51
|
Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest 2022; 132:154888. [PMID: 35104801 PMCID: PMC8803328 DOI: 10.1172/jci154888] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a fundamental aging mechanism that is currently the focus of considerable interest as a pathway that could be targeted to ameliorate aging across multiple tissues, including the skeleton. There is now substantial evidence that senescent cells accumulate in the bone microenvironment with aging and that targeting these cells prevents age-related bone loss, at least in mice. Cellular senescence also plays important roles in mediating the skeletal fragility associated with diabetes mellitus, radiation, and chemotherapy. As such, there are ongoing efforts to develop "senolytic" drugs that kill senescent cells by targeting key survival mechanisms in these cells without affecting normal cells. Because senescent cells accumulate across tissues with aging, senolytics offer the attractive possibility of treating multiple age-related comorbidities simultaneously.
Collapse
|
52
|
Melatonin Improves the Resistance of Oxidative Stress-Induced Cellular Senescence in Osteoporotic Bone Marrow Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7420726. [PMID: 35087617 PMCID: PMC8789417 DOI: 10.1155/2022/7420726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022]
Abstract
Accumulation of senescent bone marrow-derived mesenchymal stem cells (BMMSCs) has led to an age-related bone loss. However, the role of stem cell senescence in estrogen deficiency-induced osteoporosis remains elusive. Though melatonin plays a vital role in bone metabolism regulation, the underlying mechanisms of melatonin-mediated antiosteoporosis are partially elucidated. Therefore, this study purposed to explore (1) whether estrogen deficiency causes cellular senescence of BMMSCs, and if so, (2) the potential of melatonin in preventing bone loss via senescence signaling inhibition. BMMSCs derived from ovariectomized (OVX) rats (OVX BMMSCs) showed an impaired osteogenic capacity, albeit having comparable levels of senescence biomarkers than the sham cells. When exposed to low levels of hydrogen peroxide (H2O2), OVX BMMSCs rapidly exhibited senescence-associated phenotypes such as the increased activity of senescence-associated β-galactosidase (SA-β-gal) and upregulation of cell cycle inhibitors. Notably, the in vitro treatment with melatonin hindered H2O2-induced senescence in OVX BMMSCs and restored their osteogenic capacity. Treatment with either SIRT1 inhibitor (sirtinol) or melatonin receptor antagonists (luzindole and 4-P-PDOT) eliminated melatonin protective effects, thus indicating its potential in preventing stem cell senescence via SIRT1 activation through the melatonin membrane receptors. Following in vivo intravenous administration with melatonin, it successfully protected the bone microstructure and preserved the antisenescence property of BMMSCs in OVX rats. Collectively, our findings demonstrated that melatonin protected against estrogen deficiency-related bone loss by improving the resistance of BMMSCs to cellular senescence. Therefore, melatonin-mediated antisenescence effect on stem cells provides vital information to facilitate the development of a novel and effective strategy for treating postmenopausal OP.
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW Osteocytes are considered to be the cells responsible for mastering the remodeling process that follows the exposure to unloading conditions. Given the invasiveness of bone biopsies in humans, both rodents and in vitro culture systems are largely adopted as models for studies in space missions or in simulated microgravity conditions models on Earth. RECENT FINDINGS After a brief recall of the main changes in bone mass and osteoclastic and osteoblastic activities in space-related models, this review focuses on the potential role of osteocytes in directing these changes. The role of the best-known signalling molecules is questioned, in particular in relation to osteocyte apoptosis. The mechanotransduction actors identified in spatial conditions and the problems related to fluid flow and shear stress changes, probably enhanced by the alteration in fluid flow and lack of convection during spaceflight, are recalled and discussed.
