51
|
Magni G, Merli D, Verderio C, Abbracchio MP, Ceruti S. P2Y2 receptor antagonists as anti-allodynic agents in acute and sub-chronic trigeminal sensitization: role of satellite glial cells. Glia 2015; 63:1256-69. [PMID: 25779655 DOI: 10.1002/glia.22819] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Trigeminal (TG) pain often lacks a satisfactory pharmacological control. A better understanding of the molecular cross-talk between TG neurons and surrounding satellite glial cells (SGCs) could help identifying innovative targets for the development of more effective analgesics. We have previously demonstrated that neuronal pro-algogenic mediators upregulate G protein-coupled nucleotide P2Y receptors (P2YRs) expressed by TG SGCs in vitro. Here, we have identified the specific P2YR subtypes involved (i.e., the ADP-sensitive P2Y1 R and the UTP-responsive P2Y2 R subtypes), and demonstrated the contribution of neuron-derived prostaglandins to their upregulation. Next, we have translated these data to an in vivo model of TG pain (namely, rats injected with Complete Freund's adjuvant in the temporomandibular joint), by demonstrating activation of SGCs and upregulation of P2Y1 R and P2Y2 R in the ipsi-lateral TG. To unequivocally link P2YRs to the development of facial allodynia, we treated animals with various purinergic antagonists. The selective P2Y2 R antagonist AR-C118925 completely inhibited SGCs activation, exerted a potent anti-allodynic effect that lasted over time, and was still effective when administration was started 6-days post induction of allodynia, i.e. under subchronic pain conditions. Conversely, the selective P2Y1 R antagonist MRS2179 was completely ineffective. Moreover, similarly to the anti-inflammatory drug acetylsalicylic acid and the known anti-migraine agent sumatriptan, the P2X/P2Y nonselective antagonist PPADS was only partially effective, and completely lost its activity under sub-chronic conditions. Taken together, our results highlight glial P2Y2 Rs as potential "druggable" targets for the successful management of TG-related pain.
Collapse
Affiliation(s)
- Giulia Magni
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, via Balzaretti, 9, Milan, Italy; Department of Drug Discovery and Development, Italian Institute of Technology (IIT), via Morego, 30, Genoa, Italy
| | | | | | | | | |
Collapse
|
52
|
Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 2015; 20:569-78. [PMID: 25222915 DOI: 10.2119/molmed.2014.00176] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/30/2022] Open
Abstract
Although originally described as a highly conserved nuclear protein, high-mobility group box 1 protein (HMGB1) has emerged as a danger-associated molecular pattern molecule protein (DAMP) and is a mediator of innate and specific immune responses. HMGB1 is passively or actively released in response to infection, injury and cellular stress, providing chemotactic and cytokine-like functions in the extracellular environment, where it interacts with receptors such as receptor for advanced glycation end products (RAGE) and several Toll-like receptors (TLRs). Although HMGB1 was first revealed as a key mediator of sepsis, it also contributes to a number of other conditions and disease processes. Chronic pain arises as a direct consequence of injury, inflammation or diseases affecting the somatosensory system and can be devastating for the affected patients. Emerging data indicate that HMGB1 is also involved in the pathology of persistent pain. Here, we give an overview of HMGB1 as a proinflammatory mediator, focusing particularly on the role of HMGB1 in the induction and maintenance of hypersensitivity in experimental models of pain and discuss the therapeutic potential of targeting HMGB1 in conditions of chronic pain.
Collapse
Affiliation(s)
- Nilesh M Agalave
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
53
|
|
54
|
Costa FAL, Moreira Neto FL. Células gliais satélite de gânglios sensitivos: o seu papel na dor. Braz J Anesthesiol 2015; 65:73-81. [DOI: 10.1016/j.bjan.2013.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/15/2013] [Indexed: 10/25/2022] Open
|
55
|
Activation of GABA(B) receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. Neuroscience 2014; 288:51-8. [PMID: 25542421 DOI: 10.1016/j.neuroscience.2014.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022]
Abstract
In a previous study, we demonstrated that inflammation suppressed inward rectifying K(+) (Kir) currents in satellite glial cells (SGCs) from the trigeminal ganglia (TRGs) and that this impairment of glial potassium homeostasis in the trigeminal ganglion (TRG) contributed to trigeminal pain. The aim of the present study was to investigate whether activation of GABAB receptors modulates the Kir current in SGCs using in vivo patch-clamp and immunohistochemical techniques. Immunohistochemically, we found that immunoreactivity for glial-specific Kir channel subunit Kir4.1 and the GABAB receptor was co-expressed in SGCs from the TRGs. In vivo whole-cell recordings were made using SGCs from the TRGs of urethane-anesthetized rats. Application of baclofen, a GABAB receptor agonist, significantly increased the mean peak amplitude of Kir currents in a concentration-dependent and reversible manner. Baclofen-induced potentiation of the Kir current was abolished by co-application of 3-amino-2-(4-chlorophenyl)-2-hydroxyprophylsulfonic acid (saclofen). In addition, baclofen significantly potentiated the density of the Ba(2+)-sensitive Kir current, and resulted in hyperpolarization of the mean membrane potential. These results suggest that activation of GABAB receptors potentiates the Kir current in SGCs and that GABA released from the TRG neuronal soma could contribute to buffering of extracellular K(+) concentrations following excitation of TRG neurons during the processing of sensory information, including the transmission of noxious stimuli.
