51
|
microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin Sci (Lond) 2014; 126:497-506. [PMID: 24168656 DOI: 10.1042/cs20130538] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
miRNAs (microRNAs) have been shown to play a role in myocardial fibrosis. The present study was designed to analyse whether alterations in miRNA expression contribute to the progression of myocardial fibrosis in AS (aortic valve stenosis) patients through up-regulation of the pro-fibrotic factor TGF-β1 (transforming growth factor-β type 1). Endomyocardial biopsies were obtained from 28 patients with severe AS, and from the necropsies of 10 control subjects. AS patients presented increased myocardial CVF (collagen volume fraction) and TGF-β1 compared with the controls, these parameters being correlated in all patients. Patients were divided into two groups by cluster analysis according to their CVF: SF (severe fibrosis; CVF >15%; n=15) and non-SF (CVF ≤15%; n=13). TGF-β1 was increased in patients with SF compared with those with non-SF. To analyse the involvement of miRNAs in SF, the miRNA expression profile of 10 patients (four with non-SF and six with SF) was analysed showing that 99 miRNAs were down-regulated and 19 up-regulated in the SF patients compared with the non-SF patients. Those miRNAs potentially targeting TGF-β1 were validated by real-time RT (reverse transcription)-PCR in the whole test population, corroborating that miR-122 and miR-18b were down-regulated in patients with SF compared with those with non-SF and the control subjects. Additionally, miR-122 was inversely correlated with the CVF, TGF-β1 and the TGF-β1-regulated PCPE-1 (procollagen C-terminal proteinase enhancer-1) in all patients. Experiments in human fibroblasts demonstrated that miR-122 targets and inhibits TGF-β1. In conclusion, for the first time we show that myocardial down-regulation of miR-122 might be involved in myocardial fibrosis in AS patients, probably through TGF-β1 up-regulation.
Collapse
|
52
|
N-acetyl-seryl-aspartyl-lysyl-proline reduces cardiac collagen cross-linking and inflammation in angiotensin II-induced hypertensive rats. Clin Sci (Lond) 2013; 126:85-94. [PMID: 23834332 DOI: 10.1042/cs20120619] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have reported previously that Ac-SDKP (N-acetyl-seryl-aspartyl-lysyl-proline) reduces fibrosis and inflammation (in macrophages and mast cells). However, it is not known whether Ac-SDKP decreases collagen cross-linking and lymphocyte infiltration; lymphocytes modulate both collagen cross-linking and ECM (extracellular matrix) formation in hypertension. Thus we hypothesized that (i) in AngII (angiotensin II)-induced hypertension, Ac-SDKP prevents increases in cross-linked and total collagen by down-regulating LOX (lysyl oxidase), the enzyme responsible for cross-linking, and (ii) these effects are associated with decreased pro-fibrotic cytokine TGFβ (transforming growth factor β) and the pro-inflammatory transcription factor NF-κB (nuclear factor κB) and CD4+/CD8+ lymphocyte infiltration. We induced hypertension in rats by infusing AngII either alone or combined with Ac-SDKP for 3 weeks. Whereas Ac-SDKP failed to lower BP (blood pressure) or LV (left ventricular) hypertrophy, it did prevent AngII-induced increases in (i) cross-linked and total collagen, (ii) LOX mRNA expression and LOXL1 (LOX-like 1) protein, (iii) TGFβ expression, (iv) nuclear translocation of NF-κB, (v) CD4+/CD8+ lymphocyte infiltration, and (vi) CD68+ macrophages infiltration. In addition, we found a positive correlation between CD4+ infiltration and LOXL1 expression. In conclusion, the effect of Ac-SDKP on collagen cross-linking and total collagen may be due to reduced TGFβ1, LOXL1, and lymphocyte and macrophage infiltration, and its effect on inflammation could be due to lower NF-κB.
Collapse
|
53
|
Stephens DN, Klein RH, Salmans ML, Gordon W, Ho H, Andersen B. The Ets transcription factor EHF as a regulator of cornea epithelial cell identity. J Biol Chem 2013; 288:34304-24. [PMID: 24142692 DOI: 10.1074/jbc.m113.504399] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cornea is the clear, outermost portion of the eye composed of three layers: an epithelium that provides a protective barrier while allowing transmission of light into the eye, a collagen-rich stroma, and an endothelium monolayer. How cornea development and aging is controlled is poorly understood. Here we characterize the mouse cornea transcriptome from early embryogenesis through aging and compare it with transcriptomes of other epithelial tissues, identifying cornea-enriched genes, pathways, and transcriptional regulators. Additionally, we profiled cornea epithelium and stroma, defining genes enriched in these layers. Over 10,000 genes are differentially regulated in the mouse cornea across the time course, showing dynamic expression during development and modest expression changes in fewer genes during aging. A striking transition time point for gene expression between postnatal days 14 and 28 corresponds with completion of cornea development at the transcriptional level. Clustering classifies co-expressed, and potentially co-regulated, genes into biologically informative categories, including groups that exhibit epithelial or stromal enriched expression. Based on these findings, and through loss of function studies and ChIP-seq, we show that the Ets transcription factor EHF promotes cornea epithelial fate through complementary gene activating and repressing activities. Furthermore, we identify potential interactions between EHF, KLF4, and KLF5 in promoting cornea epithelial differentiation. These data provide insights into the mechanisms underlying epithelial development and aging, identifying EHF as a regulator of cornea epithelial identity and pointing to interactions between Ets and KLF factors in promoting epithelial fate. Furthermore, this comprehensive gene expression data set for the cornea is a powerful tool for discovery of novel cornea regulators and pathways.
Collapse
|
54
|
Rosenow A, Noben JP, Bouwman FG, Mariman ECM, Renes J. Hypoxia-mimetic effects in the secretome of human preadipocytes and adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2761-71. [PMID: 24140569 DOI: 10.1016/j.bbapap.2013.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/16/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
White adipose tissue (WAT) regulates energy metabolism by secretion of proteins with endocrine and paracrine effects. Dysregulation of the secretome of obesity-associated enlarged WAT may lead to obesity-related disorders. This can be caused by hypoxia as a result of poorly vascularized WAT. The effect of hypoxia on the secretome of human (pre)adipocytes is largely unknown. Therefore, we investigated the effect of CoCl2, a hypoxia mimetic, on the secretome of human SGBS (pre)adipocytes by a proteomics approach combined with bioinformatic analysis. In addition, regulation of protein secretion was examined by protein turnover experiments. As such, secretome changes were particularly associated with protein down-regulation and extracellular matrix protein dysregulation. The observed up-regulation of collagens in adipocytes may be essential for cell survival while down-regulation of collagens in preadipocytes may indicate a disturbed differentiation process. These CoCl2-induced changes reflect WAT dysfunction that ultimately may lead to obesity-associated complications. In addition, 9 novel adipocyte secreted proteins were identified from which 6 were regulated by CoCl2. Mass spectrometry data have been deposited to the ProteomeXchange with identifier PXD000162.
