluszczak J, Seget M, Kiwerska K, Biczysko W, Szyfter K, Szyfter W. Prognostic factors in oral and oropharyngeal cancer based on ultrastructural analysis and DNA methylation of the tumor and surgical margin. Tumour Biol 2014; 35:7441-9. [PMID: 24782031 PMCID: PMC4158182 DOI: 10.1007/s13277-014-1958-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023] Open
Abstract
Oral and oropharyngeal cancers are characterized by relatively low 5- year survival rates due to many factors, including local recurrence. The identification of new molecular markers may serve for the estimation of prognosis and thus augment treatment decisions and affect therapy outcome. The aim of this study was to describe the morphological characteristics and the DNA methylation status of the CDKN2A,CDH1, ATM, FHIT and RAR- genes in the central and peripheral part of the tumor and the surgical margin and evaluate their prognostic significance. 53 patients with oral and oropharyngeal cancer were enrolled to the prospective study, and had been primarily treated surgically. Correlations between morphological data, hypermethylation status and clinicopathological data, as well as prognosis, were assessed. Nuclei polymorphism highly correlated with T stage (p < 0.0001), N stage (p < 0.046), and metastases to the lymph nodes pN (p < 0.004 ). Also, the number of cells in irregular mitosis correlated with T stage (p < 0.004), and highly with pN (p < 0.009). The significance of CDKN2A hypermethylation as a good prognostic factor was also established in the Kaplan-Meir test. The ultrastructural analysis showed that none of the examined tumors had homogenous texture and that resection margin specimens clean in HE stained tissue samples frequently contained single tumor cells or few cells in groups surrounded by connective tissue. This indicates the superiority of electron microscopy over standard histopathological analysis. Thus, a combination of such morphological examination with epigenetic parameters described herein could result in the discovery of promising new prognostic markers of the disease.
Collapse
Affiliation(s)
- Daniela Mielcarek-Kuchta
- Department of Otolaryngology and Clinical Oncology, University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznań, Poland,
| | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery, MIMR-PHI Institute of Medical Research, PO BOX 5152, Clayton, Victoria 3168, Australia Department of Molecular Biology and Biochemistry, Monash University, Clayton, Victoria, Australia Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
89
|
Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 2014; 136-137:101-15. [DOI: 10.1016/j.mad.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
|
90
|
Xie Q, Bai Q, Zou LY, Zhang QY, Zhou Y, Chang H, Yi L, Zhu JD, Mi MT. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes Chromosomes Cancer 2014; 53:422-31. [DOI: 10.1002/gcc.22154] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qi Xie
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Qian Bai
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Ling-Yun Zou
- Department of Nutrition and Food Hygiene; Bioinformatics Center; Third Military Medical University; Chongqing China
| | - Qian-Yong Zhang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Yong Zhou
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Hui Chang
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Long Yi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Jun-Dong Zhu
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| | - Man-Tian Mi
- Department of Nutrition and Food Hygiene; Research Center for Nutrition and Food Safety; Chongqing Key Laboratory of Nutrition and Food Safety, College of Military Preventive Medicine, Third Military Medical University; Chongqing China
| |
Collapse
|
91
|
Fu LJ, Ding YB, Wu LX, Wen CJ, Qu Q, Zhang X, Zhou HH. The Effects of Lycopene on the Methylation of the GSTP1 Promoter and Global Methylation in Prostatic Cancer Cell Lines PC3 and LNCaP. Int J Endocrinol 2014; 2014:620165. [PMID: 25389438 PMCID: PMC4217342 DOI: 10.1155/2014/620165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 11/18/2022] Open
Abstract
DNA (cytosine-5-) methylation silencing of GSTP1 function occurs in prostate adenocarcinoma (PCa). Previous studies have shown that there is an inverse relationship between dietary lycopene intake and the risk of PCa. However, it is unknown whether lycopene reactivates the tumor suppressor gene glutathioneS-transferase-π (GSTP1) by demethylation of the hypermethylated CpGs that act to silence the GSTP1 promoter. Here, we demonstrated that lycopene treatment significantly decreased the methylation levels of the GSTP1 promoter and increased the mRNA and protein levels of GSTP1 in an androgen-independent PC-3 cell line. In contrast, lycopene treatment did not demethylate the GSTP1 promoter or increase GSTP1 expression in the androgen-dependent LNCaP cell line. DNA methyltransferase (DNMT) 3A protein levels were downregulated in PC-3 cells following lycopene treatment; however, DNMT1 and DNMT3B levels were unchanged. Furthermore, the long interspersed element (LINE-1) and short interspersed element ALU were not demethylated when treated by lycopene. In LNCaP cells, lycopene treatment did not affect any detected DNMT protein expression, and the methylation levels of LINE-1 and ALU were decreased. These results indicated that the protective effect of lycopene on the prostate is different between androgen-dependent and androgen-independent derived PCa cells. Further, in vivo studies should be conducted to confirm these promising results and to evaluate the potential role of lycopene in the protection of the prostate.
