51
|
Xia B, Li Q, Wu J, Yuan X, Wang F, Lu X, Huang C, Zheng K, Yang R, Yin L, Liu K, You Q. Sinomenine Confers Protection Against Myocardial Ischemia Reperfusion Injury by Preventing Oxidative Stress, Cellular Apoptosis, and Inflammation. Front Pharmacol 2022; 13:922484. [PMID: 35837272 PMCID: PMC9274168 DOI: 10.3389/fphar.2022.922484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the root of S. acutum. sinomenine, has been shown to have antiarrhythmic, antioxidant, and anti-inflammatory effects in myocardial ischemia-reperfusion injury (MIRI) ex vivo. In this study, we investigated the cardioprotective effects of SIN in an in vivo mouse model of MIRI. Adult male C57BL/6J mice received SIN (80 mg/kg) for 5 days and underwent 30 min of percutaneous occlusion of the left anterior descending artery (LAD) followed by 24 h of reperfusion. Results showed that pretreatment with SIN significantly reduced myocardial infarct size and concentrations of markers of cardiac injury and improved left ventricular ejection fraction (EF) and shortening fraction (FS) in MIRI mice. The SIN pretreatment prevented the MIRI-induced decrease in the expression levels of Bcl-2, increase in the expression levels of caspase-3, caspase-9, and Bax, and increase in the number of TUNEL-positive cells in ischemic heart tissue. It was also found that pretreatment with SIN prevented the MIRI-induced oxidative stress imbalance in ischemic heart tissue, as shown by the increase in total antioxidant capacity (T-AOC) and glutathione (GSH) and the decrease in malondialdehyde (MDA), reactive oxygen species (ROS), and dihydroethidium (DHE) density. Further studies showed that the stimulus of cardiac ischemia/reperfusion caused a remarkable increase in the expression levels of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) mRNA in ischemic heart tissue, which was effectively prevented by pretreatment with SIN. These results demonstrate that SIN can attenuate MIRI-induced cardiac injury in vivo by preventing oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Boyu Xia
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Li
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, Suzhou, China
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Koulong Zheng
- Department of Cardiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Le Yin
- Department of Cardiology, Tongzhou People’s Hospital, Nantong, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Kun Liu, ; Qingsheng You,
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Kun Liu, ; Qingsheng You,
| |
Collapse
|
52
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
53
|
Benjamin DI, Both P, Benjamin JS, Nutter CW, Tan JH, Kang J, Machado LA, Klein JDD, de Morree A, Kim S, Liu L, Dulay H, Feraboli L, Louie SM, Nomura DK, Rando TA. Fasting induces a highly resilient deep quiescent state in muscle stem cells via ketone body signaling. Cell Metab 2022; 34:902-918.e6. [PMID: 35584694 PMCID: PMC9177797 DOI: 10.1016/j.cmet.2022.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 01/11/2023]
Abstract
Short-term fasting is beneficial for the regeneration of multiple tissue types. However, the effects of fasting on muscle regeneration are largely unknown. Here, we report that fasting slows muscle repair both immediately after the conclusion of fasting as well as after multiple days of refeeding. We show that ketosis, either endogenously produced during fasting or a ketogenic diet or exogenously administered, promotes a deep quiescent state in muscle stem cells (MuSCs). Although deep quiescent MuSCs are less poised to activate, slowing muscle regeneration, they have markedly improved survival when facing sources of cellular stress. Furthermore, we show that ketone bodies, specifically β-hydroxybutyrate, directly promote MuSC deep quiescence via a nonmetabolic mechanism. We show that β-hydroxybutyrate functions as an HDAC inhibitor within MuSCs, leading to acetylation and activation of an HDAC1 target protein p53. Finally, we demonstrate that p53 activation contributes to the deep quiescence and enhanced resilience observed during fasting.
Collapse
Affiliation(s)
- Daniel I Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pieter Both
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joel S Benjamin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher W Nutter
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jenna H Tan
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jengmin Kang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leo A Machado
- Biology of the Neuromuscular System, INSERM IMRB U955-E10, UPEC, ENVA, EFS, Creteil 94000, France
| | - Julian D D Klein
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Antoine de Morree
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ling Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hunter Dulay
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ludovica Feraboli
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sharon M Louie
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
54
|
The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:nu14091952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer’s disease and Parkinson’s disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
|
55
|
Liu C, Zheng X, Liu L, Hu Y, Zhu Q, Zhang J, Wang H, Gu EW, Yang Z, Xu G. Caloric Restriction Alleviates CFA-Induced Inflammatory Pain via Elevating β-Hydroxybutyric Acid Expression and Restoring Autophagic Flux in the Spinal Cord. Front Neurosci 2022; 16:828278. [PMID: 35573301 PMCID: PMC9096081 DOI: 10.3389/fnins.2022.828278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory pain is the most common type of pain encountered in clinical practice; however, the currently available treatments are limited by insufficient efficacy and side effects. Therefore, new methods to relieve inflammatory pain targeting new mechanisms are urgently needed. Preclinical investigations have shown that CR (calorie restriction) exerts analgesic effects in neuropathic and cancer pain; however, the effect of CR on chronic inflammatory pain remains unknown. During calorie restriction, autophagy, a lysosome-dependent degradation process, can be activated to support cell survival. In the present study, we investigated the analgesic effects of CR on complete Freund’s adjuvant (CFA)-induced inflammatory pain. The accumulation of LC3-II and p62 showed impaired autophagic flux in the ipsilateral spinal cord of mice with CFA-induced inflammatory pain. CR alleviated mechanical allodynia and thermal hyperalgesia and reduced paw edema and pro-inflammatory factors following CFA administration. CR exerted an analgesic effect by restoring autophagic flux in the spinal cord. Regarding the mechanisms underlying the analgesic effects of CR, β-hydroxybutyric acid (BHB) was studied. CR increased BHB levels in the ipsilateral spinal cord. Furthermore, exogenous BHB administration exerted an analgesic effect by restoring autophagic flux in the spinal cords of CFA-induced inflammatory pain mice. Taken together, these results illustrated that CR relieved inflammatory pain by restoring autophagic flux in the spinal cord, while BHB controlled the benefits of CR, suggesting that CR or BHB might be a promising treatment for inflammatory pain.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Xiaoting Zheng
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Lifang Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Yun Hu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Qianyun Zhu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Jiawei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Huan Wang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Er-wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
| | - Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Department of Anesthesiology, Affiliated Chaohu Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- *Correspondence: Zhilai Yang,
| | - Guanghong Xu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, China
- Guanghong Xu,
| |
Collapse
|
56
|
Huang C, Wang J, Liu H, Huang R, Yan X, Song M, Tan G, Zhi F. Ketone body β-hydroxybutyrate ameliorates colitis by promoting M2 macrophage polarization through the STAT6-dependent signaling pathway. BMC Med 2022; 20:148. [PMID: 35422042 PMCID: PMC9011974 DOI: 10.1186/s12916-022-02352-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ketone body β-hydroxybutyrate (BHB) has received more and more attentions, because it possesses a lot of beneficial, life-preserving effects in the fields of clinical science and medicine. However, the role of BHB in intestinal inflammation has not yet been investigated. METHODS Colonic mucosa of inflammatory bowel disease (IBD) patients and healthy controls were collected for evaluation of BHB level. Besides, the therapeutic effect of exogenous BHB in a murine model of acute dextran sulfate sodium (DSS)-induced colitis were assessed by body weight change, colon length, disease activity index, and histopathological sections. The regulatory effectors of BHB were analyzed by RT-qPCR, immunofluorescence, and microbe analysis in vivo. Moreover, the molecular mechanism of BHB was further verified in bone marrow-derived macrophages (BMDMs). RESULTS In this study, significantly reduced BHB levels were found in the colonic mucosa from IBD patients and correlated with IBD activity index. In addition, we demonstrated that the administration of exogenous BHB alleviated the severity of acute experimental colitis, which was characterized by less weight loss, disease activity index, colon shortening, and histology scores, as well as decreased crypt loss and epithelium damage. Furthermore, BHB resulted in significantly increased colonic expression of M2 macrophage-associated genes, including IL-4Ra, IL-10, arginase 1 (Arg-1), and chitinase-like protein 3, following DSS exposure, suggesting an increased M2 macrophage skewing in vivo. Moreover, an in vitro experiment revealed that the addition of BHB directly promoted STAT6 phosphorylation and M2 macrophage-specific gene expression in IL-4-stimulated macrophages. Besides, we found that BHB obviously increased M2 macrophage-induced mucosal repair through promoting intestinal epithelial proliferation. However, the enhancement effect of BHB on M2 macrophage-induced mucosal repair and anti-inflammation was completely inhibited by the STAT6 inhibitor AS1517499. CONCLUSIONS In summary, we show that BHB promotes M2 macrophage polarization through the STAT6-dependent signaling pathway, which contributes to the resolution of intestinal inflammation and the repair of damaged intestinal tissues. Our finding suggests that exogenous BHB supplement may be a useful therapeutic approach for IBD treatment.