Collapse
Affiliation(s)
- Anja Rosenow
- NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
55
|
Gonzalez JM, Camacho LE, Ebarb SM, Swanson KC, Vonnahme KA, Stelzleni AM, Johnson SE. Realimentation of nutrient restricted pregnant beef cows supports compensatory fetal muscle growth1. J Anim Sci 2013; 91:4797-806. [DOI: 10.2527/jas.2013-6704] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- J. M. Gonzalez
- Dept. of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L. E. Camacho
- Dept. of Animal Sciences, North Dakota State University, Fargo 58108
| | - S. M. Ebarb
- Dept. of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - K. C. Swanson
- Dept. of Animal Sciences, North Dakota State University, Fargo 58108
| | - K. A. Vonnahme
- Dept. of Animal Sciences, North Dakota State University, Fargo 58108
| | - A. M. Stelzleni
- Dept. of Animal and Dairy Science, University of Georgia, Athens 30602
| | - S. E. Johnson
- Dept. of Animal and Poultry Sciences, Virginia Polytechnic and State University, Blacksburg 24061
| |
Collapse
|
56
|
Salazar VS, Zarkadis N, Huang L, Norris J, Grimston SK, Mbalaviele G, Civitelli R. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. J Cell Sci 2013; 126:4974-84. [PMID: 24006258 DOI: 10.1242/jcs.131953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β-BMP pathway, in Osx1(+) cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt.
Collapse
Affiliation(s)
- Valerie S Salazar
- Washington University School of Medicine, Division of Bone and Mineral Disease, Departments of Internal Medicine and Cell Biology and Physiology, 660 South Euclid, Campus Box 8301, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Stefanovic B. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:535-45. [PMID: 23907854 PMCID: PMC3748166 DOI: 10.1002/wrna.1177] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
58
|
Hermida N, Markl A, Hamelet J, Van Assche T, Vanderper A, Herijgers P, van Bilsen M, Hilfiker-Kleiner D, Noppe G, Beauloye C, Horman S, Balligand JL. HMGCoA reductase inhibition reverses myocardial fibrosis and diastolic dysfunction through AMP-activated protein kinase activation in a mouse model of metabolic syndrome. Cardiovasc Res 2013; 99:44-54. [PMID: 23542580 DOI: 10.1093/cvr/cvt070] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS The metabolic syndrome (MS) leads to myocardial fibrosis (MF) and diastolic dysfunction. Statins have proven beneficial effects in MS, but their impact on cardiac remodelling is uncertain. We examined the effects and mechanisms of chronic statin treatment on cardiac remodelling, e.g. fibrosis and diastolic properties. METHODS AND RESULTS We used a mouse model deficient in leptin and the LDL-receptor (DKO) that reproduces this MS phenotype. DKO mice (12 weeks) were treated with rosuvastatin (R) for 6 months vs. placebo. Morphometric and echocardiographic measurements showed that R reduced cardiac mass and increased left-ventricular end-diastolic diameter despite unchanged cardiomyocyte dimensions. Similarly, R had no effect on the hypertrophic response to neurohormones in isolated cardiomyocytes. Conversely, R reversed the age-dependent development of MF as well as mRNA expression of TGF-β1 and several pro-fibrotic markers (procollagen type I, its carboxy-terminal proteinase, Lysyl oxidase). R similarly inhibited the pro-fibrotic effects of TGF-β1 on procollagen type I, alpha Smooth Muscle Actin expression and migratory properties of cardiac fibroblasts in vitro. In parallel, R increased the activation of AMP-activated protein kinase (AMPK), a known inhibitor of fibrosis, in vivo and in vitro, and the anti-fibrotic effects of R were abrogated in fibroblasts transfected with AMPKα1/α2 siRNA. The reversal of MF by R in DKO mice was accompanied with improved diastolic properties assessed by P-V loop analysis (slope of EDPVR, dP/dt min and cardiac output). CONCLUSION In this model of MS, statin treatment reverses myocardial remodelling and improves ventricular relaxation through AMPK-mediated anti-fibrotic effects.
Collapse
Affiliation(s)
- Nerea Hermida
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique , Avenue Mounier 53 bte B1.53.09 à 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol Lett 2012; 34:813-22. [DOI: 10.1007/s10529-011-0841-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/13/2011] [Indexed: 01/14/2023]
|
60
|
De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth. Mol Cell Biochem 2011; 364:93-100. [DOI: 10.1007/s11010-011-1209-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/15/2011] [Indexed: 01/26/2023]
|
61
|
New Targets to Treat the Structural Remodeling of the Myocardium. J Am Coll Cardiol 2011; 58:1833-43. [DOI: 10.1016/j.jacc.2011.06.058] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/21/2011] [Indexed: 11/20/2022]
|
62
|
Voloshenyuk TG, Hart AD, Khoutorova E, Gardner JD. TNF-α increases cardiac fibroblast lysyl oxidase expression through TGF-β and PI3Kinase signaling pathways. Biochem Biophys Res Commun 2011; 413:370-5. [PMID: 21893029 DOI: 10.1016/j.bbrc.2011.08.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/20/2011] [Indexed: 12/01/2022]
Abstract
TNF-α is a proinflammatory cytokine that is upregulated in many cardiac diseases. The increase of TNF-α expression affects both heart function and the structure of the extracellular matrix. Lysyl oxidase (LOX) is a key enzyme responsible for the maturation of extracellular matrix proteins, including collagens type I and III. In this study, we investigated the regulation of LOX expression and activity by TNF-α using adult rat cardiac fibroblasts. Our results indicate that TNF-α has a dichotomous effect on LOX expression by cardiac fibroblasts. Low dose TNF-α (1-5 ng/ml) decreased LOX expression, whereas higher doses (10-30 ng/ml) increased expression. The higher dose TNF-α effect on LOX expression was attenuated by the inhibition of PI3Kinase/Akt pathway. TGF-β1 signaling played a significant role in mediating the TNF-α effect. TNF-α increased the expression of TGF-β, and TGF-β receptors type I and II, and also stimulated Smad3 phosphorylation. Inhibition of TGF-β receptor I or Smad3 prevented increased LOX expression by TNF-α. These findings indicate that TNF-α stimulated LOX expression may play an important role in progressive cardiac fibrosis.
