51
|
Bathelt J, Barnes J, Raymond FL, Baker K, Astle D. Global and Local Connectivity Differences Converge With Gene Expression in a Neurodevelopmental Disorder of Known Genetic Origin. Cereb Cortex 2018; 27:3806-3817. [PMID: 28168288 PMCID: PMC6600876 DOI: 10.1093/cercor/bhx027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
Knowledge of genetic cause in neurodevelopmental disorders can highlight molecular and cellular processes critical for typical development. Furthermore, the relative homogeneity of neurodevelopmental disorders of known genetic origin allows the researcher to establish the subsequent neurobiological processes that mediate cognitive and behavioral outcomes. The current study investigated white matter structural connectivity in a group of individuals with intellectual disability due to mutations in ZDHHC9. In addition to shared cause of cognitive impairment, these individuals have a shared cognitive profile, involving oromotor control difficulties and expressive language impairment. Analysis of structural network properties using graph theory measures showed global reductions in mean clustering coefficient and efficiency in the ZDHHC9 group, with maximal differences in frontal and parietal areas. Regional variation in clustering coefficient across cortical regions in ZDHHC9 mutation cases was significantly associated with known pattern of expression of ZDHHC9 in the normal adult human brain. The results demonstrate that a mutation in a single gene impacts upon white matter organization across the whole-brain, but also shows regionally specific effects, according to variation in gene expression. Furthermore, these regionally specific patterns may link to specific developmental mechanisms, and correspond to specific cognitive deficits.
Collapse
Affiliation(s)
- Joe Bathelt
- MRC Cognition & Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Jessica Barnes
- MRC Cognition & Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Kate Baker
- MRC Cognition & Brain Sciences Unit, Cambridge CB2 7EF, UK.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Duncan Astle
- MRC Cognition & Brain Sciences Unit, Cambridge CB2 7EF, UK
| |
Collapse
|
52
|
Kievit RA, Fuhrmann D, Borgeest GS, Simpson-Kent IL, Henson RNA. The neural determinants of age-related changes in fluid intelligence: a pre-registered, longitudinal analysis in UK Biobank. Wellcome Open Res 2018; 3:38. [PMID: 29707655 PMCID: PMC5909055 DOI: 10.12688/wellcomeopenres.14241.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Fluid intelligence declines with advancing age, starting in early adulthood. Within-subject declines in fluid intelligence are highly correlated with contemporaneous declines in the ability to live and function independently. To support healthy aging, the mechanisms underlying these declines need to be better understood. Methods: In this pre-registered analysis, we applied latent growth curve modelling to investigate the neural determinants of longitudinal changes in fluid intelligence across three time points in 185,317 individuals (N=9,719 two waves, N=870 three waves) from the UK Biobank (age range: 39-73 years). Results: We found a weak but significant effect of cross-sectional age on the mean fluid intelligence score, such that older individuals scored slightly lower. However, the mean longitudinal slope was positive, rather than negative, suggesting improvement across testing occasions. Despite the considerable sample size, the slope variance was non-significant, suggesting no reliable individual differences in change over time. This null-result is likely due to the nature of the cognitive test used. In a subset of individuals, we found that white matter microstructure (N=8839, as indexed by fractional anisotropy) and grey-matter volume (N=9931) in pre-defined regions-of-interest accounted for complementary and unique variance in mean fluid intelligence scores. The strongest effects were such that higher grey matter volume in the frontal pole and greater white matter microstructure in the posterior thalamic radiations were associated with higher fluid intelligence scores. Conclusions: In a large preregistered analysis, we demonstrate a weak but significant negative association between age and fluid intelligence. However, we did not observe plausible longitudinal patterns, instead observing a weak increase across testing occasions, and no significant individual differences in rates of change, likely due to the suboptimal task design. Finally, we find support for our preregistered expectation that white- and grey matter make separate contributions to individual differences in fluid intelligence beyond age.
Collapse
Affiliation(s)
- Rogier A. Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire , CB2 7EF, UK
| | - Delia Fuhrmann
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire , CB2 7EF, UK
| | - Gesa Sophia Borgeest
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire , CB2 7EF, UK
| | - Ivan L. Simpson-Kent
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire , CB2 7EF, UK
| | - Richard N. A. Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire , CB2 7EF, UK
| |
Collapse
|
53
|
Myers T, Carey E, Szűcs D. Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review. Front Psychol 2017; 8:1646. [PMID: 29118725 PMCID: PMC5661150 DOI: 10.3389/fpsyg.2017.01646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/07/2017] [Indexed: 12/01/2022] Open
Abstract
Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.
Collapse
Affiliation(s)
- Timothy Myers
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| | | | - Dénes Szűcs
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
54
|
Westerhausen R, Friesen CM, Rohani DA, Krogsrud SK, Tamnes CK, Skranes JS, Håberg AK, Fjell AM, Walhovd KB. The corpus callosum as anatomical marker of intelligence? A critical examination in a large-scale developmental study. Brain Struct Funct 2017; 223:285-296. [PMID: 28801753 PMCID: PMC5772147 DOI: 10.1007/s00429-017-1493-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
Intellectual abilities are supported by a large-scale fronto-parietal brain network distributed across both cerebral hemispheres. This bihemispheric network suggests a functional relevance of inter-hemispheric coordination, a notion which is supported by a series of recent structural magnetic resonance imaging (MRI) studies demonstrating correlations between intelligence scores (IQ) and corpus-callosum anatomy. However, these studies also reveal an age-related dissociation: mostly positive associations are reported in adult samples, while negative associations are found in developing samples. In the present study, we re-examine the association between corpus callosum and intelligence measures in a large (734 datasets from 495 participants) developmental mixed cross-sectional and longitudinal sample (6.4–21.9 years) using raw test scores rather than deviation IQ measures to account for the ongoing cognitive development in this age period. Analyzing mid-sagittal measures of regional callosal thickness, a positive association in the splenium of the corpus callosum was found for both verbal and performance raw test scores. This association was not present when the participants’ age was considered in the analysis. Thus, we did not reveal any association that cannot be explained by a temporal co-occurrence of overall developmental trends in intellectual abilities and corpus callosum maturation in the present developing sample.