Collapse
Affiliation(s)
- Donata Iandolo
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Maura Strigini
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Alain Guignandon
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Laurence Vico
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
54
|
Zhou FQ. NAD +, Senolytics, or Pyruvate for Healthy Aging? Nutr Metab Insights 2021; 14:11786388211053407. [PMID: 34720589 PMCID: PMC8552375 DOI: 10.1177/11786388211053407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
In last decades, healthy aging has become one of research hotspots in life science. It is well known that the nicotinamide adenine dinucleotide oxidized form (NAD+) level in cells decreases with aging and aging-related diseases. Several years ago, one of NAD+ precursors was first demonstrated with its new role in DNA damage repairing in mice, restoring old mice to their physical state at young ones. The finding encourages extensive studies in animal models and patients. NAD+ and its precursors have been popular products in nutrition markets. Alternatively, it was also evidenced that clearance of cellular senescence by senolytics preserved multiorgan (kidney and heart) function and extended healthy lifespan in mice. Subsequent studies confirmed findings in elderly patients subjected with idiopathic pulmonary fibrosis. The senolytic therapy is now focused on various diseases in animal and clinical studies. However, pyruvate, as both a NAD+ substitute and a new senolytic, may be advantageous, on the equimolar basis, over current products above in preventing and treating diseases and aging. Pyruvate-enriched fluids, particularly pyruvate oral rehydration salt, may be a novel intervention for diseases and aging besides critical care. Albeit the direct evidence that benefits healthy aging is still limited to date, pyruvate, as both NAD+ provider and senolytic agent, warrants intensive research to compare NAD+ or senolytics for healthy aging, specifically on the equimolar basis, in effective blood levels. This review briefly discussed the recognition of healthy aging by comparing NAD+ and Senolytics with sodium pyruvate from the clinical point of view.
Collapse
|
55
|
Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, Farr JN, Khosla S. Modulation of fracture healing by the transient accumulation of senescent cells. eLife 2021; 10:69958. [PMID: 34617510 PMCID: PMC8526061 DOI: 10.7554/elife.69958] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage; the specific identity of these cells, however, requires further characterization. Then, using a genetic mouse model (Cdkn2aLUC) containing a Cdkn2aInk4a-driven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells (‘senolytics’, Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather improves fracture healing.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Rowsey
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States
| | - Stephanie J Vos
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| |
Collapse
|
56
|
Tripathi U, Nchioua R, Prata LGPL, Zhu Y, Gerdes EOW, Giorgadze N, Pirtskhalava T, Parker E, Xue A, Espindola-Netto JM, Stenger S, Robbins PD, Niedernhofer LJ, Dickinson SL, Allison DB, Kirchhoff F, Sparrer KMJ, Tchkonia T, Kirkland JL. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 2021; 13:21838-21854. [PMID: 34531331 PMCID: PMC8507266 DOI: 10.18632/aging.203560] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse β-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm 89081, Germany
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L. Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
57
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
58
|
Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199:111565. [PMID: 34499959 DOI: 10.1016/j.mad.2021.111565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The skeletal system undergoes irreversible structural deterioration with aging, leading to increased fracture risk and detrimental changes in mobility, posture, and gait. This state of low bone mass and microarchitectural changes, diagnosed as osteoporosis, affects millions of individuals worldwide and has high clinical and economic burdens. Recently, pre-clinical studies have linked the onset of age-related bone loss with an accumulation of senescent cells in the bone microenvironment. These senescent cells appear to be causal to age-related bone loss, as targeted clearance of these cells leads to improved bone mass and microarchitecture in old mice. Additionally, other pathologies leading to bone loss that result from DNA damage, such as cancer treatments, have shown improvements after clearance of senescent cells. The development of new therapies that clear senescent cells, termed "senolytics", is currently underway and may allow for the modulation of bone loss that results from states of high senescent cell burden, such as aging.