Collapse
Affiliation(s)
- Tetyana G Voloshenyuk
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | | | | | | |
Collapse
|
63
|
Bortolini MAT, Rizk DEE. Genetics of pelvic organ prolapse: crossing the bridge between bench and bedside in urogynecologic research. Int Urogynecol J 2011; 22:1211-9. [PMID: 21789659 DOI: 10.1007/s00192-011-1502-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/11/2011] [Indexed: 12/22/2022]
Abstract
An increasing number of scientists have studied the molecular and biochemical basis of pelvic organ prolapse (POP). The extracellular matrix content of the pelvic floor is the major focus of those investigations and pointed for potential molecular markers of the dysfunction. The identification of women predisposed to develop POP would help in the patients' management and care. This article includes a critical analysis of the literature up to now; discusses implications for future research and the role of the genetics in POP.
Collapse
Affiliation(s)
- Maria Augusta Tezelli Bortolini
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Gynecology, Federal University of São Paulo, Borges Lagoa, 783 Cj. 31, 04038-031, São Paulo, SP, Brazil.
| | | |
Collapse
|
64
|
Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 2011; 55:90-7. [DOI: 10.1016/j.cyto.2011.03.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/04/2011] [Accepted: 03/24/2011] [Indexed: 11/21/2022]
|
65
|
Bortolini MAT, Shynlova O, Drutz HP, Girão MJBC, Castro RA, Lye S, Alarab M. Expression of Bone Morphogenetic Protein-1 in vaginal tissue of women with severe pelvic organ prolapse. Am J Obstet Gynecol 2011; 204:544.e1-8. [PMID: 21397208 DOI: 10.1016/j.ajog.2011.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/30/2010] [Accepted: 01/14/2011] [Indexed: 01/04/2023]
Abstract
OBJECTIVES To analyze the differential gene and protein expression of Bone Morphogenetic Protein-1 in vaginal tissue of women with advanced pelvic organ prolapse and controls. STUDY DESIGN We sampled the anterior vaginal wall of 39 premenopausal (23 patients and 16 controls), and 18 postmenopausal women (13 patients and 5 controls) during hysterectomy. Total mRNAs and proteins were quantified by real-time RT-PCR and immunoblotting. RESULTS Bone Morphogenetic Protein-1 gene expression was decreased in pre- and postmenopausal pelvic organ prolapse patients compared with asymptomatic women (P = .01). The expression of 130 kDa, 92.5 kDa, and 82.5 kDa isoforms of Bone Morphogenetic Protein-1 were down-regulated in postmenopausal patients (P = .01), whereas the 130 kDa isoform expression was up-regulated in premenopausal patients (P = .009), when compared with respective controls. CONCLUSION The Bone Morphogenetic Protein-1 expression in human vagina was altered in patients with severe pelvic organ prolapse and influenced by menopausal status. Dysregulation of Bone Morphogenetic Protein-1 may contribute for a deficient vaginal connective tissue and support.
Collapse
Affiliation(s)
- Maria A T Bortolini
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Canada.
| | | | | | | | | | | | | |
Collapse
|
66
|
|
67
|
Abstract
The heart is a remarkably adaptive organ, capable of increasing its minute output and overcoming short-term or prolonged pressure overload. The structural response, in addition to the foregoing functional demands, is that of myocardial hypertrophy. Then, why should an adaptive response increase cardiovascular risk in hypertensive patients with left ventricular hypertrophy (LVH)? Evidence shows that the functional performance of hypertrophied cardiomyocytes is impaired, and that additional alterations develop in cardiomyocytes themselves, the extracellular matrix and the intramyocardial vasculature, leading to myocardial remodelling and providing the basis for the adverse prognosis associated with pathological LVH in hypertensive patients (i.e., hypertensive heart disease, HHD). As molecular information accumulates, the pathophysiological understanding and the clinical approach to HHD are changing. The time has come to develop novel diagnostic and therapeutic strategies aimed at improving the prognosis of HHD on the basis of reversing or even preventing the aforementioned changes in the ventricular myocardium.
Collapse
|
68
|
Activation of cellular chemotactic responses to chemokines coupled with oxidation of plasma membrane proteins by lysyl oxidase. J Neural Transm (Vienna) 2011; 118:1091-9. [PMID: 21509606 DOI: 10.1007/s00702-011-0642-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/25/2011] [Indexed: 11/27/2022]
Abstract
Lysyl oxidase (LOX) is a potent chemokine inducing the migration of varied cell types. Here we demonstrate that inhibition of cellular LOX activity by preincubation of vascular smooth muscle cells (VSMC) with β-aminopropionitrile (BAPN), the irreversible inhibitor of LOX activity, resulted in the marked suppression of the chemotactic response and sensitivity of these cells toward LOX and toward PDGF-BB. Plasma membranes purified from VSMC not previously exposed to BAPN contained a group of oxidized plasma membrane proteins, including the PDGF receptor, PDGFR-β. The oxidation of this receptor and other membrane proteins was largely prevented in cells preincubated with BAPN. Addition of purified LOX to BAPN-free cells, which had been previously exposed to BAPN, restored the profile of oxidized proteins towards that of control cells. The high affinity and capacity for the binding of PDGF-BB by cells was significantly diminished when compared with cells in which oxidation by LOX was prevented by BAPN. The chemotactic responses of LOX knock-out mouse embryonic fibroblasts mirrored those obtained with VSMC treated with BAPN. These novel findings suggest that LOX activity is essential to generate optimal chemotactic sensitivity of cells to chemoattractants by oxidizing specific cell surface proteins, such as PDGFR-β.
Collapse
|
69
|
Abdel-Hamid IA, Anis T. Peyronie's disease: perspectives on therapeutic targets. Expert Opin Ther Targets 2011; 15:913-29. [PMID: 21492024 DOI: 10.1517/14728222.2011.577419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Peyronie's disease (PD) is an acquired benign connective tissue disorder of the penis, characterized by the development of fibrotic plaques, that can cause different degrees of bending, narrowing or shortening. Medical treatment for PD remains a major challenge. Impressive progress in our understanding of the molecular mechanisms of PD pathogenesis has uncovered several promising molecular targets for antifibrotic treatments. AREAS COVERED This review covers the literature pertaining to the exploration of therapeutic targets for PD. The search included: i) a MEDLINE search from 1941 to January 2011, limited to English-language medical literature, ii) relevant abstracts from 2009 and 2010, iii) relevant textbooks and iv) a pipeline search for therapeutics in development. EXPERT OPINION Rapid translational research depends on our ability to develop rational therapies targeted to penile tunical fibrosis, which necessitate a sound knowledge of the biology, biochemistry and the physiological role of fibroblasts, myofibroblasts and stem cells in PD. Much remains to be learned about the pathogenesis of PD. Although there are many interesting therapeutic targets, we are confronted with some questions when identifying new targets, or when validating potential therapeutic options.