Collapse
Affiliation(s)
- Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinwen Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengyao Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Gao Tan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
57
|
Cao LH, Zhao YY, Bai M, Geliebter D, Geliebter J, Tiwari R, He HJ, Wang ZZ, Jia XY, Li J, Li XM, Miao MS. Mechanistic Studies of Gypenosides in Microglial State Transition and its Implications in Depression-Like Behaviors: Role of TLR4/MyD88/NF-κB Signaling. Front Pharmacol 2022; 13:838261. [PMID: 35370734 PMCID: PMC8973912 DOI: 10.3389/fphar.2022.838261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Depression is a prevalent psychiatric disorder. Microglial state transition has been found in many neurological disorders including depression. Gypenosides (Gypenosides I-LXXVIII, Gps) are saponin extracts isolated from the traditional Chinese herb Gynostemma pentaphyllum (Thunb.) Makino that exert anti-inflammatory and neuroprotective activities and regulate depression-like behaviors. However, its effect on microglial state transition in depression remains unknown. We aimed to evaluate the potential relationship between Gps and TLR4/MyD88/NF-κB signaling in microglial state transition in vitro and in vivo. First, BV-2 cells (microglial cell line) were exposed to lipopolysaccharides (LPS) and treated with 10 or 5 μg/ml Gps. Second, the chronic unpredictable mild stress (CUMS)-induced depression mouse model was used to investigate the antidepressant-like behaviors effects of Gps (100 or 50 mg/kg). We determined depression-like behaviors using the open-field test (OFT), forced swim test (FST), and sucrose preference test (SPT). Proteins and inflammatory factors in the TLR4/MyD88/NF-κB signaling pathway and the different microglial reaction states markers were subsequently conducted using enzyme-linked immunosorbent assay, immunocytochemistry, immunofluorescence, qPCR, or Western blotting analyses to evaluate the anti-inflammatory and antidepressant properties of Gps and the underlying molecular mechanisms. We found that Gps regulated the microglial cell line state transition in LPS-exposed BV-2 cells, as evidenced by the significantly decreased expression of inflammatory parameters iNOS, IL-1β, IL-6, and TNF-α and significantly promoted anti-inflammatory microglial phenotypes markers CD206 (Mrc1) and IL-10. More importantly, Gps protected against the loss of monoamine neurotransmitters and depression-like behavior in a mouse model of depression, which was accompanied by a regulation of the microglial state transition. Mechanistically, Gps inhibited TLR4/MyD88/NF-κB signaling, which reduced the release of downstream inflammatory cytokines (IL-1β, IL-6, and TNF-α) and promoted microglial phenotype transition, which all together contributed to the antidepressant effect. Our results suggest that Gps prevents depression-like behaviors by regulating the microglial state transition and inhibiting the TLR4/MyD88/NF-κB signaling pathway. Thus, Gps could be a promising therapeutic strategy to prevent and treat depression-like behaviors and other psychiatric disorders.
Collapse
Affiliation(s)
- Li-Hua Cao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan-Yuan Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | | | - Jan Geliebter
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Raj Tiwari
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Hong-Juan He
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Zhen Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xing-Yuan Jia
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Jin Li
- Department of Neurology, New York Medical College, Westchester Medical Center, Valhalla, NY, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immuology, New York Medical College, Valhalla, NY, United States.,Department of Otolaryngology, New York Medical College, Valhalla, NY, United States
| | - Ming-San Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
58
|
Su J, Dou Z, Hong H, Xu F, Lu X, Lu Q, Ye T, Huang C. KRIBB11: A Promising Drug that Promotes Microglial Process Elongation and Suppresses Neuroinflammation. Front Pharmacol 2022; 13:857081. [PMID: 35370703 PMCID: PMC8971675 DOI: 10.3389/fphar.2022.857081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are key components of the central innate immune system. The over-activation of microglia, which occurs in nervous system disorders, is usually accompanied with retractions of their ramified processes. Reversing of microglial process retraction is a potential strategy for the prevention of neuroinflammation. Our previous studies have reported some endogenous molecules and drugs that can promote microglial process elongation at conditions in vitro and in vivo, such as butyrate and β-hydroxybutyrate, sulforaphane, and diallyl disulfide. Here, reported another compound that can promote microglial process elongation. We found that KRIBB11, a compound which has been reported to suppress nitric oxide production in microglia, induced significant elongations of the processes in microglia in cultured and in vivo conditions in a reversible manner. KRIBB11 pretreatment also prevented lipopolysaccharide (LPS)-induced shortenings of microglial process in cultured conditions and in vivo conditions, inflammatory responses in primary cultured microglia and the prefrontal cortex, and depression-like behaviors in mice. Mechanistic studies revealed that KRIBB11 incubation up-regulated phospho-Akt in cultured microglia and Akt inhibition blocked the pro-elongation effect of KRIBB11 on microglial process in cultured conditions and in vivo conditions, suggesting that the regulatory effect of KRIBB11 is Akt-dependent. Akt inhibition was also found to abrogate the preventive effect of KRIBB11 on LPS-induced inflammatory responses in primary cultured microglia and prefrontal cortexes as well as LPS-induced depression-like behaviors in mice. Collectively, our findings demonstrated that KRIBB11 is a novel compound that can prevent microglial activation and neuroinflammation-associated behavioral deficits possibly through inducing the Akt-mediated elongation of microglial process.
Collapse
Affiliation(s)
- Jianbin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| | - Zhihua Dou
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Hongxiang Hong
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, First People’s Hospital of Nantong City, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
- *Correspondence: Jianbin Su, ; Chao Huang,
| |
Collapse
|
59
|
Spectrum-Efficacy Relationships between GC-MS Fingerprints of Essential Oil from Valerianae Jatamansi Rhizoma et Radix and the Efficacy of Inhibiting Microglial Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9972902. [PMID: 35295929 PMCID: PMC8920623 DOI: 10.1155/2022/9972902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/11/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
The bioactive ingredients of essential oil from Valerianae Jatamansi Rhizoma et Radix (the Rhizome et Radix from Valerianae Jatamansi Jones) (EOVJRR) on the efficacy of inhibiting microglial activation were investigated with the approach of spectrum-efficacy relationship. Fourteen batches of Valerianae Jatamansi Rhizoma et Radix were extracted and analyzed by gas chromatography-mass spectrometry (GC-MS), and their activities in the efficacy of inhibiting microglial activation were assayed by measuring the inflammatory responses induced by lipopolysaccharide (LPS) in microglia cells from mice. The spectrum-efficacy relationships between fingerprints and the efficacy of inhibiting microglial activation of EOVJRR were established by grey relational analysis (GRA). Twenty common peaks were obtained from the GC-MS fingerprints of EOVJRR. P12 (vetivenol), P1 (bornyl acetate), P5 (seychellene), and P3 (β-elemene) indicated inhibition on microglia activation together, according to the spectrum-efficacy relationships. The current results established a general model for the spectrum-efficacy relationships of EOVJRR by GC-MS and the efficacy of inhibiting microglial activation, which could be applied to identify the bioactive ingredient and control the quality of herbs.
Collapse
|
60
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
61
|
Jiang Z, Yin X, Wang M, Chen T, Wang Y, Gao Z, Wang Z. Effects of Ketogenic Diet on Neuroinflammation in Neurodegenerative Diseases. Aging Dis 2022; 13:1146-1165. [PMID: 35855338 PMCID: PMC9286903 DOI: 10.14336/ad.2021.1217] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
| | | | | | | | | | - Zhongbao Gao
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhenfu Wang
- Correspondence should be addressed to: Dr. Zhenfu Wang () and Dr. Zhongbao Gao (), The Second Medical Center & National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
62
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
63
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
64
|
Gough SM, Casella A, Ortega KJ, Hackam AS. Neuroprotection by the Ketogenic Diet: Evidence and Controversies. Front Nutr 2021; 8:782657. [PMID: 34888340 PMCID: PMC8650112 DOI: 10.3389/fnut.2021.782657] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat low-carbohydrate diet that has been used for decades as a non-pharmacologic approach to treat metabolic disorders and refractory pediatric epilepsy. In recent years, enthusiasm for the KD has increased in the scientific community due to evidence that the diet reduces pathology and improves various outcome measures in animal models of neurodegenerative disorders, including multiple sclerosis, stroke, glaucoma, spinal cord injury, retinal degenerations, Parkinson's disease and Alzheimer's disease. Clinical trials also suggest that the KD improved quality of life in patients with multiple sclerosis and Alzheimer's disease. Furthermore, the major ketone bodies BHB and ACA have potential neuroprotective properties and are now known to have direct effects on specific inflammatory proteins, transcription factors, reactive oxygen species, mitochondria, epigenetic modifications and the composition of the gut microbiome. Neuroprotective benefits of the KD are likely due to a combination of these cellular processes and other potential mechanisms that are yet to be confirmed experimentally. This review provides a comprehensive summary of current evidence for the effectiveness of the KD in humans and preclinical models of various neurological disorders, describes molecular mechanisms that may contribute to its beneficial effects, and highlights key controversies and current gaps in knowledge.