Collapse
Affiliation(s)
- Madison L Doolittle
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - David G Monroe
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Joshua N Farr
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
59
|
|
60
|
Lian WS, Wu RW, Chen YS, Ko JY, Wang SY, Jahr H, Wang FS. MicroRNA-29a Mitigates Osteoblast Senescence and Counteracts Bone Loss through Oxidation Resistance-1 Control of FoxO3 Methylation. Antioxidants (Basel) 2021; 10:antiox10081248. [PMID: 34439496 PMCID: PMC8389244 DOI: 10.3390/antiox10081248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated β-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123
| |
Collapse
|
61
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
62
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
63
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
64
|
Liu Q, Li M, Wang S, Xiao Z, Xiong Y, Wang G. Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2020; 8:601224. [PMID: 33384998 PMCID: PMC7769847 DOI: 10.3389/fcell.2020.601224] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing life expectations, more and more patients suffer from fractures either induced by intensive sports or other bone-related diseases. The balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption is the basis for maintaining bone health. Osterix (Osx) has long been known to be an essential transcription factor for the osteoblast differentiation and bone mineralization. Emerging evidence suggests that Osx not only plays an important role in intramembranous bone formation, but also affects endochondral ossification by participating in the terminal cartilage differentiation. Given its essentiality in skeletal development and bone formation, Osx has become a new research hotspot in recent years. In this review, we focus on the progress of Osx's function and its regulation in osteoblast differentiation and bone mass. And the potential role of Osx in developing new therapeutic strategies for osteolytic diseases was discussed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Mao Li
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| | - Shiyi Wang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuanyuan Xiong
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangwei Wang
- Key Laboratory of Brain and Neuroendocrine Diseases, College of Hunan Province, Hunan University of Medicine, Huaihua, China
- Biomedical Research Center, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
65
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
66
|
Song S, Tchkonia T, Jiang J, Kirkland JL, Sun Y. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002611. [PMID: 33304768 PMCID: PMC7709980 DOI: 10.1002/advs.202002611] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Aging is a physiological decline in both structural homeostasis and functional integrity, progressively affecting organismal health. A major hallmark of aging is the accumulation of senescent cells, which have entered a state of irreversible cell cycle arrest after experiencing inherent or environmental stresses. Although cellular senescence is essential in several physiological events, it plays a detrimental role in a large array of age-related pathologies. Recent biomedical advances in specifically targeting senescent cells to improve healthy aging, or alternatively, postpone natural aging and age-related diseases, a strategy termed senotherapy, have attracted substantial interest in both scientific and medical communities. Challenges for aging research are highlighted and potential avenues that can be leveraged for therapeutic interventions to control aging and age-related disorders in the current era of precision medicine.
Collapse
Affiliation(s)
- Shuling Song
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of GerontologyBinzhou Medical UniversityYantaiShandong264003China
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Jing Jiang
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
| | - James L. Kirkland
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMN55905USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- School of PharmacyBinzhou Medical UniversityYantaiShandong264003China
- Department of Medicine and VAPSHCSUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
67
|
Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1875:188482. [PMID: 33260050 DOI: 10.1016/j.bbcan.2020.188482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
Carriers of BRCA1 mutations have a higher chance of developing cancers in hormone-responsive tissues like the breast, ovary and prostate, compared to other tissues. These tumors generally exhibit basal-like characters and do not express estrogen receptor (ER) or progesterone receptor (PR). Intriguingly, BRCA1 mutated breast cancers have a less favorable clinical outcome, as they will not respond to hormone therapy. BRCA1 has been reported to exhibit ligand dependent and independent transcriptional inhibition of ER-α; however, there exists a controversy on whether BRCA1 induces or inhibits ER-α expression. The mechanisms associated with resistance of BRCA1 mutated cancers to hormone therapy, as well as the tissue restriction exhibited by BRCA1 mutated tumors are still largely unknown. BRCA1 mutated tumors possess increased DNA damages and decreased genomic integrity, as BRCA1 plays a cardinal role in high fidelity DNA damage repair pathways, like homologous recombination (HR). The existence of cross regulatory signaling networks between ER-α and BRCA1 speculates a role of ER on BRCA1 dependent DDR pathways. Thus, the loss or haploinsufficiency of BRCA1 and the consequential deregulation of ER-α signaling may result in persistence of unrepaired DNA damages, eventually leading to tumorigenesis. Therefore, understanding of this cross-talk between ER-α and BRCA1, with regard to DDR, will provide critical insights to steer drug development and therapy for breast/ovarian cancers. This review discusses the mechanisms by which estrogen and ER signaling influence BRCA1 mediated DNA damage response and repair pathways in the mammalian system.
