51
|
Li J, Hou W, Yang Y, Deng Q, Fu H, Yin Y, Duan K, Feng B, Guo T, Weng J. Micro/nano-topography promotes osteogenic differentiation of bone marrow stem cells by regulating periostin expression. Colloids Surf B Biointerfaces 2022; 218:112700. [PMID: 35907353 DOI: 10.1016/j.colsurfb.2022.112700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022]
Abstract
Micro/nano-topography (MNT) is an important factor affecting cell response. Earlier studies using titania (TiO2) nanotube as a model of MNT found that they mediated the differentiation of BMSCs into osteoblasts, but the mechanisms are not fully understood. Surprisingly, Periostin (Postn), a secreted protein involved in extracellular matrix (ECM) construction and promoting osteogenic differentiation of bone marrow stem cells (BMSCs), was previously observed to significantly up-regulated on TiO2 nanotube. We proposed that Postn may act as a MNT signal transduction role. In this study, we investigated the effect of MNT on Postn, and the influence of Postn on osteogenic differentiation-related genes through focal adhesion and downstream signals. It was found that, titanium (Ti) plates carrying TiO2 nanotubes with diameters of ∼100 nm (TNT-100) significantly up-regulated the expression of Postn compared with flat Ti. Furthermore, Postn activated the downstream focal adhesion kinase (FAK) signal pathway and β-catenin into the nucleus by interacting with integrin αV. Surprisingly, TNT-100 up-regulated the transcription level of Wnt3a, which was independent of the up-regulation of Postn. This new Postn signaling pathway may provide more insights into the signal transduction mechanism of MNT and development of biomaterials with improved osteogenic properties.
Collapse
Affiliation(s)
- Jinsheng Li
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenqing Hou
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yali Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qing Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Fu
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yiran Yin
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ke Duan
- Sichuan Provincial Lab of Orthopaedic Engineering, Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bo Feng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jie Weng
- School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
52
|
Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration. Colloids Surf B Biointerfaces 2022; 215:112491. [PMID: 35405535 DOI: 10.1016/j.colsurfb.2022.112491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 12/17/2022]
Abstract
Porous tantalum-based biomaterial is a novel tissue engineering material widely used in repairing bone defects due to its corrosion resistance, low elastic modulus, high friction coefficient, and excellent biocompatibility. Bone marrow-derived mesenchymal stem cells (BMSCs), a type of pluripotent stem cell, can travel from their original ecological niche to bone injury sites, where they differentiate into osteoblasts and osteocytes. Multiple factors regulate the proliferation, migration, and differentiation of BMSCs. In recent years, the regulatory effects of porous tantalum on BMSCs have been widely studied. Hence, in this study, we reviewed the characteristics of porous tantalum-based biomaterials and the mechanism of action of their regulatory effects on BMSCs. Further, we discuss the feasibility of seeding BMSCs in porous tantalum-based biomaterials for use in tissue repair.
Collapse
|
53
|
Guan S, Zhang Z, Wu J. Non-coding RNA delivery for bone tissue engineering: progress, challenges and potential solutions. iScience 2022; 25:104807. [PMID: 35992068 PMCID: PMC9385673 DOI: 10.1016/j.isci.2022.104807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
More than 20 million individuals worldwide suffer from congenital or acquired bone defects annually. The development of bone scaffold materials that simulate natural bone for bone defect repair remains challenging. Recently, ncRNA-based therapies for bone defects have attracted increasing interest because of the great potential of ncRNAs in disease treatment. Various types of ncRNAs regulate gene expression in osteogenesis-related cells via multiple mechanisms. The delivery of ncRNAs to the site of bone loss through gene vectors or scaffolds is a potential therapeutic option for bone defect repair. Therefore, this study discusses and summarizes the regulatory mechanisms of miRNAs, siRNAs, and piRNAs in osteogenic signaling and reviews the widely used current RNA delivery vectors and scaffolds for bone defect repair. Additionally, current challenges and potential solutions of delivery scaffolds for bone defect repair are proposed, with the aim of providing a theoretical basis for their future clinical applications.
Collapse
|
54
|
Wang J, Sun Y, Liu Y, Yu J, Sun X, Wang L, Zhou Y. Effects of platelet-rich fibrin on osteogenic differentiation of Schneiderian membrane derived mesenchymal stem cells and bone formation in maxillary sinus. Cell Commun Signal 2022; 20:88. [PMID: 35705970 PMCID: PMC9202141 DOI: 10.1186/s12964-022-00844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/11/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The existence of mesenchymal stem cells (MSCs) in Schneiderian membrane has not been determined. The aim of this study is to investigate whether there are MSCs in Schneiderian membrane, and the effect of platelet-rich fibrin (PRF) on osteogenic differentiation of these cells and on new bone formation in maxillary sinus after maxillary sinus floor elevation. METHODS Schneiderian membrane derived mesenchymal stem cells (SM-MSCs) were isolated from rabbit maxillary sinus. Cells were identified by flow cytometry and multipotential differentiation. Real-time cell analysis assay, fluorescence staining, transwell assay, and wound healing assay were used to determine the effects of PRF stimulation on cell proliferation and migration. The osteogenic differentiation ability of cells stimulated by PRF or osteoinductive medium was evaluated by alkaline phosphatase staining, alizarin red staining, PCR and Western blot. Equivalent volume Bio-oss and the mixture of Bio-oss and PRF were used as bone graft materials for maxillary sinus floor elevation. Micro-CT, bone double-staining, HE staining, Masson staining, and toluidine blue staining were used to evaluate the osteogenic effect in 8 and 12 weeks after surgery. RESULTS The cell surface markers were positive for expression of CD90, CD105, and negative for expression of CD34, CD45. SM-MSCs had the ability of osteogenic, adipogenic and chondrogenic differentiation. PRF could stimulate proliferation, migration and osteogenic differentiation of SM-MSCs, which was achieved by up-regulating ERK 1/2 signaling pathway. PRF could accelerate the formation of new bone in maxillary sinus and increase the amount of new bone formation. CONCLUSIONS MSCs existed in Schneiderian membrane, and PRF stimulation could promote cell proliferation, migration and osteogenic differentiation. The application of PRF in maxillary sinus floor elevation could accelerate bone healing and increase the quantity and quality of new bone. PRF, as autologous graft materials, might offer a promising strategy for the clinical bone formation during MSFE procedure. Video Abstract.
Collapse
Affiliation(s)
- Jia Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Yue Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yiping Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Jize Yu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Xiaolin Sun
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Lin Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| |
Collapse
|
55
|
Modern genetic and immunological aspects of the pathogenesis of impaired consolidation of fractures (literature review). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this article is to analyze the genetic and immunological mechanisms of the development of fracture consolidation disorders at the present scientific stage.Materials and methods. The search for literary sources was carried out in the open electronic databases of scientific literature PubMed and eLIBRARY. Search depth – 10 years.Results. The review analyzes the literature data on the current state of the study of the molecular genetic mechanisms of reparative regeneration including the development of fracture consolidation disorders. The mechanisms of the most important links of pathogenesis which most often lead to various violations of the processes of bone tissue repair are considered.Conclusion. The process of bone tissue repair is multifaceted, and many factors are involved in its implementation, however, we would like to note that the leading role in the course of reparative regeneration is played by a personalized genetically programmed response to this pathological condition. Nevertheless, despite the undeniable progress of modern medicine in studying the processes of bone recovery after a fracture, there are still many “white” spots in this issue, which dictates the need for further comprehensive study in order to effectively treat patients with impaired consolidation.