Collapse
Affiliation(s)
- Sarah M Gough
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alicia Casella
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kristen Jasmin Ortega
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
65
|
Siqueira LD, Celes APM, Santos HD, Ferreira ST. A Specialized Nutritional Formulation Prevents Hippocampal Glial Activation and Memory Impairment Induced by Amyloid-β Oligomers in Mice. J Alzheimers Dis 2021; 83:1113-1124. [PMID: 34397411 DOI: 10.3233/jad-210139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in the elderly and is characterized by progressive cognitive decline. Considerable evidence supports an important role of amyloid-β oligomers (AβOs) in the pathogenesis of AD, including the induction of aberrant glial activation and memory impairment. OBJECTIVE We have investigated the protective actions of a nutritional formulation, denoted AZ formulation, on glial activation and memory deficits induced by intracerebroventricular (i.c.v.) infusion of AβOs in mice. METHODS Two-month-old male mice were treated orally with AZ formulation or isocaloric placebo for 30 consecutive days. Microglial and astrocytic activation were analyzed by immunohistochemistry in the hippocampus 10 days after i.c.v. infusion of AβOs (n = 5 mice per experimental condition). Memory loss was assessed by the novel object recognition (NOR) test (n = 6-10 mice per experimental condition). RESULTS Oral treatment with the AZ formulation prevented hippocampal microglial and astrocytic activation induced by i.c.v. infusion of AβOs. The AZ formulation further protected mice from AβO-induced memory impairment. CONCLUSION Results suggest that administration of the AZ formulation may comprise a promising preventative and non-pharmacological strategy to reduce brain inflammation and attenuate memory impairment in AD.
Collapse
Affiliation(s)
- Luciana Domett Siqueira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci Rep 2021; 11:16359. [PMID: 34381166 PMCID: PMC8357839 DOI: 10.1038/s41598-021-96003-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
A better understanding of the secondary injury mechanisms that occur after traumatic spinal cord injury (SCI) is essential for the development of novel neuroprotective strategies linked to the restoration of metabolic deficits. We and others have shown that Ketogenic diet (KD), a high fat, moderate in proteins and low in carbohydrates is neuroprotective and improves behavioural outcomes in rats with acute SCI. Ketones are alternative fuels for mitochondrial ATP generation, and can modulate signaling pathways via targeting specific receptors. Here, we demonstrate that ad libitum administration of KD for 7 days after SCI rescued mitochondrial respiratory capacity, increased parameters of mitochondrial biogenesis, affected the regulation of mitochondrial-related genes, and activated the NRF2-dependent antioxidant pathway. This study demonstrates that KD improves post-SCI metabolism by rescuing mitochondrial function and supports the potential of KD for treatment of acute SCI in humans.
Collapse
|
67
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021; 12:705920. [PMID: 34249016 PMCID: PMC8262770 DOI: 10.3389/fimmu.2021.705920] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence exists that patients with chronic neurological conditions, which includes progressive multiple sclerosis, display pathological changes in neural metabolism and mitochondrial function. However, it is unknown if a similar degree of metabolic dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of chronic active lesions), and (ii) whether these alterations underlie a unique pathogenic phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell metabolism and mitochondrial function govern the function of chronic active microglia and macrophages brain infiltrates and identify new metabolic targets for therapeutic approaches aimed at reducing smoldering neuroinflammation.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
68
|
Ji J, Xiang H, Lu X, Tan P, Yang R, Ye T, Chen Z, Chen D, He H, Chen J, Ma Y, Huang C. A prophylactic effect of macrophage-colony stimulating factor on chronic stress-induced depression-like behaviors in mice. Neuropharmacology 2021; 193:108621. [PMID: 34062163 DOI: 10.1016/j.neuropharm.2021.108621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022]
Abstract
Innate immune activation has been shown to reduce the severity of nervous system disorders such as brain ischemia and traumatic brain damage. Macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, is an enhancer of the innate immune response. In the present study, we evaluated the effect of M-CSF preconditioning on chronic social defeat stress (CSDS)-induced depression-like behaviors in mice. Results showed that a single M-CSF injection 1 day before stress exposure at the dose of 100 and 500 μg/kg, or a single M-CSF injection (100 μg/kg) 1 or 5 days but not 10 days before stress exposure prevented CSDS-induced depression-like behaviors in mice. Further analysis showed that a second M-CSF injection 10 days after the first M-CSF injection and a 2 × or 4 × M-CSF injections 10 days before stress exposure also prevented CSDS-induced depression-like behaviors. Molecular studies revealed that a single M-CSF injection prior to stress exposure skewed the neuroinflammatory responses in the brain in CSDS-exposed mice towards an anti-inflammatory phenotype. These behavioral and molecular actions of M-CSF were correlated with innate immune stimulation, as pre-inhibiting the innate immune activation by minocycline pretreatment (40 mg/kg) abrogated the preventive effect of M-CSF on CSDS-induced depression-like behaviors and neuroinflammatory responses. These results provide evidence to show that innate immune activation by M-CSF pretreatment may prevent chronic stress-induced depression-like behaviors via preventing the development of neuroinflammatory response in the brain, which may help to develop novel strategies for the prevention of depression.
Collapse
Affiliation(s)
- Jianlin Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215028, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Pingping Tan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong, Jiangsu, 226001, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Haiyan He
- Department of Respiratory Medicine, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jinliang Chen
- Department of Respiratory Medicine, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Yaoying Ma
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
69
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
70
|
Umbilical cord-derived mesenchymal stromal cells immunomodulate and restore actin dynamics and phagocytosis of LPS-activated microglia via PI3K/Akt/Rho GTPase pathway. Cell Death Discov 2021; 7:46. [PMID: 33723246 PMCID: PMC7961004 DOI: 10.1038/s41420-021-00436-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 12/27/2022] Open
Abstract
Microglia are the immune cells in the central nervous system surveying environment and reacting to various injuries. Activated microglia may cause impaired synaptic plasticity, therefore modulating and restoring them to neutral phenotype is crucial to counteract a pro-inflammatory, neurotoxic state. In this study, we focused on elucidating whether human umbilical cord (UC) -derived mesenchymal stromal cells (MSCs) can exert immunomodulatory effect and change the phenotype of activated microglia. Primary culture of microglia was activated by lipopolysaccharide (LPS) and was co-cultured with three lots of MSCs. We investigated immunomodulation, actin dynamics and phagocytic capacity of activated microglia, and examined change of Rho GTPase in microglia as the mechanism. MSCs suppressed the expression of IL-1β and pNFκB in LPS-activated microglia, and conversely elevated the expression of IL-1β in resting-surveying microglia with lot-to-lot variation. Morphological and phagocytotic analyses revealed that LPS stimulation significantly increased active Rho GTPase, Rac1, and Cdc42 levels in the microglia, and their morphology changed to amoeboid in which F-actin spread with ruffle formation. The F-actin spreading persisted after removal of LPS stimulation and reduced phagocytosis. On the other hand, MSC co-culture induced bimodal increase in active Rac1 and Cdc42 levels in LPS-activated microglia. Moreover, extended ruffles of F-actin shrinked and concentrated to form an actin ring, thereby restoring phagocytosis. We confirmed inhibition of the PI3K/Akt pathway attenuated F-actin dynamics and phagocytosis restored by MSCs. Overall, we demonstrated that MSCs immunomodulated microglia with lot-to-lot variation, and changed the phenotype of LPS-activated microglia restoring actin dynamics and phagocytosis by increase of active Rho GTPase.
Collapse
|
71
|
Fairley LH, Wong JH, Barron AM. Mitochondrial Regulation of Microglial Immunometabolism in Alzheimer's Disease. Front Immunol 2021; 12:624538. [PMID: 33717134 PMCID: PMC7947196 DOI: 10.3389/fimmu.2021.624538] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-associated terminal neurodegenerative disease with no effective treatments. Dysfunction of innate immunity is implicated in the pathogenesis of AD, with genetic studies supporting a causative role in the disease. Microglia, the effector cells of innate immunity in the brain, are highly plastic and perform a diverse range of specialist functions in AD, including phagocytosing and removing toxic aggregates of beta amyloid and tau that drive neurodegeneration. These immune functions require high energy demand, which is regulated by mitochondria. Reflecting this, microglia have been shown to be highly metabolically flexible, reprogramming their mitochondrial function upon inflammatory activation to meet their energy demands. However, AD-associated genetic risk factors and pathology impair microglial metabolic programming, and metabolic derailment has been shown to cause innate immune dysfunction in AD. These findings suggest that immunity and metabolic function are intricately linked processes, and targeting microglial metabolism offers a window of opportunity for therapeutic treatment of AD. Here, we review evidence for the role of metabolic programming in inflammatory functions in AD, and discuss mitochondrial-targeted immunotherapeutics for treatment of the disease.