Collapse
|
68
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 530] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
69
|
Al-Bari AA, Al Mamun A. Current advances in regulation of bone homeostasis. FASEB Bioadv 2020; 2:668-679. [PMID: 33205007 PMCID: PMC7655096 DOI: 10.1096/fba.2020-00058] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Bone homeostasis is securely controlled by the dynamic well‐balanced actions among osteoclasts, osteoblasts and osteocytes. Osteoclasts are large multinucleated cells that degrade bone matrix and involve in the bone remodelling in conjunction with other bone cells, osteoblasts and osteocytes, the completely matured form of osteoblasts. Disruption of this controlling balance among these cells or any disparity in bone remodelling caused by a higher rate of resorption by osteoclasts over construction of bone by osteoblasts results in a reduction of bone matrix including bone mineral density (BMD) and bone marrow cells (BMCs). The dominating effect of osteoclasts results in advanced risk of bone crack and joint destruction in several diseases including osteoporosis and rheumatoid arthritis (RA). However, the boosted osteoblastic activity produces osteosclerotic phenotype and weakened its action primes to osteomalacia or rickets. On the other hand, senescent osteocytes predominately progress the senescence associated secretory phenotype (SASP) and may contribute to age related bone loss. Here, we discuss an advanced level work on newly identified cellular mechanisms controlling the remodelling of bone and crosstalk among bone cells as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
| | - Abdullah Al Mamun
- Department of Genetic Engineering and Biotechnology Shahjalal University of Science and Technology Sylhet Bangladesh
| |
Collapse
|
70
|
Porwal K, Pal S, Kulkarni C, Singh P, Sharma S, Singh P, Prajapati G, Gayen JR, Ampapathi RS, Mullick A, Chattopadhyay N. A prebiotic, short-chain fructo-oligosaccharides promotes peak bone mass and maintains bone mass in ovariectomized rats by an osteogenic mechanism. Biomed Pharmacother 2020; 129:110448. [PMID: 32776872 DOI: 10.1016/j.biopha.2020.110448] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 11/24/2022] Open
Abstract
In preclinical studies, fructooligosaccharide (FOS) showed beneficial skeletal effects but its effect on peak bone mass (PBM) and bone loss caused by estrogen (E2) deficiency has not been studied, and we set out to study these effects in rats. Short-chain (sc)-FOS had no effect on body weight, body composition, and energy metabolism of ovary intact (sham) and ovariectomized (OVX) rats. scFOS did not affect serum and urinary calcium and phosphorus levels, and on calcium absorption, although an increasing trend was noted in the sham group. Sham and OVX rats given scFOS had better skeletal parameters than their respective controls. scFOS treatment resulted in a higher bone anabolic response but had no effect on the catabolic parameters. scFOS increased serum levels of a short-chain fatty acid, butyrate which is known to have osteogenic effect. Our study for the first time demonstrates that in rats scFOS at the human equivalent dose enhances PBM and protects against E2 deficiency-induced bone loss by selective enhancement of new bone formation, and implicates butyrate in this process.