Collapse
Affiliation(s)
- Li-Juan Fu
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
- Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yu-Bin Ding
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
| | - Chun-Jie Wen
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
| | - Qiang Qu
- Pharmacogenetics Research Institute, Central South University, Changsha, Hunan 410078, China
| | - Xue Zhang
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, No. 1 Yixueyuan Road, Chongqing 400016, China
- *Hong-Hao Zhou:
| |
Collapse
|
92
|
Vasantha Rupasinghe H, Nair SV, Robinson RA. Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
93
|
Leclercq G, Jacquot Y. Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J Steroid Biochem Mol Biol 2014; 139:237-44. [PMID: 23274118 DOI: 10.1016/j.jsbmb.2012.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/07/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
Phytoestrogens are natural endocrine disruptors that interfere with estrogenic pathways. They insert directly within the hormone-binding domain of ERα and β, with a preference for the β isoform of which the concentration predominates in the normal mammary epithelium. Since ERβ antagonizes the growth promoting effect of ERα, which is mainly expressed in estrogen-sensitive tumor cells, a potential protective action against breast cancer incidence has been ascribed to phytoestrogens. The fact that Asian women living in far-east countries who consume isoflavone-rich food are less subjected to breast cancer emergence than their congeners in the USA as well as Caucasian women has been advocated to justify such a concept. Overview of data concerning the mechanism of action phytoestrogens reveals that such a view is an oversimplification: Such compounds interfere with a huge panel of regulatory proteins, giving rise to both promoting and antagonizing carcinogenic effects. Moreover, various physiological and pathological factors able to amplify these effects are not often sufficiently taken into account, which increases the difficulty to interpret data. Nevertheless, this overview of data established that chemical structures and concentrations modulate such effects: at the micromolar level, isoflavones activate ERα-mediated transcription and breast cancer cell proliferation while flavones fail to induce any significant promoting effects. At higher doses, both classes of compounds may display an antitumor activity. Reasons for such distinct behaviors as well as their potential impact in therapeutic applications are analyzed here. Ability of isoflavones and flavones to antagonize the association of calmodulin to ERα, which is required for its enhanced transcriptional activity is evoked to justify the antitumor activity ascribed to some flavones. Finally, a suspicion that peculiar classes of phytoestrogens may adopt a SERM-like conformation is addressed in a context of selection and synthesis of compounds with non-equivocal therapeutic value. This article is part of a Special Issue entitled "Phytoestrogens".
Collapse
Affiliation(s)
- Guy Leclercq
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Université Libre de Bruxelles (U.L.B.), Institut Jules Bordet, 1, rue Héger Bordet, Brussels, B-1000, Belgium.