Collapse
|
56
|
Wu PY, Chen W, Huang H, Tang W, Liang J. Morinda officinalis polysaccharide regulates rat bone mesenchymal stem cell osteogenic-adipogenic differentiation in osteoporosis by upregulating miR-21 and activating the PI3K/AKT pathway. Kaohsiung J Med Sci 2022; 38:675-685. [PMID: 35593324 DOI: 10.1002/kjm2.12544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis (OP) is a prevailing bone metabolic disease. Morinda officinalis polysaccharide (MOP) has biological activities and medicinal potential. This study explored its mechanism in OP. Rat bone mesenchymal stem cells (rBMSCs) were pretreated with low/high concentrations of MOP and subjected to osteogenic differentiation (OD) or adipogenic differentiation (AD) induction. The protein markers of OD (RUNX2 and BMP2) and AD (CEBPα and PPARγ) and miR-21 expression were detected. miR-21 was overexpressed to study its effects on rBMSC OD and AD. rBMSCs were transfected with miR-21 inhibitor and treated with high concentration of MOP for verification. The targeted relationship between miR-21 and PTEN was verified by bioinformatics and dual-luciferase assay. The PTEN/PI3K/AKT pathway-related proteins were detected. Ovariectomy (OVX)-induced OP rats were treated with MOP. Rat bone mineral density (BMD), serum bone metabolism indexes bone-derived alkaline phosphatase (BALP), and osteocalcin (BGP) levels were assessed by BMD detectors and ELISA kits. miR-21 expression in rBMSCs was detected. After treatment with low/high concentrations of MOP, the OD of rBMSCs was increased and AD was inhibited and miR-21 was upregulated. miR-21 overexpression enhanced the OD of rBMSCs and inhibited AD. miR-21 knockdown reversed the effect of high concentration of MOP on rBMSCs. miR-21 targeted PTEN. After treatment with low/high concentrations of MOP, PI3K, and AKT phosphorylation were increased and the PI3K/AKT pathway was activated. BMD, BALP, BGP, and miR-21 levels in OVX rats were decreased. MOP partially alleviated OP in OVX rats. Briefly, MOP enhanced rBMSC OD and inhibited AD via the miR-21/PTEN/PI3K/AKT axis.
Collapse
Affiliation(s)
- Pei-Yu Wu
- Department of Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Huadu District, Guangzhou, Guangdong, China
| | - Wen Chen
- Department of Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Huadu District, Guangzhou, Guangdong, China
| | - He Huang
- Department of Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Huadu District, Guangzhou, Guangdong, China
| | - Wang Tang
- Department of Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Huadu District, Guangzhou, Guangdong, China
| | - Jie Liang
- Department of Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Huadu District, Guangzhou, Guangdong, China
| |
Collapse
|
57
|
Shibli JA, Nagay BE, Suárez LJ, Urdániga Hung C, Bertolini M, Barão VAR, Souza JGS. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods 2022; 28:179-192. [PMID: 35166162 DOI: 10.1089/ten.tec.2022.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of tissue engineering to restore and to build new bone tissue is under active research at present. The following review summarizes the latest studies and clinical trials related to the use of osteogenic cells, biomaterials, and scaffolds to regenerate bone defects in the human jaws. Bone tissue engineering (BTE) combined with scaffolds have provided a range of advantages not only to transport the target cells to their desired destination but also to support the early phases of the mineralization process. The mechanical, chemical, and physical properties of scaffolds have been evaluated as they affect the quantity of bone regeneration, particularly in the oral cavity. This review also highlighted the mechanisms underlying bone homeostasis, including the key transcription factors and signaling pathways responsible for regulating the differentiation of osteoblast lineage. Furthering understanding of the mechanisms of cellular signaling in skeletal remodeling with the use of mesenchymal stem cells and the proper scaffold properties are key-factors to enable the incorporation of new and effective treatment methods into clinical practice for bone tissue regeneration using BTE. Impact Statement The use of mesenchymal stem cells able to differentiate in osteoblast lineage for bone tissue engineering (BTE) remains a major challenge. Viable cells and signaling pathways play an essential role in bone repair and regeneration of critical size defects. Recent advances in scaffolds and biological factors such as growth factors (e.g., cytokines and hormones) controlling the osteogenic signaling cascade are now becoming new players affecting the osteogenic potential of cells. Such techniques will significantly impact the maxillofacial bone tissue replacement, repair, and regeneration for patients without having to rely on donor banks or other surgical sites.
Collapse
Affiliation(s)
- Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Lina J Suárez
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Celeste Urdániga Hung
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| |
Collapse
|
58
|
Hu Y, He Y, Fang J, Liu Y, Cao Y, Tong W, Chen W, Shao Z, Liu Y, Tian H. Wnt10b-overexpressing umbilical cord mesenchymal stem cells promote fracture healing via accelerated cartilage callus to bone remodeling. Bioengineered 2022; 13:10313-10323. [PMID: 35436412 PMCID: PMC9161882 DOI: 10.1080/21655979.2022.2062954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The aim of this study was to investigate whether HUCMSCsWnt10b could promote long bone fracture healing. Commercially-available HUCMSCsEmp (human umbilical cord mesenchymal stem cells transfected with empty vector) in hydrogel, HUCMSCsWnt10b in hydrogel and HUCMSCsWnt10b with the Wnt signaling pathway inhibitor IWR-1 were transplanted into the fracture site in a rat model of femoral fracture. We found that transplantation of HUCMSCsWnt10b significantly accelerated bone healing in a rat model of femoral fracture. Meanwhile, three-point bending test proved that the mechanical properties of the bone at the fracture site in the HUCMSCWnt10b treatment group were significantly better than those of the other treatment groups. To understand the cellular mechanism, we explored the viability of periosteal stem cells (PSCs), as they contribute the greatest number of osteoblast lineage cells to the callus. In line with in vivo data, we found that conditioned medium from HUCMSCsWnt10b enhanced the migration and osteogenic differentiation of PSCs. Furthermore, conditioned medium from HUCMSCsWnt10b also induced endothelial cells to form capillary-like structures in a tube formation assay, which was blocked by SU5416, an angiogenesis inhibitor, suggesting that enhanced vessel formation and growth also contribute to accelerated hard callus formation. In summary, our study demonstrates that HUCMSCsWnt10b promote fracture healing via accelerated hard callus formation, possibly due to enhanced osteogenic differentiation of PSCs and vessel growth. Therefore, HUCMSCsWnt10b may be a promising treatment for long bone fractures.
Collapse
Affiliation(s)
- Yuxiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Jiarui Fang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yunlu Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yulin Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Wei Tong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Wei Chen
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shi Jiazhuang, Hebei, China.,Nhc Key Laboratory of Intelligent Orthopedic Equipment (The Third Hospital of Hebei Medical University), Shi Jiazhuang, Hebei, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Yong Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Hongtao Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| |
Collapse
|
59
|
DOI T, HIOKI T, TACHI J, UEDA K, MATSUSHIMA-NISHIWAKI R, IIDA H, OGURA S, KOZAWA O, TOKUDA H. Oncostatin M reduces the synthesis of macrophage-colony stimulating factor stimulated by TGF-β via suppression of p44/p42 MAP kinase and JNK in osteoblasts. Biomed Res 2022; 43:41-51. [DOI: 10.2220/biomedres.43.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomoaki DOI
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine
| | - Tomoyuki HIOKI
- Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Junko TACHI
- Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Kyohei UEDA
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | | | - Hiroki IIDA
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine
| | - Shinji OGURA
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine
| | - Osamu KOZAWA
- Department of Pharmacology, Gifu University Graduate School of Medicine
| | - Haruhiko TOKUDA
- Department of Clinical Laboratory/Medical Genome Center, National Center for Geriatrics and Gerontology
| |
Collapse
|
60
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
61
|
Bragdon BC, Bennie A, Molinelli A, Liu Y, Gerstenfeld LC. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues. J Cell Physiol 2022; 237:2550-2560. [PMID: 35338481 PMCID: PMC9133217 DOI: 10.1002/jcp.30728] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
Currently, there is no consensus whether there is a single or multiple postnatal stem cell population(s) that contribute to skeletal homeostasis and postnatal bone formation. A known population of cells that express Prx1 contributes to postnatal bone formation. Prx1 expression also connotes calvaria and appendicular tissues during embryonic development. A transgenic tamoxifen inducible Prx1 reporter mouse was used for lineage tracking, to characterize the postnatal contribution of Prx1 expressing cells in skeletal homeostasis and bone formation. Under homeostatic conditions Prx1 labeling gave rise to a transient yet rapid turnover cell population at the periosteal and endosteal surfaces, along muscle fibers, and within the medial layers of vessels both within the muscle and marrow compartments of the appendicular skeleton. Fracture and ectopic bone formation of both fore and hind limbs showed recruitment and expansion of Prx1-derived cells in newly formed bone tissues. Prx1 labeled cells were limited or absent at axial skeletal sites during both homeostasis and after induction of bone formation. Last, Prx1-derived cells differentiated into multiple cell lineages including vascular smooth muscle, adipose, cartilage, and bone cells. These results show that Prx1 expression retained its embryonic tissue specification and connotes a stem/progenitor cell populations of mesenchymal tissue progenitors.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Bennie
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Amanda Molinelli
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yu Liu
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
62
|
Kim SG. Multiple ways for the same destination: bone regeneration. Maxillofac Plast Reconstr Surg 2022; 44:9. [PMID: 35235091 PMCID: PMC8891406 DOI: 10.1186/s40902-022-00340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
The regeneration of the bone is a challenging topic for maxillofacial plastic and reconstructive surgeons. For successful bone regeneration, timely providing of essential components is prerequisite. They are cellular components (osteoblasts, osteoclasts, and immune cells), extracellular matrix, and inorganic components (calcium and phosphate). Any deficient component can be provided from outside as a graft. Accordingly, there are many ways for successful bone regeneration. Selection of appropriate methods in an individualized situation is important.