Collapse
Affiliation(s)
- René Westerhausen
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway.
| | - Charline-Marie Friesen
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway
| | - Darius A Rohani
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway
| | - Stine K Krogsrud
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway
| | - Christian K Tamnes
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway
| | - Jon S Skranes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Medical Imaging, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders M Fjell
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristine B Walhovd
- Department of Psychology, Center for Lifespan Changes in Brain and Cognition (LCBC), University of Oslo, Blindern, POB 1094, 0317, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
55
|
Martínez K, Janssen J, Pineda-Pardo JÁ, Carmona S, Román FJ, Alemán-Gómez Y, Garcia-Garcia D, Escorial S, Quiroga MÁ, Santarnecchi E, Navas-Sánchez FJ, Desco M, Arango C, Colom R. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size. Neuroimage 2017; 155:234-244. [DOI: 10.1016/j.neuroimage.2017.04.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/28/2017] [Accepted: 04/13/2017] [Indexed: 01/25/2023] Open
|
56
|
Nusbaum F, Hannoun S, Kocevar G, Stamile C, Fourneret P, Revol O, Sappey-Marinier D. Hemispheric Differences in White Matter Microstructure between Two Profiles of Children with High Intelligence Quotient vs. Controls: A Tract-Based Spatial Statistics Study. Front Neurosci 2017; 11:173. [PMID: 28420955 PMCID: PMC5376583 DOI: 10.3389/fnins.2017.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/15/2017] [Indexed: 01/09/2023] Open
Abstract
Objectives: The main goal of this study was to investigate and compare the neural substrate of two children's profiles of high intelligence quotient (HIQ). Methods: Two groups of HIQ children were included with either a homogeneous (Hom-HIQ: n = 20) or a heterogeneous IQ profile (Het-HIQ: n = 24) as defined by a significant difference between verbal comprehension index and perceptual reasoning index. Diffusion tensor imaging was used to assess white matter (WM) microstructure while tract-based spatial statistics (TBSS) analysis was performed to detect and localize WM regional differences in fractional anisotropy (FA), mean diffusivity, axial (AD), and radial diffusivities. Quantitative measurements were performed on 48 regions and 21 fiber-bundles of WM. Results: Hom-HIQ children presented higher FA than Het-HIQ children in widespread WM regions including central structures, and associative intra-hemispheric WM fasciculi. AD was also greater in numerous WM regions of Total-HIQ, Hom-HIQ, and Het-HIQ groups when compared to the Control group. Hom-HIQ and Het-HIQ groups also differed by their hemispheric lateralization in AD differences compared to Controls. Het-HIQ and Hom-HIQ groups showed a lateralization ratio (left/right) of 1.38 and 0.78, respectively. Conclusions: These findings suggest that both inter- and intra-hemispheric WM integrity are enhanced in HIQ children and that neural substrate differs between Hom-HIQ and Het-HIQ. The left hemispheric lateralization of Het-HIQ children is concordant with their higher verbal index while the relative right hemispheric lateralization of Hom-HIQ children is concordant with their global brain processing and adaptation capacities as evidenced by their homogeneous IQ.
Collapse
Affiliation(s)
- Fanny Nusbaum
- Laboratoire Parcours Santé Systémique (EA4129), Université Claude Bernard-Lyon 1 & Centre PSYRENELyon, France
| | - Salem Hannoun
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,Faculty of Medicine, Abu-Haidar Neuroscience Institute, American University of BeirutBeirut, Lebanon
| | - Gabriel Kocevar
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Claudio Stamile
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France
| | - Pierre Fourneret
- Service de Psychopathologie du Développement, Hôpital Femme-Mère-Enfant, Hospices Civils de LyonBron, France
| | - Olivier Revol
- Service de Psychopathologie de l'Enfant et de l'Adolescent, Hôpital Neurologique, Hospices Civils de LyonBron, France
| | - Dominique Sappey-Marinier
- CREATIS (CNRS UMR5220 & INSERM U1206), Université Claude Bernard-Lyon 1Villeurbanne, France.,CERMEP-Imagerie du Vivant, Université de LyonBron, France
| |
Collapse
|
57
|
Lacalle-Aurioles M, Navas-Sánchez FJ, Alemán-Gómez Y, Olazarán J, Guzmán-De-Villoria JA, Cruz-Orduña I, Mateos-Pérez JM, Desco M. The Disconnection Hypothesis in Alzheimer's Disease Studied Through Multimodal Magnetic Resonance Imaging: Structural, Perfusion, and Diffusion Tensor Imaging. J Alzheimers Dis 2016; 50:1051-64. [PMID: 26890735 DOI: 10.3233/jad-150288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
According to the so-called disconnection hypothesis, the loss of synaptic inputs from the medial temporal lobes (MTL) in Alzheimer's disease (AD) may lead to reduced activity of target neurons in cortical areas and, consequently, to decreased cerebral blood flow (CBF) in those areas. The aim of this study was to assess whether hypoperfusion in parietotemporal and frontal cortices of patients with mild cognitive impairment who converted to AD (MCI-c) and patients with mild AD is associated with atrophy in the MTL and/or microstructural changes in the white matter (WM) tracts connecting these areas. We assessed these relationships by investigating correlations between CBF in hypoperfused areas, mean cortical thickness in atrophied regions of the MTL, and fractional anisotropy (FA) in WM tracts. In the MCI-c group, a strong correlation was observed between CBF of the superior parietal gyri and FA in the parahippocampal tracts (left: r = 0.90, p < 0.0001; right: r = 0.597, p = 0.024), and between FA in the right parahippocampal tract and the right precuneus (r = 0.551, p = 0.041). No significant correlations between CBF in hypoperfused regions and FA in the WM tract were observed in the AD group. These results suggest an association between perfusion deficits and altered WM tracts in prodromal AD, while microvasculature impairments may have a greater influence in more advanced stages. We did not find correlations between cortical thinning in the medial temporal lobes and decreased FA in the WM tracts of the limbic system in either group.