Collapse
Affiliation(s)
- Lauren H Fairley
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Hui Wong
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Anna M Barron
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| |
Collapse
|
72
|
Cruz-Carrillo G, Camacho-Morales A. Metabolic Flexibility Assists Reprograming of Central and Peripheral Innate Immunity During Neurodevelopment. Mol Neurobiol 2021; 58:703-718. [PMID: 33006752 DOI: 10.1007/s12035-020-02154-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/28/2020] [Indexed: 01/03/2023]
Abstract
Central innate immunity assists time-dependent neurodevelopment by recruiting and interacting with peripheral immune cells. Microglia are the major player of central innate immunity integrating peripheral signals arising from the circumventricular regions lacking the blood-brain barrier (BBB), via neural afferent pathways such as the vagal nerve and also by choroid plexus into the brain ventricles. Defective and/or unrestrained activation of central and peripheral immunity during embryonic development might set an aberrant connectome establishment and brain function, leading to major psychiatric disorders in postnatal stages. Molecular candidates leading to central and peripheral innate immune overactivation identified metabolic substrates and lipid species as major contributors of immunological priming, supporting the role of a metabolic flexibility node during trained immunity. Mechanistically, trained immunity is established by an epigenetic program including DNA methylation and histone acetylation, as the major molecular epigenetic signatures to set immune phenotypes. By definition, immunological training sets reprogramming of innate immune cells, enhancing or repressing immune responses towards a second challenge which potentially might contribute to neurodevelopment disorders. Notably, the innate immune training might be set during pregnancy by maternal immune activation stimuli. In this review, we integrate the most valuable scientific evidence supporting the role of metabolic cues assisting metabolic flexibility, leading to innate immune training during development and its effects on aberrant neurological phenotypes in the offspring. We also add reports supporting the role of methylation and histone acetylation signatures as a major epigenetic mechanism regulating immune training.
Collapse
Affiliation(s)
- Gabriela Cruz-Carrillo
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Alberto Camacho-Morales
- Departamento de Bioquímica. Facultad de Medicina,, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico.
| |
Collapse
|
73
|
Kong G, Liu J, Li R, Lin J, Huang Z, Yang Z, Wu X, Huang Z, Zhu Q, Wu X. Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochem Res 2021; 46:213-229. [PMID: 33108630 DOI: 10.1007/s11064-020-03156-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
Ketogenic diet (KD) has been shown to be beneficial in a range of neurological disorders, with ketone metabolite β-hydroxybutyrate (βOHB) reported to block the nucleotide oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in bone marrow-derived macrophages. In this study, we show that pretreatment with KD or in situ βOHB suppressed macrophages/microglia activation and the overproduction of inflammatory cytokines, while KD downregulated the expression of NLRP3 inflammasome. Moreover, KD promoted macrophages/microglia transformation from the M1 phenotype to the M2a phenotype following spinal cord injury (SCI) in the in vivo study. Rats in the KD group demonstrated improved behavioral and electrophysiological recovery after SCI when compared to those rats in the standard diet group. The in vitro study performed on BV2 cells indicated that βOHB inhibited an LPS+ATP-induced inflammatory response and decreased NLRP3 protein levels. Our data demonstrated that pretreatment with KD attenuated neuroinflammation following SCI, probably by inhibiting NLRP3 inflammasome and shifting the activation state of macrophages/microglia from the M1 to the M2a phenotype. Therefore, the ketone metabolite βOHB might provide a potential future therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ganggang Kong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junhao Liu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Rong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Junyu Lin
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zucheng Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhou Yang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xiuhua Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhiping Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qingan Zhu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Xiaoliang Wu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
74
|
Abstract
β-hydroxybutyrate, a ketone body metabolite, has been shown to suppress depression-like behavior in rodents. In this study, we examined its antidepressive property in acute and chronic administration modes in mice by using forced swim test and tail suspension test. Results showed that the decrease effect of β-hydroxybutyrate (300 mg/kg) on immobility time in the tail suspension test and forced swim test in stress-naive mice began to be significant at day 11. In a dose-dependent experiment, β-hydroxybutyrate treatment (11 days) showed significant antidepressant activities at the dose of 200 and 300 mg/kg. Unlike fluoxetine, β-hydroxybutyrate treatment (300 mg/kg) showed no antidepressant activities in the acute (1 hour before the test) and three times administration mode within 24 hours (1, 5, and 24 hours before the test). But in a co-administration mode, β-hydroxybutyrate (100 mg/kg) -fluoxetine (2.5 mg/kg) co-administration exhibited an obvious antidepressant activity in the tail suspension test and forced swim test. Further analysis showed that the antidepressant effects of β-hydroxybutyrate and fluoxetine were not associated with the change in mouse locomotor activity. Furthermore, both chronic β-hydroxybutyrate treatment and β-hydroxybutyrate-fluoxetine co-treatment suppressed chronic unpredictable stress-induced increase in immobility time in the tail suspension test and forced swim test as well as chronic unpredictable stress-induced decrease in mouse body weight. Taken together, these results indicate that β-hydroxybutyrate (1) needs a relatively long time to show comparable behavioral activity to that of fluoxetine in assays that are sensitive to the behavioral effects of established antidepressant compounds and (2) can augment the antidepressant action of a sub-therapeutic dose of fluoxetine.
Collapse
|
75
|
Gu Y, Ye T, Tan P, Tong L, Ji J, Gu Y, Shen Z, Shen X, Lu X, Huang C. Tolerance-inducing effect and properties of innate immune stimulation on chronic stress-induced behavioral abnormalities in mice. Brain Behav Immun 2021; 91:451-471. [PMID: 33157258 DOI: 10.1016/j.bbi.2020.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Over-activation of the innate immune system constitutes a risk factor for the development of nervous system disorders but may reduce the severity of these disorders by inducing tolerance effect. Here, we studied the tolerance-inducing effect and properties of innate immune stimulation on chronic social defeat stress (CSDS)-induced behavioral abnormalities in mice. A single injection of the innate immune enhancer lipopolysaccharide (LPS) one day before stress exposure prevented CSDS-induced impairment in social interaction and increased immobility time in the tail suspension test and forced swimming test. This effect was observed at varying doses (100, 500, and 1000 μg/kg) and peaked at 100 μg/kg. A single LPS injection (100 μg/kg) either one or five but not ten days before stress exposure prevented CSDS-induced behavioral abnormalities. A second LPS injection ten days after the first LPS injection, or a 2 × or 4 × LPS injections ten days before stress exposure also induced tolerance against stress-induced behavioral abnormalities. Our results furthermore showed that a single LPS injection one day before stress exposure skewed the neuroinflammatory response in the hippocampus and prefrontal cortex of CSDS-exposed mice toward an anti-inflammatory phenotype. Inhibiting the central innate immune response by pretreatment with minocycline or PLX3397 abrogated the tolerance-inducing effect of LPS preconditioning on CSDS-induced behavioral abnormalities and neuroinflammatory responses in the brain. These results provide evidence for a prophylactic effect of innate immune stimulation on stress-induced behavioral abnormalities via changes in microglial activation, which may help develop novel strategies for the prevention of stress-induced psychological disorders.
Collapse
Affiliation(s)
- Yue Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Pingping Tan
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jianlin Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Yiming Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhongxia Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital Huzhou, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xinhua Shen
- Department of Psychosomatic and Psychiatric Diseases, Huzhou Third Municipal Hospital Huzhou, the Affiliated Hospital of Huzhou University, #2088 Tiaoxi East Road, Huzhou 313000, Zhejiang, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
76
|
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109976. [PMID: 32470498 DOI: 10.1016/j.pnpbp.2020.109976] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
It is widely accepted that the pathophysiology and treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) could be considerably improved. The heterogeneity of ME/CFS and the confusion over its classification have undoubtedly contributed to this, although this would seem a consequence of the complexity of the array of ME/CFS presentations and high levels of diverse comorbidities. This article reviews the biological underpinnings of ME/CFS presentations, including the interacting roles of the gut microbiome/permeability, endogenous opioidergic system, immune cell mitochondria, autonomic nervous system, microRNA-155, viral infection/re-awakening and leptin as well as melatonin and the circadian rhythm. This details not only relevant pathophysiological processes and treatment options, but also highlights future research directions. Due to the complexity of interacting systems in ME/CFS pathophysiology, clarification as to its biological underpinnings is likely to considerably contribute to the understanding and treatment of other complex and poorly managed conditions, including fibromyalgia, depression, migraine, and dementia. The gut and immune cell mitochondria are proposed to be two important hubs that interact with the circadian rhythm in driving ME/CFS pathophysiology.