Collapse
|
70
|
Kumar S, Seqqat R, Chigurupati S, Kumar R, Baker KM, Young D, Sen S, Gupta S. Inhibition of nuclear factor κB regresses cardiac hypertrophy by modulating the expression of extracellular matrix and adhesion molecules. Free Radic Biol Med 2011; 50:206-15. [PMID: 21047552 DOI: 10.1016/j.freeradbiomed.2010.10.711] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/19/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Myocardial remodeling denotes a chronic pathological condition of dysfunctional myocardium that occurs in cardiac hypertrophy (CH) and heart failure (HF). Reactive oxygen species (ROS) are major initiators of excessive collagen and fibronectin deposition in cardiac fibrosis. Increased production of ROS and nuclear factor κB (NF-κB) activation provide a strong link between oxidative stress and extracellular matrix (ECM) remodeling in cardiac hypertrophy. The protective inhibitory actions of pyrrolidine dithiocarbamate (PDTC), a pharmacological inhibitor of NF-κB and a potent antioxidant, make this a good agent to evaluate the role of inhibition of NF-κB and prevention of excessive ECM deposition in maladaptive cardiac remodeling during HF. In this report, we used a transgenic mouse model (Myo-Tg) that has cardiac-specific overexpression of myotrophin. This overexpression of myotrophin in the Myo-Tg model directs ECM deposition and increased NF-κB activity, which result in CH and ultimately HF. Using the Myo-Tg model, our data showed upregulation of profibrotic genes (including collagen types I and III, connective tissue growth factor, and fibronectin) in Myo-Tg mice, compared to wild-type mice, during the progression of CH. Pharmacological inhibition of NF-κB by PDTC in the Myo-Tg mice resulted in a significant reduction in cardiac mass, NF-κB activity, and profibrotic gene expression and improved cardiac function. To the best of our knowledge, this is the first report of ECM regulation by inhibition of NF-κB activation by PDTC. The study highlights the importance of the NF-κB signaling pathway and therapeutic benefits of PDTC treatment in cardiac remodeling.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77840, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Diao H, Aplin JD, Xiao S, Chun J, Li Z, Chen S, Ye X. Altered spatiotemporal expression of collagen types I, III, IV, and VI in Lpar3-deficient peri-implantation mouse uterus. Biol Reprod 2010; 84:255-65. [PMID: 20864640 DOI: 10.1095/biolreprod.110.086942] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Lpar3 is upregulated in the preimplantation uterus, and deletion of Lpar3 leads to delayed uterine receptivity in mice. Microarray analysis revealed that there was higher expression of Col3a1 and Col6a3 in the Preimplantation Day 3.5 Lpar3(-/-) uterus compared to Day 3.5 wild-type (WT) uterus. Since extracellular matrix (ECM) remodeling is indispensable during embryo implantation, and dynamic spatiotemporal alteration of specific collagen types is part of this process, this study aimed to characterize the expression of four main uterine collagen types: fibril-forming collagen (COL) I and COL III, basement membrane COL IV, and microfibrillar COL VI in the peri-implantation WT and Lpar3(-/-) uterus. An observed delay of COL III and COL VI clearance in the Lpar3(-/-) uterus may be associated with higher preimplantation expression of Col3a1 and Col6a3. There was also delayed clearance of COL I and delayed deposition of COL IV in the decidual zone in the Lpar3(-/-) uterus. These changes were different from the effects of 17beta-estradiol and progesterone on uterine collagen expression in ovariectomized WT uterus, indicating that the altered collagen expression in Lpar3(-/-) uterus is unlikely to be a result of alterations in ovarian hormones. Decreased expression of several genes encoding matrix-degrading metallo- and serine proteinases was observed in the Lpar3(-/-) uterus. These results demonstrate that pathways downstream of LPA3 are involved in the dynamic remodeling of ECM in the peri-implantation uterus.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
López B, González A, Hermida N, Valencia F, de Teresa E, Díez J. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol 2010; 299:H1-9. [PMID: 20472764 DOI: 10.1152/ajpheart.00335.2010] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because of its dynamic nature, the composition and structure of the myocardial collagen network can be reversibly modified to adapt to transient cardiac injuries. In response to persistent injury, however, irreversible, maladaptive changes of the network occur leading to fibrosis, mostly characterized by the excessive interstitial and perivascular deposition of collagen types I and III fibers. It is now becoming apparent that myocardial fibrosis directly contributes to adverse myocardial remodeling and the resulting alterations of left ventricular (LV) anatomy and function present in the major types of cardiac diseases. The enzyme lysyl oxidase (LOX) is a copper-dependent extracellular enzyme that catalyzes lysine-derived cross-links in collagen and elastin. LOX-mediated cross-linking of collagen types I and III fibrils leads to the formation of stiff collagen types I and III fibers and their subsequent tissue deposition. Evidence from experimental and clinical studies shows that the excess of LOX is associated with an increased collagen cross-linking and stiffness. It is thus conceivable that LOX upregulation and/or overactivity could underlie myocardial fibrosis and altered LV mechanics and contribute to the compromise of LV function in cardiac diseases. This review will consider the molecular aspects related to the regulation and actions of LOX, namely, in the context of collagen synthesis. In addition, it will address the information related to the role of myocardial LOX in heart failure and the potential benefits of controlling its expression and function.
Collapse
Affiliation(s)
- Begoña López
- Area de Ciencias Cardiovasculares, Centre for Applied Medical Research, University of Navarra, Avenida Pío XII 55, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
73
|
Williams RJ, Mart RJ, Ulijn RV. Exploiting biocatalysis in peptide self-assembly. Biopolymers 2010; 94:107-17. [PMID: 20091879 DOI: 10.1002/bip.21346] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review article covers recent developments in the use of enzyme-catalyzed reactions to control molecular self-assembly (SA), an area that merges the advantages of biocatalysis with soft materials self-assembly. This approach is attractive because it combines biological (chemo-, regio-, and enantio-) selectivity with the versatility of bottom up nanofabrication through dynamic SA. We define enzyme-assisted SA (e-SA) as the production of molecular building blocks from nonassembling precursors via enzymatic catalysis, where molecular building blocks form ordered structures via noncovalent interactions. The molecular design of SA precursors is discussed in terms of three key components related to (i) enzyme recognition, (ii) molecular switching mechanisms, and (iii) supramolecular interactions that underpin SA. This is followed by a discussion of a number of unique features of these systems, including spatiotemporal control of nucleation and structure growth, the possibility of controlling mechanical properties and the defect correcting and component selecting capabilities of systems that operate under thermodynamic control. Applications in biomedicine (biosensing, controlled release, matrices for wound healing, controlling cell fate by gelation) and bio(nano)technology (biocatalysts immobilization, nanofabrication, templating, and intracellular imaging) are discussed. Overall, e-SA allows for unprecedented control over SA processes and provides a step forward toward production of nanostructures of higher complexity and with fewer defects as desired for next generation nanomaterials.