Collapse
Affiliation(s)
- María Lacalle-Aurioles
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Francisco Javier Navas-Sánchez
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Yasser Alemán-Gómez
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| | - Javier Olazarán
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Isabel Cruz-Orduña
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José María Mateos-Pérez
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain
| |
Collapse
|
58
|
Making Brains run Faster: are they Becoming Smarter? SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E88. [DOI: 10.1017/sjp.2016.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractA brief overview of structural and functional brain characteristics related to g is presented in the light of major neurobiological theories of intelligence: Neural Efficiency, P-FIT and Multiple-Demand system. These theories provide a framework to discuss the main objective of the paper: what is the relationship between individual alpha frequency (IAF) and g? Three studies were conducted in order to investigate this relationship: two correlational studies and a third study in which we experimentally induced changes in IAF by means of transcranial alternating current stimulation (tACS). (1) In a large scale study (n = 417), no significant correlations between IAF and IQ were observed. However, in males IAF positively correlated with mental rotation and shape manipulation and with an attentional focus on detail. (2) The second study showed sex-specific correlations between IAF (obtained during task performance) and scope of attention in males and between IAF and reaction time in females. (3) In the third study, individuals’ IAF was increased with tACS. The induced changes in IAF had a disrupting effect on male performance on Raven’s matrices, whereas a mild positive effect was observed for females. Neuro-electric activity after verum tACS showed increased desynchronization in the upper alpha band and dissociation between fronto-parietal and right temporal brain areas during performance on Raven’s matrices. The results are discussed in the light of gender differences in brain structure and activity.
Collapse
|
59
|
Cyprien F, de Champfleur NM, Deverdun J, Olié E, Le Bars E, Bonafé A, Mura T, Jollant F, Courtet P, Artero S. Corpus callosum integrity is affected by mood disorders and also by the suicide attempt history: A diffusion tensor imaging study. J Affect Disord 2016; 206:115-124. [PMID: 27472413 DOI: 10.1016/j.jad.2016.07.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/24/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Some MRI studies have noted alterations in the corpus callosum (CC) white matter integrity of individuals with mood disorders and also in patients with suicidal behavior. We investigated the specific impact of suicidal behavior on CC integrity in mood disorders. METHODS CC structural changes were assessed by diffusion tensor imaging (DTI) in 121 women 18-50-year-old): 41 with bipolar disorder (BD), 50 with major depressive disorder (MDD) and 30 healthy controls (HC). Fractional anisotropy (FA) and DTI metrics were calculated for the genu, body and splenium of CC and compared in the three groups by MANCOVA. Then, they were re-analyzed relative to the suicide attempt history within the MDD and BD groups and to the suicide number/severity. RESULTS FA values for the CC genu and body were lower in non-suicide attempters with BD than with MDD and in HC. Conversely, FA values for all CC regions were significantly lower in suicide attempters with BD than in HC. Finally, higher number of suicide attempts (>2) and elevated Suicidal Intent Scale score were associated with significant splenium alterations. LIMITATIONS Limitations include the cross-sectional design (non-causal study), the potential influence of medications and concerns about the generalizability to men. CONCLUSION Genu and body are altered in non-suicide attempters with BD, while splenium is specifically altered in suicide attempters, independently from their psychiatric status. History of suicide attempts may be a source of heterogeneity in the association between CC alterations and BD and may partially explain the variable results of previous studies.
Collapse
Affiliation(s)
- Fabienne Cyprien
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France
| | | | - Jérémy Deverdun
- University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France; CNRS, UMR 5221, Montpellier F-34093, France
| | - Emilie Olié
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France
| | | | - Alain Bonafé
- University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France
| | - Thibault Mura
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France; CIC 1001, Montpellier F-34000, France
| | - Fabrice Jollant
- McGill University, Department of Psychiatry, Canada; Douglas Mental Health University Institute, McGill Group for Suicide Studies, Montréal, Québec, Canada
| | - Philippe Courtet
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier, Montpellier F-34000, France; CHRU Montpellier, Montpellier F-34093, France; Fondamental Foundation, France.
| | - Sylvaine Artero
- Inserm, U1061, La Colombière Hospital, Montpellier F-34093, France; University of Montpellier, Montpellier F-34000, France.