Collapse
Affiliation(s)
- G Anderson
- CRC Scotland & London, Eccleston Square, London, UK.
| | - M Maes
- Dept Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Dept Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.; IMPACT Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
77
|
Luo W, Yu Y, Wang H, Liu K, Wang Y, Huang M, Xuan C, Li Y, Qi J. Up-regulation of MMP-2 by histone H3K9 β-hydroxybutyrylation to antagonize glomerulosclerosis in diabetic rat. Acta Diabetol 2020; 57:1501-1509. [PMID: 32772200 DOI: 10.1007/s00592-020-01552-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
AIMS Besides energy supply, β-hydroxybutyrate (BHB) acts as a bioactive molecule to play multiple protective roles, even in diabetes and its complications. The aim of this study was to investigate the antagonizing effects of BHB against diabetic glomerulosclerosis and the underlying mechanism. METHODS Male Sprague-Dawley rats were intraperitoneally injected with streptozotocin to induce diabetes and then treated with different concentrations of β-hydroxybutyrate. After 10 weeks, body weight, blood glucose, serum creatinine and 24-h urine protein were examined. Glomerular morphological changes and the contents of collagen type IV (COL IV) were evaluated. Then, transforming growth factor (TGF)-β/Smad3 contents and matrix metalloproteinase-2 (MMP-2) generation were detected. Moreover, the total contents of trans-activating histone H3K9 β-hydroxybutyrylation (H3K9bhb) and the contents of H3K9bhb in the Mmp-2 promoter were measured. RESULTS It was firstly confirmed that BHB treatments reduced renal biochemical indicators and attenuated glomerular morphological changes of the diabetic rats, with COL IV content decreased in a concentration-dependent manner. Then, BHB treatments were found to up-regulate renal MMP-2 generation of the diabetic rats significantly, while not affecting the increased TGF-β/Smad3 contents. Furthermore, the contents of H3K9bhb in the Mmp-2 promoter were elevated significantly for the middle and high concentrations of BHB treatments, up-regulating MMP-2 generation. CONCLUSION BHB treatments could up-regulate MMP-2 generation via causing elevated H3K9bhb in its promoter to antagonize glomerulosclerosis in the diabetic rats.
Collapse
Affiliation(s)
- Weigang Luo
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yijin Yu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Hao Wang
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Kun Liu
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Minling Huang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Chenhao Xuan
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China.
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
78
|
Lin J, Huang Z, Liu J, Huang Z, Liu Y, Liu Q, Yang Z, Li R, Wu X, Shi Z, Zhu Q, Wu X. Neuroprotective Effect of Ketone Metabolism on Inhibiting Inflammatory Response by Regulating Macrophage Polarization After Acute Cervical Spinal Cord Injury in Rats. Front Neurosci 2020; 14:583611. [PMID: 33192269 PMCID: PMC7645058 DOI: 10.3389/fnins.2020.583611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the effects of ketogenic metabolism on macrophage polarization, inflammation inhibition, and function recovery after acute spinal cord injury (SCI) in rats. Methods Sixty-four adult male Sprague-Dawley rats were randomly and equally divided into sham, standard diet (SD), ketone diet (KD), and 1, 3-butanediol (BD) groups. All animals underwent C5 unilateral laminectomy, whereas the SD, KD, and BD groups underwent C5 spinal cord hemi-contusion. The impact rod with a diameter of 1.5 mm was aligned 22.5° to the left and 1.4 mm to the midline, and then triggered to deliver a set displacement of 1.5 mm at a speed of 100 mm/s. The gene expression of inflammatory factors as well as the protein expression of inducible nitric oxide synthase, arginase-1, and inflammatory factors were measured at 1 week post-injury. Serum ketone and behavior were evaluated every second week for 12 weeks. Then, histological analyses of the gray and white matter at the epicenter were conducted at 12 weeks post-injury. Results The serum ketone levels of the KD and BD groups were significantly increased when compared with the SD group. The gene and protein expression of TNF-α and IL-1β tended to increase after the SCI, but were inhibited in the KD and BD groups. The protein expression of inducible nitric oxide synthase, marker of M1 macrophage, was inhibited in the KD and BD groups; on the other hand, the expression of arginase-1, marker of M2 macrophage, was boosted in the KD and BD groups. The usage of the ipsilateral forelimb was higher in the KD group than in the SD group. The hemi-contusive injury resulted in an obvious ipsilateral lesion area at the epicenter, and there was no significant difference between groups regarding the lesion size. However, the spared gray matter area was significantly greater in the KD group than in the SD and BD groups. Conclusion The present study suggests that ketogenic metabolism promotes macrophage polarization to M2, inhibits an inflammatory response, and alleviates the loss of gray matter after SCI. A higher ketone level, such as that induced by the ketogenic diet, seems to benefit function recovery after SCI.
Collapse
Affiliation(s)
- Junyu Lin
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zucheng Huang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhao Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Huang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yapu Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Liu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Yang
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyao Li
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuhua Wu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Shi
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingan Zhu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Wu
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
79
|
Koh S, Dupuis N, Auvin S. Ketogenic diet and Neuroinflammation. Epilepsy Res 2020; 167:106454. [DOI: 10.1016/j.eplepsyres.2020.106454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|
80
|
Shippy DC, Ulland TK. Microglial Immunometabolism in Alzheimer's Disease. Front Cell Neurosci 2020; 14:563446. [PMID: 33192310 PMCID: PMC7531234 DOI: 10.3389/fncel.2020.563446] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. In response to Aβ and tau aggregates, microglia, the primary innate immune cells of the central nervous system (CNS), facilitate Aβ and tau clearance and contribute to neuroinflammation that damages neurons. Microglia also perform a wide range of other functions, e.g., synaptic pruning, within the CNS that require a large amount of energy. Glucose appears to be the primary energy source, but microglia can utilize several other substrates for energy production including other sugars and ketone bodies. Recent studies have demonstrated that changes in the metabolic profiles of immune cells, including macrophages, are important in controlling their activation and effector functions. Additional studies have focused on the role of metabolism in neuron and astrocyte function while until recently microglia metabolism has been considerably less well understood. Considering many neurological disorders, such as neurodegeneration associated with AD, are associated with chronic inflammation and alterations in brain energy metabolism, it is hypothesized that microglial metabolism plays a significant role in the inflammatory responses of microglia during neurodegeneration. Here, we review the role of microglial immunometabolism in AD.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
81
|
Grigolon RB, Gerchman F, Schöffel AC, Hawken ER, Gill H, Vazquez GH, Mansur RB, McIntyre RS, Brietzke E. Mental, emotional, and behavioral effects of ketogenic diet for non-epileptic neuropsychiatric conditions. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109947. [PMID: 32305355 DOI: 10.1016/j.pnpbp.2020.109947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 01/20/2023]
Abstract
Ketogenic diet (KD) is comprised of a distinct macronutrient combination: i.e. 90% fat, 8% of protein and 2% of carbohydrates, typically characterized as a high-fat low-carbohydrate diet. KD's efficacy was largely established for treatment resistant epilepsy in children, but its mental, emotional and behavioral effects remain largely unknown. Nevertheless, the efficacious effects of KD in childhood epilepsy provide rationale for repurposing this approach for other brain-based disorders. Consequently, clinicians and researchers should be aware of the evidence regarding efficacy, as well as the benefits and risks of adopting this diet. Results from animals and humans studies provide equivocal evidence across multiple domains of psychopathology. Conceptually, KD shows promise to serve as an efficacious treatment for mental disorders.
Collapse
Affiliation(s)
- Ruth B Grigolon
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Gerchman
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Service of Endocrinology and Metabology, Hospital de Clinicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alice C Schöffel
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Gustavo H Vazquez
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada; Mood Disorders Outpatient Clinic, Providence Care Hospital, Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Elisa Brietzke
- Post-Graduation Program in Psychiatry, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada; Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada.
| |
Collapse
|
82
|
Benito A, Hajji N, O’Neill K, Keun HC, Syed N. β-Hydroxybutyrate Oxidation Promotes the Accumulation of Immunometabolites in Activated Microglia Cells. Metabolites 2020; 10:metabo10090346. [PMID: 32859120 PMCID: PMC7570092 DOI: 10.3390/metabo10090346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolic regulation of immune cells has arisen as a critical set of processes required for appropriate response to immunological signals. While our knowledge in this area has rapidly expanded in leukocytes, much less is known about the metabolic regulation of brain-resident microglia. In particular, the role of alternative nutrients to glucose remains poorly understood. Here, we use stable-isotope (13C) tracing strategies and metabolomics to characterize the oxidative metabolism of β-hydroxybutyrate (BHB) in human (HMC3) and murine (BV2) microglia cells and the interplay with glucose in resting and LPS-activated BV2 cells. We found that BHB is imported and oxidised in the TCA cycle in both cell lines with a subsequent increase in the cytosolic NADH:NAD+ ratio. In BV2 cells, stimulation with LPS upregulated the glycolytic flux, increased the cytosolic NADH:NAD+ ratio and promoted the accumulation of the glycolytic intermediate dihydroxyacetone phosphate (DHAP). The addition of BHB enhanced LPS-induced accumulation of DHAP and promoted glucose-derived lactate export. BHB also synergistically increased LPS-induced accumulation of succinate and other key immunometabolites, such as α-ketoglutarate and fumarate generated by the TCA cycle. Finally, BHB upregulated the expression of a key pro-inflammatory (M1 polarisation) marker gene, NOS2, in BV2 cells activated with LPS. In conclusion, we identify BHB as a potentially immunomodulatory metabolic substrate for microglia that promotes metabolic reprogramming during pro-inflammatory response.