Collapse
|
56
|
Nascimento DSM, Castro-Lopes JM, Neto FLM. Satellite glial cells surrounding primary afferent neurons are activated and proliferate during monoarthritis in rats: is there a role for ATF3? PLoS One 2014; 9:e108152. [PMID: 25247596 PMCID: PMC4172763 DOI: 10.1371/journal.pone.0108152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 12/20/2022] Open
Abstract
Joint inflammatory diseases are debilitating and very painful conditions that still lack effective treatments. Recently, glial cells were shown to be crucial for the development and maintenance of chronic pain, constituting novel targets for therapeutic approaches. At the periphery, the satellite glial cells (SGCs) that surround the cell bodies of primary afferents neurons in the dorsal root ganglia (DRG) display hypertrophy, proliferation, and activation following injury and/or inflammation. It has been suggested that the expression of neuronal injury factors might initially trigger these SGCs-related events. We then aimed at evaluating if SGCs are involved in the establishment/maintenance of articular inflammatory pain, by using the monoarthritis (MA) model, and if the neuronal injury marker activating transcriptional factor 3 (ATF3) is associated with these SGCs' reactive changes. Western Blot (WB) analysis of the glial fibrillary acidic protein (GFAP) expression was performed in L4-L5 DRGs from control non-inflamed rats and MA animals at different time-points of disease (4, 7, and 14d, induced by complete Freund's adjuvant injection into the left hind paw ankle joint). Data indicate that SGCs activation is occurring in MA animals, particularly after day 7 of disease evolution. Additionally, double-immunostaining for ATF3 and GFAP in L5 DRG sections shows that SGCs's activation significantly increases around stressed neurons at 7d of disease, when compared with control animals. The specific labelling of GFAP in SGCs rather than in other cell types was also confirmed by immunohistochemical labeling. Finally, BrdU incorporation indicates that proliferation of SGCs is also significantly increased after 7 days of MA. Data indicate that SGCs play an important role in the mechanisms of articular inflammation, with 7 days of disease being a critical time-point in the MA model, and suggest that ATF3 might be involved in SGCs' reactive changes such as activation.
Collapse
Affiliation(s)
- Diana Sofia Marques Nascimento
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - José Manuel Castro-Lopes
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Fani Lourença Moreira Neto
- Departamento de Biologia Experimental, Centro de Investigação Médica (CIM), Faculdade de Medicina do Porto, Universidade do Porto, Porto, Portugal
- Morphophysiology of the Somatosensory System Group, Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- * E-mail:
| |
Collapse
|
57
|
Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology 2014; 120:1463-75. [PMID: 24534904 DOI: 10.1097/aln.0000000000000176] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The mechanism of chemotherapy-induced peripheral neuropathy after paclitaxel treatment is not well understood. Given the poor penetration of paclitaxel into central nervous system, peripheral nervous system is most at risk. METHODS Intrinsic membrane properties of dorsal root ganglion neurons were studied by intracellular recordings. Multiple-gene real-time polymerase chain reaction array was used to investigate gene expression of dorsal root ganglion neuronal ion channels. RESULTS Paclitaxel increased the incidence of spontaneous activity from 4.8 to 27.1% in large-sized and from 0 to 33.3% in medium-sized neurons. Paclitaxel decreased the rheobase (nA) from 1.6 ± 0.1 to 0.8 ± 0.1 in large-sized, from 1.5 ± 0.2 to 0.6 ± 0.1 in medium-sized, and from 1.6 ± 0.2 to 1.0 ± 0.1 in small-sized neurons. After paclitaxel treatment, other characteristics of membrane properties in each group remained the same except that Aδ neurons showed shorter action potential fall time (ms) (1.0 ± 0.2, n = 10 vs. 1.8 ± 0.3, n = 9, paclitaxel vs. vehicle). Meanwhile, real-time polymerase chain reaction array revealed an alteration in expression of some neuronal ion channel genes including up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 1 (fold change 1.76 ± 0.06) and Nav1.7 (1.26 ± 0.02) and down-regulation of Kir channels (Kir1.1, 0.73 ± 0.05, Kir3.4, 0.66 ± 0.06) in paclitaxel-treated animals. CONCLUSION The increased neuronal excitability and the changes in gene expression of some neuronal ion channels in dorsal root ganglion may provide insight into the molecular and cellular basis of paclitaxel-induced neuropathy, which may lead to novel therapeutic strategies.
Collapse
|
58
|
Song DD, Li Y, Tang D, Huang LY, Yuan YZ. Neuron-glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity. Am J Physiol Gastrointest Liver Physiol 2014; 306:G788-95. [PMID: 24627565 DOI: 10.1152/ajpgi.00318.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Communication between neurons and glia in the dorsal root ganglia (DRG) and the central nervous system is critical for nociception. Both glial activation and proinflammatory cytokine induction underlie this communication. We investigated whether satellite glial cell (SGC) and tumor necrosis factor-α (TNF-α) activation in DRG participates in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat model of visceral hyperalgesia. In TNBS-treated rats, TNF-α expression increased in DRG and was colocalized to SGCs enveloping a given neuron. These SGCs were activated as visualized under electron microscopy: they had more elongated processes projecting into the connective tissue space and more gap junctions. When nerves attached to DRG (L6-S1) were stimulated with a series of electrical stimulations, TNF-α were released from DRG in TNBS-treated animals compared with controls. Using a current clamp, we noted that exogenous TNF-α (2.5 ng/ml) increased DRG neuron activity, and visceral pain behavioral responses were reversed by intrathecal administration of anti-TNF-α (10 μg·kg(-1)·day(-1)). Based on our findings, TNF-α and SGC activation in neuron-glial communication are critical in inflammatory visceral hyperalgesia.