| |
Collapse
|
60
|
Grazioplene RG, Chavez RS, Rustichini A, DeYoung CG. White matter correlates of psychosis-linked traits support continuity between personality and psychopathology. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:1135-1145. [PMID: 27819473 PMCID: PMC5117638 DOI: 10.1037/abn0000176] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The link between diagnoses of psychotic disorders and attenuated white matter connectivity is well established, but little is known about the degree to which similar white matter differences predict traits linked to psychosis-proneness in the general population. Moreover, intelligence is too rarely considered as a covariate in neural endophenotype studies, despite its known protective role against psychopathology in general and its associations with broad aspects of neural structure and function. To determine whether psychosis-linked personality traits are linearly associated with white matter microstructure, we examined white matter correlates of Psychoticism, Absorption, and Openness to Experience in a large community sample, covarying for sex, age, and IQ. Findings support our hypothesis that the white matter correlates of the shared variance of these traits overlap substantially with the frontal lobe white matter connectivity patterns characteristic of psychotic spectrum disorders. These findings provide biological support for the notion that liability to psychosis is distributed throughout the population, is evident in brain structure, and manifests as normal personality variation at subclinical levels. (PsycINFO Database Record
Collapse
|
61
|
Storsve AB, Fjell AM, Yendiki A, Walhovd KB. Longitudinal Changes in White Matter Tract Integrity across the Adult Lifespan and Its Relation to Cortical Thinning. PLoS One 2016; 11:e0156770. [PMID: 27253393 PMCID: PMC4890742 DOI: 10.1371/journal.pone.0156770] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/19/2016] [Indexed: 02/02/2023] Open
Abstract
A causal link between decreases in white matter (WM) integrity and cortical degeneration is assumed, but there is scarce knowledge on the relationship between these changes across the adult human lifespan. We investigated changes in thickness throughout the cortical mantle and WM tract integrity derived from T1 and diffusion weighted magnetic resonance imaging (MRI) scans in 201 healthy adults aged 23-87 years over a mean interval of 3.6 years. Fractional anisotropy (FA), mean (MD), radial (RD) and axial (AD) diffusivity changes were calculated for forceps minor and major and eight major white matter tracts in each hemisphere by use of a novel automated longitudinal tractography constrained by underlying anatomy (TRACULA) approach. We hypothesized that increasing MD and decreasing FA across tracts would relate to cortical thinning, with some anatomical specificity. WM integrity decreased across tracts non-uniformly, with mean annual percentage decreases ranging from 0.20 in the Inferior Longitudinal Fasciculus to 0.65 in the Superior Longitudinal Fasciculus. For most tracts, greater MD increases and FA decreases related to more cortical thinning, in areas in part overlapping with but also outside the projected tract endings. The findings indicate a combination of global and tract-specific relationships between WM integrity and cortical thinning.
Collapse
Affiliation(s)
- Andreas B. Storsve
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
| | - Anders M. Fjell
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Kristine B. Walhovd
- Research Group for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, 0373, Oslo, Norway
- Department of Physical Medicine and Rehabilitation, Unit of Neuropsychology, Oslo University Hospital, 0424, Oslo, Norway
| |
Collapse
|
62
|
Herweh C, Hess K, Meyding-Lamadé U, Bartsch AJ, Stippich C, Jost J, Friedmann-Bette B, Heiland S, Bendszus M, Hähnel S. Reduced white matter integrity in amateur boxers. Neuroradiology 2016; 58:911-20. [PMID: 27230917 DOI: 10.1007/s00234-016-1705-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/13/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Professional boxing can lead to chronic traumatic encephalopathy, a variant of traumatic brain injury (TBI). Its occurrence in amateur boxers is a matter of debate since amateur boxing is considered to be less harmful due to more strict regulations. However, several studies using different methodological approaches have revealed subtle signs of TBI even in amateurs. Diffusion tensor imaging (DTI) is sensitive to microscopic white matter changes and has been proven useful in TBI when routine MR imaging often is unrevealing. METHODS DTI, with tract-based spatial statistics (TBSS) together with neuropsychological examination of executive functions and memory, was used to investigate a collective of 31 male amateur boxers and 31 age-matched controls as well as a subgroup of 19 individuals, respectively, who were additionally matched for intellectual performance (IQ). RESULTS All participants had normal findings in neurological examination and conventional MR. Amateur boxers did not show deficits in neuropsychological tests when their IQ was taken into account. Fractional anisotropy was significantly reduced, while diffusivity measures were increased along central white matter tracts in the boxers group. These changes were in part associated with the number of fights. CONCLUSIONS TBSS revealed widespread white matter disturbance partially related to the individual fighting history in amateur boxers. These findings closely resemble those in patients with accidental TBI and indicate similar histological changes in amateur boxers.
Collapse
Affiliation(s)
- Christian Herweh
- Department of Neuroradiology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Klaus Hess
- Department of Neurology, University of Heidelberg Medical School, Heidelberg, Germany
| | | | - Andreas J Bartsch
- Department of Neuroradiology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christoph Stippich
- Department of Neuroradiology, University Hospital Basel, Basel, Switzerland
| | - Joachim Jost
- National Training Center for Boxing, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine, University of Heidelberg Medical School, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stefan Hähnel
- Department of Neuroradiology, University of Heidelberg Medical School, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
63
|
Pisner DA, Smith R, Alkozei A, Klimova A, Killgore WDS. Highways of the emotional intellect: white matter microstructural correlates of an ability-based measure of emotional intelligence. Soc Neurosci 2016; 12:253-267. [PMID: 27072165 DOI: 10.1080/17470919.2016.1176600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Individuals differ in their ability to understand emotional information and apply that understanding to make decisions and solve problems effectively - a construct known as Emotional Intelligence (EI). While considerable evidence supports the importance of EI in social and occupational functioning, the neural underpinnings of this capacity are relatively unexplored. We used Tract-Based Spatial Statistics (TBSS) to determine the white matter correlates of EI as measured by the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Participants included 32 healthy adults (16 men; 16 women), aged 18-45 years. White matter integrity in key tracts was positively correlated with the Strategic Area branches of the MSCEIT (Understanding Emotions and Managing Emotions), but not the Experiential branches (Perceiving and Facilitating Emotions). Specifically, the Understanding Emotions branch was associated with greater fractional anisotropy (FA) within somatosensory and sensory-motor fiber bundles, particularly those of the left superior longitudinal fasciculus and corticospinal tract. Managing Emotions was associated with greater FA within frontal-affective association tracts including the anterior forceps and right uncinate fasciculus, along with frontal-parietal cingulum and interhemispheric corpus callosum tracts. These findings suggest that specific components of EI are directly related to the structural microarchitecture of major axonal pathways.