Collapse
Affiliation(s)
- Adrian Benito
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Nabil Hajji
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Kevin O’Neill
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
| | - Hector C. Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
- Correspondence: (H.C.K.); (N.S.)
| | - Nelofer Syed
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London W12 0NN, UK; (A.B.); (N.H.); (K.O.)
- Correspondence: (H.C.K.); (N.S.)
| |
Collapse
|
83
|
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are, respectively, the most prevalent and fastest growing neurodegenerative diseases worldwide. The former is primarily characterized by memory loss and the latter by the motor symptoms of tremor and bradykinesia. Both AD and PD are progressive diseases that share several key underlying mitochondrial, inflammatory, and other metabolic pathologies. This review will detail how these pathologies intersect with ketone body metabolism and signaling, and how ketone bodies, particularly d-β-hydroxybutyrate (βHB), may serve as a potential adjunctive nutritional therapy for two of the world's most devastating conditions.
Collapse
|
84
|
Guan YF, Huang GB, Xu MD, Gao F, Lin S, Huang J, Wang J, Li YQ, Wu CH, Yao S, Wang Y, Zhang YL, Teoh JP, Xuan A, Sun XD. Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain Behav Immun 2020; 88:748-762. [PMID: 32413556 DOI: 10.1016/j.bbi.2020.05.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a severe neuropsychiatric disorder, of which the underlying pathological mechanisms remain unclear. The ketogenic diet (KD) has been reported to exhibit preventative effects on depressive-like behaviors in rodents. However, the therapeutic effects of KD on depressive-like behaviors have not been illustrated thus far. Here, we found that KD treatment dramatically ameliorated depressive-like behaviors in both repeated social defeat stress (R-SDS) and lipopolysaccharide (LPS) models, indicating the potential therapeutic effects of KD on depression. Our electrophysiological studies further showed that neuronal excitability was increased in the lateral habenula (LHb) of mice exposed to R-SDS or LPS, which can be reversed in the presence of KD treatment. Moreover, R-SDS and LPS were also found to induce robust microglial inflammatory activation in the LHb. Importantly, these phenotypes were rescued in mice fed with KD. In addition, we found that the protein level of innate immune receptor Trem2 in the LHb was significantly decreased in depression models. Specific knockdown of Trem2 in LHb microglia induced depressive-like behaviors, increased neuronal excitability as well as robust microglial inflammatory activation. Altogether, we demonstrated the therapeutic effects of KD on depressive-like behaviors, which are probably mediated via the restoration of microglial inflammatory activation and neuronal excitability. Besides, we also proposed an unrecognized function of Trem2 in the LHb for depression. Our study sheds light on the pathogenesis of depression and thereby offers a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yan-Fei Guan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Guo-Bin Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Min-Dong Xu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Feng Gao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jin Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Cui-Hong Wu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Shan Yao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Ying Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yun-Long Zhang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jian-Peng Teoh
- Department of Gynecology and Obstetrics, the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Aiguo Xuan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
85
|
Cai Z, Ye T, Xu X, Gao M, Zhang Y, Wang D, Gu Y, Zhu H, Tong L, Lu J, Chen Z, Huang C. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109931. [PMID: 32201112 DOI: 10.1016/j.pnpbp.2020.109931] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
The decrease of microglia in the hippocampus is a novel mechanism for depression onset. Reversal of this decrease can ameliorate stress-induced depression-like behaviors in rodents. However, the property of this therapeutic strategy remains unclear. We addressed this issue by designing a series of behavioral experiments. Results showed that a single lipopolysaccharide (LPS) injection at the dose of 75 and 100 μg/kg, but not at 30 or 50 μg/kg, produced obvious antidepressant effects in chronic unpredictable stress (CUS) mice at 5 h after the drug administration. In the time-dependent experiment, a single LPS injection (100 μg/kg) ameliorated the CUS-induced depression-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug administration. The antidepressant effect of a single LPS injection persisted at least 10 days and disappeared at 14 days after the drug administration. 14 days after the first injection, a second LPS injection (100 μg/kg) still produced antidepressant effects in chronically-stressed mice who re-displayed depression-like behaviors at 5 h after the drug administration. The antidepressant effect of LPS appears to be dependent on microglia, as at 5 h after LPS administration (100 μg/kg), the CUS-induced decrease in microglial numbers and Iba-1 mRNA levels in the hippocampus was reversed markedly, and inhibition of microglia by minocycline (40 mg/kg) or PLX33297 (290 mg/kg) prevented the antidepressant effect of LPS in CUS mice. These results indicate that a single LPS injection displays rapid and sustained antidepressant effects in chronically stressed mice likely through stimulating hippocampal microglia.
Collapse
Affiliation(s)
- Zixuan Cai
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Ting Ye
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xing Xu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Minhui Gao
- Department of Pharmacology, Nantong Health College of Jiangsu Province, #288 Zhenxing East Road, Nantong 226010, Jiangsu Province, China
| | - Yaru Zhang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Dan Wang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yiming Gu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Lijuan Tong
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou 225300, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Chao Huang
- Department of Pharmacy, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
86
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
87
|
Ye T, Wang D, Cai Z, Tong L, Chen Z, Lu J, Lu X, Huang C, Yuan X. Antidepressive properties of macrophage-colony stimulating factor in a mouse model of depression induced by chronic unpredictable stress. Neuropharmacology 2020; 172:108132. [PMID: 32407925 DOI: 10.1016/j.neuropharm.2020.108132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that macrophage-colony stimulating factor (M-CSF), a drug that is used to treat hematological system disease, can ameliorate chronic stress-induced depressive-like behaviors in mice. This indicates that M-CSF could be developed into a novel antidepressant. Here, we investigated the antidepressive properties of M-CSF, aiming to explore its potential values in depression treatment. Our results showed that a single M-CSF injection at the dose of 75 and 100 μg/kg, but not at 25 or 50 μg/kg, ameliorated chronic unpredictable stress (CUS)-induced depressive-like behaviors in mice at 5 h after the drug treatment. In a time-dependent experiment, a single M-CSF injection (100 μg/kg) was found to ameliorate the CUS-induced depressive-like behaviors in mice at 5 and 8 h, but not at 3 h, after the drug treatment. The antidepressant effect of the single M-CSF injection (100 μg/kg) in chronically-stressed mice persisted at least 10 days and disappeared at 14 days after the drug treatment. Moreover, 14 days after the first injection, a second M-CSF injection (100 μg/kg) still produced antidepressant effects at 5 h after the drug treatment in chronically-stressed mice who re-displayed depressive-like phenotypes. The antidepressant effect of M-CSF appeared to be mediated by the activation of the hippocampal microglia, as pre-inhibition of microglia by minocycline (40 mg/kg) or PLX3397 (290 mg/kg) pretreatment prevented the antidepressant effect of M-CSF in CUS mice. These results demonstrate that M-CSF produces rapid and sustained antidepressant effects via the activation of the microglia in the hippocampus in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong, 226001, Jiangsu, China
| | - Jiashu Lu
- Department of Pharmacy, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou, 225300, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19# Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Xiaomei Yuan
- Heart Failure Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
88
|
β-hydroxybutyrate and its metabolic effects on age-associated pathology. Exp Mol Med 2020; 52:548-555. [PMID: 32269287 PMCID: PMC7210293 DOI: 10.1038/s12276-020-0415-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022] Open
Abstract
Aging is a universal process that renders individuals vulnerable to many diseases. Although this process is irreversible, dietary modulation and caloric restriction are often considered to have antiaging effects. Dietary modulation can increase and maintain circulating ketone bodies, especially β-hydroxybutyrate (β-HB), which is one of the most abundant ketone bodies in human circulation. Increased β-HB has been reported to prevent or improve the symptoms of various age-associated diseases. Indeed, numerous studies have reported that a ketogenic diet or ketone ester administration alleviates symptoms of neurodegenerative diseases, cardiovascular diseases, and cancers. Considering the potential of β-HB and the intriguing data emerging from in vivo and in vitro experiments as well as clinical trials, this therapeutic area is worthy of attention. In this review, we highlight studies that focus on the identified targets of β-HB and the cellular signals regulated by β-HB with respect to alleviation of age-associated ailments. Boosting levels of a byproduct of fatty acid breakdown may help alleviate the symptoms of age-associated health conditions. When the body is low on glucose, it breaks down fatty acids for energy, generating byproduct metabolites called ketones. The ketone β-hydroxybutyrate (β-HB) regulates cellular signaling and gene and protein expression. There are indications that ketogenic diets or ketone administration, which increase β-BH may prevent ageing-associated progression of illnesses like cardiovascular and neurodegenerative diseases and cancer. Young-min Han and co-workers at Georgia State University in Atlanta, USA, reviewed current understanding of β-BH and its molecular targets. β-BH is a potent metabolite small enough to filter through cell membranes and circulate throughout the body, including the brain, influencing signaling pathways. Further investigations into associated molecular mechanisms will verify the metabolite’s potential as a therapeutic agent.