Collapse
Affiliation(s)
- Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea.
| |
Collapse
|
63
|
Liang D, Song G, Zhang Z. miR‑216a‑3p inhibits osteogenic differentiation of human adipose‑derived stem cells via Wnt3a in the Wnt/β‑catenin signaling pathway. Exp Ther Med 2022; 23:309. [PMID: 35340869 DOI: 10.3892/etm.2022.11238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Daning Liang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| | - Guodong Song
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Beijing 100144, P.R. China
| | - Zhenning Zhang
- Department of Medical Beauty, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
64
|
Abstract
Fracture healing is a complex, multistep process that is highly sensitive to mechanical signaling. To optimize repair, surgeons prescribe immediate weight-bearing as-tolerated within 24 hours after surgical fixation; however, this recommendation is based on anecdotal evidence and assessment of bulk healing outcomes (e.g., callus size, bone volume, etc.). Given challenges in accurately characterizing the mechanical environment and the ever-changing properties of the regenerate, the principles governing mechanical regulation of repair, including their cell and molecular basis, are not yet well defined. However, the use of mechanobiological rodent models, and their relatively large genetic toolbox, combined with recent advances in imaging approaches and single-cell analyses is improving our understanding of the bone microenvironment in response to loading. This review describes the identification and characterization of distinct cell populations involved in bone healing and highlights the most recent findings on mechanical regulation of bone homeostasis and repair with an emphasis on osteo-angio coupling. A discussion on aging and its impact on bone mechanoresponsiveness emphasizes the need for novel mechanotherapeutics that can re-sensitize skeletal stem and progenitor cells to physical rehabilitation protocols.
Collapse
Affiliation(s)
- Tareq Anani
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA
| | - Alesha B Castillo
- Department of Orthopedic Surgery, New York University Langone Health, New York, NY 10010, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA; Department of Veterans Affairs, New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA.
| |
Collapse
|
65
|
Gao X, Xue S, Yang F, Wu B, Yu X, An B. Methyl-CpG binding protein 2 is associated with the prognosis and mortality of elderly patients with hip fractures. Clinics (Sao Paulo) 2022; 77:100034. [PMID: 35436701 PMCID: PMC9036098 DOI: 10.1016/j.clinsp.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To investigate the expression level and clinical significance of Methyl-CpG binding Protein 2 (MECP2) in elderly patients with hip fractures. METHODS This prospective observational study included 367 elderly patients with hip fractures between April 2016 and December 2018. All the patients were treated with internal fixation or joint replacement. In addition, 50 healthy elderly individuals were enrolled as healthy controls. The serum levels of MECP2 and inflammatory factors Interleukin (IL)-1β, IL-6, IL-8, and Tumor Necrosis Factor (TNF)-α was determined by enzyme-linked immunosorbent assay. Data on patients' basic characteristics and postoperative complications were collected. The Harris score was used to assess hip function at 1-month, 3-months, and 6-months after surgery. Patient quality of life was measured using the Barthel Index (BI) score 3-months after surgery. The 1-year mortality was analyzed using the Kaplan-Meier curve, and logical regression was used to analyze the risk factors for mortality. RESULTS No significant differences were observed in the basic clinical characteristics of all patients. The serum MECP2 levels were remarkably high in patients with hip fractures and negatively correlated with serum IL-1β, IL-6, and TNF-α levels. Patients with higher MECP2 predicted higher dynamic Harris scores, lower postoperative complications, lower 1-year mortality, and higher BI scores. Logical regression showed that age was the only independent risk factor for postoperative 1-year mortality in elderly patients with hip fractures. CONCLUSION Lower MECP2 predicted poor prognosis and higher 1-year mortality in elderly patients with hip fractures.
Collapse
Affiliation(s)
- Xuejian Gao
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Shan Xue
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Fuqiang Yang
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Baoling Wu
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Xiaojing Yu
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Baoquan An
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China.
| |
Collapse
|
66
|
Chang H, Jiang T, Kou L, Li D, Yu X, Li Y, Zhang L. MiR-148a-3p Regulates Stem Cell Osteogenic Differentiation and Enamel Development by Targeting Runt-Related Transcription Factor 2 and E-cadherin <i>via</i> the Wnt1/β-catenin Signaling Pathway. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Huaiguang Chang
- Department of Stomatology, Ningbo College of Health Sciences
| | - Tingting Jiang
- Department of Prosthodontics, Yinzhou Stomatology Hospital
| | - Liang Kou
- Department of Stomatology, Ningbo College of Health Sciences
| | - Duo Li
- Department of Prosthodontics, Yinzhou Stomatology Hospital
| | - Xinchen Yu
- Department of Stomatology, Ningbo College of Health Sciences
| | - Youqin Li
- Department of Stomatology, Ningbo College of Health Sciences
| | - Lei Zhang
- Department of Stomatology, Ningbo College of Health Sciences
| |
Collapse
|
67
|
Wu J, Yao M, Zhang Y, Lin Z, Zou W, Li J, Habibovic P, Du C. Biomimetic three-layered membranes comprising (poly)-ε-caprolactone, collagen and mineralized collagen for guided bone regeneration. Regen Biomater 2021; 8:rbab065. [PMID: 34881047 PMCID: PMC8648192 DOI: 10.1093/rb/rbab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
The distinct structural properties and osteogenic capacity are important aspects to be taken into account when developing guided bone regeneration membranes. Herein, inspired by the structure and function of natural periosteum, we designed and fabricated using electrospinning a fibrous membrane comprising (poly)--ε-caprolactone (PCL), collagen-I (Col) and mineralized Col (MC). The three-layer membranes, having PCL as the outer layer, PCL/Col as the middle layer and PCL/Col/MC in different ratios (5/2.5/2.5 (PCM-1); 3.3/3.3/3.3 (PCM-2); 4/4/4 (PCM-3) (%, w/w/w)) as the inner layer, were produced. The physiochemical properties of the different layers were investigated and a good integration between the layers was observed. The three-layered membranes showed tensile properties in the range of those of natural periosteum. Moreover, the membranes exhibited excellent water absorption capability without changes of the thickness. In vitro experiments showed that the inner layer of the membranes supported attachment, proliferation, ingrowth and osteogenic differentiation of human bone marrow-derived stromal cells. In particular cells cultured on PCM-2 exhibited a significantly higher expression of osteogenesis-related proteins. The three-layered membranes successfully supported new bone formation inside a critical-size cranial defect in rats, with PCM-3 being the most efficient. The membranes developed here are promising candidates for guided bone regeneration applications.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Mengyu Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yonggang Zhang
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Zefeng Lin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Wenwu Zou
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jiaping Li
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
68
|
Oktaş B, Çırpar M, Şanlı E, Canbeyli İD, Bozdoğan Ö. The effect of the platelet-rich plasma on osteogenic potential of the periosteum in an animal bone defect model. Jt Dis Relat Surg 2021; 32:668-675. [PMID: 34842099 PMCID: PMC8650655 DOI: 10.52312/jdrs.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Objectives
This study aims to investigate whether plasma-rich plasma (PRP) enhances the osteogenic potential of periosteal grafts used to repair bone defects and maintains both histologically and biomechanically more durable bone tissue. Materials and methods
A standard bone defect was formed to the left femurs of 54 Sprague-Dawley rats and three groups were formed. In the first group (n=18), no periosteal repair was done for bone defect. In the second group (n=18), periosteal graft tissue was sutured to cover the defect entirely. In the third group (n=18), before periosteal repair, a 1 mL of PRP fibrin was applied into the bone defect. All femoral specimens were compared histologically at four and six weeks and biomechanically by three-point bending test at six weeks after treatment. Results
In the PRP applied group, healing of the bone defect at four weeks was significantly better than the other groups in terms of histological new bone formation (p<0.05). At six weeks, new bone formation in both of the periosteum preserved groups was superior to the first group (p<0.05, for both). There was no statistically significant difference between the second and third groups at the end of the sixth week in the biomechanical analysis, although both groups were significantly stronger than the first group (p<0.05). Conclusion
Stimulation of the periosteum with PRP application causes early osteogenic differentiation of precursor cells. Although, at biomechanical basis, PRP application does not create any significant difference, in the recovery of the bone defects at very early period, application of PRP may play a role to accelerate fracture healing and to decrease nonunions.