Collapse
Affiliation(s)
- Derek A Pisner
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Ryan Smith
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Anna Alkozei
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - Aleksandra Klimova
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA
| | - William D S Killgore
- a Social, Cognitive and Affective Neuroscience Laboratory , University of Arizona College of Medicine , Tucson , AZ , USA.,b Social Cognitive and Affective Neuroscience Laboratory, McLean Hospital , Harvard Medical School , Belmont , MA , USA
| |
Collapse
|
64
|
Zhang L, Gan JQ, Wang H. Neurocognitive mechanisms of mathematical giftedness: A literature review. APPLIED NEUROPSYCHOLOGY-CHILD 2016; 6:79-94. [PMID: 27049546 DOI: 10.1080/21622965.2015.1119692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
65
|
Navas-Sánchez FJ, Carmona S, Alemán-Gómez Y, Sánchez-González J, Guzmán-de-Villoria J, Franco C, Robles O, Arango C, Desco M. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents. Hum Brain Mapp 2016; 37:1893-902. [PMID: 26917433 DOI: 10.1002/hbm.23143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
Abstract
Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francisco J Navas-Sánchez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | - Susana Carmona
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain
| | - Yasser Alemán-Gómez
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Juan Guzmán-de-Villoria
- Departamento De Radiología, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Carolina Franco
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain
| | - Olalla Robles
- Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Centro De Referencia Estatal De Atención Al Daño Cerebral (CEADAC), Madrid, Spain
| | - Celso Arango
- Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Departamento De Psiquiatría Infantil Y Adolescente, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Biomédica Gregorio Marañón, Madrid, Spain.,Departamento De Psiquiatría, Facultad De Medicina, Universidad Complutense De Madrid, Madrid, Spain
| | - Manuel Desco
- Departamento De Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III Madrid, Madrid, Spain.,Centro De Investigación Biomédica En Red De Salud Mental (CIBERSAM), Madrid, Spain.,Unidad De Medicina Y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
66
|
Carpenter KLH, Li W, Wei H, Wu B, Xiao X, Liu C, Worley G, Egger HL. Magnetic susceptibility of brain iron is associated with childhood spatial IQ. Neuroimage 2016; 132:167-174. [PMID: 26899787 DOI: 10.1016/j.neuroimage.2016.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/23/2016] [Accepted: 02/09/2016] [Indexed: 02/09/2023] Open
Abstract
Iron is an essential micronutrient for healthy brain function and development. Because of the importance of iron in the brain, iron deficiency results in widespread and lasting effects on behavior and cognition. We measured iron in the basal ganglia of young children using a novel MRI method, quantitative susceptibility mapping, and examined the association of brain iron with age and cognitive performance. Participants were a community sample of 39 young children recruited from pediatric primary care who were participating in a 5-year longitudinal study of child brain development and anxiety disorders. The children were ages 7 to 11years old (mean age: 9.5years old) at the time of the quantitative susceptibility mapping scan. The differential abilities scale was administered when the children were 6years old to provide a measure of general intelligence and verbal (receptive and expressive), non-verbal, and spatial performance. Magnetic susceptibility values, which are linearly related to iron concentration in iron-rich areas, were extracted from regions of interest within iron-rich deep gray matter nuclei from the basal ganglia, including the caudate, putamen, substantia nigra, globus pallidus, and thalamus. Controlling for scan age, there was a significant positive association between iron in the basal ganglia and spatial IQ, with this effect being driven by iron in the right caudate We also replicated previous findings of a significant positive association between iron in the bilateral basal ganglia and age. Our finding of a positive association between spatial IQ and mean iron in the basal ganglia, and in the caudate specifically, suggests that iron content in specific regions of the iron-rich deep nuclei of the basal ganglia influences spatial intelligence. This provides a potential neurobiological mechanism linking deficits in spatial abilities reported in children who were severely iron deficient as infants to decreased iron within the caudate.
Collapse
Affiliation(s)
- Kimberly L H Carpenter
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA.
| | - Wei Li
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA; Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Hongjiang Wei
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Bing Wu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; GE Healthcare, Beijing, China
| | - Xue Xiao
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA; Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Gordon Worley
- Program in Neurodevelopmental Disabilities, Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Helen Link Egger
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
67
|
Abnormalities of white matter integrity in the corpus callosum of adolescents with PTSD after childhood sexual abuse: a DTI study. Eur Child Adolesc Psychiatry 2016; 25:869-78. [PMID: 26700102 PMCID: PMC4967100 DOI: 10.1007/s00787-015-0805-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/28/2015] [Indexed: 11/24/2022]
Abstract
This study seeks to determine whether white matter integrity in the brain differs between adolescents with post-traumatic stress disorder (PTSD) due to childhood sexual abuse (CSA) and matched healthy adolescents and whether there is a relationship between white matter integrity and symptom severity in the patient group. Using 3T diffusion tensor imaging, we examined fractional anisotropy (FA) in a group of adolescents with CSA-related PTSD (n = 20) and matched healthy controls (n = 20), in a region of interest consisting of the bilateral uncinate fasciculus (UF), the genu, splenium and body of the corpus callosum (CC), and the bilateral cingulum. In addition, we performed an exploratory whole brain analysis. Trauma symptomatology was measured with the Trauma Symptom Checklist for Children (TSCC) to enable correlational analyses between FA differences and trauma symptomatology. The PTSD group had significantly lower FA values in the genu, midbody and splenium of the CC in comparison with controls (p < 0.05, tfce corrected). Post hoc analyses of the eigenvalues of the DTI scan showed increased radial and mean diffusivity in the patient group. In addition, we found a significant negative correlation between scores on the anger subscale of the TSCC and FA values in the left body of the CC in patients (p < 0.05). Adolescents with CSA-related PTSD show decreased FA in the CC, with abnormalities in the integrity of the left body of the CC being related to anger symptoms. These findings suggest that early trauma exposure affects the development of the CC, which may play a role in the pathophysiology of PTSD in adolescents.