Collapse
|
89
|
Identification of a pro-elongation effect of diallyl disulfide, a major organosulfur compound in garlic oil, on microglial process. J Nutr Biochem 2020; 78:108323. [DOI: 10.1016/j.jnutbio.2019.108323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/30/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
|
90
|
Hu P, Wang D, Zhang Y, Cai Z, Ye T, Tong L, Xu X, Lu J, Liu F, Lu X, Huang C. Apoptosis-triggered decline in hippocampal microglia mediates adolescent intermittent alcohol exposure-induced depression-like behaviors in mice. Neuropharmacology 2020; 170:108054. [PMID: 32217088 DOI: 10.1016/j.neuropharm.2020.108054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Depression-alcohol addiction comorbidity is a common clinical phenomenon. Alcohol exposure in adolescence has been shown to induce depression-like behaviors in rodents. However, the mechanism of action for this type of depression remains unclear. Previous studies have reported that several different types of stress, such as chronic unpredictable stress and early social isolation, trigger depression-like symptoms in mice by inducing hippocampal microglial decline, which is mediated by the initial activation of the microglial cells. Since alcohol also activates microglia, we evaluated the dynamic changes in hippocampal microglia in mice receiving adolescent intermittent alcohol exposure (AIE). Our results showed that 14 days of AIE, followed by 21 days period of no treatment, induced behavioral abnormalities as well as a significant loss and dystrophy of hippocampal microglia in mice. We found that this AIE-induced decline in hippocampal microglia was mediated by both microglial activation and apoptosis, as (i) 1 day of alcohol exposure induced a distinct activation of hippocampal microglia followed by their apoptosis, and (ii) blocking the initial activation of hippocampal microglia by pretreatment with minocycline suppressed the AIE-induced apoptosis and loss of hippocampal microglia as well as the AIE-induced depression-like symptoms. Lipopolysaccharide (LPS), a classical activator of microglia, ameliorated the AIE-induced depression-like symptoms by reversing the decline in the hippocampal microglia. These results reveal a possible mechanism for AIE-induced depression and demonstrate that the restoration of hippocampal microglial homeostasis may be a therapeutic strategy for depression induced by alcohol intake and withdrawal.
Collapse
Affiliation(s)
- Peili Hu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Dan Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Yaru Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zixuan Cai
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Ting Ye
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lijuan Tong
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xing Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Jiashu Lu
- Department of Pharmacology, The People's Hospital of Taizhou, The Fifth Affiliated Hospital of Nantong University, #210 Yingchun Road, Taizhou, Jiangsu, 226001, China
| | - Fengguo Liu
- Department of Neurology, Danyang People's Hospital, #2 Xinmin Western Road, Danyang, 212300, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
91
|
Lauro C, Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front Immunol 2020; 11:493. [PMID: 32265936 PMCID: PMC7099404 DOI: 10.3389/fimmu.2020.00493] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Microglia sustain normal brain functions continuously monitoring cerebral parenchyma to detect neuronal activities and alteration of homeostatic processes. The metabolic pathways involved in microglia activity adapt at and contribute to cell phenotypes. While the mitochondrial oxidative phosphorylation is highly efficient in ATP production, glycolysis enables microglia with a faster rate of ATP production, with the generation of intermediates for cell growth and cytokine production. In macrophages, pro-inflammatory stimuli induce a metabolic switch from oxidative phosphorylation to glycolysis, a phenomenon similar to the Warburg effect well characterized in tumor cells. Modification of metabolic functions allows macrophages to properly respond to a changing environment and many evidence suggest that, similarly to macrophages, microglial cells are capable of a plastic use of energy substrates. Neuroinflammation is a common condition in many neurodegenerative diseases and the metabolic reprograming of microglia has been reported in neurodegeneration. Here we review the existing data on microglia metabolism and the connections with neuroinflammatory diseases, highlighting how metabolic changes contribute to module the homeostatic functions of microglia.
Collapse
Affiliation(s)
- Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory Affiliated to Istituto Pasteur Italia- Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS NeuroMed, Pozzilli, Italy
| |
Collapse
|
92
|
Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, Xia Y, Suxin L. Ketogenic Diet Ameliorates Cardiac Dysfunction via Balancing Mitochondrial Dynamics and Inhibiting Apoptosis in Type 2 Diabetic Mice. Aging Dis 2020; 11:229-240. [PMID: 32257538 PMCID: PMC7069456 DOI: 10.14336/ad.2019.0510] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet (KD) has been widely used in clinical studies and shown to hace an anti-diabetic effect, but the underlying mechanisms have not been fully elaborated. Our aim was to investigate the effects and the underling mechanisms of the KD on cardiac function in db/db mice. In the present study, db/db mice were subjected to a normal diet (ND) or KD. Fasting blood glucose, cardiac function and morphology, mitochondrial dynamics, oxidative stress, and apoptosis were measured 8 weeks post KD treatment. Compared with the ND, the KD improved glycemic control and protected against diabetic cardiomyopathy in db/db mice, and improved mitochondrial function, as well as reduced oxidative stress were observed in hearts. In addition, KD treatment exerted an anti-apoptotic effect in the heart of db/db mice. Further data showed that the PI3K/Akt pathway was involved in this protective effect. Our data demonstrated that KD treatment ameliorates cardiac dysfunction by inhibiting apoptosis via activating the PI3K-Akt pathway in type 2 diabetic mice, suggesting that the KD is a promising lifestyle intervention to protect against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yongzheng Guo
- 1Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cheng Zhang
- 2Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei-Fei Shang
- 3Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Minghao Luo
- 1Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuehua You
- 1Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qiming Zhai
- 4State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Shaanxi 710032, China
| | - Yong Xia
- 1Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,3Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.,5Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA
| | - Luo Suxin
- 1Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
93
|
Wu X, Miao D, Liu Z, Liu K, Zhang B, Li J, Li Y, Qi J. β-hydroxybutyrate antagonizes aortic endothelial injury by promoting generation of VEGF in diabetic rats. Tissue Cell 2020; 64:101345. [PMID: 32473710 DOI: 10.1016/j.tice.2020.101345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/05/2023]
Abstract
Endothelial injury is regarded as the initial pathological process in diabetic vascular diseases, but effective therapy has not yet been identified. Although β-hydroxybutyrate plays various protective roles in the cardiovascular system, its ability to antagonize diabetic endothelial injury is unclear. β-hydroxybutyrate reportedly causes histone H3K9 β-hydroxybutyrylation (H3K9bhb), which activates gene expression; however, there has been no report regarding the role of H3K9bhb in up-regulation of vascular endothelial growth factor (VEGF), a crucial factor in endothelial integrity and function. Here, male Sprague-Dawley rats were intraperitoneally injected with streptozotocin to induce diabetes, and then treated with different concentrations of β-hydroxybutyrate. After 10 weeks, body weight, blood glucose, morphological changes and serum nitric oxide concentration were examined. Moreover, the mRNA expression level, protein content and distribution of VEGF in the aorta were investigated, as were total protein β-hydroxybutyrylation and H3K9bhb contents. The results showed injury of aortic endothelium, along with reductions of the concentration of nitric oxide and generation of VEGF in diabetic rats. However, β-hydroxybutyrate treatment attenuated diabetic injury of the endothelium and up-regulated the generation of VEGF. Furthermore, β-hydroxybutyrate treatment caused marked total protein β-hydroxybutyrylation and significant elevation of H3K9bhb content in the aorta of diabetic rats. The ability of β-hydroxybutyrate to protect against diabetic injury of the aortic endothelium was greatest for its intermediate concentration. In conclusion, moderately elevated β-hydroxybutyrate could antagonize aortic endothelial injury, potentially by causing H3K9bhb to promote generation of VEGF in diabetic rats.