Collapse
Affiliation(s)
- Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Priya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Pragati Singh
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Gurudayal Prajapati
- NMR Facility, SAIF Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Jiaur R Gayen
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ravi S Ampapathi
- NMR Facility, SAIF Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Ashim Mullick
- Tata Chemicals Limited-Innovation Centre, Paud Road, Mulshi, Pune, Maharashtra 412111, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
71
|
Faubion L, White TA, Peterson BJ, Geske JR, LeBrasseur NK, Schafer MJ, Mielke MM, Miller VM. Effect of menopausal hormone therapy on proteins associated with senescence and inflammation. Physiol Rep 2020; 8:e14535. [PMID: 32857481 PMCID: PMC7453781 DOI: 10.14814/phy2.14535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Estrogen may inhibit cell senescence that contributes to age-related disorders. This study determined the effects of menopausal hormone treatments on circulating levels of markers of cell senescence. METHODS Growth differentiation factor 15 (GDF15), tumor necrosis factor receptor 1 (TNFR1), FAS, and macrophage inflammatory protein 1α (MIP1α) were measured in serum using multiplexed bead-based assays and compared among menopausal women participating in the Kronos Early Estrogen Prevention Study randomized to either placebo (n = 38), oral conjugated equine estrogen (oCEE, n = 37), or transdermal 17β-estradiol (tE2, n = 34). Serum levels of the senescent markers for each treatment were compared to placebo 36 months after randomization using the Wilcoxon rank sum test. RESULTS Serum levels of GDF15, TNFR1, and FAS, but not MIP1α, were lower in both the oCEE and tE2 groups compared to placebo. The difference in levels between treatment and placebo for GDF15, TNFR1, and FAS were greater for oCEE [-108 pg/mL (p = .008), -234 pg/mL (p = .0006), and -1374 pg/mL (p < .0001), respectively] than for tE2 [-76 pg/mL (p = .072), -105 pg/mL (p = .076), and -695 pg/mL (p = .036), respectively]. Additionally, TNFR1 showed a positive association with time past menopause (correlation = 0.255, p = .019). CONCLUSIONS Circulating levels of some markers of cell senescence were lower in menopausal women treated with oCEE and tE2 compared to placebo. Differences in the magnitude of effect of the two active treatments may reflect the differences in circulating levels of estrogen metabolites due to formulation and mode of delivery. These data generate new hypotheses with regard to the effects of menopause on the biology of aging.
Collapse
Affiliation(s)
| | - Thomas A. White
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | | | | | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| | - Marissa J. Schafer
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
- Department of NeurologyMayo ClinicRochesterMNUSA
| | - Virginia M. Miller
- Department of SurgeryMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
- Specialized Center of Research Excellence on Sex DifferencesMayo ClinicRochesterMNUSA
| |
Collapse
|
72
|
Yang Y, Zhao L, Li N, Dai C, Yin N, Chu Z, Duan X, Niu X, Yan P, Lv P. Estrogen Exerts Neuroprotective Effects in Vascular Dementia Rats by Suppressing Autophagy and Activating the Wnt/β-Catenin Signaling Pathway. Neurochem Res 2020; 45:2100-2112. [PMID: 32719979 DOI: 10.1007/s11064-020-03072-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Vascular dementia (VD) is a clinical syndrome of acquired cognitive dysfunction caused by various cerebrovascular factors. Estrogen is a steroid hormone involved in promoting neuronal survival and in regulating many signaling pathways. However, the mechanism by which it confers neuroprotective effects in VD remains unclear. Here, we aimed to investigate the effect of estrogen on neuronal injury and cognitive impairment in VD rats. Adult female rats were randomly divided into four groups (sham, model, estrogen early and estrogen later treatment) and received sham surgery or bilateral ovariectomy and permanent occlusion of bilateral common carotid arteries (BCCAO). The early treatment group received daily intraperitoneal injections of 17β-estradiol (100 µg/kg/day) for 8 weeks starting the day after BCCAO. The later treatment group was administered the same starting 1 week after BCCAO. Learning and memory functions were assessed using the Morris water maze. Morphological changes within the hippocampal CA1 region were observed by hematoxylin/eosin staining and electron microscopy. Expression of proteins associated with autophagy and signaling were detected by immunohistochemical staining and Western blot. We found that estrogen significantly alleviated cognitive damage and neuronal injury and reduced the expression of Beclin1 and LC3B, indicating a suppression of autophagy. Moreover, estrogen enhanced expression of β-catenin and Cyclin D1, while reducing glycogen synthase kinase 3β, suggesting activation of Wnt/β-catenin signaling. These results indicate that estrogen ameliorates learning and memory deficiencies in VD rats, and that this neuroprotective effect may be explained by the suppression of autophagy and activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Lei Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Na Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Congwei Dai
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Zhaoping Chu
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoyan Duan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ping Yan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China.
