51
|
Lescrinier EMHP, Tessari M, van Kuppeveld FJM, Melchers WJG, Hilbers CW, Heus HA. Structure of the pyrimidine-rich internal loop in the poliovirus 3'-UTR: the importance of maintaining pseudo-2-fold symmetry in RNA helices containing two adjacent non-canonical base-pairs. J Mol Biol 2003; 331:759-69. [PMID: 12909008 DOI: 10.1016/s0022-2836(03)00787-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Formation of non-canonical base-pairs in RNA often plays a very important functional role. In addition they frequently serve as factors in stabilizing the secondary structure elements that provide the frame of large compact RNA structures. Here we describe the structure of an internal loop containing a 5'CU3'/5'UU3' non-canonical tandem base-pair motif, which is conserved within the 3'-UTR of poliovirus-like enteroviruses. Structural details reveal striking regularities of the local helix geometry, resulting from alternating geometrical adjustments, which are important for understanding and predicting stabilities and configurations of tandem non-canonical base-pairs. The C-U and U-U base-pairs severely contract the minor groove of the sugar-phosphate backbone, which might be important for protein recognition or binding to other RNA elements.
Collapse
Affiliation(s)
- Eveline M H P Lescrinier
- NSR Center for Molecular Structure, Design and Synthesis, Laboratory of Biophysical Chemistry, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
52
|
Morasco BJ, Sharma N, Parilla J, Flanegan JB. Poliovirus cre(2C)-dependent synthesis of VPgpUpU is required for positive- but not negative-strand RNA synthesis. J Virol 2003; 77:5136-44. [PMID: 12692216 PMCID: PMC153981 DOI: 10.1128/jvi.77.9.5136-5144.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cre(2C) hairpin is a cis-acting replication element in poliovirus RNA and serves as a template for the synthesis of VPgpUpU. We investigated the role of the cre(2C) hairpin on VPgpUpU synthesis and viral RNA replication in preinitiation RNA replication complexes isolated from HeLa S10 translation-RNA replication reactions. cre(2C) hairpin mutations that block VPgpUpU synthesis in reconstituted assays with purified VPg and poliovirus polymerase were also found to completely inhibit VPgpUpU synthesis in preinitiation replication complexes. Surprisingly, blocking VPgpUpU synthesis by mutating the cre(2C) hairpin had no significant effect on negative-strand synthesis but completely inhibited positive-strand synthesis. Negative-strand RNA synthesized in these reactions immunoprecipitated with anti-VPg antibody and demonstrated that it was covalently linked to VPg. This indicated that VPg was used to initiate negative-strand RNA synthesis, although the cre(2C)-dependent synthesis of VPgpUpU was inhibited. Based on these results, we concluded that the cre(2C)-dependent synthesis of VPgpUpU was required for positive- but not negative-strand RNA synthesis. These findings suggest a replication model in which negative-strand synthesis initiates with VPg uridylylated in the 3' poly(A) tail in virion RNA and positive-strand synthesis initiates with VPgpUpU synthesized on the cre(2C) hairpin. The pool of excess VPgpUpU synthesized on the cre(2C) hairpin should support high levels of positive-strand synthesis and thereby promote the asymmetric replication of poliovirus RNA.
Collapse
Affiliation(s)
- B Joan Morasco
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville 32610-0245, USA
| | | | | | | |
Collapse
|
53
|
Murray KE, Barton DJ. Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 2003; 77:4739-50. [PMID: 12663781 PMCID: PMC152113 DOI: 10.1128/jvi.77.8.4739-4750.2003] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cis-acting replication element (CRE) is a 61-nucleotide stem-loop RNA structure found within the coding sequence of poliovirus protein 2C. Although the CRE is required for viral RNA replication, its precise role(s) in negative- and positive-strand RNA synthesis has not been defined. Adenosine in the loop of the CRE RNA structure functions as the template for the uridylylation of the viral protein VPg. VPgpUpU(OH), the predominant product of CRE-dependent VPg uridylylation, is a putative primer for the poliovirus RNA-dependent RNA polymerase. By examining the sequential synthesis of negative- and positive-strand RNAs within preinitiation RNA replication complexes, we found that mutations that disrupt the structure of the CRE prevent VPg uridylylation and positive-strand RNA synthesis. The CRE mutations that inhibited the synthesis of VPgpUpU(OH), however, did not inhibit negative-strand RNA synthesis. A Y3F mutation in VPg inhibited both VPgpUpU(OH) synthesis and negative-strand RNA synthesis, confirming the critical role of the tyrosine hydroxyl of VPg in VPg uridylylation and negative-strand RNA synthesis. trans-replication experiments demonstrated that the CRE and VPgpUpU(OH) were not required in cis or in trans for poliovirus negative-strand RNA synthesis. Because these results are inconsistent with existing models of poliovirus RNA replication, we propose a new four-step model that explains the roles of VPg, the CRE, and VPgpUpU(OH) in the asymmetric replication of poliovirus RNA.
Collapse
Affiliation(s)
- Kenneth E Murray
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
54
|
Dollenmaier G, Weitz M. Interaction of glyceraldehyde-3-phosphate dehydrogenase with secondary and tertiary RNA structural elements of the hepatitis A virus 3' translated and non-translated regions. J Gen Virol 2003; 84:403-414. [PMID: 12560573 DOI: 10.1099/vir.0.18501-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins interacting with RNA structures at the 3' non-translated region (3'NTR) of picornaviruses are probably important during viral RNA replication. We have shown previously that a dominant cellular cytoplasmic protein of 38 kDa (p38) interacts with the 3'NTR and upstream regions of the hepatitis A virus (HAV) RNA (Kusov et al., J Virol 70, 1890-1897, 1996). Immunological and biochemical analyses of p38 have indicated that it is identical to GAPDH, which has previously been described as modulating translational regulation of the HAV RNA by interacting with the 5'NTR (Schultz et al., J Biol Chem 271, 14134-14142, 1996). Three separate binding regions for GAPDH in the 3'NTR and in the upstream 3D polymerase-coding region were identified. Structural analysis of these RNA regions by computer modelling and direct enzymatic cleavage suggested the presence of several AU-rich stem-loop structures having the potential for tertiary interactions. Binding of GAPDH to these structures was confirmed by RNA footprint analysis and resulted in the loss of double-stranded RNA regions. A different panel of RNA binding proteins (p28, p41 and p65) was detected in the ribosomal fractions of several cell lines (BSC-1, FRhK-4 and HeLa), whereas RNA binding of the GAPDH that was also present in these fractions was only marginal or absent.
Collapse
Affiliation(s)
- Günter Dollenmaier
- Institute of Clinical Microbiology and Immunology, Frohbergstrasse 3, 9001 St Gallen, Switzerland
| | - Manfred Weitz
- Institute of Clinical Microbiology and Immunology, Frohbergstrasse 3, 9001 St Gallen, Switzerland
| |
Collapse
|
55
|
Abstract
Current understanding of the molecular basis of pathogenesis of foot-and-mouth disease (FMD) has been achieved through over 100 years of study into the biology of the etiologic agent, FMDV. Over the last 40 years, classical biochemical and physical analyses of FMDV grown in cell culture have helped to reveal the structure and function of the viral proteins, while knowledge gained by the study of the virus' genetic diversity has helped define structures that are essential for replication and production of disease. More recently, the availability of genetic engineering methodology has permitted the direct testing of hypotheses formulated concerning the role of individual RNA structures, coding regions and polypeptides in viral replication and disease. All of these approaches have been aided by the simultaneous study of other picornavirus pathogens of animals and man, most notably poliovirus. Although many questions of how FMDV causes its devastating disease remain, the following review provides a summary of the current state of knowledge into the molecular basis of the virus' interaction with its host that produces one of the most contagious and frightening diseases of animals or man.