Collapse
|
68
|
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci 2015; 16:23-35. [PMID: 26602958 PMCID: PMC4691379 DOI: 10.1016/j.dcn.2015.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.
Collapse
Affiliation(s)
- Mary P Becker
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - R L Muetzel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States
| | - M Luciana
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| |
Collapse
|
69
|
Krick CM, Neuhaus A, Klewin C, Wörner T, Kreis S, Reith W. [fMRI and DTI in delayed development of number processing]. Radiologe 2015; 55:788-94. [PMID: 26245986 DOI: 10.1007/s00117-015-2854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal correlate of the current cultural performance arose from developmental processes that can be observed by functional and anatomical magnetic resonance imaging. The velocity of these maturation processes occurs differently between adolescents, causing implications for both school career and academic performance. Regarding spatial-numerical cognition the myelinization of the superior longitudinal bundle appears to be crucial because this fiber connection intermediates between the linguistic nature of number words and conception of their spatial-numerical magnitude. The neuroscientific observation of anatomical brain maturation and its influence on school-relevant number processing may be helpful for educational purposes as well as for school psychology.
Collapse
Affiliation(s)
- C M Krick
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland.
| | - A Neuhaus
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland
| | - C Klewin
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland
| | - T Wörner
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland
| | - S Kreis
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland
| | - W Reith
- Klinik für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum des Saarlandes, Kirrberger Straße, 66424, Homburg/Saar, Deutschland
| |
Collapse
|
70
|
Green T, Barnea-Goraly N, Raman M, Hall SS, Lightbody AA, Bruno JL, Quintin EM, Reiss AL. Specific effect of the fragile-X mental retardation-1 gene (FMR1) on white matter microstructure. Br J Psychiatry 2015; 207:143-8. [PMID: 25792692 PMCID: PMC4523928 DOI: 10.1192/bjp.bp.114.151654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/13/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fragile-X syndrome (FXS) is a neurodevelopmental disorder associated with intellectual disability and neurobiological abnormalities including white matter microstructural differences. White matter differences have been found relative to neurotypical individuals. AIMS To examine whether FXS white matter differences are related specifically to FXS or more generally to the presence of intellectual disability. METHOD We used voxel-based and tract-based analytic approaches to compare individuals with FXS (n = 40) with gender- and IQ-matched controls (n = 30). RESULTS Individuals with FXS had increased fractional anisotropy and decreased radial diffusivity values compared with IQ-matched controls in the inferior longitudinal, inferior fronto-occipital and uncinate fasciculi. CONCLUSIONS The genetic variation associated with FXS affects white matter microstructure independently of overall IQ. White matter differences, found in FXS relative to IQ-matched controls, are distinct from reported differences relative to neurotypical controls. This underscores the need to consider cognitive ability differences when investigating white matter microstructure in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan L. Reiss
- Correspondence: Allan L. Reiss, Center for Interdisciplinary Brain Sciences Research, 401 Quarry Road, MC 5795, Stanford, CA 94305, USA.
| |
Collapse
|
71
|
Hartzell JF, Davis B, Melcher D, Miceli G, Jovicich J, Nath T, Singh NC, Hasson U. Brains of verbal memory specialists show anatomical differences in language, memory and visual systems. Neuroimage 2015; 131:181-92. [PMID: 26188261 DOI: 10.1016/j.neuroimage.2015.07.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/14/2022] Open
Abstract
We studied a group of verbal memory specialists to determine whether intensive oral text memory is associated with structural features of hippocampal and lateral-temporal regions implicated in language processing. Professional Vedic Sanskrit Pandits in India train from childhood for around 10years in an ancient, formalized tradition of oral Sanskrit text memorization and recitation, mastering the exact pronunciation and invariant content of multiple 40,000-100,000 word oral texts. We conducted structural analysis of gray matter density, cortical thickness, local gyrification, and white matter structure, relative to matched controls. We found massive gray matter density and cortical thickness increases in Pandit brains in language, memory and visual systems, including i) bilateral lateral temporal cortices and ii) the anterior cingulate cortex and the hippocampus, regions associated with long and short-term memory. Differences in hippocampal morphometry matched those previously documented for expert spatial navigators and individuals with good verbal working memory. The findings provide unique insight into the brain organization implementing formalized oral knowledge systems.
Collapse
Affiliation(s)
- James F Hartzell
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy.
| | - Ben Davis
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - David Melcher
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| | - Tanmay Nath
- National Brain Research Centre, Manesar, Gurgaon Dist., Haryana 122 050, India
| | | | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, 38060, Italy
| |
Collapse
|
72
|
Muetzel RL, Mous SE, van der Ende J, Blanken LME, van der Lugt A, Jaddoe VWV, Verhulst FC, Tiemeier H, White T. White matter integrity and cognitive performance in school-age children: A population-based neuroimaging study. Neuroimage 2015; 119:119-28. [PMID: 26067345 DOI: 10.1016/j.neuroimage.2015.06.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/25/2022] Open
Abstract
Child and adolescent brain development are typically accompanied by marked improvements in a wide range of cognitive abilities. However, limited information is available surrounding the role of white matter in shaping cognitive abilities in children. The current study examined associations between white matter microstructure and cognitive performance in a large sample (n=778) of 6- to 10-year-old children. Results show white matter microstructure is related to non-verbal intelligence and to visuospatial ability, independent of age. Specificity was demonstrated, as white matter associations with visuospatial ability were independent of general intellectual ability. Associations between white matter integrity and cognition were similar in boys and girls. In summary, results demonstrate white matter structure-function associations are present in children, independent of age and broader cognitive abilities. The presence of such associations in the general population is informative for studies examining child psychopathology.