Collapse
Affiliation(s)
- Xingliang Wu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Dazhuang Miao
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China
| | - Zijing Liu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Boning Zhang
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Jialin Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, China.
| | - Jinsheng Qi
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
94
|
Afridi R, Kim JH, Rahman MH, Suk K. Metabolic Regulation of Glial Phenotypes: Implications in Neuron-Glia Interactions and Neurological Disorders. Front Cell Neurosci 2020; 14:20. [PMID: 32116564 PMCID: PMC7026370 DOI: 10.3389/fncel.2020.00020] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are multifunctional, non-neuronal components of the central nervous system with diverse phenotypes that have gained much attention for their close involvement in neuroinflammation and neurodegenerative diseases. Glial phenotypes are primarily characterized by their structural and functional changes in response to various stimuli, which can be either neuroprotective or neurotoxic. The reliance of neurons on glial cells is essential to fulfill the energy demands of the brain for its proper functioning. Moreover, the glial cells perform distinct functions to regulate their own metabolic activities, as well as work in close conjunction with neurons through various secreted signaling or guidance molecules, thereby constituting a complex network of neuron-glial interactions in health and disease. The emerging evidence suggests that, in disease conditions, the metabolic alterations in the glial cells can induce structural and functional changes together with neuronal dysfunction indicating the importance of neuron-glia interactions in the pathophysiology of neurological disorders. This review covers the recent developments that implicate the regulation of glial phenotypic changes and its consequences on neuron-glia interactions in neurological disorders. Finally, we discuss the possibilities and challenges of targeting glial metabolism as a strategy to treat neurological disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jong-Heon Kim
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
95
|
Gzielo K, Soltys Z, Rajfur Z, Setkowicz ZK. The Impact of the Ketogenic Diet on Glial Cells Morphology. A Quantitative Morphological Analysis. Neuroscience 2019; 413:239-251. [PMID: 31220541 DOI: 10.1016/j.neuroscience.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Ketogenic diet is reported to protect against cognitive decline, drug-resistant epilepsy, Alzheimer's Disease, damaging effect of ischemic stroke and many neurological diseases. Despite mounting evidence that this dietary treatment works, the exact mechanism of its protective activity is largely unknown. Ketogenic diet acts systemically, not only changing GABA signaling in neurons, but also influencing the reliance on mitochondrial respiration, known to be disrupted in many neurological diseases. Normally, human body is driven by glucose while ketogenic diet mimics starvation and energy required for proper functioning comes from fatty acids oxidation. In the brain astrocytes are believed to be the sole neural cells capable of fatty oxidation. Here we try to explain that not exclusively neurons, but also morphological changes of astroglia and/or microglia due to different metabolic state are important for the mechanism underlying the protective role of ketogenic diet. By quantifying different parameters describing cellular morphology like ramification index or fractal dimension and using Principal Component Analysis to discover the regularities between them, we demonstrate that in normal adult rat brain, ketogenic diet itself is able to change glial morphology, indicating an important role of these underappreciated cells in the brain metabolism.
Collapse
Affiliation(s)
- K Gzielo
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Z Soltys
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Z Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Z K Setkowicz
- Department of Neuroanatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
96
|
Liang H, Xiong Z, Li R, Hu K, Cao M, Yang J, Zhong Z, Jia C, Yao Z, Deng M. BDH2 is downregulated in hepatocellular carcinoma and acts as a tumor suppressor regulating cell apoptosis and autophagy. J Cancer 2019; 10:3735-3745. [PMID: 31333791 PMCID: PMC6636298 DOI: 10.7150/jca.32022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/05/2019] [Indexed: 02/06/2023] Open
Abstract
BDH2 is a short-chain dehydrogenase/reductase family member involved in several biological and pathological processes, including the utilization of cytosolic ketone bodies, immunocyte regulation and tumor progression. In this study, we first revealed that BDH2 was downregulated in HCC tissues by qRT-PCR and immunohistochemistry analysis and that low BHD2 expression was significantly associated with poor overall survival, poor tumor differentiation, increased tumor size, venous invasion and an advanced BCLC stage. Moreover, the results of a univariate analysis and multivariate analysis revealed that BDH2 may be regarded as an independent prognostic marker. As a member of a gene family involved in ketone metabolism, BDH2 upregulated the level of β-HB in liver cells as well as the level of H3 histone acetylation. Functional analysis showed that BDH2 expression inhibited tumor cell growth, proliferation and migration. The results of the mechanistic analysis revealed that BDH2 induced mitochondrial apoptosis and inhibited autophagy through the unfolded protein response. Therefore, BDH2 may be a new HCC prognostic marker and a useful treatment target.
Collapse
Affiliation(s)
- Hao Liang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China.,Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhiyong Xiong
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Ruixi Li
- Department of Hepatobiliary Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jiarui Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhaozhong Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Changchang Jia
- Department of Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
97
|
Gao M, Hu P, Cai Z, Wu Y, Wang D, Hu W, Xu X, Zhang Y, Lu X, Chen D, Chen Z, Ma K, Wen J, Wang H, Huang C. Identification of a microglial activation-dependent antidepressant effect of amphotericin B liposome. Neuropharmacology 2019; 151:33-44. [DOI: 10.1016/j.neuropharm.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
|
98
|
Paolicelli RC, Angiari S. Microglia immunometabolism: From metabolic disorders to single cell metabolism. Semin Cell Dev Biol 2019; 94:129-137. [PMID: 30954657 DOI: 10.1016/j.semcdb.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Since the observation that obesity-associated low-grade chronic inflammation is a crucial driver for the onset of systemic metabolic disorders such as type 2 diabetes, a number of studies have highlighted the role of both the innate and the adaptive immune system in such pathologies. Moreover, researchers have recently demonstrated that immune cells can modulate their intracellular metabolic profile to control their activation and effector functions. These discoveries represent the foundations of a research area known as "immunometabolism", an emerging field of investigation that may lead to the development of new-generation therapies for the treatment of inflammatory and metabolic diseases. Most of the studies in the field have focused their attention on both circulating white blood cells and leukocytes residing within metabolic tissues such as adipose tissue, liver and pancreas. However, immunometabolism of immune cells in non-metabolic tissues, including central nervous system microglia, have long been neglected. In this review, we highlight the most recent findings suggesting that microglial cells play a central role in metabolic disorders and that interfering with the metabolic profile of microglia can modulate their functionality and pathogenicity in neurological diseases.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland.
| |
Collapse
|
99
|
Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl) 2019; 236:1385-1399. [PMID: 30607478 DOI: 10.1007/s00213-018-5148-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Resveratrol (RSV) has been indicated to exhibit beneficial effects on depression and anxiety treatment by suppression of inflammatory processes. Depression triggered by deficiency of estrogen and anxiety-like behaviors are associated with inflammation. The role of RSV in ovariectomized mice is unclear. OBJECTIVES We examine whether the RSV, a Sirt1 activator, alleviates ovariectomy-induced anxiety- and depression-like behaviors through the inhibition of inflammatory processes. METHODS Female C57BL/6J mice (6-8 weeks of age, 17-20 g) were ovariectomized and treated with RSV at a dose of 20 mg/kg for 2 weeks. Depression- and anxiety-like behaviors were compared with vehicle-injected control animals. Immunohistochemistry and qPCR were used to detect inflammation in the hippocampal region. RESULTS Ovariectomized mice were observed to suffer from anxiety- and depression-like behaviors. These effects were attenuated by treatment with RSV. Immunohistochemical staining results showed that RSV could reverse the increase of microglial activation in the hippocampal dentate gyrus. At a molecular level, RSV inhibited the activation of NLRP3 and NF-κB in the hippocampal region caused by deficiency of estrogen. CONCLUSIONS RSV suppressed the production of inflammatory cytokines by enhancing Sirt1 levels. Our findings indicated that RSV-induced Sirt1 activation counteracted estrogen deficiency-induced psychobehavioral changes via inhibition of inflammatory processes in the hippocampus. In anxiety and depression disorders, RSV is supposed to be an effective treatment for postmenopausal changes.
Collapse
Affiliation(s)
- Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
100
|
Aldana BI. Microglia-Specific Metabolic Changes in Neurodegeneration. J Mol Biol 2019; 431:1830-1842. [PMID: 30878483 DOI: 10.1016/j.jmb.2019.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
The high energetic demand of the brain deems this organ rather sensitive to changes in energy supply. Therefore, even minor alterations in energy metabolism may underlie detrimental disturbances in brain function, contributing to the generation and progression of neurodegenerative diseases. Considerable evidence supports the key role of deficits in cerebral energy metabolism, particularly hypometabolism of glucose and mitochondrial dysfunction, in the pathophysiology of brain disorders. Major breakthroughs in the field of bioenergetics and neurodegeneration have been achieved through the use of in vitro and in vivo models of disease as well as sophisticated neuroimaging techniques in patients, yet these have been mainly focused on neuron and astrocyte function. Remarkably, the subcellular metabolic mechanisms linked to neurodegeneration that operate in other crucial brain cell types such as microglia have remain obscured, although they are beginning to be unraveled. Microglia, the brain-resident immune sentinels, perform a diverse range of functions that require a high-energy expenditure, namely, their role in brain development, maintenance of the neural environment, response to injury and infection, and activation of repair programs. Interestingly, another key mechanism underlying several neurodegenerative diseases is neuroinflammation, which can be associated with chronic microglia activation. Considering that many brain disorders are accompanied by changes in brain energy metabolism and sustained inflammation, and that energy metabolism has a strong influence on the inflammatory responses of microglia, the emerging significance of microglial energy metabolism in neurodegeneration is highlighted in this review.
Collapse
Affiliation(s)
- Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|