Collapse
Affiliation(s)
- Richard J Williams
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton South, VIC 3169, Australia
| | | | | |
Collapse
|
74
|
Ji YH, Ji JL, Sun FY, Zeng YY, He XH, Zhao JX, Yu Y, Yu SH, Wu W. Quantitative proteomics analysis of chondrogenic differentiation of C3H10T1/2 mesenchymal stem cells by iTRAQ labeling coupled with on-line two-dimensional LC/MS/MS. Mol Cell Proteomics 2010; 9:550-64. [PMID: 20008835 PMCID: PMC2849707 DOI: 10.1074/mcp.m900243-mcp200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 12/14/2009] [Indexed: 11/06/2022] Open
Abstract
The chondrogenic potential of multipotent mesenchymal stem cells (MSCs) makes them a promising source for cell-based therapy of cartilage defects; however, the exact intracellular molecular mechanisms of chondrogenesis as well as self-renewal of MSCs remain largely unknown. To gain more insight into the underlying molecular mechanisms, we applied isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with on-line two-dimensional LC/MS/MS technology to identify proteins differentially expressed in an in vitro model for chondrogenesis: chondrogenic differentiation of C3H10T1/2 cells, a murine embryonic mesenchymal cell line, was induced by micromass culture and 100 ng/ml bone morphogenetic protein 2 treatment for 6 days. A total of 1756 proteins were identified with an average false discovery rate <0.21%. Linear regression analysis of the quantitative data gave strong correlation coefficients: 0.948 and 0.923 for two replicate two-dimensional LC/MS/MS analyses and 0.881, 0.869, and 0.927 for three independent iTRAQ experiments, respectively (p < 0.0001). Among 1753 quantified proteins, 100 were significantly altered (95% confidence interval), and six of them were further validated by Western blotting. Functional categorization revealed that the 17 up-regulated proteins mainly comprised hallmarks of mature chondrocytes and enzymes participating in cartilage extracellular matrix synthesis, whereas the 83 down-regulated were predominantly involved in energy metabolism, chromatin organization, transcription, mRNA processing, signaling transduction, and cytoskeleton; except for a number of well documented proteins, the majority of these altered proteins were novel for chondrogenesis. Finally, the biological roles of BTF3l4 and fibulin-5, two novel chondrogenesis-related proteins identified in the present study, were verified in the context of chondrogenic differentiation. These data will provide valuable clues for our better understanding of the underlying mechanisms that modulate these complex biological processes and assist in the application of MSCs in cell-based therapy for cartilage regeneration.
Collapse
Affiliation(s)
- Yu-hua Ji
- Institute of Tissue Transplantation and Immunology, Key Laboratory of Ministry of Education for Genetic Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Aoki T, Nishimura M. Targeting chronic inflammation in cerebral aneurysms: focusing on NF-κB as a putative target of medical therapy. Expert Opin Ther Targets 2010; 14:265-73. [DOI: 10.1517/14728221003586836] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
76
|
Vora SR, Palamakumbura AH, Mitsi M, Guo Y, Pischon N, Nugent MA, Trackman PC. Lysyl oxidase propeptide inhibits FGF-2-induced signaling and proliferation of osteoblasts. J Biol Chem 2010; 285:7384-93. [PMID: 20048148 DOI: 10.1074/jbc.m109.033597] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pro-lysyl oxidase is secreted as a 50-kDa proenzyme and is then cleaved to a 30-kDa mature enzyme (lysyl oxidase (LOX)) and an 18-kDa propeptide (lysyl oxidase propeptide (LOX-PP)). The presence of LOX-PP in the cell layers of phenotypically normal osteoblast cultures led us to investigate the effects of LOX-PP on osteoblast differentiation. Data indicate that LOX-PP inhibits terminal mineralization in primary calvaria osteoblast cultures when added at early stages of differentiation, with no effects seen when present at later stages. LOX-PP was found to inhibit serum- and FGF-2-stimulated DNA synthesis and FGF-2-stimulated cell growth. Enzyme-linked immunosorbent assay and Western blot analyses show that LOX-PP inhibits FGF-2-induced ERK1/2 phosphorylation, signaling events that mediate the FGF-2-induced proliferative response. LOX-PP inhibits FGF-2-stimulated phosphorylation of FRS2alpha and FGF-2-stimulated DNA synthesis, even after inhibition of sulfation of heparan sulfate proteoglycans. These data point to a LOX-PP target at or near the level of fibroblast growth factor receptor binding or activation. Ligand binding assays on osteoblast cell layers with (125)I-FGF-2 demonstrate a concentration-dependent inhibition of FGF-2 binding to osteoblasts by LOX-PP. In vitro binding assays with recombinant fibroblast growth factor receptor protein revealed that LOX-PP inhibits FGF-2 binding in an uncompetitive manner. We propose a working model for the respective roles of LOX enzyme and LOX-PP in osteoblast phenotype development in which LOX-PP may act to inhibit the proliferative response possibly to allow cells to exit from the cell cycle and progress to the next stages of differentiation.
Collapse
Affiliation(s)
- Siddharth R Vora
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Knippenberg M, Helder MN, Doulabi BZ, Bank RA, Wuisman PIJM, Klein-Nulend J. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A 2009; 15:2213-25. [PMID: 19231972 DOI: 10.1089/ten.tea.2007.0184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added.