Collapse
Affiliation(s)
- Ryan L Muetzel
- The Generation R Study Group, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Sabine E Mous
- The Generation R Study Group, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jan van der Ende
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Laura M E Blanken
- The Generation R Study Group, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | | | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Frank C Verhulst
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Radiology, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
73
|
Moeller K, Willmes K, Klein E. A review on functional and structural brain connectivity in numerical cognition. Front Hum Neurosci 2015; 9:227. [PMID: 26029075 PMCID: PMC4429582 DOI: 10.3389/fnhum.2015.00227] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 27 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intra)parietal as well as (pre)frontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how gray matter areas associated with specific number-related representations may work together.
Collapse
Affiliation(s)
- Korbinian Moeller
- Knowledge Media Research Center Tübingen, Germany ; Department of Psychology, Eberhard-Karls University Tübingen, Germany
| | - Klaus Willmes
- Department of Neurology, Section Neuropsychology, University Hospital, RWTH Aachen University Aachen, Germany
| | - Elise Klein
- Knowledge Media Research Center Tübingen, Germany ; Department of Neurology, Section Neuropsychology, University Hospital, RWTH Aachen University Aachen, Germany
| |
Collapse
|
74
|
Wang L, Wee CY, Suk HI, Tang X, Shen D. MRI-based intelligence quotient (IQ) estimation with sparse learning. PLoS One 2015; 10:e0117295. [PMID: 25822851 PMCID: PMC4379054 DOI: 10.1371/journal.pone.0117295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
In this paper, we propose a novel framework for IQ estimation using Magnetic Resonance Imaging (MRI) data. In particular, we devise a new feature selection method based on an extended dirty model for jointly considering both element-wise sparsity and group-wise sparsity. Meanwhile, due to the absence of large dataset with consistent scanning protocols for the IQ estimation, we integrate multiple datasets scanned from different sites with different scanning parameters and protocols. In this way, there is large variability in these different datasets. To address this issue, we design a two-step procedure for 1) first identifying the possible scanning site for each testing subject and 2) then estimating the testing subject's IQ by using a specific estimator designed for that scanning site. We perform two experiments to test the performance of our method by using the MRI data collected from 164 typically developing children between 6 and 15 years old. In the first experiment, we use a multi-kernel Support Vector Regression (SVR) for estimating IQ values, and obtain an average correlation coefficient of 0.718 and also an average root mean square error of 8.695 between the true IQs and the estimated ones. In the second experiment, we use a single-kernel SVR for IQ estimation, and achieve an average correlation coefficient of 0.684 and an average root mean square error of 9.166. All these results show the effectiveness of using imaging data for IQ prediction, which is rarely done in the field according to our knowledge.
Collapse
Affiliation(s)
- Liye Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong-Yaw Wee
- IDEA Lab, Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dinggang Shen
- IDEA Lab, Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
75
|
Jolles D, Wassermann D, Chokhani R, Richardson J, Tenison C, Bammer R, Fuchs L, Supekar K, Menon V. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning. Brain Struct Funct 2015; 221:1337-51. [PMID: 25604464 PMCID: PMC4819785 DOI: 10.1007/s00429-014-0975-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 12/20/2014] [Indexed: 01/18/2023]
Abstract
Plasticity of white matter tracts is thought to be essential for cognitive development and academic skill acquisition in children. However, a dearth of high-quality diffusion tensor imaging (DTI) data measuring longitudinal changes with learning, as well as methodological difficulties in multi-time point tract identification have limited our ability to investigate plasticity of specific white matter tracts. Here, we examine learning-related changes of white matter tracts innervating inferior parietal, prefrontal and temporal regions following an intense 2-month math tutoring program. DTI data were acquired from 18 third grade children, both before and after tutoring. A novel fiber tracking algorithm based on a White Matter Query Language (WMQL) was used to identify three sections of the superior longitudinal fasciculus (SLF) linking frontal and parietal (SLF-FP), parietal and temporal (SLF-PT) and frontal and temporal (SLF-FT) cortices, from which we created child-specific probabilistic maps. The SLF-FP, SLF-FT, and SLF-PT tracts identified with the WMQL method were highly reliable across the two time points and showed close correspondence to tracts previously described in adults. Notably, individual differences in behavioral gains after 2 months of tutoring were specifically correlated with plasticity in the left SLF-FT tract. Our results extend previous findings of individual differences in white matter integrity, and provide important new insights into white matter plasticity related to math learning in childhood. More generally, our quantitative approach will be useful for future studies examining longitudinal changes in white matter integrity associated with cognitive skill development.