| |
Collapse
|
73
|
Eckhardt BA, Rowsey JL, Thicke BS, Fraser DG, O’Grady KL, Bondar OP, Hines JM, Singh RJ, Thoreson AR, Rakshit K, Lagnado AB, Passos JF, Vella A, Matveyenko AV, Khosla S, Monroe DG, Farr JN. Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes. JCI Insight 2020; 5:135236. [PMID: 32267250 PMCID: PMC7253018 DOI: 10.1172/jci.insight.135236] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The worldwide prevalence of type 2 diabetes (T2D) is increasing. Despite normal to higher bone density, patients with T2D paradoxically have elevated fracture risk resulting, in part, from poor bone quality. Advanced glycation endproducts (AGEs) and inflammation as a consequence of enhanced receptor for AGE (RAGE) signaling are hypothesized culprits, although the exact mechanisms underlying skeletal dysfunction in T2D are unclear. Lack of inducible models that permit environmental (in obesity) and temporal (after skeletal maturity) control of T2D onset has hampered progress. Here, we show in C57BL/6 mice that a onetime pharmacological intervention (streptozotocin, STZ) initiated in adulthood combined with high-fat diet-induced (HFD-induced) obesity caused hallmark features of human adult-onset T2D, including prolonged hyperglycemia, insulin resistance, and pancreatic β cell dysfunction, but not complete destruction. In addition, HFD/STZ (i.e., T2D) resulted in several changes in bone quality that closely mirror those observed in humans, including compromised bone microarchitecture, reduced biomechanical strength, impaired bone material properties, altered bone turnover, and elevated levels of the AGE CML in bone and blood. Furthermore, T2D led to the premature accumulation of senescent osteocytes with a unique proinflammatory signature. These findings highlight the RAGE pathway and senescent cells as potential targets to treat diabetic skeletal fragility.
Collapse
Affiliation(s)
| | | | | | - Daniel G. Fraser
- Division of Endocrinology
- Robert and Arlene Kogod Center on Aging
| | | | | | | | | | - Andrew R. Thoreson
- Materials and Structural Testing Core
- Department of Physical Medicine and Rehabilitation, and
| | - Kuntol Rakshit
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Anthony B. Lagnado
- Robert and Arlene Kogod Center on Aging
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Robert and Arlene Kogod Center on Aging
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aleksey V. Matveyenko
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundeep Khosla
- Division of Endocrinology
- Robert and Arlene Kogod Center on Aging
| | - David G. Monroe
- Division of Endocrinology
- Robert and Arlene Kogod Center on Aging
| | - Joshua N. Farr
- Division of Endocrinology
- Robert and Arlene Kogod Center on Aging
- Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
74
|
Yao Z, Murali B, Ren Q, Luo X, Faget DV, Cole T, Ricci B, Thotala D, Monahan J, van Deursen JM, Baker D, Faccio R, Schwarz JK, Stewart SA. Therapy-Induced Senescence Drives Bone Loss. Cancer Res 2020; 80:1171-1182. [PMID: 31932453 PMCID: PMC7056549 DOI: 10.1158/0008-5472.can-19-2348] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
Chemotherapy is important for cancer treatment, however, toxicities limit its use. While great strides have been made to ameliorate the acute toxicities induced by chemotherapy, long-term comorbidities including bone loss remain a significant problem. Chemotherapy-driven estrogen loss is postulated to drive bone loss, but significant data suggests the existence of an estrogen-independent mechanism of bone loss. Using clinically relevant mouse models, we showed that senescence and its senescence-associated secretory phenotype (SASP) contribute to chemotherapy-induced bone loss that can be rescued by depleting senescent cells. Chemotherapy-induced SASP could be limited by targeting the p38MAPK-MK2 pathway, which resulted in preservation of bone integrity in chemotherapy-treated mice. These results transform our understanding of chemotherapy-induced bone loss by identifying senescent cells as major drivers of bone loss and the p38MAPK-MK2 axis as a putative therapeutic target that can preserve bone and improve a cancer survivor's quality of life. SIGNIFICANCE: Senescence drives chemotherapy-induced bone loss that is rescued by p38MAPK or MK2 inhibitors. These findings may lead to treatments for therapy-induced bone loss, significantly increasing quality of life for cancer survivors.