Collapse
Affiliation(s)
- Peter W Mason
- USDA, ARS Plum Island Animal Disease Center, ARS. PO Box 848, Greenport, NY 11944, USA.
| | | | | |
Collapse
|
56
|
Goodfellow IG, Kerrigan D, Evans DJ. Structure and function analysis of the poliovirus cis-acting replication element (CRE). RNA (NEW YORK, N.Y.) 2003; 9:124-37. [PMID: 12554882 PMCID: PMC1370376 DOI: 10.1261/rna.2950603] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 09/25/2002] [Indexed: 05/20/2023]
Abstract
The poliovirus cis-acting replication element (CRE) templates the uridylylation of VPg, the protein primer for genome replication. The CRE is a highly conserved structural RNA element in the enteroviruses and located within the polyprotein-coding region of the genome. We have determined the native structure of the CRE, defined the regions of the structure critical for activity, and investigated the influence of genomic location on function. Our results demonstrate that a 14-nucleotide unpaired terminal loop, presented on a suitably stable stem, is all that is required for function. These conclusions complement the recent analysis of the 14-nucleotide terminal loop in the CRE of human rhinovirus type 14. The CRE can be translocated to the 5' noncoding region of the genome, at least 3.7-kb distant from the native location, without adversely influencing activity, and CRE duplications do not adversely influence replication. We do not have evidence for a specific interaction between the CRE and the RNA-binding 3CD(pro) complex, an essential component of the uridylylation reaction, and the mechanism by which the CRE is coordinated and orientated during the reaction remains unclear. These studies provide a detailed overview of the structural determinants required for CRE function, and will facilitate a better understanding of the requirements for picornavirus replication.
Collapse
Affiliation(s)
- Ian G Goodfellow
- Faculty of Biomedical and Life Sciences, Division of Virology, University of Glasgow, Church Street, UK
| | | | | |
Collapse
|
57
|
Merkle I, van Ooij MJM, van Kuppeveld FJM, Glaudemans DHRF, Galama JMD, Henke A, Zell R, Melchers WJG. Biological significance of a human enterovirus B-specific RNA element in the 3' nontranslated region. J Virol 2002; 76:9900-9. [PMID: 12208967 PMCID: PMC136489 DOI: 10.1128/jvi.76.19.9900-9909.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2002] [Accepted: 06/24/2002] [Indexed: 11/20/2022] Open
Abstract
The secondary structures predicted for the enteroviral 3' nontranslated region (3'NTR) all seem to indicate a conformation consisting of two (X and Y) hairpin structures. The higher-order RNA structure of the 3'NTR appears to exist as an intramolecular kissing interaction between the loops of these two hairpin structures. The enterovirus B-like subgroup possesses an additional stem-loop structure, domain Z, which is not present in the poliovirus-like enteroviruses. It has been suggested that the Z domain originated from a burst of short sequence repetitions (E. V. Pilipenko, S. V. Maslova, A. N. Sinyakov, and V. I. Agol, Nucleic Acids Res. 20:1739-1745, 1992). However, no functional features have yet been ascribed to this enterovirus B-like-specific RNA element in the 3'NTR. In this study, we tested the functional characteristics and biological significance of domain Z. A mutant of the cardiovirulent coxsackievirus group B3 strain Nancy which completely lacked the Z domain and which therefore acquired enterovirus C-like secondary structures exhibited a wild-type growth phenotype, as determined by single-cycle growth analysis with BGM cells. This result proves that the Z domain is virtually dispensable for viral growth in tissue cultures. Partial distortion of the Z domain structure resulted in a disabled virus with reduced growth kinetics, probably due to alternative conformations of the overall structure of the domain. Infection of mice showed that the recombinant coxsackievirus group B3 mutant which completely lacked the Z domain was less virulent. Pancreatic tissues from mice infected with wild-type virus and recombinant virus were equally affected. However, the heart tissue from mice infected with the recombinant virus showed only slight signs of myocarditis. These results suggest that the enterovirus B-like-specific Z domain plays a role in coxsackievirus-induced pathogenesis.
Collapse
Affiliation(s)
- Ingrid Merkle
- Institute of Virology, Friedrich Schiller University, D-07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Gustin KE, Sarnow P. Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 2002; 76:8787-96. [PMID: 12163599 PMCID: PMC136411 DOI: 10.1128/jvi.76.17.8787-8796.2002] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 06/06/2002] [Indexed: 12/18/2022] Open
Abstract
Nucleocytoplasmic trafficking pathways and the status of nuclear pore complex (NPC) components were examined in cells infected with rhinovirus type 14. A variety of shuttling and nonshuttling nuclear proteins, using multiple nuclear import pathways, accumulated in the cytoplasm of cells infected with rhinovirus. An in vitro nuclear import assay with semipermeabilized infected cells confirmed that nuclear import was inhibited and that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the NPC was prevented in rhinovirus-infected cells. The relocation of cellular proteins and inhibition of nuclear import correlated with the degradation of two NPC components, Nup153 and p62. The degradation of Nup153 and p62 was not due to induction of apoptosis, because p62 was not proteolyzed in apoptotic HeLa cells, and Nup153 was cleaved to produce a 130-kDa cleavage product that was not observed in cells infected with poliovirus or rhinovirus. The finding that both poliovirus and rhinovirus cause inhibition of nuclear import and degradation of NPC components suggests that this may be a common feature of the replicative cycle of picornaviruses. Inhibition of nuclear import is predicted to result in the cytoplasmic accumulation of a large number of nuclear proteins that could have functions in viral translation, RNA synthesis, packaging, or assembly. Additionally, inhibition of nuclear import also presents a novel strategy whereby cytoplasmic RNA viruses can evade host immune defenses by preventing signal transduction into the nucleus.
Collapse
Affiliation(s)
- Kurt E Gustin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
59
|
Yang Y, Rijnbrand R, McKnight KL, Wimmer E, Paul A, Martin A, Lemon SM. Sequence requirements for viral RNA replication and VPg uridylylation directed by the internal cis-acting replication element (cre) of human rhinovirus type 14. J Virol 2002; 76:7485-94. [PMID: 12097561 PMCID: PMC136355 DOI: 10.1128/jvi.76.15.7485-7494.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Until recently, the cis-acting signals required for replication of picornaviral RNAs were believed to be restricted to the 5' and 3' noncoding regions of the genome. However, an RNA stem-loop in the VP1-coding sequence of human rhinovirus type 14 (HRV-14) is essential for viral minus-strand RNA synthesis (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998). The nucleotide sequence of the apical loop of this internal cis-acting replication element (cre) was critical for RNA synthesis, while secondary RNA structure, but not primary sequence, was shown to be important within the duplex stem. Similar cres have since been identified in other picornaviral genomes. These RNA segments appear to serve as template for the uridylylation of the genome-linked protein, VPg, providing the VPg-pUpU primer required for viral RNA transcription (A. V. Paul et al., J. Virol. 74:10359-10370, 2000). Here, we show that the minimal functional HRV-14 cre resides within a 33-nucleotide (nt) RNA segment that is predicted to form a simple stem-loop with a 14-nt loop sequence. An extensive mutational analysis involving every possible base substitution at each position within the loop segment defined the sequence that is required within this loop for efficient replication of subgenomic HRV-14 replicon RNAs. These results indicate that three consecutive adenosine residues (nt 2367 to 2369) within the 5' half of this loop are critically important for cre function and suggest that a common RNNNAARNNNNNNR loop motif exists among the cre sequences of enteroviruses and rhinoviruses. We found a direct, positive correlation between the capacity of mutated cres to support RNA replication and their ability to function as template in an in vitro VPg uridylylation reaction, suggesting that these functions are intimately linked. These data thus define more precisely the sequence and structural requirements of the HRV-14 cre and provide additional support for a model in which the role of the cre in RNA replication is to act as template for VPg uridylylation.