| | | |
Collapse
|
94
|
Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS JOURNAL 2013; 16:151-63. [PMID: 24307610 DOI: 10.1208/s12248-013-9548-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
In recent years, "nutri-epigenetics," which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
95
|
Tigrine C, Bulzomi P, Leone S, Bouriche H, Kameli A, Marino M. Cleome arabica leaf extract has anticancer properties in human cancer cells. PHARMACEUTICAL BIOLOGY 2013; 51:1508-1514. [PMID: 23862683 DOI: 10.3109/13880209.2013.796563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Cleome arabica L. (Capparidaceae) is a desert plant widely distributed in the North part of Africa whose leaves are used in traditional medicine as a sedative for abdominal and rheumatic pains. OBJECTIVES The anticancer activity of methanol Cleome arabica leaf extracts (CALE) is investigated in different human cancer cell lines. MATERIALS AND METHODS Five different human cancer cell lines, representative of the most common cancers in Western countries (i.e., breast adenocarcinoma, colon carcinoma, neuroblastoma, hepatoma, cervix carcinoma) were treated with different concentrations of CALE (i.e., 1, 5, 10, 25, 50, 100 and 200 µg/ml). Cell viability and cell cycle were measured by using a hemocytometer chamber and a cytofluorimeter, respectively. Epidermal growth factor (EGF) was used as a positive control. Western blots were performed to evaluate the CALE effects on pathways involved in cell growth regulation and on apoptotic cascade activation. RESULTS AND CONCLUSION Our results confirm that CALE has a high content of polyphenolic compounds (i.e., 32.21 ± 3.44%), mainly as flavonoids (24.56 ± 4.67%). In all tested cell lines CALE treatment reduces cell number in a dose-dependent manner (ED50 = 175 ± 30 µg/ml). CALE (100 and 200 µg/ml) increases by three-fold the activation of the apoptotic cascade involving caspase-3 activation and the cleavage of its substrate poly(ADP-ribose) polymerase (PARP). Intriguingly, CALE treatment (200 µg/ml) also blocks EGF-induced cell growth by preventing the growth factor-triggered AKT and ERK phosphorylation. As a whole, these data strongly suggest that CALE possesses anticancer effects in all tested cancer cell lines.
Collapse
Affiliation(s)
- Chafia Tigrine
- Department of Biology, Ecole Normale Superieure , Algiers , Algeria
| | | | | | | | | | | |
Collapse
|
96
|
Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res 2013; 58:22-32. [PMID: 23881751 DOI: 10.1002/mnfr.201300195] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Polyphenols are a class of natural compounds widely distributed in fruits, vegetables, and plants. They have been reported to possess a wide range of activities in prevention and alleviation of various diseases like cancer, neuroinflammation, diabetes, and aging. Polyphenols are effective against chronic diseases and recent reports indicated strong epigenetic effects of polyphenols. Most of the studies investigating epigenetic effects of natural polyphenols have focused on their beneficial effects in cancer treatment. However, epigenetic defects have been demonstrated in many other diseases as well, and application of polyphenols to modulate the epigenome is becoming an interesting field of research. This review summarizes the effects of natural polyphenols in modulating epigenetic-related enzymes as well as their effect in prevention and treatment of chronic diseases with a focus on SIRT1 modulation. We have also discussed the relation between the structure and function of epigenetic-modifying polyphenols.
Collapse
Affiliation(s)
- Vincent B Owona Ayissi
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology, University of Tübingen, Tübingen, Germany; Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Cameroon
| | | | | |
Collapse
|
97
|
Abstract
Mechanisms postulated to link folate and B12 metabolism with cancer, including genome-wide hypomethylation, gene-specific promoter hypermethylation, and DNA uracil misincorporation, have been observed in prostate tumor cells. However, epidemiological studies of prostate cancer risk, based on dietary intakes and blood levels of folate and vitamin B12 and on folate-pathway gene variants, have generated contradictory findings. In a meta-analysis, circulating concentrations of B12 (seven studies, OR = 1.10; 95% CI 1.01, 1.19; P = 0.002) and (in cohort studies) folate (five studies, OR = 1.18; 95% CI 1.00, 1.40; P = 0.02) were positively associated with an increased risk of prostate cancer. Homocysteine was not associated with risk of prostate cancer (four studies, OR = 0.91; 95% CI 0.69, 1.19; P = 0.5). In a meta-analysis of folate-pathway polymorphisms, MTR 2756A > G (eight studies, OR = 1.06; 95% CI 1.00, 1.12; P = 0.06) and SHMT1 1420C > T (two studies, OR = 1.11; 95% CI 1.00, 1.22; P = 0.05) were positively associated with prostate cancer risk. There were no effects due to any other polymorphisms, including MTHFR 677C > T (12 studies, OR = 1.04; 95% CI 0.97, 1.12; P = 0.3). The positive association of circulating B12 with an increased risk of prostate cancer could be explained by reverse causality. However, given current controversies over mandatory B12 fortification, further research to eliminate a causal role of B12 in prostate cancer initiation and/or progression is required. Meta-analysis does not entirely rule out a positive association of circulating folate with increased prostate cancer risk. As with B12, even a weak positive association would be a significant public health issue, given the high prevalence of prostate cancer and concerns about the potential harms versus benefits of mandatory folic acid fortification.