Collapse
Affiliation(s)
- Birhan Oktaş
- Kırıkkale Üniversitesi Tıp Fakültesi Ortopedi ve Travmatoloji Anabilim Dalı, 71450 Yahşihan, Kırıkkale, Türkiye.
| | | | | | | | | |
Collapse
|
69
|
Qiao L, Liu X, He Y, Zhang J, Huang H, Bian W, Chilufya MM, Zhao Y, Han J. Progress of Signaling Pathways, Stress Pathways and Epigenetics in the Pathogenesis of Skeletal Fluorosis. Int J Mol Sci 2021; 22:ijms222111932. [PMID: 34769367 PMCID: PMC8584317 DOI: 10.3390/ijms222111932] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Fluorine is widely dispersed in nature and has multiple physiological functions. Although it is usually regarded as an essential trace element for humans, this view is not held universally. Moreover, chronic fluorosis, mainly characterized by skeletal fluorosis, can be induced by long-term excessive fluoride consumption. High concentrations of fluoride in the environment and drinking water are major causes, and patients with skeletal fluorosis mainly present with symptoms of osteosclerosis, osteochondrosis, osteoporosis, and degenerative changes in joint cartilage. Etiologies for skeletal fluorosis have been established, but the specific pathogenesis is inconclusive. Currently, active osteogenesis and accelerated bone turnover are considered critical processes in the progression of skeletal fluorosis. In recent years, researchers have conducted extensive studies in fields of signaling pathways (Wnt/β-catenin, Notch, PI3K/Akt/mTOR, Hedgehog, parathyroid hormone, and insulin signaling pathways), stress pathways (oxidative stress and endoplasmic reticulum stress pathways), epigenetics (DNA methylation and non-coding RNAs), and their inter-regulation involved in the pathogenesis of skeletal fluorosis. In this review, we summarised and analyzed relevant findings to provide a basis for comprehensive understandings of the pathogenesis of skeletal fluorosis and hopefully propose more effective prevention and therapeutic strategies.
Collapse
|
70
|
Malashicheva A, Perepelina K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front Cell Dev Biol 2021; 9:761469. [PMID: 34722546 PMCID: PMC8548693 DOI: 10.3389/fcell.2021.761469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.
Collapse
Affiliation(s)
- Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kseniya Perepelina
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
71
|
Zhang Y, Wang P, Jin J, Li L, He SY, Zhou P, Jiang Q, Wen C. In silico and in vivo studies of the effect of surface curvature on the osteoconduction of porous scaffolds. Biotechnol Bioeng 2021; 119:591-604. [PMID: 34723387 DOI: 10.1002/bit.27976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
Recent evidence shows that the curvature of porous scaffold plays a significant role in guiding tissue regeneration. However, the underlying mechanism remains controversial to date. In this study, we developed an in silico model to simulate the effect of surface curvature on the osteoconduction of scaffold implants, which comprises the primary aspects of bone regeneration. Selective laser melting was used to manufacture a titanium scaffold with channels representative of different strut curvatures for in vivo assessment. The titanium scaffold was implanted in the femur condyles of rabbits to validate the mathematical model. Simulation results suggest that the curvature affected the distribution of growth factors and subsequently induced the migration of osteoblast lineage cells and bone deposition to the locations with higher curvature. The predictions of the mathematical model are in good agreement with the in vivo assessment results, in which newly formed bone first appeared adjacent to the vertices of the major axes in elliptical channels. The mechanism of curvature-guided osteoconduction may provide a guide for the design optimization of scaffold implants to achieve enhanced bone ingrowth.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiyong Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Si-Yuan He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ping Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cuie Wen
- School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
72
|
Wang L, Yao L, Duan H, Yang F, Lin M, Zhang R, He Z, Ahn J, Fan Y, Qin L, Gong Y. Plasminogen Regulates Fracture Repair by Promoting the Functions of Periosteal Mesenchymal Progenitors. J Bone Miner Res 2021; 36:2229-2242. [PMID: 34378815 PMCID: PMC8865375 DOI: 10.1002/jbmr.4423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/06/2022]
Abstract
Defective or insufficient bone repair and regeneration are common in patients as a result of major trauma or severe disease. Cell therapy with periosteal mesenchymal progenitors, which can be limited in severe injury, serves as a promising approach; however, its efficacy is limited due to a repair-hostile ischemic tissue microenvironment after traumatic fracture. Here we report that plasminogen (Plg), a factor that is upregulated in these environments, is critical for fracture healing. Plg knockout mice had impaired trabecular and cortical bone structure and exhibited delayed and incomplete fracture healing. Interestingly, Plg deficiency greatly reduced the thickness of expanded periosteum, suggesting a role of Plg in periosteal mesenchymal progenitor-mediated bone repair. In culture, Plg increased cell proliferation and migration in periosteal mesenchymal progenitors and inhibited cell death under ischemic conditions. Mechanistically, we revealed that Plg cleaved and activated Cyr61 to regulate periosteal progenitor function. Thus, our study uncovers a cellular mechanism underlying fracture healing, by which Plg activates Cyr61 to promote periosteal progenitor proliferation, survival, and migration and improves bone repair after fracture. Targeting Plg may offer a rational and effective therapeutic opportunity for improving fracture healing. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Luqiang Wang
- Departments of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lutian Yao
- Departments of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, China
| | - Hao Duan
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurosurgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fan Yang
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maohuan Lin
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rongxin Zhang
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenqiang He
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaimo Ahn
- Departments of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Departments of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanqing Gong
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
73
|
Sadeghifar A, Sheibani M, Joukar S, Dabiri S, Alavi S, Azari O, Vosoghi D, Zeynali Y, Zeynali Y, Shahraki M, Torghabe A, Rostamzadeh F, Nasri A. The Effect of Waterpipe Tobacco Smoking on Bone Healing Following Femoral Fractures in Male Rats. Front Surg 2021; 8:722446. [PMID: 34671637 PMCID: PMC8520932 DOI: 10.3389/fsurg.2021.722446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Given the increasing use of waterpipe tobacco smoking in the world and its unknown effects on bone healing, this study investigated the repairing of femoral bone fractures in rats exposed to waterpipe tobacco smoking (WTS). Main Methods: This study involved 40 male Wistar rats that were divided into two groups, including the femoral fracture (Fx) and the Fx + WTS groups. Each group was divided into two subgroups that were evaluated for bone healing 28 and 42 days after femoral fracture. After fixing the fractured femur, the healing process was evaluated by radiography, pathological indicators, and a measurement of the blood levels of vascular endothelial growth factor (VEGF), parathyroid hormone (PTH), Ca ++, transforming growth factor-beta (TGF-β), and insulin-like growth factor 1 (IGF-1). Additionally, the density of VEGF and CD34 in fracture tissue was investigated by immunohistochemistry. Key Findings: Radiographic findings showed that factors related to the earlier stages of bone healing had higher scores in the Fx + WTS28 and 42 subgroups in comparison to the Fx groups. The density of VEGF and CD34 showed that the angiogenesis processes were different in the bone fracture area and callus tissue in the Fx +WTS subgroups. The serum levels of VEGF, TGF-β, and IGF-1 were significantly lower in the Fx +WTS42 group, and PTH in the Fx +WTS28 group was higher than that in the other groups. Significance: The findings showed the disturbance and delay in the femoral fracture union in rats exposed to hookah smoke. This is partly due to the reduction of molecular stimuli of bone synthesis and the attenuation of quantitative angiogenesis.