Collapse
Affiliation(s)
- Yan Yang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555-1019, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Krumbholz A, Dauber M, Henke A, Birch-Hirschfeld E, Knowles NJ, Stelzner A, Zell R. Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 2002; 76:5813-21. [PMID: 11992011 PMCID: PMC137026 DOI: 10.1128/jvi.76.11.5813-5821.2002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular classification of the porcine enterovirus (PEV) groups II and III was investigated. The sequence of the almost complete PEV-8 (group II) genome reveals that this virus has unique L and 2A gene regions. A reclassification of this group into a new picornavirus genus is suggested. PEV group III viruses are typical enteroviruses. They differ from other enteroviruses by a prolonged stem-loop D of the 5'-cloverleaf structure.
Collapse
Affiliation(s)
- Andi Krumbholz
- Institut für Virologie, Klinikum der Friedrich-Schiller-Universität, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
61
|
Koev G, Liu S, Beckett R, Miller WA. The 3prime prime or minute-terminal structure required for replication of Barley yellow dwarf virus RNA contains an embedded 3prime prime or minute end. Virology 2002; 292:114-26. [PMID: 11878914 DOI: 10.1006/viro.2001.1268] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the 3prime prime or minute-terminal primary and secondary structures required for replication of Barley yellow dwarf virus (BYDV) RNA in oat protoplasts. Computer predictions, nuclease probing, phylogenetic comparisons, and replication assays of specific mutants and chimeras revealed that the 3prime prime or minute-terminal 109 nucleotides (nt) form a structure with three to four stem-loops followed by a coaxially stacked helix incorporating the last four nt [(A/U)CCC]. Sequences upstream of the 109-nt region also contributed to RNA accumulation. The base-pairing but not the sequences or bulges in the stems were essential for replication, but any changes to the 3prime prime or minute-terminal helix destroyed replication. The two 3prime prime or minute-proximal tetraloops tolerated all changes, but the two 3prime prime or minute-distal tetraloops gave most efficient replication if they fit the GNRA consensus. A mutant lacking the 3prime prime or minute-proximal stem-loop produced elevated levels of less-than-full-length minus strands, and no (+) strand. We propose that a "pocket" structure is the origin of (minus sign)-strand synthesis, which is negatively regulated by the inaccessible conformation of the 3prime prime or minute terminus, thus favoring a high (+)/(minus sign) ratio. This 3prime prime or minute structure and the polymerase homologies suggest that genus Luteovirus is more closely related to the Tombusviridae family than to other Luteoviridae genera.
Collapse
Affiliation(s)
- Gennadiy Koev
- Plant Pathology Department, Iowa State University, 351 Bessey Hall, Ames, Iowa 50011-1020, USA
| | | | | | | |
Collapse
|
62
|
Lyons T, Murray KE, Roberts AW, Barton DJ. Poliovirus 5'-terminal cloverleaf RNA is required in cis for VPg uridylylation and the initiation of negative-strand RNA synthesis. J Virol 2001; 75:10696-708. [PMID: 11602711 PMCID: PMC114651 DOI: 10.1128/jvi.75.22.10696-10708.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.
Collapse
Affiliation(s)
- T Lyons
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
63
|
Gerber K, Wimmer E, Paul AV. Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis-replicating element in the coding sequence of 2A(pro). J Virol 2001; 75:10979-90. [PMID: 11602738 PMCID: PMC114678 DOI: 10.1128/jvi.75.22.10979-10990.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the RNA polymerase 3D(pol) of human rhinovirus 2 (HRV2) catalyzes the covalent linkage of UMP to the terminal protein (VPg) using poly(A) as a template (K. Gerber, E. Wimmer, and A. V. Paul, J. Virol. 75:10969-10978, 2001). The products of this in vitro reaction are VPgpU, VPgpUpU, and VPg-poly(U), the 5' end of minus-strand RNA. In the present study we used an assay system developed for poliovirus 3D(pol) (A. V. Paul, E. Rieder, D. W. Kim, J. H. van Boom, and E. Wimmer, J. Virol. 74: 10359-10370, 2000) to search for a viral sequence or structure in HRV2 RNA that would provide specificity to this reaction. We now show that a small hairpin in HRV2 RNA [cre(2A)], located in the coding sequence of 2A(pro), serves as the primary template for HRV2 3D(pol) in the uridylylation of HRV2 VPg, yielding VPgpU and VPgpUpU. The in vitro reaction is strongly stimulated by the addition of purified HRV2 3CD(pro). Our analyses suggest that HRV2 3D(pol) uses a "slide-back" mechanism during synthesis of the VPg-linked precursors. The corresponding cis- replicating RNA elements in the 2C(ATPase) coding region of poliovirus type 1 Mahoney (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590-4600, 2000) and VP1 of HRV14 (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998) can be functionally exchanged in the assay with cre(2A) of HRV2. Mutations of either the first or the second A in the conserved A(1)A(2)A(3)CA sequence in the loop of HRV2 cre(2A) abolished both viral growth and the RNA's ability to serve as a template in the in vitro VPg uridylylation reaction.
Collapse
Affiliation(s)
- K Gerber
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
64
|
Rowe A, Burlison J, Macadam AJ, Minor PD. Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases. Virology 2001; 289:45-53. [PMID: 11601916 DOI: 10.1006/viro.2001.1111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that polioviruses with mutations that disrupt the predicted secondary structure of the 5' noncoding region of domain V are temperature sensitive for growth. Non-temperature-sensitive revertant viruses had mutations that re-formed secondary structure by a direct back mutation of changes in the opposite strand. We mutated unpaired regions and selected revertants of viruses with single base deletions, where no obvious back mutation was available in order to gain information on secondary structure. Results indicated that conservation of length of a three base loop between two double-stranded stems was essential for a functional domain V to form. The requirement for the unpaired "hinge" base at 484 which is implicated in the attenuation of Sabin 2 was also confirmed. Results also underline the necessity for functional folding over local secondary structure stability.
Collapse
Affiliation(s)
- A Rowe
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, United Kingdom.
| | | | | | | |
Collapse
|
65
|
Lodmell JS, Ehresmann C, Ehresmann B, Marquet R. Structure and dimerization of HIV-1 kissing loop aptamers. J Mol Biol 2001; 311:475-90. [PMID: 11493002 DOI: 10.1006/jmbi.2001.4879] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimerization of two homologous strands of genomic RNA is an essential feature of the retroviral replication cycle. In HIV-1, genomic RNA dimerization is facilitated by a conserved stem-loop structure located near the 5' end of the viral RNA called the dimerization initiation site (DIS). The DIS loop is comprised of nine nucleotides, six of which define an autocomplementary sequence flanked by three conserved purine residues. Base- pairing between the loop sequences of two copies of genomic RNA is necessary for efficient dimerization. We previously used in vitro evolution to investigate a possible structural basis for the marked sequence conservation of the DIS loop. In this study, chemical structure probing, measurements of the apparent dissociation constants, and computer structure analysis of dimerization-competent aptamers were used to analyze the dimers' structure and binding. The selected aptamers were variants of the naturally occurring A and B subtypes. The data suggest that a sheared base-pair closing the loop of the DIS is important for dimerization in both subtypes. On the other hand, the open or closed state of the last base-pair in the stem differed in the two subtypes. This base-pair appeared closed in the subtype A DIS dimer and open in subtype B. Finally, evidence for a cross-talk between nucleotides 2, 5, and 6 was found in some, but not all, loop contexts, indicating some structural plasticity depending on loop sequence. Discriminating between the general rules governing dimer formation and the particular characteristics of individual DIS aptamers helps to explain the affinity and specificity of loop-loop interactions and could provide the basis for development of drugs targeted against the dimerization step during retroviral replication.