Collapse
Affiliation(s)
- Marlene Knippenberg
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), Universiteit van Amsterdam, and Research Institute MOVE, Vrije Universiteit , Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
78
|
Aoki T, Kataoka H, Ishibashi R, Nozaki K, Morishita R, Hashimoto N. Reduced Collagen Biosynthesis Is the Hallmark of Cerebral Aneurysm. Arterioscler Thromb Vasc Biol 2009; 29:1080-6. [DOI: 10.1161/atvbaha.108.180760] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tomohiro Aoki
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Hiroharu Kataoka
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Ryota Ishibashi
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Nozaki
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Ryuuichi Morishita
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Nobuo Hashimoto
- From the Department of Neurosurgery (T.A., H.K., R.I., K.N., N.H.), Kyoto University Graduate School of Medicine, Kyoto, Japan; and the Department of Clinical Gene Therapy (R.M.), Osaka University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
79
|
CRTAP mutations in lethal and severe osteogenesis imperfecta: the importance of combining biochemical and molecular genetic analysis. Eur J Hum Genet 2009; 17:1560-9. [PMID: 19550437 DOI: 10.1038/ejhg.2009.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autosomal recessive lethal and severe osteogenesis imperfecta (OI) is caused by the deficiency of cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase 1 (P3H1) because of CRTAP and LEPRE1 mutations. We analyzed five families in which 10 individuals had a clinical diagnosis of lethal and severe OI with an overmodification of collagen type I on biochemical testing and without a mutation in the collagen type I genes. CRTAP mutations not described earlier were identified in the affected individuals. Although it seems that one important feature of autosomal recessive OI due to CRTAP mutations is the higher consistency of radiological features with OI type II-B/III, differentiation between autosomal dominant and autosomal recessive OI on the basis of clinical, radiological and biochemical investigations proves difficult in the affected individuals reported here. These observations confirm that once a clinical diagnosis of OI has been made in an affected individual, biochemical testing for overmodification of collagen type I should always be combined with molecular genetic analysis of the collagen type I genes. If no mutations in the collagen type I genes are found, additional molecular genetic analysis of the CRTAP and LEPRE1 genes should follow. This approach will allow proper identification of the genetic cause of lethal or severe OI, which is important in providing prenatal diagnosis, preimplantation genetic diagnosis and estimating recurrence risk.
Collapse
|
80
|
Mariggiò M, Cassano A, Vinella A, Vincenti A, Fumarulo R, Muzio LL, Maiorano E, Ribatti D, Favia G. Enhancement of Fibroblast Proliferation, Collagen Biosynthesis and Production of Growth Factors as a Result of Combining Sodium Hyaluronate and Aminoacids. Int J Immunopathol Pharmacol 2009; 22:485-92. [DOI: 10.1177/039463200902200225] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fibroblasts play a key role in tissue healing by producing the majority of extracellular matrix components, favouring granulation tissue formation, and stimulating re-epithelialization. Hyaluronan is a component of ECM and its anti-inflammatory effects and properties in enhancing wound closure are well known. In this study, we examined the effects of Aminogam® gel, a new pharmacological preparation suggested to improve wound healing, composed of hyaluronic acid, proline, lysine, glycine and leucine, on human fibroblasts. Results show that fibroblasts treated with hyaluronic acid plus aminoacid solution increased their proliferative activity, collagen I and III, and fibronectin synthesis. Moreover, HA plus aminoacid solution increased the expression of transforming growth factor beta, connective tissue growth factor, interleukin-6 and −8, assayed by RT-PCR. These results suggested that Aminogam® gel, involved in several stages of wound healing, as fibroblast proliferation, granulation tissue formation, ECM component deposition, and production of cytokines, may be a useful device to favour and accelerate wound closure.
Collapse
Affiliation(s)
| | | | | | | | | | - L. Lo Muzio
- Department of Surgical Sciences, University of Foggia Medical School, Italy
| | | | - D. Ribatti
- Department of Human Anatomy and Histology, Italy
| | - G. Favia
- Department of Dental Sciences and Surgery, University of Bari Medical School, Italy
| |
Collapse
|
81
|
Dannewitz B, Tomakidi P, Syagailo Y, Kohl A, Staehle HJ, Eickholz P, Komposch G, Steinberg T. Elevation of collagen type I in fibroblast-keratinocyte cocultures emphasizes the decisive role of fibroblasts in the manifestation of the phenotype of cyclosporin A-induced gingival overgrowth. J Periodontal Res 2009; 44:62-72. [DOI: 10.1111/j.1600-0765.2007.01066.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
82
|
Abstract
Biosynthesis of fibrillar collagen in the skin is precisely regulated to maintain proper tissue homeostasis; however, the molecular mechanisms involved in this process remain largely unknown. Transcription factor Fli1 has been shown to repress collagen synthesis in cultured dermal fibroblasts. This study investigated the role of Fli1 in regulation of collagen biosynthesis in mice skin in vivo using mice with the homozygous deletion of the C-terminal transcriptional activation (CTA) domain of the Fli1 gene (Fli1(DeltaCTA/DeltaCTA)). Skin analyses of the Fli1 mutant mice revealed a significant upregulation of fibrillar collagen genes at mRNA level, as well as increased collagen content as measured by acetic acid extraction and hydroxyproline assays. In addition, collagen fibrils contained ultrastructural abnormalities including immature thin fibrils and very thick irregularly shaped fibrils, which correlated with the reduced levels of decorin, fibromodulin, and lumican. Fibroblasts cultured from the skin of Fli1(DeltaCTA/DeltaCTA) mice maintained elevated synthesis of collagen mRNA and protein. Additional experiments in cultured fibroblasts have revealed that although Fli1 DeltaCTA retains the ability to bind to the collagen promoter in vitro and in vivo, it no longer functions as transcriptional repressor. Together, these results establish Fli1 as a key regulator of the collagen homeostasis in the skin in vivo.
Collapse
|
83
|
Kulkarni NH, Wei T, Kumar A, Dow ER, Stewart TR, Shou J, N'cho M, Sterchi DL, Gitter BD, Higgs RE, Halladay DL, Engler TA, Martin TJ, Bryant HU, Ma YL, Onyia JE. Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem 2008; 102:1504-18. [PMID: 17520664 DOI: 10.1002/jcb.21374] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parathyroid hormone (PTH) and glycogen synthase kinase-3 (GSK-3) inhibitor 603281-31-8, administered once daily increased bone formation in vivo. We investigated the molecular mechanisms of the anabolic responses of PTH and 603281-31-8 in rat osteopenia model. Female 6-month-old rats were ovariectomized (Ovx) and permitted to lose bone for 1 month, followed by treatment with PTH (1-38) at 10 microg/kg/day s.c. or 603281-31-8 at 3 mg/kg/day p.o. for 60 days. Twenty-four hours after the last treatment, RNA from distal femur metaphysis was subjected to gene expression analysis. Differentially expressed genes (P<0.05) were subjected to pathway analysis to delineate relevant bio-processes involved in skeletal biology. Genes involved in morphogenesis, cell growth/differentiation, and apoptosis were significantly altered by Ovx and the treatments. Analysis of morphogenesis genes showed an overrepresentation of genes involved in osteogenesis, chondrogenesis, and adipogenesis. A striking finding was that Ovx decreased several markers of osteogenesis/chondrogenesis and increased markers of adipogenesis/lipid metabolism. Treatment with either PTH or the GSK-3 inhibitor reversed these effects, albeit at different levels. Histological analysis confirmed that osteopenia in Ovx animals was associated with three-fold increase in marrow adiposity. PTH and GSK-3 inhibitor restored bone volume, and reversed or normalized marrow adiposity. Ex vivo studies showed that PTH and GSK-3 inhibitor increased the ratio of colony forming marrow stromal progenitors (CFU-fs) that were alkaline phosphatase positive (putative osteoblasts). Our results suggest that the bone anabolic actions of PTH and GSK-3 inhibitor in vivo involve concerted effects on mesenchymal lineages; osteoblasts, chondrocytes, and adipocytes.