Collapse
Affiliation(s)
- Zhangting Yao
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Bhavna Murali
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Qihao Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Xianmin Luo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Douglas V Faget
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Tom Cole
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Biancamaria Ricci
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology and Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Darren Baker
- Department of Biochemistry and Molecular Biology and Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Roberta Faccio
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, Missouri
- Shriners Hospital for Children, St. Louis, Missouri
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
75
|
Frame G, Bretland KA, Dengler-Crish CM. Mechanistic complexities of bone loss in Alzheimer's disease: a review. Connect Tissue Res 2020; 61:4-18. [PMID: 31184223 DOI: 10.1080/03008207.2019.1624734] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Alzheimer's disease (AD), the primary cause of dementia in the elderly, is one of the leading age-related neurodegenerative diseases worldwide. While AD is notorious for destroying memory and cognition, dementia patients also experience greater incidence of bone loss and skeletal fracture than age-matched neurotypical individuals, greatly impacting their quality of life. Despite the significance of this comorbidity, there is no solid understanding of the mechanisms driving early bone loss in AD. Here, we review studies that have evaluated many of the obvious risk factors shared by dementia and osteoporosis, and illuminate emerging work investigating covert pathophysiological mechanisms shared between the disorders that may have potential as new risk biomarkers or therapeutic targets in AD.Conclusions: Skeletal deficits emerge very early in clinical Alzheimer's progression, and cannot be explained by coincident factors such as aging, female sex, mobility status, falls, or genetics. While research in this area is still in its infancy, studies implicate several potential mechanisms in disrupting skeletal homeostasis that include direct effects of amyloid-beta pathology on bone cells, neurofibrillary tau-induced damage to neural centers regulating skeletal remodeling, and/or systemic Wnt/Beta-catenin signaling deficits. Data from an increasing number of studies substantiate a role for the newly discovered "exercise hormone" irisin and its protein precursor FNDC5 in bone loss and AD-associated neurodegeneration. We conclude that the current status of research on bone loss in AD is insufficient and merits critical attention because this work could uncover novel diagnostic and therapeutic opportunities desperately needed to address AD.
Collapse
Affiliation(s)
- Gabrielle Frame
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Biomedical Sciences Program, Kent State University, Kent, OH, USA
| | - Katie A Bretland
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical University, Rootstown, OH, USA
| | | |
Collapse
|
76
|
Estrogen signaling impacts temporomandibular joint and periodontal disease pathology. Odontology 2019; 108:153-165. [PMID: 31270648 DOI: 10.1007/s10266-019-00439-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
Women experience a higher incidence of oral diseases including periodontal diseases and temporomandibular joint disease (TMD) implicating the role of estrogen signaling in disease pathology. Fluctuating levels of estrogen during childbearing age potentiates facial pain, high estrogen levels during pregnancy promote gingivitis, and low levels of estrogen during menopause predisposes the TMJ to degeneration and increases alveolar bone loss. In this review, an overview of estrogen signaling pathways in vitro and in vivo that regulate pregnancy-related gingivitis, TMJ homeostasis, and alveolar bone remodeling is provided. Deciphering the specific estrogen signaling pathways for individual oral diseases is crucial for potential new drug therapies to promote and maintain healthy tissue.
Collapse
|