Collapse
Affiliation(s)
- J S Lodmell
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, Strasbourg cedex, 67084, France
| | | | | | | |
Collapse
|
66
|
Polacek C, Lindberg AM. Genetic characterization of the coxsackievirus B2 3' untranslated region. J Gen Virol 2001; 82:1339-1348. [PMID: 11369877 DOI: 10.1099/0022-1317-82-6-1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The secondary structure of the 3' untranslated region (3'UTR) of picornaviruses is thought to be important for the initiation of negative-strand RNA synthesis. In this study, genetic and biological analyses of the 3' terminus of coxsackievirus B2 (CVB2), which differs from other enteroviruses due to the presence of five additional nucleotides prior to the poly(A) tail, is reported. The importance of this extension was investigated using a 3'UTR mutant lacking the five nucleotides prior to the poly(A) tail and containing two point mutations. The predicted secondary structure within the 3'UTR of this mutant was less energetically favourable compared with that of the wild-type (wt) genotype. This mutant clone was transfected into green monkey kidney cells in four parallel experiments and propagated for multiple passages, enabling the virus to establish a stable revertant genotype. Genetic analysis of the virus progeny from these different passages revealed two major types of revertant. Both types showed wt-like growth properties and more stable and wt-like predicted secondary structures than the parent mutant clone. The first type of revertant neutralized the introduced point mutation with a compensatory second-site mutation, whereas the second type of revertant partly compensated for the deletion of the five proximal nucleotides by the insertion of nucleotides that matched the wt sequence. Therefore, the extended 3' end of CVB2 may be considered to be a stabilizing sequence for RNA secondary structure and an important feature for the virus.
Collapse
Affiliation(s)
- Charlotta Polacek
- Department of Chemistry and Biomedical Sciences, University of Kalmar, S-391 82 Kalmar, Sweden1
| | - A Michael Lindberg
- Department of Chemistry and Biomedical Sciences, University of Kalmar, S-391 82 Kalmar, Sweden1
| |
Collapse
|
67
|
Abstract
The mechanisms and factors involved in the replication of positive stranded RNA viruses are still unclear. Using poliovirus as a model, we show that a long-range interaction between ribonucleoprotein (RNP) complexes formed at the ends of the viral genome is necessary for RNA replication. Initiation of negative strand RNA synthesis requires a 3' poly(A) tail. Strikingly, it also requires a cloverleaf-like RNA structure located at the other end of the genome. An RNP complex formed around the 5' cloverleaf RNA structure interacts with the poly(A) binding protein bound to the 3' poly(A) tail, thus linking the ends of the viral RNA and effectively circularizing it. Formation of this circular RNP complex is required for initiation of negative strand RNA synthesis. RNA circularization may be a general replication mechanism for positive stranded RNA viruses.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Cross-Linking Reagents
- DNA, Circular/chemistry
- DNA, Circular/genetics
- DNA, Circular/metabolism
- DNA-Binding Proteins
- Genome, Viral
- Heterogeneous-Nuclear Ribonucleoproteins
- Humans
- Mutation/genetics
- Nucleic Acid Conformation
- Poliovirus/genetics
- Poly A/genetics
- Poly A/metabolism
- Poly(A)-Binding Proteins
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
| | - Raul Andino
- Corresponding author: Raul Andino, (415) 502-6358 (phone), (415) 476-0939 (fax)
| |
Collapse
|
68
|
Rieder E, Paul AV, Kim DW, van Boom JH, Wimmer E. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J Virol 2000; 74:10371-80. [PMID: 11044081 PMCID: PMC110911 DOI: 10.1128/jvi.74.22.10371-10380.2000] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to highly conserved stem-loop structures located in the 5'- and 3'-nontranslated regions, genome replication of picornaviruses requires cis-acting RNA elements located in the coding region (termed cre) (K. L. McKnight and S. M. Lemon, J. Virol. 70:1941-1952, 1996; P. E. Lobert, N. Escriou, J. Ruelle, and T. Michiels, Proc. Natl. Acad. Sci. USA 96:11560-11565, 1999; I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590-4600, 2000). cre elements appear to be essential for minus-strand RNA synthesis by an as-yet-unknown mechanism. We have discovered that the cre element of poliovirus (mapping to the 2C coding region of poliovirus type 1; nucleotides 4444 to 4505 in 2C), which is homologous to the cre element of poliovirus type 3, is preferentially used as a template for the in vitro uridylylation of VPg catalyzed by 3D(pol) in a reaction that is greatly stimulated by 3CD(pro) (A. V. Paul, E. Rieder, D. W. Kim, J. H. van Boom, and E. Wimmer, J. Virol. 74:10359-10370, 2000). Here we report a direct correlation between mutations that eliminate, or severely reduce, the in vitro VPg-uridylylation reaction and produce replication phenotypes in vivo. None of the genetic changes significantly influenced translation or polyprotein processing. A substitution mapping to the first A (A4472C) of a conserved AAACA sequence in the loop of PV-cre(2C) eliminated the ability of the cre RNA to serve as template for VPg uridylylation and abolished RNA infectivity. Mutagenesis of the second A (A4473C; AAACA) severely reduced the yield of VPgpUpU and RNA infectivity was restored only after reversion to the wild-type sequence. The effect of substitution of the third A (A4474G; AAACA) was less severe but reduced both VPg uridylylation and virus yield. Disruption of base pairing within the upper stem region of PV-cre(2C) also affected uridylylation of VPg. Virus derived from transcripts containing mutations in the stem was either viable or quasi-infectious.
Collapse
Affiliation(s)
- E Rieder
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
69
|
Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 2000; 74:10359-70. [PMID: 11044080 PMCID: PMC110910 DOI: 10.1128/jvi.74.22.10359-10370.2000] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first step in the replication of the plus-stranded poliovirus RNA is the synthesis of a complementary minus strand. This process is initiated by the covalent attachment of UMP to the terminal protein VPg, yielding VPgpU and VPgpUpU. We have previously shown that these products can be made in vitro in a reaction that requires only synthetic VPg, UTP, poly(A), purified poliovirus RNA polymerase 3D(pol), and Mg(2+) (A. V. Paul, J. H. van Boom, D. Filippov, and E. Wimmer, Nature 393:280-284, 1998). Since such a poly(A)-dependent process cannot confer sufficient specificity to poliovirus RNA replication, we have developed a new assay to search for a viral RNA template in conjunction with viral or cellular factors that could provide this function. We have now discovered a small RNA hairpin in the coding region of protein 2C as the site in PV1(M) RNA that is used as the primary template for the in vitro uridylylation of VPg. This hairpin has recently been described in poliovirus RNA as being an essential structure for the initiation of minus strand RNA synthesis (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590-4600, 2000). The uridylylation reaction either with transcripts of cre(2C) RNA or with full-length PV1(M) RNA as the template is strongly stimulated by the addition of purified viral protein 3CD(pro). Deletion of the cre(2C) RNA sequences from minigenomes eliminates their ability to serve as template in the reaction. A similar signal in the coding region of VP1 in HRV14 RNA (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998) and the poliovirus cre(2C) can be functionally exchanged in the assay. The mechanism by which the VPgpUpU precursor, made specifically on the cre(2C) template, might be transferred to the site where it serves as primer for poliovirus RNA synthesis, remains to be determined.