Collapse
Affiliation(s)
- Nalini H Kulkarni
- Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
A p.C217R mutation in fibulin-5 from cutis laxa patients is associated with incomplete extracellular matrix formation in a skin equivalent model. J Invest Dermatol 2008; 128:1442-50. [PMID: 18185537 DOI: 10.1038/sj.jid.5701211] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cutis laxa (CL) is a rare genodermatosis, which is clinically and genetically heterogeneous. It is characterized by redundant, loose, sagging, and inelastic skin. In a consanguineous family from Lebanon with autosomal-recessive transmission, we identified a homozygous missense mutation (c.649T --> C; p.C217R) in the fibulin-5 gene (FBLN5), which was, to our knowledge, previously unreported. Small skin biopsies were performed, which permitted isolation of skin fibroblasts harboring this FBLN5 mutation; they exhibited a deficit in cell growth. A CL skin equivalent (CL-SE) model compared with control SE was successfully developed to define the behavior of CL fibroblasts in a three-dimensional model. There was increased cell death and a global extracellular matrix deficiency in the dermis of this CL-SE model, and a low level of the main elastic fiber expression. There was no basement membrane evident at the ultrastructural level, and type-VII collagen could not be detected at the histological level. This model reproduced some defects of the extracellular matrix and highlighted other defects, which occurred at the time of the basement membrane formation, which were not evident in skin from patients. This CL-SE model could be adapted to screen for therapeutically active molecules.
Collapse
|
85
|
Boffa JJ, Ronco P. Stratégies pour faire régresser les lésions de fibrose rénale. Presse Med 2007; 36:1857-64. [PMID: 17628388 DOI: 10.1016/j.lpm.2007.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 02/01/2023] Open
Abstract
The deterioration of renal function in chronic kidney disease is related to the progression of renal fibrosis, which was long considered unavoidable. Today, the reversibility of renal fibrotic lesions is a reality, although still clinically rare. Because angiotensin II is highly profibrotic, blocking its action effectively protects the kidney, as numerous clinical trials have shown. The development of interstitial fibrosis is secondary to the epithelial-to-mesenchymal transition induced by transforming growth factor (TGF)-beta. Bone morphogenic protein-7 (BMP-7) and hepatocyte growth factor (HGF) induce the reverse transition and thus open up perspectives for treatment. Degradation of the extracellular matrix by matrix metalloproteinases or other enzymes is another therapeutic pathway. Renal regeneration may be promoted by modulation of hypoxia-inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF).
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Knowledge of the physiological regulation of human-tissue collagen metabolism in vivo is poor, due to the lack of appropriately robust methods. Recent application of stable isotope tracer techniques to measure human collagen synthesis has provided some insights into the role of nutrition and exercise on collagen turnover in the extracellular matrix of the musculoskeletal system. RECENT FINDINGS Collagen turnover in the musculoskeletal system is faster than previously thought. Bone collagen synthesis is increased by feeding, whereas both muscle collagen and tendon are unresponsive. Exercise stimulates collagen synthesis in both muscle and tendon in an apparently coordinated manner. There are also sex differences and normal aging is associated with increased muscle collagen synthesis and reductions in bone collagen synthesis, particularly in mature bone collagen. SUMMARY Collagen turnover appears to be faster than previously thought and is regulated by feeding and exercise, in a tissue-specific manner. Further application of these approaches, coupled with measures of gene and protein expression, to measure the acute regulation of collagen, will lead to a better understanding of the physiology and pathophysiology of human collagen turnover. This is particularly important for developing new therapies to improve bone health and minimize tissue fibrosis.
Collapse
Affiliation(s)
- Ken Smith
- School of Biomedical Sciences, University of Nottingham at Derby Graduate Entry Medical School, Derby, UK.
| | | |
Collapse
|
87
|
López B, González A, Beaumont J, Querejeta R, Larman M, Díez J. Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J Am Coll Cardiol 2007; 50:859-67. [PMID: 17719472 DOI: 10.1016/j.jacc.2007.04.080] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/25/2007] [Accepted: 04/30/2007] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study sought to investigate whether torasemide inhibits the enzyme involved in the myocardial extracellular generation of collagen type I molecules (i.e., procollagen type I carboxy-terminal proteinase [PCP]). BACKGROUND Torasemide has been reported to reduce myocardial fibrosis in patients with chronic heart failure (HF). METHODS Chronic HF patients received either 10 to 20 mg/day oral torasemide (n = 11) or 20 to 40 mg/day oral furosemide (n = 11) in addition to their standard HF therapy. At baseline and after 8 months from randomization, right septal endomyocardial biopsies were obtained to analyze the expression of PCP by Western blot and the deposition of collagen fibers (collagen volume fraction [CVF]) with an automated image analysis system. The carboxy-terminal propeptide of procollagen type I (PICP) released as a result of the action of PCP on procollagen type I was measured in serum by radioimmunoassay. RESULTS The ratio of PCP active form to PCP zymogen, an index of PCP activation, decreased (p < 0.05) in torasemide-treated patients and remained unchanged in furosemide-treated patients. A reduction (p < 0.01) in both CVF and PICP was observed in torasemide-treated but not in furosemide-treated patients. Changes in PCP activation were positively correlated (p < 0.001) with changes in CVF and changes in PICP in patients receiving torasemide. CONCLUSIONS These findings suggest the hypothesis that the ability of torasemide to reduce myocardial fibrosis in chronic HF patients is related to a decreased PCP activation. Further studies are required to ascertain whether PCP may represent a new target for antifibrotic strategies in chronic HF.
Collapse
Affiliation(s)
- Begoña López
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
88
|
Bonod-Bidaud C, Beraud M, Vaganay E, Delacoux F, Font B, Hulmes D, Ruggiero F. Enzymatic cleavage specificity of the proalpha1(V) chain processing analysed by site-directed mutagenesis. Biochem J 2007; 405:299-306. [PMID: 17407447 PMCID: PMC1904530 DOI: 10.1042/bj20070051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteolytic processing of procollagen V is complex and depends on the activity of several enzymes among which the BMP-1 (bone morphogenetic protein-1)/tolloid metalloproteinase and the furin-like proprotein convertases. Few of these processing interactions could have been predicted by analysing the presence of conserved consensus sequences in the proalpha1(V) chain. In the present study we opted for a cell approach that allows a straightforward identification of processing interactions. A construct encompassing the complete N-terminal end of the proalpha1(V) chain, referred to as Nalpha1, was recombinantly expressed to be used for enzymatic assays and for antibody production. Structural analysis showed that Nalpha1 is a monomer composed of a compact globule and an extended tail, which correspond respectively to the non-collagenous Nalpha1 subdomains, TSPN-1 (thrombospondin-1 N-terminal domain-like) and the variable region. Nalpha1 was efficiently cleaved by BMP-1 indicating that the triple helix is not required for enzyme activity. By mutating residues flanking the cleavage site, we showed that the aspartate residue at position P2' is essential for BMP-1 activity. BMP-1 activity at the C-terminal end of the procollagen V was assessed by generating a furin double mutant (R1584A/R1585A). We showed that, in absence of furin activity, BMP-1 is capable of processing the C-propeptide even though less efficiently than furin. Altogether, our results provide new relevant information on this complex and poorly understood mechanism of enzymatic processing in procollagen V function.