Collapse
Affiliation(s)
- Dan-dan Song
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | | | | | | | | |
Collapse
|
59
|
Xu Q, Cheong YK, He SQ, Tiwari V, Liu J, Wang Y, Raja SN, Li J, Guan Y, Li W. Suppression of spinal connexin 43 expression attenuates mechanical hypersensitivity in rats after an L5 spinal nerve injury. Neurosci Lett 2014; 566:194-199. [PMID: 24631560 PMCID: PMC4007756 DOI: 10.1016/j.neulet.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 02/07/2023]
Abstract
Activation of spinal astrocytes may contribute to neuropathic pain. Adjacent astrocytes can make direct communication through gap junctions formed by connexin 43 (Cx43) in the central nervous system. Yet, the role of spinal astroglial gap junctions in neuropathic pain is not fully understood. Since Cx43 is the connexin isoform expressed preferentially in astrocytes in the spinal cord, we used a small interfering RNA (siRNA) approach to examine whether suppression of spinal Cx43 expression inhibits mechanical hypersensitivity in rats after an L5 spinal nerve ligation (SNL). SNL rats were administered intrathecal Cx43 siRNA (3μg/15μl, twice/day) or an equal amount of mismatch siRNA (control) on days 14-17 post-SNL. Cx43 siRNA, but not mismatch siRNA, alleviated mechanical hypersensitivity in SNL rats. Furthermore, Western blot analysis showed that the pain inhibition induced by Cx43 siRNA correlated with downregulation of Cx43 expression, but not that of Cx36 (the neuronal gap junction protein) or glial fibrillary acidic protein (GFAP, a marker for reactive astrocytes) in the spinal cord of SNL rats. Western blot analysis and immunohistochemistry also showed that SNL increased GFAP expression, but decreased Cx43 expression, in spinal cord. Our results provide direct evidence that selective suppression of spinal Cx43 after nerve injury alleviates neuropathic mechanical hypersensitivity. These findings suggest that in the spinal cord, the enhanced function of astroglial gap junctions, especially those formed by Cx43, may be important to neuropathic pain in SNL rats.
Collapse
Affiliation(s)
- Qian Xu
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Yong-Kwan Cheong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Anesthesiology and Pain Medicine, School of Medicine, Wonkwang University, Iksan, Korea
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jian Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jinheng Li
- Department of Clinical Pharmacology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Weiyan Li
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
60
|
Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. THE JOURNAL OF PAIN 2014; 15:712-25. [PMID: 24755282 DOI: 10.1016/j.jpain.2014.04.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/12/2014] [Accepted: 04/05/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED This paper tests the contribution of the toll-like receptors, TLR4 in particular, in the initiation and maintenance of paclitaxel-related chemotherapy-induced peripheral neuropathy. TLR4 and its immediate downstream signaling molecules-myeloid differentiation primary response gene 88 (MyD88) and toll/interleukin 1 receptor domain-containing adapter-inducing interferon-β (TRIF)-were found to be increased in the dorsal root ganglion (DRG) using Western blot by day 7 of paclitaxel treatment. The behavioral phenotype, the increase of both TLR4 and MyD88, was blocked by cotreatment with the TLR4 antagonist lipopolysaccharide-Rhodobacter sphaeroides during chemotherapy. A similar, but less robust, behavioral effect was observed using intrathecal treatment of MyD88 homodimerization inhibitory peptide. DRG levels of TLR4 and MyD88 reduced over the next 2 weeks, whereas these levels remained increased in spinal cord through day 21 following chemotherapy. Immunohistochemical analysis revealed TLR4 expression in both calcitonin gene-related peptide-positive and isolectin B4-positive small DRG neurons. MyD88 was only found in calcitonin gene-related peptide-positive neurons, and TRIF was found in both calcitonin gene-related peptide-positive and isolectin B4-positive small DRG neurons as well as in medium- and large-size DRG neurons. In the spinal cord, TLR4 was only found colocalized to astrocytes but not with either microglia or neurons. Intrathecal treatment with the TLR4 antagonist lipopolysaccharide-R. sphaeroides transiently reversed preestablished chemotherapy-induced peripheral neuropathy mechanical hypersensitivity. These results strongly implicate TLR4 signaling in the DRG and the spinal cord in the induction and maintenance of paclitaxel-related chemotherapy-induced peripheral neuropathy. PERSPECTIVE The toll-like receptor TLR4 and MyD88 signaling pathway could be a new potential therapeutic target in paclitaxel-induced painful neuropathy.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haijun Zhang
- Department of Anesthesia and Pain Medicine Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongmei Zhang
- Department of Anesthesia and Pain Medicine Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alyssa K Kosturakis
- Department of Anesthesia and Pain Medicine Research, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine Research, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
61
|
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013; 154 Suppl 1:S10-S28. [PMID: 23792284 PMCID: PMC3858488 DOI: 10.1016/j.pain.2013.06.022] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
Activation of glial cells and neuro-glial interactions are emerging as key mechanisms underlying chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1 and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy, proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the extracellular space. Although widely detected in chronic pain resulting from nerve trauma, inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to enhance pain sensitivity via a number of synergistic neuro-glial interactions. Glial mediators have been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could be a result of "gliopathy," that is, dysregulation of glial functions in the central and peripheral nervous system. In this review, we provide an update on recent advances and discuss remaining questions.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Temugin Berta
- Department of Anesthesiology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
62
|
Abstract
There are two basic categories of pain: physiological pain, which serves an important protective function, and pathological pain, which can have a major negative impact on quality of life in the context of human disease. Major progress has been made in understanding the molecular mechanisms that drive sensory transduction, amplification and conduction in peripheral pain-sensing neurons, communication of sensory inputs to spinal second-order neurons, and the eventual modulation of sensory signals by spinal and descending circuits. This poster article endeavors to provide an overview of how molecular and cellular mechanisms underlying nociception in a physiological context undergo plasticity in pathophysiological states, leading to pain hypersensitivity and chronic pain.