Collapse
Affiliation(s)
- A V Paul
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | | | | | | | | |
Collapse
|
70
|
McInerney GM, King AM, Ross-Smith N, Belsham GJ. Replication-competent foot-and-mouth disease virus RNAs lacking capsid coding sequences. J Gen Virol 2000; 81:1699-702. [PMID: 10859374 DOI: 10.1099/0022-1317-81-7-1699] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA transcripts were prepared from plasmids encoding an infectious cDNA of foot-and-mouth disease virus (FMDV) or derivatives in which the leader (Lab and Lb) and capsid protein coding sequences were deleted or replaced by sequences encoding chloramphenicol acetyltransferase (CAT). The transcripts were electroporated into BHK cells and the expression of CAT and the FMDV 3C protease was monitored. Detection of CAT and 3C was dependent on the ability of the transcript to replicate. All of the Lb coding sequence and 94% of P1 (the capsid protein precursor) coding sequence could be deleted without any apparent effect on the ability of the RNA to replicate. Thus, no cis-acting replication element is present within this region of the FMDV genome. TRANS:-encapsidation of these FMDV replicons was very inefficient, which may explain the lack of production of defective-interfering particles in FMDV-infected cells.
Collapse
Affiliation(s)
- G M McInerney
- BBSRC Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF, UK
| | | | | | | |
Collapse
|
71
|
Affiliation(s)
- D J Evans
- Division of Virology, University of Glasgow, United Kingdom
| |
Collapse
|
72
|
Abstract
A puzzling aspect of replication of bacteriophage Qbeta RNA has always been that replicase binds at an internal segment, the M-site, some 1450 nt away from the 3' end. Here, we report on the existence of a long-range pseudoknot, base-pairing eight nt in the loop of the 3' terminal hairpin to a single-stranded interdomain sequence located about 1200 nt upstream, close to the internal replicase binding site. Introduction of a single mismatch into this pseudoknot is sufficient to abolish replication, but the inhibition is fully reversed by a second-site substitution that restores the pairing. The pseudoknot is part of an elaborate structure that seems to hold the 3' end in a fixed position vis a vis the replicase binding site. Our results imply that the shape of the RNA confers the functonality. We discuss the possible relevance of our findings for replication of other viral RNAs.
Collapse
Affiliation(s)
- J Klovins
- Department of Biochemistry Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, 2300 RA, The Netherlands
| | | |
Collapse
|
73
|
Sivakumaran K, Kim CH, Tayon R, Kao C. RNA sequence and secondary structural determinants in a minimal viral promoter that directs replicase recognition and initiation of genomic plus-strand RNA synthesis. J Mol Biol 1999; 294:667-82. [PMID: 10610788 PMCID: PMC7172556 DOI: 10.1006/jmbi.1999.3297] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Viral RNA replication provides a useful system to study the structure and function of RNAs and the mechanism of RNA synthesis from RNA templates. Previously we demonstrated that a 27 nt RNA from brome mosaic virus (BMV) can direct correct initiation of genomic plus-strand RNA synthesis by the BMV replicase. In this study, using biochemical, nuclear magnetic resonance, and thermodynamic analyses, we determined that the secondary structure of this 27 nt RNA can be significantly altered and retain the ability to direct RNA synthesis. In contrast, we find that position-specific changes in the RNA sequence will affect replicase recognition, modulate the polymerization process, and contribute to the differential accumulation of viral RNAs. These functional results are in agreement with the phylogenetic analysis of BMV and related viral sequences and suggest that a similar mechanism of RNA synthesis takes place for members of the alphavirus superfamily.
Collapse
Affiliation(s)
- K Sivakumaran
- Department of Biology Indiana University Bloomington, IN, 47405, USA
| | - Chul-Hyun Kim
- Department of Chemistry University of California Berkeley, and Physical Bioscience Division, Lawrence Berkeley National Laboratory Berkeley, CA, 94720, USA
| | - Robert Tayon
- Department of Biology Indiana University Bloomington, IN, 47405, USA
| | - C.Cheng Kao
- Department of Biology Indiana University Bloomington, IN, 47405, USA
- Corresponding author
| |
Collapse
|
74
|
Meredith JM, Rohll JB, Almond JW, Evans DJ. Similar interactions of the poliovirus and rhinovirus 3D polymerases with the 3' untranslated region of rhinovirus 14. J Virol 1999; 73:9952-8. [PMID: 10559308 PMCID: PMC113045 DOI: 10.1128/jvi.73.12.9952-9958.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1999] [Accepted: 08/31/1999] [Indexed: 11/20/2022] Open
Abstract
We showed previously that a human rhinovirus 14 (HRV14) 3' untranslated region (3' UTR) on a poliovirus genome was able to replicate with nearly wild-type kinetics (J. B. Rohll, D. H. Moon, D. J. Evans, and J. W. Almond, J. Virol 69:7835-7844, 1995). This enabled the HRV14 single 3' UTR stem-loop structure to be studied in combination with a sensitive reporter system, poliovirus FLC/REP, in which the capsid coding region is replaced by an in-frame chloramphemicol acetyltransferase (CAT) gene. Using such a construct, we identified a mutant (designated mut4), in which the structure and stability of the stem were predicted to be maintained, that replicated very poorly as determined by its level of CAT activity. The effect of this mutant 3' UTR on replication has been further investigated by transferring it onto the full-length cDNAs of both poliovirus type 3 (PV3) and HRV14. Virus was recovered with a parental plaque phenotype at a low frequency, indicating the acquisition of compensating changes, which sequence analysis revealed were, in both poliovirus- and rhinovirus-derived viruses, located in the active-site cleft of 3D polymerase and involved the substitution of Asn18 for Tyr. These results provide further evidence of a specific interaction between the 3' UTR of picornaviruses and the viral polymerase and also indicate similar interactions of the 3' UTR of rhinovirus with both poliovirus and rhinovirus polymerases.
Collapse
Affiliation(s)
- J M Meredith
- School of Animal and Microbial Sciences, The University of Reading, Reading RG6 5AJ, United Kingdom
| | | | | | | |
Collapse
|
75
|
Gmyl AP, Belousov EV, Maslova SV, Khitrina EV, Chetverin AB, Agol VI. Nonreplicative RNA recombination in poliovirus. J Virol 1999; 73:8958-65. [PMID: 10516001 PMCID: PMC112927 DOI: 10.1128/jvi.73.11.8958-8965.1999] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current models of recombination between viral RNAs are based on replicative template-switch mechanisms. The existence of nonreplicative RNA recombination in poliovirus is demonstrated in the present study by the rescue of viable viruses after cotransfections with different pairs of genomic RNA fragments with suppressed translatable and replicating capacities. Approximately 100 distinct recombinant genomes have been identified. The majority of crossovers occurred between nonhomologous segments of the partners and might have resulted from transesterification reactions, not necessarily involving an enzymatic activity. Some of the crossover loci are clustered. The origin of some of these "hot spots" could be explained by invoking structures similar to known ribozymes. A significant proportion of recombinant RNAs contained the entire 5' partner, if its 3' end was oxidized or phosphorylated prior to being mixed with the 3' partner. All of these observations are consistent with a mechanism that involves intermediary formation of the 2',3'-cyclic phosphate and 5'-hydroxyl termini. It is proposed that nonreplicative RNA recombination may contribute to evolutionarily significant RNA rearrangements.