Collapse
Affiliation(s)
- Amirreza Sadeghifar
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Sheibani
- Orthopedic Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Samanehsadat Alavi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Azari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Darioush Vosoghi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yas Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasman Zeynali
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamad Shahraki
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Amirhesam Torghabe
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Nasri
- Pathology Department and Stem Cell Research Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
74
|
Matveeva NY, Kalinichenko SG, Kostiv RE. Dynamics of Renewal of Cell Populations of the Bone Tissue on the Surface of Titanium Implants with Bioactive Coating during Fracture Modeling in Rats. Bull Exp Biol Med 2021; 171:559-565. [PMID: 34549337 DOI: 10.1007/s10517-021-05269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/29/2022]
Abstract
Localization of PCNA, CD44, osteocalcin, Mdm2, p53, and caspase-3 on the surface of implant with calcium phosphate and hydroxyapatite coating was studied by immunocytochemical method in a model of femur fracture in rats. PCNA+, Ost+, CD44+, and Mdm2+ cells were found in the periosteum, in the layer of the outer surrounding plates, and in the connective tissue of the Haversian canals. Cell density increased on day 7 after fracture and then decreased by day 30. The number of p53+ and CASP3+ cells reached a maximum on day 14 (they were predominantly located in the periosteum and bone plates adjacent to it) and decreased by day 30. Calcium phosphate coating stimulated proliferative activity of cells at the early stages of the regeneration phase and apoptotic death at the later stages. Components of coating can be viewed as a positioning clue for differentiation of mesenchymal stromal cells. The effectiveness of reparative osteogenesis is determined by the balance of proliferative and destructive factors at the site of the fracture healing. This process can be optimized with various nanostructured materials with osteoinductive properties, in particular bioresorbable calcium phosphate coatings on titanium implants. However, the influence of these components on the state of cambial cells, their differentiation, and positioning in the repair zone is unknown.
Collapse
Affiliation(s)
- N Yu Matveeva
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of Russian Federation, Vladivostok, Russia.
| | - S G Kalinichenko
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of Russian Federation, Vladivostok, Russia
| | - R E Kostiv
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of Russian Federation, Vladivostok, Russia
| |
Collapse
|
75
|
Kalinichenko SG, Matveeva NY, Kostiv RY, Edranov SS. The effect of calcium phosphate biodegradable coatings of titanium implants on cell differentiation and apoptosis in rat bone tissue after experimental fracture. Biomed Mater Eng 2021; 32:53-62. [PMID: 33252059 DOI: 10.3233/bme-201119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The effectiveness of bone repair is determined by the balance of proliferative and destructive factors in the fracture union site. It can be enhanced by using various nanostructured materials possessing osteoinductive properties, in particular titanium implants with biodegradable calcium phosphate coatings. The effects of these coatings on the state of stem cells, their differentiation and distribution in the repair zone is unknown. OBJECTIVE To study the dynamics of proliferation, differentiation, and apoptosis of stem cells after experimental fracture followed by implantation of titanium implants with calcium phosphate coatings. METHODS The localization of proliferation (PCNA) and differentiation (CD44 and osteocalcin) factors and apoptotic molecules (MDM2, p53, caspase-3) was studied in a rat femoral fracture model with implant placement. Titanium implant screws with bioactive calcium phosphate and hydroxyapatite coatings formed by plasma electrolytic oxidation were used in the study. Experimental rats were arranged into three groups (15 animals per group): control group; rats implanted with uncoated implants; and rats implanted with coated implants. Control rats were subject to a similar fracture as experimental ones and were allowed to heal conservatively. Rats from all groups were sampled on days 7, 14, and 30 after injury. RESULTS Low-differentiated PCNA-, osteocalcin-, and CD44-immunopositive cells were localized around the implant in the inner layer of the periosteum, layer of outer circumferential lamellae, and connective tissue lining of haversian canals. The spatial density of cells expressing the above proliferation and differentiation factors, as well as that of MDM2-immunoreactive cells, increased on day 7 and decreased by day 30 after injury. The spatial density of apoptotic cells reached the maximum on day 14 after injury. They were mainly found in the inner layer of the periosteum and outer circumferential lamellae. p53- and caspase-3-positive cells occurred on the surface of the concentric lamellae surrounding haversian canals and under the periosteum. Their spatial density decreased by day 30 after injury. CONCLUSIONS Calcium phosphate coatings stimulate cell proliferation at early stages of fracture restoration and apoptotic cell death at later stages. Coating components may provide positional information guiding the differentiation of mesenchymal stromal cells. A change in the activity of apoptotic factors, osteocalcin, and CD44 is caused by gene induction in response to the diffusion of calcium phosphate compounds from coating to surrounding tissue.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Natalya Yu Matveeva
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Roman Ye Kostiv
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| | - Sergey S Edranov
- Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
| |
Collapse
|
76
|
Gong Y, Yang J, Li X, Zhou C, Chen Y, Wang Z, Qiu X, Liu Y, Zhang H, Greenbaum J, Cheng L, Hu Y, Xie J, Yang X, Li Y, Bai Y, Wang YP, Chen Y, Tan LJ, Shen H, Xiao HM, Deng HW. A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging (Albany NY) 2021; 13:20629-20650. [PMID: 34428745 PMCID: PMC8436943 DOI: 10.18632/aging.203452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Human osteoblasts are multifunctional bone cells, which play essential roles in bone formation, angiogenesis regulation, as well as maintenance of hematopoiesis. However, the categorization of primary osteoblast subtypes in vivo in humans has not yet been achieved. Here, we used single-cell RNA sequencing (scRNA-seq) to perform a systematic cellular taxonomy dissection of freshly isolated human osteoblasts from one 31-year-old male with osteoarthritis and osteopenia after hip replacement. Based on the gene expression patterns and cell lineage reconstruction, we identified three distinct cell clusters including preosteoblasts, mature osteoblasts, and an undetermined rare osteoblast subpopulation. This novel subtype was found to be the major source of the nuclear receptor subfamily 4 group A member 1 and 2 (NR4A1 and NR4A2) in primary osteoblasts, and the expression of NR4A1 was confirmed by immunofluorescence staining on mouse osteoblasts in vivo. Trajectory inference analysis suggested that the undetermined cluster, together with the preosteoblasts, are involved in the regulation of osteoblastogenesis and also give rise to mature osteoblasts. Investigation of the biological processes and signaling pathways enriched in each subpopulation revealed that in addition to bone formation, preosteoblasts and undetermined osteoblasts may also regulate both angiogenesis and hemopoiesis. Finally, we demonstrated that there are systematic differences between the transcriptional profiles of human and mouse osteoblasts, highlighting the necessity for studying bone physiological processes in humans rather than solely relying on mouse models. Our findings provide novel insights into the cellular heterogeneity and potential biological functions of human primary osteoblasts at the single-cell level.