Collapse
Affiliation(s)
- Vijayan Gangadharan
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | | |
Collapse
|
63
|
Li Q, Liu Y, Chu Z, Chen J, Dai F, Zhu X, Hu A, Yun C. Brain-derived neurotrophic factor expression in dorsal root ganglia of a lumbar spinal stenosis model in rats. Mol Med Rep 2013; 8:1836-44. [PMID: 24127005 DOI: 10.3892/mmr.2013.1723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/26/2013] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the expression of brain-derived neurotrophic factor (BDNF) in dorsal root ganglia (DRG) of a rat model of lumbar spinal stenosis (LSS). Adult male rats were divided into the operation and sham operation groups. The operation group was comprised of the rat models of LSS. Walking distance and BDNF expression levels in DRG were measured in the two groups at different time points. The total BDNF protein levels and positive cell mean optical density (MOD) values in the operation group were significantly higher at each time point compared with that of the sham operation and preoperative control groups (P<0.05). The total BDNF protein levels and MOD values following sport in the operation group were significantly higher compared with those prior to sport (P<0.05). In the sham operation group, BDNF protein levels and MOD values before and after sport at each time point showed no significant differences than those of the operation group (P>0.05). Moreover, BDNF protein levels and MOD values in the operation group indicated a negative correlation with walking distance. The present study demonstrated that the expression of BDNF in rat models of LSS increased with time and was associated with a decrease in walking distance. BDNF was therefore important for the process of intermittent claudication caused by LSS.
Collapse
Affiliation(s)
- Qinliang Li
- Department of Spine, The Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu 222000, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 2013; 61:2000-8. [PMID: 24123473 DOI: 10.1002/glia.22571] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
We have examined satellite glial cell (SGC) proliferation in trigeminal ganglia following chronic constriction injury of the infraorbital nerve. Using BrdU labeling combined with immunohistochemistry for SGC specific proteins we positively confirmed proliferating cells to be SGCs. Proliferation peaks at approximately 4 days after injury and dividing SGCs are preferentially located around neurons that are immunopositive for ATF-3, a marker of nerve injury. After nerve injury there is an increase GFAP expression in SGCs associated with both ATF-3 immunopositive and immunonegative neurons throughout the ganglia. SGCs also express the non-glial proteins, CD45 and CD163, which label resident macrophages and circulating leukocytes, respectively. In addition to SGCs, we found some Schwann cells, endothelial cells, resident macrophages, and circulating leukocytes were BrdU immunopositive.
Collapse
Affiliation(s)
- Macayla Donegan
- University of California San Francisco, Center for Integrative Neuroscience, BOX 0444, 675 Nelson Rising Lane, San Francisco, California
| | | | | | | | | |
Collapse
|
65
|
Huang LYM, Gu Y, Chen Y. Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 2013; 61:1571-81. [PMID: 23918214 DOI: 10.1002/glia.22541] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023]
Abstract
Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.
Collapse
Affiliation(s)
- Li-Yen M Huang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1069, USA.
| | | | | |
Collapse
|
66
|
Souza GR, Talbot J, Lotufo CM, Cunha FQ, Cunha TM, Ferreira SH. Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proc Natl Acad Sci U S A 2013; 110:11193-8. [PMID: 23776243 PMCID: PMC3704031 DOI: 10.1073/pnas.1307445110] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The activation of the satellite glial cells (SGCs) surrounding the dorsal root ganglion (DRG) neurons appears to play a role in pathological pain. We tested the hypothesis that fractalkine, which is constitutively expressed by primary nociceptive neurons, is the link between peripheral inflammation and the activation of SGCs and is thus responsible for the genesis of the inflammatory pain. The injection of carrageenin into the rat hind paw induced a decrease in the mechanical nociceptive threshold (hypernociception), which was associated with an increase in mRNA and GFAP protein expression in the DRG. Both events were inhibited by anti-fractalkine antibody administered directly into the DRG (L5) [intraganglionar (i.gl.)]. The administration of fractalkine into the DRG (L5) produced mechanical hypernociception in a dose-, time-, and CX3C receptor-1 (CX3CR1)-dependent manner. Fractalkine's hypernociceptive effect appears to be indirect, as it was reduced by local treatment with anti-TNF-α antibody, IL-1-receptor antagonist, or indomethacin. Accordingly, the in vitro incubation of isolated and cultured SGC with fractalkine induced the production/release of TNF-α, IL-1β, and prostaglandin E2. Finally, treatment with i.gl. fluorocitrate blocked fractalkine (i.gl.)- and carrageenin (paw)-induced hypernociception. Overall, these results suggest that, during peripheral inflammation, fractalkine is released in the DRG and contributes to the genesis of inflammatory hypernociception. Fractalkine's effect appears to be dependent on the activation of the SGCs, leading to the production of TNFα, IL-1β, and prostanoids, which are likely responsible for the maintenance of inflammatory pain. Thus, these results indicate that the inhibition of fractalkine/CX3CR1 signaling in SGCs may serve as a target to control inflammatory pain.