Collapse
Affiliation(s)
- A P Gmyl
- Institute of Poliomyelitis, Russian Academy of Medical Sciences, Moscow Region 142782, Russia
| | | | | | | | | | | |
Collapse
|
76
|
Williams GD, Chang RY, Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 1999; 73:8349-55. [PMID: 10482585 PMCID: PMC112852 DOI: 10.1128/jvi.73.10.8349-8355.1999] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Accepted: 07/02/1999] [Indexed: 11/20/2022] Open
Abstract
Secondary and tertiary structures in the 3' untranslated region (UTR) of plus-strand RNA viruses have been postulated to function as control elements in RNA replication, transcription, and translation. Here we describe a 54-nucleotide (nt) hairpin-type pseudoknot within the 288-nt 3' UTR of the bovine coronavirus genome and show by mutational analysis of both stems that the pseudoknotted structure is required for the replication of a defective interfering RNA genome. The pseudoknot is phylogenetically conserved among coronaviruses both in location and in shape but only partially in nucleotide sequence, and evolutionary covariation of bases to maintain G. U pairings indicates that it functions in the plus strand. RNase probing of synthetic transcripts provided additional evidence of its tertiary structure and also identified the possible existence of two conformational states. These results indicate that the 3' UTR pseudoknot is involved in coronavirus RNA replication and lead us to postulate that it functions as a regulatory control element.
Collapse
Affiliation(s)
- G D Williams
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996-0845, USA
| | | | | |
Collapse
|
77
|
Abstract
A wealth of experimental data on the mechanism of the picornavirus genome replication has accumulated. Not infrequently, however, conclusions derived from these data appear to contradict each other. On the one hand, initiation of a complementary RNA strand can be demonstrated to occur in a solution containing only the poliovirus RNA polymerase, VPg, uridine triphosphate, poly(A) template and appropriate ions. On the other hand, convincing experiments suggest that efficient initiation of a viral complementary RNA strand requires complex cis-acting signals on the viral RNA template, additional viral and possibly cellular proteins as well as a membrane-containing environment. On the one hand, there is evidence that the viral RNA, in order to be replicated, should first be translated, but on the other hand, the viral RNA polymerase appears to be unable to overcome the ribosome barrier. Possible solutions for these and several other similar paradoxes are discussed, along with less contradictory results on the properties of the picornaviral replicative proteins. Recent results suggesting that recombination and other rearrangements of the viral RNA genomes may be accomplished not only by the replicative template switching but also by nonreplicative mechanisms are also briefly reviewed.
Collapse
Affiliation(s)
- V I Agol
- Institute of Poliomyelitis and Viral Encephalitidis, Russian Academy of Medical Sciences, Moscow Region, Russia
| | | | | |
Collapse
|
78
|
Yu H, Grassmann CW, Behrens SE. Sequence and structural elements at the 3' terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. J Virol 1999; 73:3638-48. [PMID: 10196256 PMCID: PMC104139 DOI: 10.1128/jvi.73.5.3638-3648.1999] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a member of the genus Pestivirus in the family Flaviviridae, has a positive-stranded RNA genome consisting of a single open reading frame and untranslated regions (UTRs) at the 5' and 3' ends. Computer modeling suggested the 3' UTR comprised single-stranded regions as well as stem-loop structures-features that were suspected of being essentially implicated in the viral RNA replication pathway. Employing a subgenomic BVDV RNA (DI9c) that was shown to function as an autonomous RNA replicon (S.-E. Behrens, C. W. Grassmann, H. J. Thiel, G. Meyers, and N. Tautz, J. Virol. 72:2364-2372, 1998) the goal of this study was to determine the RNA secondary structure of the 3' UTR by experimental means and to investigate the significance of defined RNA motifs for the RNA replication pathway. Enzymatic and chemical structure probing revealed mainly the conserved terminal part (termed 3'C) of the DI9c 3' UTR containing distinctive RNA motifs, i.e., a stable stem-loop, SL I, near the RNA 3' terminus and a considerably less stable stem-loop, SL II, that forms the 5' portion of 3'C. SL I and SL II are separated by a long single-stranded intervening sequence, denoted SS. The 3'-terminal four C residues of the viral RNA were confirmed to be single stranded as well. Other intramolecular interactions, e.g., with upstream DI9c RNA sequences, were not detected under the experimental conditions used. Mutagenesis of the DI9c RNA demonstrated that the SL I and SS motifs do indeed play essential roles during RNA replication. Abolition of RNA stems, which ought to maintain the overall folding of SL I, as well as substitution of certain single-stranded nucleotides located in the SS region or SL I loop region, gave rise to DI9c derivatives unable to replicate. Conversely, SL I stems comprising compensatory base exchanges turned out to support replication, but mostly to a lower degree than the original structure. Surprisingly, replacement of a number of residues, although they were previously defined as constituents of a highly conserved stretch of sequence of the SS motif, had little effect on the replication ability of DI9c. In summary, these results indicate that RNA structure as well as sequence elements harbored within the 3'C region of the BVDV 3' UTR create a common cis-acting element of the replication process. The data further point at possible interaction sites of host and/or viral proteins and thus provide valuable information for future experiments intended to identify and characterize these factors.
Collapse
Affiliation(s)
- H Yu
- Institut für Virologie (FB Veterinärmedizin), Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | |
Collapse
|
79
|
Abstract
Viruses replicate in a restricted number of hosts and tissues. In addition to viral receptors, several intracellular factors can be involved in determining tissue tropism. Many proteins have recently been implicated in picornavirus translation and RNA replication. Although the functional role of these proteins has not been established in vivo, it is possible that they determine cell-type tropism and the pathogenic outcome of the infection.
Collapse
Affiliation(s)
- R Andino
- Dept of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA.
| | | | | | | |
Collapse
|
80
|
Wang J, Bakkers JM, Galama JM, Bruins Slot HJ, Pilipenko EV, Agol VI, Melchers WJ. Structural requirements of the higher order RNA kissing element in the enteroviral 3'UTR. Nucleic Acids Res 1999; 27:485-90. [PMID: 9862969 PMCID: PMC148204 DOI: 10.1093/nar/27.2.485] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The origin of replication ( oriR ) involved in the initiation of (-) strand enterovirus RNA synthesis is a quasi-globular multi-domain RNA structure which is maintained by a tertiary kissing interaction. The kissing interaction is formed by base pairing of complementary sequences within the predominant hairpin-loop structures of the enteroviral 3' untranslated region. In this report, we have fully characterised the kissing interaction. Site-directed mutations which affected the different base pairs involved in the kissing interaction were generated in an infectious coxsackie B3 virus cDNA clone. The kissing interaction appeared to consist of 6 bp. Distortion of the interaction by mispairing of each of the base pairs involved in this higher order RNA structure resulted in either temperature sensitive or lethal phenotypes. The nucleotide constitution of the base which gaps the major groove of the kissing domain was not relevant for virus growth. The reciprocal exchange of the complete sequence involved in the kissing resulted in a mutant virus with wild type virus growth characteristics arguing that the base pair constitution is of less importance for the initiation of (-) strand RNA synthesis than the existence of the tertiary structure itself.