Collapse
MESH Headings
- Adult
- Animals
- Cell Differentiation
- Cells, Cultured
- Humans
- Male
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Sequence Analysis, RNA
- Single-Cell Analysis
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaohua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Xiang Qiu
- School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huixi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuecheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuntong Bai
- Tulane Center for Bioinformatics and Genomics, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Yu-Ping Wang
- Tulane Center for Bioinformatics and Genomics, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Yiping Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Mei Xiao
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410081, China
- School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410008, China
| |
Collapse
|
77
|
Insights into the Cellular and Molecular Mechanisms That Govern the Fracture-Healing Process: A Narrative Review. J Clin Med 2021; 10:jcm10163554. [PMID: 34441849 PMCID: PMC8397080 DOI: 10.3390/jcm10163554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/28/2022] Open
Abstract
Fracture-healing is a complex multi-stage process that usually progresses flawlessly, resulting in restoration of bone architecture and function. Regrettably, however, a considerable number of fractures fail to heal, resulting in delayed unions or non-unions. This may significantly impact several aspects of a patient’s life. Not surprisingly, in the past few years, a substantial amount of research and number of clinical studies have been designed, aiming at shedding light into the cellular and molecular mechanisms that regulate fracture-healing. Herein, we present the current knowledge on the pathobiology of the fracture-healing process. In addition, the role of skeletal cells and the impact of marrow adipose tissue on bone repair is discussed. Unveiling the pathogenetic mechanisms that govern the fracture-healing process may lead to the development of novel, smarter, and more effective therapeutic strategies for the treatment of fractures, especially of those with large bone defects.
Collapse
|
78
|
Yang X, Mou D, Yu Q, Zhang J, Xiong Y, Zhang Z, Xing S. Nerve growth factor promotes osteogenic differentiation of MC3T3-E1 cells via BMP-2/Smads pathway. Ann Anat 2021; 239:151819. [PMID: 34391912 DOI: 10.1016/j.aanat.2021.151819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Exogenous nerve growth factor (NGF) can induce osteogenic precursor cell differentiation and promote fracture healing. However, the molecular mechanism by which NGF induces osteogenesis is not well understood. BMP-2 has good osteogenic efficacy and is one of the most osteogenic-inducing growth factors known. Therefore, this study aimed to determine whether NGF induces osteogenic differentiation of mouse embryonic osteogenic precursor cell line MC3T3-E1 by BMP-2 and search further mechanisms of NGF on BMP-2. METHODS MC3T3-E1 cells were treated with NGF at a concentration gradient for indicated times, after which the cell viability was measured by CCK-8 kit. Osteogenic differentiation was detected with quantification of alkaline phosphatase (ALP) activity also visualized with ALP staining. The transcription and expression of relevant genes were detected by qPCR and western blotting, respectively. NGF's effect on BMP2 was studied with qPCR and luciferase reporter assay. The phosphorylation of Smads was probed with specific antibodies by western blotting, and the location of Smads was observed through immunofluorescence. RESULTS We found that NGF promoted proliferation and osteogenic differentiation of MC3T3-E1, increased the expression level of BMP-2, as well as the phosphorylation and nuclear translocation of Smad1/5/8. However, neutralization of BMP-2 with si-BMP-2 or BMP-2 signal inhibitors reversed NGF induced phosphorylation and nuclear translocation of Smad1/5/8, as well as the expression of Runx2, type I collagen, osteocalcin and osteopontin. In addition, si-BMP-2 abrogated NGF-induced ALP activity. CONCLUSION NGF induced osteogenic differentiation of MC3T3-E1 cells through BMP-2/Smads pathway and induction of Runx2. Our study would provide a theoretical basis for clinical treatment of fractures using NGF.
Collapse
Affiliation(s)
- Xuming Yang
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China.
| | - Donggang Mou
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Qunying Yu
- Maternity Department, The Second Affiliated Hospital of Kunming Medical University, Kunming 650051, Yunnan Province, China
| | - Jimei Zhang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650065, Yunnan Province, China
| | - Ying Xiong
- Orthopedics Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650035, Yunnan Province, China
| | - Zhimin Zhang
- Orthopedics Department, Yanshan County Hospital of Traditional Chinese Medicine, Wenshan Zhuang and Miao Autonomous Prefecture 663100, Yunnan Province, China
| | - Shan Xing
- Orthopedics Department, The Second People's Hospital of Yanshan County, Wenshan Zhuang and Miao Autonomous Prefecture 663101, Yunnan Province, China
| |
Collapse
|
79
|
Dong K, Zhou WJ, Liu ZH, Hao PJ. The extract of concentrated growth factor enhances osteogenic activity of osteoblast through PI3K/AKT pathway and promotes bone regeneration in vivo. Int J Implant Dent 2021; 7:70. [PMID: 34345951 PMCID: PMC8333229 DOI: 10.1186/s40729-021-00357-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Concentrated growth factor (CGF) is a third-generation platelet concentrate product; the major source of growth factors in CGF is its extract; however, there are few studies on the overall effects of the extract of CGF (CGF-e). The aim of this study was to investigate the effect and mechanism of CGF-e on MC3T3-E1 cells in vitro and to explore the effect of combination of CGF-e and bone collagen (Bio-Oss Collagen, Geistlich, Switzerland) for bone formation in cranial defect model of rats in vivo. METHODS The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression were evaluated in vitro; the newly formed bone was evaluated by histological and immunohistochemical analysis through critical-sized cranial defect rat model in vivo. RESULTS The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression of CGF-e group were significantly increased compared with the control group. In addition, there was significantly more newly formed bone in the CGF-e + bone collagen group, compared to the blank control group and bone collagen only group. CONCLUSIONS CGF-e activated the PI3K/AKT signaling pathway to enhance osteogenic differentiation and mineralization of MC3T3-E1 cells and promoted the bone formation of rat cranial defect model.
Collapse
Affiliation(s)
- Kai Dong
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Wen-Juan Zhou
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Zhong-Hao Liu
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Peng-Jie Hao
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China.
| |
Collapse
|
80
|
Wychowański P, Starzyńska A, Adamska P, Słupecka-Ziemilska M, Sobocki BK, Chmielewska A, Wysocki B, Alterio D, Marvaso G, Jereczek-Fossa BA, Kowalski J. Methods of Topical Administration of Drugs and Biological Active Substances for Dental Implants-A Narrative Review. Antibiotics (Basel) 2021; 10:919. [PMID: 34438969 PMCID: PMC8388631 DOI: 10.3390/antibiotics10080919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dental implants are, nowadays, established surgical devices for the restoration of lost teeth. Considered as an alternative for traditional prosthetic appliances, dental implants surpass them in reliability and patient feedback. Local drug delivery around the implants promotes osseointegration and reduces peri-implantitis. However, there are currently no methods of a multiple, precise topical administration of drugs to the implant area. Engineering coatings on the implants, drug application on carriers during implantation, or gingival pockets do not meet all requirements of dental surgeons. Therefore, there is a need to create porous implants and other medical devices that will allow a multiple drug delivery at a controlled dose and release profile without traumatic treatment. Due to the growing demand for the use of biologically active agents to support dental implant treatment at its various stages (implant placement, long-term use of dental superstructures, treatment of the peri-implant conditions) and due to the proven effectiveness of the topical application of pharmacological biologically active agents to the implant area, the authors would like to present a review and show the methods and devices that can be used by clinicians for local drug administration to facilitate dental implant treatment. Our review concludes that there is a need for research in the field of inventions such as new medical devices or implants with gradient solid-porous structures. These devices, in the future, will enable to perform repeatable, controllable, atraumatic, and repeatable injections of active factors that may affect the improvement of osteointegration and the longer survival of implants, as well as the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 St. Binieckiego Street, 02-097 Warsaw, Poland;
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
| | - Paulina Adamska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Center, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (P.A.); (B.K.S.)