Collapse
Affiliation(s)
- Guilherme R. Souza
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | | | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| | - Sérgio H. Ferreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Sao Paulo, Brazil
| |
Collapse
|
67
|
Dorsal root ganglion compression as an animal model of sciatica and low back pain. Neurosci Bull 2012; 28:618-30. [PMID: 23054639 DOI: 10.1007/s12264-012-1276-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023] Open
Abstract
As sciatica and low back pain are among the most common medical complaints, many studies have duplicated these conditions in animals. Chronic compression of the dorsal root ganglion (CCD) is one of these models. The surgery is simple: after exposing the L4/L5 intervertebral foramina, stainless steel rods are implanted unilaterally, one rod for each vertebra, to chronically compress the lumbar dorsal root ganglion (DRG). Then, CCD can be used to simulate the clinical conditions caused by stenosis, such as a laterally herniated disc or foraminal stenosis. As the intraforaminal implantation of a rod results in neuronal somal hyperexcitability and spontaneous action potentials associated with hyperalgesia, spontaneous pain, and mechanical allodynia, CCD provides an animal model that mimics radicular pain in humans. This review concerns the mechanisms of neuronal hyperexcitability, focusing on various patterns of spontaneous discharge including one possible pain signal for mechanical allodynia - evoked bursting. Also, new data regarding its significant property of maintaining peripheral input are also discussed. Investigations using this animal model will enhance our understanding of the neural mechanisms for low back pain and sciatica. Furthermore, the peripheral location of the DRG facilitates its use as a locus for controlling pain with minimal central effects, in the hope of ultimately uncovering analgesics that block neuropathic pain without influencing physiological pain.
Collapse
|
68
|
Hanani M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res 2012; 1487:183-91. [PMID: 22771859 DOI: 10.1016/j.brainres.2012.03.070] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/24/2012] [Indexed: 02/07/2023]
Abstract
Peripheral injury can cause abnormal activity in sensory neurons, which is a major factor in chronic pain. Recent work has shown that injury induces major changes not only in sensory neurons but also in the main type of glial cells in sensory ganglia-satellite glial cells (SGCs), and that interactions between sensory neurons and SGCs contribute to neuronal activity in pain models. The main functional changes observed in SGCs after injury are an increased gap junction-mediated coupling among these cells, and augmented sensitivity to ATP. There is evidence that the augmented gap junctions contribute to neuronal hyperexcitability in pain models, but the mechanism underlying this effect is not known. The changes in SGCs described above have been found following a wide range of injuries (both axotomy and inflammation) in somatic, orofacial and visceral regions, and therefore appear to be a general feature in chronic pain. We have found that in cultures of sensory ganglia calcium signals can spread from an SGC to neighboring cells by calcium waves, which are mediated by gap junctions and ATP acting on purinergic P2 receptors. A model is proposed to explain how augmented gap junctions and greater sensitivity to ATP can combine to produce enhanced calcium waves, which can lead to neuronal excitation. Thus this simple scheme can account for several major changes in sensory ganglia that are common to a great variety of pain models.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
69
|
Katagiri A, Shinoda M, Honda K, Toyofuku A, Sessle BJ, Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol Pain 2012; 8:23. [PMID: 22458630 PMCID: PMC3386019 DOI: 10.1186/1744-8069-8-23] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/30/2012] [Indexed: 01/01/2023] Open
Abstract
Background It has been reported that the P2Y12 receptor (P2Y12R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y12R in SGC in lingual neuropathic pain. Results The head-withdrawal reflex thresholds to mechanical and heat stimulation of the lateral tongue were significantly decreased in LNC-rats compared to sham-rats. These nocifensive effects were apparent on day 1 after LNC and lasted for 17 days. On days 3, 9, 15 and 21 after LNC, the mean relative number of TG neurons encircled with GFAP-immunoreactive (IR) cells significantly increased in the ophthalmic, maxillary and mandibular branch regions of TG. On day 3 after LNC, P2Y12R expression occurred in GFAP-IR cells but not neuronal nuclei (NeuN)-IR cells (i.e. neurons) in TG. After 3 days of successive administration of the P2Y12R antagonist MRS2395 into TG in LNC-rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly decreased coincident with a significant reversal of the lowered head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue compared to vehicle-injected rats. Furthermore, after 3 days of successive administration of the P2YR agonist 2-MeSADP into the TG in naïve rats, the mean relative number of TG neurons encircled with GFAP-IR cells was significantly increased and head-withdrawal reflex thresholds to mechanical and heat stimulation of the tongue were significantly decreased in a dose-dependent manner compared to vehicle-injected rats. Conclusions The present findings provide the first evidence that the activation of P2Y12R in SGCs of TG following lingual nerve injury is involved in the enhancement of TG neuron activity and nocifensive reflex behavior, resulting in neuropathic pain in the tongue.