Collapse
Affiliation(s)
- J Wang
- University of Nijmegen, Department of Medical Microbiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
The discovery of viruses heralded an exciting new era for research in the medical and biological sciences. It has been realized that the cellular receptor guiding a virus to a target cell cannot be the sole determinant of a virus's pathogenic potential. Comparative analyses of the structures of genomes and their products have placed the picornaviruses into a large “picorna-like” virus family, in which they occupy a prominent place. Most human picornavirus infections are self-limiting, yet the enormously high rate of picornavirus infections in the human population can lead to a significant incidence of disease complications that may be permanently debilitating or even fatal. Picornaviruses employ one of the simplest imaginable genetic systems: they consist of single-stranded RNA that encodes only a single multidomain polypeptide, the polyprotein. The RNA is packaged into a small, rigid, naked, and icosahedral virion whose proteins are unmodified except for a myristate at the N-termini of VP4. The RNA itself does not contain modified bases. The key to ultimately understanding picornaviruses may be to rationalize the huge amount of information about these viruses from the perspective of evolution. It is possible that the replicative apparatus of picornaviruses originated in the precellular world and was subsequently refined in the course of thousands of generations in a slowly evolving environment. Picornaviruses cultivated the art of adaptation, which has allowed them to “jump” into new niches offered in the biological world.
Collapse
|
82
|
Dreher TW. FUNCTIONS OF THE 3'-UNTRANSLATED REGIONS OF POSITIVE STRAND RNA VIRAL GENOMES. ANNUAL REVIEW OF PHYTOPATHOLOGY 1999; 37:151-174. [PMID: 11701820 DOI: 10.1146/annurev.phyto.37.1.151] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Positive strand RNA viral genomes are unique in the viral world in serving a dual role as mRNA and replicon. Since the origin of the minus-strand RNA replication intermediate is at the 3'-end of the genome, the 3'-untranslated region (UTR) clearly plays a role in viral RNA replication. The messenger role of this same RNA likely places functional demands on the 3'-UTR to serve roles typical of cellular mRNAs, including the regulation of RNA stability and translation. Current understanding indicates varied roles for positive strand RNA viral 3'-UTRs, with the dominant roles differing between viruses. Three case studies are discussed: turnip yellow mosaic virus RNA, whose 3' tRNA mimicry is thought to negatively regulate minus strand synthesis; brome mosaic virus, whose 3'-UTR contains a unique promoter element directing minus strand synthesis; and tobacco mosaic virus, whose 3'-UTR contains an enhancer of translational expression.
Collapse
Affiliation(s)
- Theo W. Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331-3804; e-mail:
| |
Collapse
|
83
|
Wu B, White KA. Formation and amplification of a novel tombusvirus defective RNA which lacks the 5' nontranslated region of the viral genome. J Virol 1998; 72:9897-905. [PMID: 9811726 PMCID: PMC110502 DOI: 10.1128/jvi.72.12.9897-9905.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering (DI) RNAs of tomato bushy stunt virus (TBSV) are small, subgenomic, helper-dependent replicons that are believed to be generated primarily by aberrant events during replication of the plus-sense RNA genome. Prototypical TBSV DI RNAs contain four noncontiguous segments (regions I through IV) derived from the 5' nontranslated region (NTR) (I), an internal section (II), and the 3'-terminal portion (III and IV) of the viral genome. We have studied the formation of these molecules by using engineered precursor DI RNA transcripts and report here the consistent accumulation of a novel defective RNA species, designated RNA B. Northern blot, primer extension, and sequence analyses indicated that, unlike prototypical DI RNAs, RNA B lacks region I. In vitro transcripts corresponding to the region II-III-IV structure of RNA B were amplified when coinoculated with helper, indicating that the 5' NTR of the genome does not harbor cis-acting replication elements essential for viral RNA replication. Region I is, however, important for DI RNA fitness, since molecules lacking it accumulated to significantly lower levels ( approximately 10-fold reduction). Analysis of the minus-strand sequence of region I led to the identification of an RNA undecamer sequence, arranged in tandem, at its very 3' terminus. Additional variants of the undecamer motif were also identified at internal positions in region I and in the negative strands of regions II, III, and IV. Features of the undecamer motif, the consensus of which is (-)3'-CCCAAAGAGAG, are consistent with a role as a cis-acting replication element. It is proposed that the ability of RNA B to be amplified is due, in part, to compensatory effects of a strategically positioned undecamer motif in region II. Possible replicase-mediated mechanisms for the generation of this novel viral RNA are also presented.
Collapse
Affiliation(s)
- B Wu
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
84
|
Waggoner S, Sarnow P. Viral ribonucleoprotein complex formation and nucleolar-cytoplasmic relocalization of nucleolin in poliovirus-infected cells. J Virol 1998; 72:6699-709. [PMID: 9658117 PMCID: PMC109870 DOI: 10.1128/jvi.72.8.6699-6709.1998] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 04/15/1998] [Indexed: 02/08/2023] Open
Abstract
The poliovirus 3' noncoding region (3'NCR) is involved in the efficient synthesis of viral negative-stranded RNA molecules. A strong interaction between a 105-kDa host protein and the wild-type 3'NCR, but not with a replication-defective mutant 3'NCR, was detected. This 105-kDa protein was identified as nucleolin which predominantly resides in the nucleolus and has been proposed to function in the folding of rRNA precursor molecules. A functional role for nucleolin in viral genome amplification was examined in a cell-free extract which has been shown to support the assembly of infectious virus from virion RNA. At early times of viral gene expression, extracts depleted of nucleolin produced less infectious virus than extracts depleted of fibrillarin, another resident of the nucleolus, indicating a functional role of nucleolin in the early stages of the viral life cycle in this in vitro system. Immunofluorescence analysis of uninfected and infected cells showed a nucleocytoplasmic relocalization of nucleolin, but not of fibrillarin, in poliovirus-infected cells. Relocalization of nucleolin was not simply a consequence of virally induced inhibition of translation or transcription, because inhibitors of translation or transcription did not induce nucleolar-cytoplasmic relocalization of nucleolin. These findings suggest a novel virus-induced mechanism by which certain nucleolar proteins are selectively redistributed in infected cells.
Collapse
Affiliation(s)
- S Waggoner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
85
|
Yamashita T, Kaneko S, Shirota Y, Qin W, Nomura T, Kobayashi K, Murakami S. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem 1998; 273:15479-86. [PMID: 9624134 DOI: 10.1074/jbc.273.25.15479] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRP), which is the central catalytic enzyme of HCV replicase. We established a new method to purify soluble HCV NS5B in the glutathione S-transferase-fused form NS5Bt from Escherichia coli which lacks the C-terminal 21 amino acid residues encompassing a putative anchoring domain (anino acids 2990-3010). The recombinant soluble protein exhibited RdRP activity in vitro which was dependent upon the template and primer, but it did not exhibit the terminal transferase activity that has been reported to be associated with the recombinant NS5B protein from insect cells. The RdRP activity of purified glutathione S-transferase-NS5Bt and thrombin-cleavaged non-fused NS5Bt shares most of the properties. Substitution mutations of NS5Bt at the GDD motif, which is highly conserved among viral RdRPs, and at the clustered basic residues (amino acids 2919-2924 and 2693-2699) abolished the RdRP activity. The C-terminal region of NS5B, which is dispensable for the RdRP activity, dramatically affected the subcellular localization of NS5B retaining it in perinuclear sites in transiently overexpressed mammalian cells. These results may provide some clues to dissecting the molecular mechanism of the HCV replication and also act as a basis for developing new anti-viral drugs.