Collapse
Affiliation(s)
- Dietsje Jolles
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
- Department of Education and Child Studies, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
| | - Demian Wassermann
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA USA
- Athena EPI, INRIA Sophia Antipolis - Méditerranée, 2004 route des Lucioles, 06902 Sophia Antipolis, France
| | - Ritika Chokhani
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
| | - Jennifer Richardson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
| | - Caitlin Tenison
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
| | - Roland Bammer
- Department of Radiology, Center for Quantitative Neuroimaging, Stanford University School of Medicine, Stanford, CA USA
| | - Lynn Fuchs
- Department of Special Education, Vanderbilt University, Nashville, TN USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1070 Arastradero Road, Suite 220, Palo Alto, CA 94304 USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA USA
- Program in Neuroscience, Stanford University School of Medicine, Stanford, CA USA
- Symbolic Systems Program, Stanford University School of Medicine, Stanford, CA USA
| |
Collapse
|
76
|
Zhang L, Gan JQ, Wang H. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning. Neuroscience 2015; 289:334-48. [PMID: 25595993 DOI: 10.1016/j.neuroscience.2014.12.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
Abstract
Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process.
Collapse
Affiliation(s)
- L Zhang
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China
| | - J Q Gan
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China; School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - H Wang
- Key Lab of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
77
|
Matejko AA, Ansari D. Drawing connections between white matter and numerical and mathematical cognition: A literature review. Neurosci Biobehav Rev 2015; 48:35-52. [DOI: 10.1016/j.neubiorev.2014.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
78
|
Dunst B, Benedek M, Koschutnig K, Jauk E, Neubauer AC. Sex differences in the IQ-white matter microstructure relationship: a DTI study. Brain Cogn 2014; 91:71-8. [PMID: 25238623 PMCID: PMC4245721 DOI: 10.1016/j.bandc.2014.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/11/2014] [Accepted: 08/23/2014] [Indexed: 12/29/2022]
Abstract
Sex differences in the relationship between general intelligence and brain structure are a topic of increasing research interest. Early studies focused mainly on gray and white matter differences using voxel-based morphometry, while more recent studies investigated neural fiber tracts using diffusion tensor imaging (DTI) to analyze the white matter microstructure. In this study we used tract-based spatial statistics (TBSS) on DTI to test how intelligence is associated with brain diffusion indices and to see whether this relationship differs between men and women. 63 Men and women divided into groups of lower and higher intelligence were selected. Whole-brain DTI scans were analyzed using TBSS calculating maps of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The results reveal that the white matter microstructure differs between individuals as a function of intelligence and sex. In men, higher intelligence was related to higher FA and lower RD in the corpus callosum. In women, in contrast, intelligence was not related to the white matter microstructure. The higher values of FA and lower values of RD suggest that intelligence is associated with higher myelination and/or a higher number of axons particularly in men. This microstructural difference in the corpus callosum may increase cognitive functioning by reducing inter-hemispheric transfer time and thus account for more efficient brain functioning in men.
Collapse
Affiliation(s)
- Beate Dunst
- Department of Psychology, University of Graz, Austria.
| | | | | | - Emanuel Jauk
- Department of Psychology, University of Graz, Austria.
| | | |
Collapse
|
79
|
Anderson A, Burggren A. Cognitive and neurodevelopmental benefits of extended formula-feeding in infants: re: Deoni et al. 2013. Neuroimage 2014; 100:706-9. [PMID: 24836012 DOI: 10.1016/j.neuroimage.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022] Open
Abstract
The recent Deoni et al. (2013) manuscript proposed that breastfeeding was associated with increased cognitive ability and white-matter in older children (over 26 months), using ms-DESPOT MRI imaging to indirectly measure white matter in children who were either breastfed, formula fed, or combined breast+formula fed. In this response, we identify limitations in drawing causal inference among white matter, cognitive ability, and breastfeeding. We propose that the observed cognitive and neurodevelopmental differences between breastfed and formula-fed infants might actually be caused by the premature introduction of cow's milk in the second year of life, among other contributing factors. The implication of a causal relationship between intelligence and white matter metrics, especially in a developmentally young population, is premature given the recency of this field. The original analyses did not control for important covariates; when comparing both white matter and test scores, mothers were not controlled for age and socio-economic status (SES) and their children were not controlled for gender. Raw test scores, instead of age-adjusted test scores, were used even though the children were of different ages. Mothers were not controlled for reason(s) not to breastfeed, even though many prenatal factors are known to predict this such as stress, parity, obesity, and smoking habits. The observed cognitive ability and white matter benefits identified primarily within the long-term breastfed children are at least partially attributable to other factors such as age, gender, and SES. We suggest methodological approaches to removing such ambiguity, and ways to dissociate cause from effect. The formula and breastfeeding groups didn't show differences until the "formula fed" children likely had been fed cow's milk for longer than they had been fed formula, at 2.2 years. The greatest cognitive differences however were observed within the high SES breastfed infants depending on breastfeeding duration; infants who were breastfed over 15 months showed increased cognitive ability compared to those breastfed less than months. This implicates the source of dairy during the second year of life, and not other SES factors or infant formula, as the most likely nutritional factor responsible for the observed differences within the breastfed children. Given the known nutritional deficiencies of cow's milk, these findings imply infants who received cow's milk during the second year of life were at a disadvantage compared to those who were breastfed, independent of whether they were fed formula or breast milk during the first year of life. This evidence suggests that infants should receive formula in lieu of cow's milk when breast milk is unavailable as a dairy source, until roughly 2 years of age.
Collapse
Affiliation(s)
- Ariana Anderson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, CHS Suite C8-734, Los Angeles, CA 90095, USA.
| | - Alison Burggren
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, CHS Suite C8-734, Los Angeles, CA 90095, USA
| |
Collapse
|
80
|
Rhein C, Mühle C, Richter-Schmidinger T, Alexopoulos P, Doerfler A, Kornhuber J. Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume. PLoS One 2014; 9:e93623. [PMID: 24699871 PMCID: PMC3974758 DOI: 10.1371/journal.pone.0093623] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/06/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. METHODOLOGY/PRINCIPAL FINDINGS We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. CONCLUSIONS/SIGNIFICANCE The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to cognitive performance.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|