Collapse
Affiliation(s)
- Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Berta T, Liu T, Liu YC, Xu ZZ, Ji RR. Acute morphine activates satellite glial cells and up-regulates IL-1β in dorsal root ganglia in mice via matrix metalloprotease-9. Mol Pain 2012; 8:18. [PMID: 22439811 PMCID: PMC3352126 DOI: 10.1186/1744-8069-8-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/22/2012] [Indexed: 12/26/2022] Open
Abstract
Background Activation of spinal cord glial cells such as microglia and astrocytes has been shown to regulate chronic opioid-induced antinociceptive tolerance and hyperalgesia, due to spinal up-regulation of the proinflammatory cytokines such as interleukin-1 beta (IL-1β). Matrix metalloprotease-9 (MMP-9) has been implicated in IL-1β activation in neuropathic pain. However, it is unclear whether acute opioid treatment can activate glial cells in the peripheral nervous system. We examined acute morphine-induced activation of satellite glial cells (SGCs) and up-regulation of IL-1β in dorsal root ganglia (DRGs), and further investigated the involvement of MMP-9 in these opioid-induced peripheral changes. Results Subcutaneous morphine injection (10 mg/kg) induced robust peripheral glial responses, as evidenced by increased GFAP expression in DRGs but not in spinal cords. The acute morphine-induced GFAP expression is transient, peaking at 2 h and declining after 3 h. Acute morphine treatment also increased IL-1β immunoreactivity in SGCs and IL-1β activation in DRGs. MMP-9 and GFAP are expressed in DRG neurons and SGCs, respectively. Confocal analysis revealed a close proximity of MMP-9 and GFAP immunostaining. Importantly, morphine-induced DRG up-regulation of GFAP expression and IL-1β activation was abolished after Mmp9 deletion or naloxone pre-treatment. Finally, intrathecal injections of IL-1β-selective siRNA not only reduced DRG IL-1β expression but also prolonged acute morphine-induced analgesia. Conclusions Acute morphine induces opioid receptors- and MMP-9-dependent up-regulation of GFAP expression and IL-1β activation in SGCs of DRGs. MMP-9 could mask and shorten morphine analgesia via peripheral neuron-glial interactions. Targeting peripheral glial activation might prolong acute opioid analgesia.
Collapse
Affiliation(s)
- Temugin Berta
- Sensory Plasticity Laboratory, Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
71
|
Chen RG, Kong WW, Ge DL, Luo C, Hu SJ. Bilateral mechanical and thermal hyperalgesia and tactile allodynia after chronic compression of dorsal root ganglion in mice. Neurosci Bull 2011; 27:233-40. [PMID: 21788994 DOI: 10.1007/s12264-011-1006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Low back pain is one of the most inextricable problems encountered in clinics. Animal models that imitate symptoms in humans are valuable tools for investigating low back pain mechanisms and the possible therapeutic applications. With the development of genetic technology in pain field, the possibility of mutating specific genes in mice has provided a potent tool for investigating the specific mechanisms of pain. The aim of the present study was to develop a mouse model of chronic compression of dorsal root ganglion (CCD), in which gene mutation can be applied to facilitate the studies of chronic pain. METHODS Chronic compression of L4 and L5 dorsal root ganglia was conducted in mice by inserting fine stainless steel rods into the intervertebral foramina, one at L4 and the other at L5. Mechanical allodynia and thermal hyperalgesia were examined with von Frey filaments and radiating heat stimulator, respectively. RESULTS The CCD mice displayed dramatic mechanical and thermal hyperalgesia as well as tactile allodynia in the hindpaw ipsilateral to CCD. In addition, this mechanical and thermal hyperalgesia as well as tactile allodynia was also found to spread to the contralateral hindpaw. CONCLUSION This model, combined with the possible genetic modification, will strengthen our knowledge of the underlying mechanisms of low back pain. It also favors the development of new treatment strategies for pain and hyperalgesia after spinal injury and other disorders which affect the dorsal root ganglion in humans.
Collapse
Affiliation(s)
- Rong-Gui Chen
- Institute of Neuroscience, Fourth Military Medical University, Xi'an, China
| | | | | | | | | |
Collapse
|
72
|
Wu A, Green CR, Rupenthal ID, Moalem-Taylor G. Role of gap junctions in chronic pain. J Neurosci Res 2011; 90:337-45. [DOI: 10.1002/jnr.22764] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 11/10/2022]
|
73
|
Qu L, Zhang P, LaMotte RH, Ma C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain Behav Immun 2011; 25:1399-407. [PMID: 21521651 PMCID: PMC3150223 DOI: 10.1016/j.bbi.2011.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 01/09/2023] Open
Abstract
Pain often accompanies antigen-specific immune-related disorders though little is known of the underlying neural mechanisms. A common feature among these disorders is the elevated level of antigen-specific immunoglobulin (Ig) G in the serum and the presence of IgG immune complex (IC) in the affected tissue. We hypothesize that IC may directly activate the Fc-gamma receptor type I (FcγRI) expressed in nociceptive dorsal root ganglion (DRG) neurons and increase neuronal excitability thus potentially contributing to pain. Immunofluorescent labeling indicated that FcγRI, but not FcγRIIB or FcγRIII, was expressed in a subpopulation of rat DRG neurons including those expressing nociceptive markers. Calcium imaging revealed that the IC, but neither of the antibody (IgG) or antigen alone, produced an increase in intracellular calcium. This effect was abolished by the removal of the IgG Fc portion in the IC or the application of an anti-FcγRI antibody, suggesting a key role of the FcγRI receptor. Removal of extracellular calcium or depletion of intracellular calcium stores prevented the IC-induced calcium response. In whole-cell current-clamp recordings, IC depolarized the resting membrane potential, decreased the rheobase, and increased the number of action potentials evoked by a depolarizing current at 2× rheobase. In about half of the responsive neurons, IC evoked action potential discharges. These results suggest that a subpopulation of nociceptive neurons expresses functional FcγRI and that the activation of this receptor by IC increases neuronal excitability.
Collapse
|
74
|
Fan N, Donnelly DF, LaMotte RH. Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol 2011; 106:3067-72. [PMID: 21917996 DOI: 10.1152/jn.00752.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic compression (CCD) of the dorsal root ganglion (DRG) is a model of human radicular pain produced by intraforaminal stenosis and other disorders affecting the DRG, spinal nerve, or root. Previously, we examined electrophysiological changes in small-diameter lumbar level 3 (L3) and L4 DRG neurons treated with CCD; the present study extends these observations to medium-sized DRG neurons, which mediate additional sensory modalities, both nociceptive and non-nociceptive. Whole-cell patch-clamp recordings were obtained from medium-sized somata in the intact DRG in vitro. Compared with neurons from unoperated control animals, CCD neurons exhibited a decrease in the current threshold for action potential generation. In the CCD group, current densities of TTX-resistant and TTX-sensitive Na(+) current were increased, whereas the density of delayed rectifier voltage-dependent K(+) current was decreased. No change was observed in the transient or "A" current after CCD. We conclude that CCD in the mouse produces hyperexcitability in medium-sized DRG neurons, and the hyperexcitability is associated with an increased density of Na(+) current and a decreased density of delayed rectifier voltage-dependent K(+) current.