- International Research Agenda 3P—Medicine Laboratory, Medical University of Gdańsk, 3a Marii Skłodowskiej-Curie Street, 80-210 Gdańsk, Poland
| | - Agnieszka Chmielewska
- Faculty of Material Science and Engineering, Warsaw University of Technology, 141 Wołoska Street, 02-507 Warsaw, Poland;
- Department of Materials Science and Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH 43210, USA
| | - Bartłomiej Wysocki
- Center of Digital Science and Technology, Cardinal Stefan Wyszyński University in Warsaw, Woycickiego 1/3 Street, 01-938 Warsaw, Poland;
- Additive Manufacturing Research Center, College of Engineering, Youngstown State University, Youngstown, OH 44555, USA
| | - Daniela Alterio
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
| | - Giulia Marvaso
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20112 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20141 Milan, Italy; (D.A.); (G.M.); (B.A.J.-F.)
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20112 Milan, Italy
| | - Jan Kowalski
- Department of Periodontology and Oral Medicine, Medical University of Warsaw, 6 St. Binieckiego Street, 02-097 Warsaw, Poland;
| |
Collapse
|
81
|
Zhang S, Ding X, Miao H, Wang L, Xian L, Han S, Zhang D, Li J. The Effects of MiR-320 on the Proliferation and Differentiation of Human Alveolar Bone-Derived Mesenchymal Stem Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alveolar bone-derived mesenchymal stem cells (AB-BMSCs) have a biological morphology and antigen phenotype similar to those of BMSCs. However, the intrinsic characteristics of AB-BMSCs and their underlying mechanisms, in which the involvement of micro(mi)RNAs has been reported, remain
unknown. This study shows that miR-320c expression was significantly suppressed during osteoblastic differentiation of human AB-BMSCs. The overexpression of miR-320c markedly decreased cellular proliferation, intracellular activity of alkaline phosphatase (ALP) and formation of calcium nodules;
mRNA levels of osteogenesis-related genes were significantly reduced compared to those in control cells. Calcium nodule formation in miR-320c-knockdown cells was significantly increased, and HOXA10, Runx2, and BGP mRNA levels were significantly increased compared to those in
control cells. These results indicate that miR-320c suppresss the proliferation and osteogenic differentiation of AB-BMSCs, in part by decreasing ALP activity, cellular proliferation, mineralization, and expression of several osteogenesis-related genes. These results lay the basic foundation
for the elucidation of the molecular mechanisms of alveolar bone reconstruction.
Collapse
Affiliation(s)
- Shuyue Zhang
- Department of Stomatology, Tangshan People’s Hospital, Tangshan, 063001, China
| | - Xinguo Ding
- Xiamen Haicang Hospital, Xiamen, 361026, China
| | - Haixia Miao
- Department of Stomatology, Tangshan People’s Hospital, Tangshan, 063001, China
| | - Lei Wang
- Department of Pathology, Tangshan People’s Hospital, Tangshan, 063001, China
| | - Lige Xian
- Department of Pathology, Tangshan People’s Hospital, Tangshan, 063001, China
| | - Sugui Han
- ClinicalLaboratory, Tangshan People’s Hospital, Tangshan, 063001, China
| | - Di Zhang
- North China University of Science and Technology, Tangshan, 063000, China
| | - Jian Li
- Department of Stomatology, Xiang’an Hospital of Xiamen University, Xiamen, 361101, China
| |
Collapse
|
82
|
Alcântara B, Minto B, Franco G, Lucena D, Dias L. Bridge plating for simple tibial fractures treated by minimally invasive plate osteosynthesis. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the effectiveness of bridge plating of simple tibial fractures in dogs by minimally invasive plate osteosynthesis (MIPO). Medical and radiographic records of twenty-nine dogs with simple tibial fractures that underwent bridge fixation by MIPO were retrospectively evaluated. The clinical outcome was classified considering the presence of lameness at the end of the treatment. The tibial mechanical joint angles were measured and compared with the values described in the literature. Additionally, fragment apposition and implant disposition were evaluated. Based on the modified Radiographic Union Scale for Tibial fractures, the moment of clinical union was determined. Clinically, at the end of treatment, only one patient presented lameness at a trot. While there was no significant difference between the bone alignment in the frontal plane values and the values described in the literature (P>0.05), the caudal proximal tibial angle was significantly higher (P=0.001). The median fragment apposition was considered acceptable. The average bridge plate ratio, plate working length, and plate screw density were 0.8, 0.57, and 0.48, respectively. The median time to clinical union was 30 days. Bridge plating in simple tibial fractures resulted in fast healing and low complication rates.
Collapse
Affiliation(s)
| | | | - G.G. Franco
- Universidade Federal do Espírito Santo, Brazil
| | | | | |
Collapse
|
83
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
84
|
Aldahlawi S, Nourah D, Andreana S. Should Quality of Glycemic Control Guide Dental Implant Therapy in Patients with Diabetes? Focus on: Peri-Implant Diseases. Clin Cosmet Investig Dent 2021; 13:149-154. [PMID: 33911902 PMCID: PMC8071690 DOI: 10.2147/ccide.s297467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIM Traditionally patients with metabolic conditions such as diabetes mellitus are considered not suitable candidates for dental implant therapy due to increased risk of infection, impaired bone healing or the potential for vascular complications. Peri-implantitis as the more progressive form of peri-implant disease involves bone loss and estimated to occur in nearly half of all implant cases long-term. Despite extensive research on association of hyperglycemia with dental implants in preclinical and animal models, translational effort to clinical practice is hampered by discrepancies in reported outcome indicators for peri-implantitis in patients with a spectrum of glycemic profiles. This review aims to evaluate clinical evidence for peri-implant disease in metabolically compromised patients and in particular in patients with poorly-controlled diabetes in order to inform clinical management of peri-implant disease. MATERIALS AND METHODS A comprehensive literature review was performed utilizing PubMed database and using the key word 'diabetes' combined with "dental implant" or "Periimplantitis" or/and "Preimplant disease". RESULTS Clinical studies with follow up more than 1year, systematic review and meta-analysis that evaluated peri-implant disease in diabetic patients in relation to glycemic control were taken into consideration in this review. CONCLUSION Studies reported conflicting results regarding the long-term effect of diabetes on peri-implant health regardless of the level glycemic control. Therefore, interpretation of finding and relevance to clinical practise should be considered on individual bases.
Collapse
Affiliation(s)
- Salwa Aldahlawi
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Dalia Nourah
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
85
|
Barry F, Schlund M, Raoul G, Myon L, Ferri J, Nicot R. Classification of pedicle ossification after maxillofacial reconstruction with bony free flap: An observational study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 123:228-232. [PMID: 33845186 DOI: 10.1016/j.jormas.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Maxillofacial reconstruction with bony free flap is a classical technique. However, pedicle ossification after such reconstruction is a misunderstood complication that is rarely reported in the literature. It is usually manifested as trismus, neck pain, and hard swelling, but it is predominantly asymptomatic and, thus, mainly incidentally discovered at a later stage. The aim of our study is to propose a classification for pedicle ossification based on both radiological features and vascular calcification progression. We also describe a case of metachronous ossification after two fibula free flap procedures. MATERIAL & METHODS Our observational study includes all patients from our unit who underwent maxillofacial reconstruction with bony free flap from 2003 to 2018. We collected all cases of pedicle ossifications identified during the follow-up and described the radiological status of each one to categorise them in different groups and propose a classification scheme for the same. RESULTS Radiological and histological analysis showed a progressive three-step evolution of pedicle ossification, starting from the media, progressing into the lumen, and then reaching completion in the extravascular region. The final stage was observed in all symptomatic patients. CONCLUSION Pedicle ossification is a progressive process that passes through three successive histological stages that may be associated with factors such as smooth muscle cell phenotype modification [1]. This complication may lead to more severe clinical symptoms and may require surgery for removal of the calcification.