Collapse
Affiliation(s)
- Christelle Bonod-Bidaud
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Mickaël Beraud
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Elisabeth Vaganay
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Frédéric Delacoux
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bernard Font
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - David J. S. Hulmes
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Florence Ruggiero
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
89
|
Eshed Y, Feinberg K, Carey DJ, Peles E. Secreted gliomedin is a perinodal matrix component of peripheral nerves. ACTA ACUST UNITED AC 2007; 177:551-62. [PMID: 17485493 PMCID: PMC2064815 DOI: 10.1083/jcb.200612139] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction between gliomedin and the axonodal cell adhesion molecules (CAMs) neurofascin and NrCAM induces the clustering of Na+ channels at the nodes of Ranvier. We define new interactions of gliomedin that are essential for its clustering activity. We show that gliomedin exists as both transmembrane and secreted forms that are generated by proteolytic cleavage of the protein, and that only the latter is detected at the nodes of Ranvier. The secreted extracellular domain of gliomedin binds to Schwann cells and is incorporated into the extracellular matrix (ECM) in a heparin-dependent manner, suggesting the involvement of heparan sulfate proteoglycans (HSPGs). Furthermore, we show that the N-terminal region of gliomedin serves as an oligomerization domain that mediates self-association of the molecule, which is required for its binding to neurofascin and NrCAM. Our results indicate that the deposition of gliomedin multimers at the nodal gap by binding to HSPGs facilitates the clustering of the axonodal CAMs and Na+ channels.
Collapse
Affiliation(s)
- Yael Eshed
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
90
|
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8:221-33. [PMID: 17318226 PMCID: PMC2760082 DOI: 10.1038/nrm2125] [Citation(s) in RCA: 2098] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.
Collapse
Affiliation(s)
- Andrea Page-McCaw
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Andrew J. Ewald
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452, USA
| | - Zena Werb
- Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452, USA
| |
Collapse
|
91
|
Angerer L, Hussain S, Wei Z, Livingston BT. Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev Biol 2006; 300:267-81. [PMID: 17059814 DOI: 10.1016/j.ydbio.2006.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Analysis of the Strongylocentrotus purpuratus genome has revealed approximately 240 metalloprotease genes, and they represent all 23 families expressed in vertebrates. EST/cDNA sequencing and microarray analysis show that nearly 70% are represented in embryo RNA. Among them are many metalloproteases with demonstrated developmental roles in other systems-BMP-1/TLD (tolloid) (astacins), MMPs (matrix metalloproteases) and the ADAMs (disintegrin/metalloproteases). The developmental functions of these kinds of metalloproteases include modifying the extracellular matrix, regulating signaling pathways or modulating cellular adhesive properties. The unexpectedly large number of BMP-1/TLD-like protease genes (23) results primarily from expansion of a set encoding an unusual domain conserved in structure and primary sequence only in nematode astacins. Such proteases may have interesting developmental functions because the expression patterns of several are highly regulated along the primary axis at times when cell differentiation and morphogenesis begin. The size of the sea urchin MMP family and the clustered arrangement of many of its members are similar to vertebrates, but phylogenetic analyses suggest that different ancestral genes were independently amplified in sea urchins and vertebrates. One expansion appears to be genes encoding MMPs that have putative transmembrane domains and may be membrane-tethered (MT). Interestingly, the genes encoding TIMPs, inhibitors of MMPs, have also been amplified and the 10 genes are tandemly arranged in a single cluster. In contrast, there are fewer ADAM and ADAMTS genes in sea urchins, but they represent all but one of the chordate-specific groups. The genome sequence now opens the door to experimental manipulations designed to understand how modulation of the extracellular environment affects development.
Collapse
Affiliation(s)
- Lynne Angerer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20815, USA.
| | | | | | | |
Collapse
|
92
|
Heng ECK, Huang Y, Black SA, Trackman PC. CCN2, connective tissue growth factor, stimulates collagen deposition by gingival fibroblasts via module 3 and alpha6- and beta1 integrins. J Cell Biochem 2006; 98:409-20. [PMID: 16440322 PMCID: PMC1435777 DOI: 10.1002/jcb.20810] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CCN2, (connective tissue growth factor, CTGF) is a matricellular factor associated with fibrosis that plays an important role in the production and maintenance of fibrotic lesions. Increased collagen deposition and accumulation is a common feature of fibrotic tissues. The mechanisms by which CCN2/CTGF contributes to fibrosis are not well understood. Previous studies suggest that CTGF exerts some of its biological effects at least in part by integrin binding, though this mechanism has not been previously shown to contribute to fibrosis. Utilizing full length CCN2/CTGF, CCN2/CTGF fragments, and integrin neutralizing antibodies, we provide evidence that the effects of CCN2/CTGF to stimulate extracellular matrix deposition by gingival fibroblasts are mediated by the C-terminal half of CCN2/CTGF, and by alpha6 and beta1 integrins. In addition, a synthetic peptide corresponding to a region of CCN2/CTGF domain 3 that binds alpha6beta1 inhibits the collagen-deposition assay. These studies employed a new and relatively rapid assay for CCN2/CTGF-stimulated collagen deposition based on Sirius Red staining of cell layers. Data obtained support a pathway in which CCN2/CTGF could bind to alpha6beta1 integrin and stimulate collagen deposition. These findings provide new experimental methodologies applicable to uncovering the mechanism and signal transduction pathways of CCN2/CTGF-mediated collagen deposition, and may provide insights into potential therapeutic strategies to treat gingival fibrosis and other fibrotic conditions.
Collapse
Affiliation(s)
| | | | | | - Philip C. Trackman
- *Address Correspondence to: Philip C. Trackman, Ph.D., Division of Oral Biology, Boston University School of Dental Medicine, 700 Albany Street, W-210, Boston, MA 02118., Telephone: (617) 638-4076, Fax: (617) 638-5265,
| |
Collapse
|