Collapse
Affiliation(s)
- Ni Fan
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar St., P.O. 208051, New Haven, CT 06520, USA
| | | | | |
Collapse
|
75
|
Activation of satellite cells in the dorsal root ganglia in a disc-punctured rat model. J Orthop Sci 2011; 16:433-8. [PMID: 21614559 DOI: 10.1007/s00776-011-0064-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/25/2011] [Indexed: 02/09/2023]
Abstract
BACKGROUND The neural mechanisms underlying discogenic low back pain caused by disc degeneration remain unclear. Previous studies demonstrated that satellite cells (SC) play an important role in neuropathic pain. METHODS Twenty adult female Sprague-Dawley rats were used. The rats were divided into two groups: a nucleus pulposus (NP) group whose discs were punctured to expose the NP (n = 10) and a sham-operated group whose annulus fibrosus surface was scratched superficially (n = 10). In this study, we investigated the expression and cellular distribution of glial fibrillary acidic protein (GFAP, a marker of SC activation) in the dorsal root ganglia (DRG) innervating the intervertebral discs using a retrograde tracing method and immunohistochemistry in a disc-punctured rat model. RESULTS In the sham-operated group, GFAP-immunoreactive (IR) SCs were not detected. In the NP group, GFAP-IR SC became evident, and 49 ± 13% of neurons innervating the punctured discs were surrounded by GFAP-positive SCs. CONCLUSIONS Our results were the first to provide evidence for a potential role of SCs in the neural mechanisms of discogenic low back pain caused by disc degeneration.
Collapse
|
76
|
Takeda M, Takahashi M, Nasu M, Matsumoto S. Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain 2011; 152:2147-2156. [PMID: 21680091 DOI: 10.1016/j.pain.2011.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 11/28/2022]
Abstract
Previous studies indicate that silencing Kir4.1, a specific inward rectifying K(+) (Kir) channel subunit, in sensory ganglionic satellite glial cells (SGCs) induces behavioral hyperalgesia. However, the function of Kir4.1 channels in SGCs in vivo under pathophysiological conditions remains to be determined. The aim of the present study was to examine whether peripheral inflammation in anesthetized rats alters the SGC Kir4.1 current using in vivo patch clamp and immunohistochemical techniques. Inflammation was induced by injection of complete Freund's adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to the orofacial area in inflamed rats was significantly lower than in naïve rats. The mean percentage of small/medium diameter trigeminal ganglion (TRG) neurons encircled by Kir4.1-immunoreactive SGCs in inflamed rats was also significantly lower than in naïve rats. In vivo whole-cell recordings were made using SGCs in the trigeminal ganglia (TRGs). Increasing extracellular K(+) concentrations resulted in significantly smaller potentiation of the mean peak amplitude of the Kir current in inflamed compared with naïve rats. In addition, the density of the Ba(2+)-sensitive Kir current associated with small-diameter TRG neurons was significantly lower in inflamed rats compared with naïve rats. Mean membrane potential in inflamed rats was more depolarized than in naïve rats. These results suggest that inflammation could suppress Kir4.1 currents of SGCs in the TRGs and that this impairment of glial potassium homeostasis in the TRGs contributes to trigeminal pain. Therefore, the Kir4.1 channel in SGCs may be a new molecular target for the treatment of trigeminal inflammatory pain.
Collapse
Affiliation(s)
- Mamoru Takeda
- Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan Research Center for Odontology, School of Life Dentistry at Tokyo, Nippon Dental University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | | | |
Collapse
|
77
|
Chiang CY, Dostrovsky JO, Iwata K, Sessle BJ. Role of glia in orofacial pain. Neuroscientist 2011; 17:303-20. [PMID: 21512131 DOI: 10.1177/1073858410386801] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several acute and chronic pain conditions in the face or mouth are very common, and some are unique to the orofacial region. However, the etiology and pathogenesis of most orofacial chronic pain conditions are unresolved, and they are difficult to diagnose and manage. This article provides a brief overview of the neural mechanisms underlying orofacial pain and then highlights recent findings indicating that nonneural cells, specifically satellite cells in the sensory ganglia and astroglia and microglia cells in the central nervous system, are important players in both acute and chronic inflammatory and neuropathic orofacial pain conditions and may offer new targets for management of these conditions.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Department of Oral Physiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
78
|
Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. ACTA ACUST UNITED AC 2010; 6:53-62. [PMID: 20604979 DOI: 10.1017/s1740925x10000116] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been known for some time that the somata of neurons in sensory ganglia respond to electrical or chemical stimulation and release transmitters in a Ca2+-dependent manner. The function of the somatic release has not been well delineated. A unique characteristic of the ganglia is that each neuronal soma is tightly enwrapped by satellite glial cells (SGCs). The somatic membrane of a sensory neuron rarely makes synaptic contact with another neuron. As a result, the influence of somatic release on the activity of adjacent neurons is likely to be indirect and/or slow. Recent studies of neuron-SGC interactions have demonstrated that ATP released from the somata of dorsal root ganglion neurons activates SGCs. They in turn exert complex excitatory and inhibitory modulation of neuronal activity. Thus, SGCs are actively involved in the processing of afferent information. In this review, we summarize our understanding of bidirectional communication between neuronal somata and SGCs in sensory ganglia and its possible role in afferent signaling under normal and injurious conditions. The participation of purinergic receptors is emphasized because of their dominant roles in the communication.