Collapse
|
98
|
Krajka-Kuźniak V, Paluszczak J, Oszmiański J, Baer-Dubowska W. Hawthorn (Crataegus oxyacantha
L.) Bark Extract Regulates Antioxidant Response Element (ARE)-Mediated Enzyme Expression Via
Nrf2 Pathway Activation in Normal Hepatocyte Cell Line. Phytother Res 2013; 28:593-602. [DOI: 10.1002/ptr.5035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry; Poznań University of Medical Sciences; Poznań Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry; Poznań University of Medical Sciences; Poznań Poland
| | - Jan Oszmiański
- Environmental and Life Science University; Department of Fruit, Vegetable and Cereal Technology; Wrocław Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry; Poznań University of Medical Sciences; Poznań Poland
| |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW To evaluate recent developments in nutritional epigenomics and related challenges, opportunities, and implications for cancer control and prevention. RECENT FINDINGS Cancer is one of the leading causes of death worldwide, and understanding the factors that contribute to cancer development may facilitate the development of strategies for cancer prevention and control. Cancer development involves genetic and epigenetic alterations. Genetic marks are permanent, whereas epigenetic marks are dynamic, change with age, and are influenced by the external environment. Thus, epigenetics provides a link between the environment, diet, and cancer development. Proper food selection is imperative for better health and to avoid cancer and other diseases. Nutrients either contribute directly to cancer prevention or support the repair of genomic and epigenomic damage caused by exposure to cancer-causing agents such as toxins, free radicals, radiation, and infectious agents. Nutritional epigenomics provides an opportunity for cancer prevention because selected nutrients have the potential to reverse cancer-associated epigenetic marks in different tumor types. A number of natural foods and their bioactive components have been shown to have methylation-inhibitory and deacetylation-inhibitory properties. SUMMARY Natural foods and bioactive food components have characteristics and functions that are similar to epigenetic inhibitors and therefore have potential in cancer control and prevention.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7324, USA.
| |
Collapse
|
100
|
Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr 2013; 110:2138-49. [PMID: 23769299 DOI: 10.1017/s0007114513001645] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Our recent study has shown that beetroot juice protects against N-nitrosodimethylamine (NDEA)-induced liver injury and increases the activity of phase II enzymes, suggesting the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. The aim of the present study was to further explore the mechanism of the activity of beetroot by evaluating the cytoprotective effects of its major component. The influence of betanin (BET) on the activation of Nrf2 and the expression of GSTA, GSTP, GSTM, GSTT, NQO1 and HO-1 was assessed in two hepatic cell lines: non-tumour THLE-2 and hepatoma-derived HepG2 cell lines. The level of the tumour suppressor p53 in both cell lines and the methylation of GSTP in HepG2 cells were also evaluated. Treatment of both cell lines with 2, 10 and 20 μm of BET resulted in the translocation of Nrf2 from the cytosol to the nucleus. The mRNA and nuclear protein levels of Nrf2 and the binding of Nrf2 to ARE sequences were increased only in the THLE-2 cells and were accompanied by the phosphorylation of serine/threonine kinase (AKT), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). BET also significantly increased the mRNA and protein levels of GSTP, GSTT, GSTM and NQO1 in these cells. Conversely, besides the translocation of Nrf2 from the cytosol to the nucleus, BET did not modulate any of the other parameters measured in the HepG2 cells. BET did not change the methylation of GSTP1 in these cells either. These results indicate that BET through the activation of Nrf2 and subsequent induction of the expression of genes controlled by this factor may exert its hepatoprotective and anticarcinogenic effects. Moreover, the activation of mitogen-activated protein kinases may be responsible for the activation of Nrf2 in the THLE-2 cells.
Collapse
|