Collapse
Affiliation(s)
- T Yamashita
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Rezapkin GV, Alexander W, Dragunsky E, Parker M, Pomeroy K, Asher DM, Chumakov KM. Genetic stability of Sabin 1 strain of poliovirus: implications for quality control of oral poliovirus vaccine. Virology 1998; 245:183-7. [PMID: 9636357 DOI: 10.1006/viro.1998.9191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sabin vaccine strains of poliovirus, like all RNA viruses, exist as a quasispecies of genomic sequences whose composition can be altered during virus propagation. Since changes in vaccine virus during manufacture can enhance the neurovirulent potential of the vaccine, each monovalent lot of oral poliovirus vaccine (OPV) undergoes several tests to ensure consistency of manufacture, including the monkey neurovirulence test (MNVT). Recently, we proposed a new molecular approach for direct quantification of vaccine variants with neurovirulent potential as an alternative way to monitor consistency of OPV production. Analysis of the Sabin 1 genome allowed us to identify a limited number of specific loci that exhibit significant change during viral propagation in vitro and in vivo. Here we explore the possible roles of these changes and show that 7427-U-->C and 7441-G-->A alterations in the 3'-UTR of the Sabin 1 virus do not increase monkey neurovirulence. These, as well as our previous results, suggest that only mutations in the 5'-UTR play a significant role in the limited increase in Sabin 1 monkey neurovirulence observed after extended propagation of the virus beyond the passage level used in vaccine production. Our studies with high-passage batches of the Sabin 1 strain confirmed the stability of this strain, which retains acceptable levels of monkey neurovirulence even after serial passages at elevated temperature. Compared to the MNVT, molecular analysis of the genetic composition of Sabin 1 poliovirus provides a more sensitive analytical approach to monitor consistency of vaccine production.
Collapse
Affiliation(s)
- G V Rezapkin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Carpenter CD, Simon AE. Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection. Nucleic Acids Res 1998; 26:2426-32. [PMID: 9580696 PMCID: PMC147565 DOI: 10.1093/nar/26.10.2426] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In vivo genetic selection was used to study the sequences and structures required for accumulation of subviral sat-RNA C associated with turnip crinkle virus (TCV). This technique is advantageous over site-specific mutagenesis by allowing side-by-side selection from numerous sequence possibilities as well as sequence evolution. A 22 base hairpin and 6 base single-stranded tail located at the 3'-terminus of sat-RNA C were previously identified as the promoter for minus strand synthesis. Approximately 50% of plants co-inoculated with TCV and sat-RNA C containing randomized sequence in place of the 22 base hairpin accumulated sat-RNA in uninoculated leaves. The 22 base region differed in sat-RNA accumulating in all infected plants, but nearly all were predicted to fold into a hairpin structure that maintained the 6 base tail as a single-stranded sequence. Two additional rounds of sat-RNA amplification led to four sequence family 'winners', with three families containing multiple variants, indicating that evolution of these sequences was occurring in plants. Three of the four sequence family winners had the same 3 bp at the base of the stem as wild-type sat-RNA C. Two of the winners shared 15 of 22 identical bases, including the entire stem region and extending two bases into the loop. These results demonstrate the utility of the in vivo selection approach by showing that both sequence and structure contribute to a more active 3'-end region for accumulation of sat-RNA C.
Collapse
MESH Headings
- Base Sequence
- Brassica/virology
- Carmovirus/genetics
- Evolution, Molecular
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- RNA, Satellite/biosynthesis
- RNA, Satellite/chemistry
- RNA, Satellite/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Selection, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- C D Carpenter
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
88
|
Siegel RW, Adkins S, Kao CC. Sequence-specific recognition of a subgenomic RNA promoter by a viral RNA polymerase. Proc Natl Acad Sci U S A 1997; 94:11238-43. [PMID: 9326593 PMCID: PMC23427 DOI: 10.1073/pnas.94.21.11238] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA templates of 33 nucleotides containing the brome mosaic virus (BMV) core subgenomic promoter were used to determine the promoter elements recognized by the BMV RNA-dependent RNA polymerase (RdRp) to initiate RNA synthesis. Nucleotides at positions -17, -14, -13, and -11 relative to the subgenomic initiation site must be maintained for interaction with the RdRp. Changes to every other nucleotide at these four positions allow predictions for the base-specific functional groups required for RdRp recognition. RdRp contact of the nucleotide at position -17 was suggested with a template competition assay. Comparison of the BMV subgenomic promoter to those from other plant and animal alphaviruses shows a remarkable degree of conservation of the nucleotides required for BMV subgenomic RNA synthesis. We show that the RdRp of the plant-infecting BMV is capable of accurately, albeit inefficiently, initiating RNA synthesis from the subgenomic promoter of the animal-infecting Semliki Forest virus. The sequence-specific recognition of RNA by the BMV RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- R W Siegel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
89
|
Blight KJ, Rice CM. Secondary structure determination of the conserved 98-base sequence at the 3' terminus of hepatitis C virus genome RNA. J Virol 1997; 71:7345-52. [PMID: 9311812 PMCID: PMC192079 DOI: 10.1128/jvi.71.10.7345-7352.1997] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The RNA genome of hepatitis C virus (HCV) terminates with a highly conserved 98-base sequence. Enzymatic and chemical approaches were used to define the secondary structure of this 3'-terminal element in RNA transcribed in vitro from cloned cDNA. Both approaches yielded data consistent with a stable stem-loop structure within the 3'-terminal 46 bases. In contrast, the 5' 52 nucleotides of this 98-base element appear to be less ordered and may exist in multiple conformations. Under the experimental conditions tested, interaction between the 3' 98 bases and upstream HCV sequences was not detected. These data provide valuable information for future experiments aimed at identifying host and/or viral proteins which interact with this highly conserved RNA element.
Collapse
Affiliation(s)
- K J Blight
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | |
Collapse
|
90
|
Chang KY, Tinoco I. The structure of an RNA "kissing" hairpin complex of the HIV TAR hairpin loop and its complement. J Mol Biol 1997; 269:52-66. [PMID: 9193000 DOI: 10.1006/jmbi.1997.1021] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used nuclear magnetic resonance (NMR) to obtain the structure of an RNA "kissing" hairpin complex formed between the HIV-2 TAR hairpin loop and a hairpin with a complementary loop sequence. Kissing hairpins are important in natural antisense reactions; their complex is a specific target for protein binding. The complex has all six nucleotides of each loop paired to form a bent quasicontinuous helix of three coaxially stacked helices: two stems plus a loop-loop interaction helix. Experimental constraints derived from heteronuclear and homonuclear NMR data on 13C and 15N-labeled RNA led to a structure for the loop-loop helix with an average root-mean-square deviation of 0.83 (+/-0.10) A for 33 converged structures relative to the average structure. The loop-loop helix of the kissing complex is distorted compared to A-form RNA. Its major groove is blocked by the phosphodiester bonds that connect the first loop residue of each hairpin with its own stem, and it is flanked by two negatively charged phosphate clusters. The loop-loop helix has alternating helical twists between adjacent base-pairs. The base-pairs at the helix junctions are overwound and three base-pairs near the helix junctions adopt high propeller twists. All these changes reduce the distance needed for the bridging phosphodiester bonds connecting each stem and loop to cross the major groove of the loop-loop helix, and result in a deformed RNA helix with localized perturbations in the minor groove surface. The alternating helical twist pattern, plus other distortions in the loop-loop helix may be important for Rom protein recognition of the kissing hairpin complex.
Collapse
Affiliation(s)
- K Y Chang
- Department of Chemistry, University of California at Berkeley, 94720-1460, USA
| | | |
Collapse
|
91
|
Xiang W, Paul AV, Wimmer E. RNA Signals in Entero- and Rhinovirus Genome Replication. ACTA ACUST UNITED AC 1997. [DOI: 10.1006/smvy.1997.0128] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|