Collapse
|
79
|
The structure of the perineuronal sheath of satellite glial cells (SGCs) in sensory ganglia. ACTA ACUST UNITED AC 2010; 6:3-10. [DOI: 10.1017/s1740925x10000037] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In sensory ganglia each nerve cell body is usually enveloped by a satellite glial cell (SGC) sheath, sharply separated from sheaths encircling adjacent neurons by connective tissue. However, following axon injury SGCs may form bridges connecting previously separate perineuronal sheaths. Each sheath consists of one or several layers of cells that overlap in a more or less complex fashion; sometimes SGCs form a perineuronal myelin sheath. SGCs are flattened mononucleate cells containing the usual cell organelles. Several ion channels, receptors and adhesion molecules have been identified in these cells. SGCs of the same sheath are usually linked by adherent and gap junctions, and are functionally coupled. Following axon injury, both the number of gap junctions and the coupling of SGCs increase markedly. The apposed plasma membranes of adjacent cells are separated by 15–20 nm gaps, which form a potential pathway, usually long and tortuous, between connective tissue and neuronal surface. The boundary between neuron and SGC sheath is usually complicated, mainly by many projections arising from the neuron. The outer surface of the SGC sheath is covered by a basal lamina. The number of SGCs enveloping a nerve cell body is proportional to the cell body volume; the volume of the SGC sheath is proportional to the volume and surface area of the nerve cell body. In old animals, both the number of SGCs and the mean volume of the SGC sheaths are significantly lower than in young adults. Furthermore, extensive portions of the neuronal surface are not covered by SGCs, exposing neurons of aged animals to damage by harmful substances.
Collapse
|
80
|
Abstract
Satellite glial cells (SGCs) undergo phenotypic changes and divide the following injury into a peripheral nerve. Nerve injury, also elicits an immune response and several antigen-presenting cells are found in close proximity to SGCs. Silencing SCG-specific molecules involved in intercellular transport (Connexin 43) or glutamate recycling (glutamine synthase) can dramatically alter nociceptive responses of normal and nerve-injured rats. Transducing SGCs with glutamic acid decarboxylase can produce analgesia in models of trigeminal pain. Taken together these data suggest that SGCs may play a role in the genesis or maintenance of pain and open a range of new possibilities for curing neuropathic pain.
Collapse
|
81
|
Ma C, Donnelly DF, LaMotte RH. In vivo visualization and functional characterization of primary somatic neurons. J Neurosci Methods 2010; 191:60-5. [PMID: 20558205 DOI: 10.1016/j.jneumeth.2010.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 11/28/2022]
Abstract
In vivo electrophysiological recordings from cell bodies of primary sensory neurons are used to determine sensory function but are commonly performed blindly and without access to voltage- (patch-clamp) electrophysiology or optical imaging. We present a procedure to visualize and patch-clamp the neuronal cell body in the dorsal root ganglion, in vivo, manipulate its chemical environment, determine its receptive field properties, and remove it either to obtain subsequent molecular analyses or to gain access to deeper lying cells. This method allows the association of the peripheral transduction capacities of a sensory neuron with the biophysical and chemical characteristics of its cell body.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06510, USA.
| | | | | |
Collapse
|
82
|
Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 2010; 166:397-407. [PMID: 20074622 DOI: 10.1016/j.neuroscience.2010.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022]
Abstract
Satellite glial cells (SGCs) surround primary afferent neurons in sensory ganglia, and increasing evidence has implicated the K(+) channels of SGCs in affecting or regulating sensory ganglion excitability. The inwardly rectifying K(+) (Kir) channel Kir4.1 is highly expressed in several types of glial cells in the central nervous system (CNS) where it has been implicated in extracellular K(+) concentration buffering. Upon neuronal activity, the extracellular K(+) concentration increases, and if not corrected, causes neuronal depolarization and uncontrolled changes in neuronal excitability. Recently, it has been demonstrated that knockdown of Kir4.1 expression in trigeminal ganglia leads to neuronal hyperexcitability in this ganglia and heightened nociception. Thus, we investigated the contribution of Kir4.1 to the membrane K(+) conductance of SGCs in neonatal and adult mouse trigeminal and dorsal root ganglia. Whole cell patch clamp recordings were performed in conjunction with immunocytochemistry and quantitative transcript analysis in various mouse lines. We found that in wild-type mice, the inward K(+) conductance of SGCs is blocked almost completely with extracellular barium, cesium and desipramine, consistent with a conductance mediated by Kir channels. We then utilized mouse lines in which genetic ablation led to partial or complete loss of Kir4.1 expression to assess the role of this channel subunit in SGCs. The inward K(+) currents of SGCs in Kir4.1+/- mice were decreased by about half while these currents were almost completely absent in Kir4.1-/- mice. These findings in combination with previous reports support the notion that Kir4.1 is the principal Kir channel type in SGCs. Therefore Kir4.1 emerges as a key regulator of SGC function and possibly neuronal excitability in sensory ganglia.
Collapse
Affiliation(s)
- X Tang
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
83
|
Augmentation in gap junction-mediated cell coupling in dorsal root ganglia following sciatic nerve neuritis in the mouse. Neuroscience 2009; 164:1538-45. [DOI: 10.1016/j.neuroscience.2009.09.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
|