Collapse
Affiliation(s)
- Florent Barry
- University of Lille, CHU Lille, Service de Chirurgie Maxillo-Faciale et Stomatologie, Lille, France
| | - Matthias Schlund
- University of Lille, CHU Lille, INSERM, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France.
| | - Gwénaël Raoul
- University of Lille, CHU Lille, INSERM, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Luc Myon
- CH Valenciennes, Service de Chirurgie Maxillo-Faciale et Stomatologie, Valenciennes, France
| | - Joël Ferri
- University of Lille, CHU Lille, INSERM, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| | - Romain Nicot
- University of Lille, CHU Lille, INSERM, Service de Chirurgie Maxillo-Faciale et Stomatologie, U1008 - Controlled Drug Delivery Systems and Biomaterials, Lille, France
| |
Collapse
|
86
|
Abstract
This chapter describes the methods of isolation of mouse periosteal progenitor cells. There are three basic methods utilized. The bone grafting method was developed utilizing the fracture healing process to expand the progenitor populations. Bone capping methods requires enzymatic digestion and purification of cells from the native periosteum, while the Egression/Explant method requires the least manipulation with placement of cortical bone fragments with attached periosteum in a culture dish. Various cell surface antibodies have been employed over the years to characterize periosteum derived progenitor cells, but the most consistent minimal criteria was recommended by the International Society for Cellular Therapy. Confirmation of the multipotent status of these isolated cells can be achieved by differentiation into the three basic mesodermal lineages in vitro.
Collapse
|
87
|
Jablonská E, Horkavcová D, Rohanová D, Brauer DS. A review of in vitro cell culture testing methods for bioactive glasses and other biomaterials for hard tissue regeneration. J Mater Chem B 2021; 8:10941-10953. [PMID: 33169773 DOI: 10.1039/d0tb01493a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bioactive glasses are used to regenerate bone by a mechanism which involves surface degradation, the release of ions such as calcium, soluble silica and phosphate and the precipitation of a biomimetic apatite surface layer on the glass. One major area of bioactive glass research is the incorporation of therapeutically active ions to broaden the application range of these materials. When developing such new compositions, in vitro cell culture studies are a key part of their characterisation. However, parameters of cell culture studies vary widely, and depending on the intended use of bioactive glass compositions, different layouts, cell types and assays need to be used. The aim of this publication is to provide materials scientists, particularly those new to cell culture studies, with a tool for selecting the most appropriate assays to give insight into the properties of interest.
Collapse
Affiliation(s)
- Eva Jablonská
- Laboratory of Molecular Biology and Virology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Czech Republic.
| | - Diana Horkavcová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Dana Rohanová
- Laboratory of Chemistry and Technology of Glasses, Department of Glass and Ceramics, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany.
| |
Collapse
|
88
|
Hu H, Wang D, Li L, Yin H, He G, Zhang Y. Role of microRNA-335 carried by bone marrow mesenchymal stem cells-derived extracellular vesicles in bone fracture recovery. Cell Death Dis 2021; 12:156. [PMID: 33542183 PMCID: PMC7862274 DOI: 10.1038/s41419-021-03430-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to reduce healing time and treat nonunion in fracture patients. In this study, bone marrow MSCs-derived extracellular vesicles (B-EVs) were firstly extracted and identified. CD9-/- and normal mice were enrolled for the establishment of fracture models and then injected with B-EVs. Osteoblast differentiation and fracture recovery were estimated. The levels of osteoblast-related genes were detected, and differentially expressed microRNAs (miRs) in B-EVs-treated normal fracture mice were screened and verified. The downstream mechanisms of miR were predicted and assessed. The loss-of functions of miR-335 in B-EV and gain-of-functions of VapB were performed in animal and cell experiments to evaluate their roles in bone fracture. Collectively, B-EVs promoted bone fracture recovery and osteoblast differentiation by releasing miR-335. miR-335 downregulation in B-EVs impaired B-EV functions in fracture recovery and osteoblast differentiation. miR-335 could target VapB, and VapB overexpression reversed the effects of B-EVs on osteoblast differentiation. B-EV treatment activated the Wnt/β-catenin pathway in fracture mice and osteoblasts-like cells. Taken together, the study suggested that B-EVs carry miR-335 to promote bone fracture recovery via VapB and the Wnt/β-catenin pathway. This study may offer insights into bone fracture treatment.
Collapse
Affiliation(s)
- Haifeng Hu
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dong Wang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lihong Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiyang Yin
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guoyu He
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yonghong Zhang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
89
|
Garcia J, Delany AM. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone 2021; 143:115791. [PMID: 33285257 PMCID: PMC7787082 DOI: 10.1016/j.bone.2020.115791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
This review showcases miRNAs contributing to the regulation of bone forming osteoblasts through their effects on the TGFβ and BMP pathways, with a focus on ligands, receptors and SMAD-mediated signaling. The goal of this work is to provide a basis for broadly understanding the contribution of miRNAs to the modulation of TGFβ and BMP signaling in the osteoblast lineage, which may provide a rationale for potential therapeutic strategies. Therefore, the search strategy for this review was restricted to validated miRNA-target interactions within the canonical TGFβ and BMP signaling pathways; miRNA-target interactions based only bioinformatics are not presented. Specifically, this review discusses miRNAs targeting each of the TGFβ isoforms, as well as BMP2 and BMP7. Further, miRNAs targeting the signaling receptors TGFβR1 and TGFβR2, and those targeting the type 1 BMP receptors and BMPR2 are described. Lastly, miRNAs targeting the receptor SMADs, the common SMAD4 and the inhibitory SMAD7 are considered. Of these miRNAs, the miR-140 family plays a prominent role in inhibiting TGFβ signaling, targeting both ligand and receptor. Similarly, the miR-106 isoforms target both BMP2 and SMAD5 to inhibit osteoblastic differentiation. Many of the miRNAs targeting TGFβ and BMP signaling components are induced during fracture, mechanical unloading or estrogen deprivation. Localized delivery of miRNA-based therapeutics that modulate the BMP signaling pathway could promote bone formation.
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
90
|
Moore ER, Mathews OA, Yao Y, Yang Y. Prx1-expressing cells contributing to fracture repair require primary cilia for complete healing in mice. Bone 2021; 143:115738. [PMID: 33188955 PMCID: PMC7769995 DOI: 10.1016/j.bone.2020.115738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 02/09/2023]
Abstract
Bone is a dynamic organ that is continuously modified during development, load-induced adaptation, and fracture repair. Understanding the cellular and molecular mechanisms for natural fracture healing can lead to therapeutics that enhance the quality of newly formed tissue, advance the rate of healing, or replace the need for invasive surgical procedures. Prx1-expressing cells in the periosteum are thought to supply the majority of osteoblasts and chondrocytes in the fracture callus, but the exact mechanisms for this behavior are unknown. The primary cilium is a sensory organelle that is known to mediate several signaling pathways involved in fracture healing and required for Prx1-expressing cells to contribute to juvenile bone development and adult load-induced bone formation. We therefore investigated the role of Prx1-expressing cell primary cilia in fracture repair by developing a mouse model that enabled us to simultaneously track Prx1 lineage cell fate and disrupt Prx1-expressing cell primary cilia in vivo. The cilium KO mice exhibited abnormally large calluses with significantly decreased bone formation and persistent cartilage nodules. Analysis of mRNA expression in the early soft callus revealed downregulation of osteogenesis, Hh signaling, and Wnt signaling, and upregulation of chondrogenesis and angiogenesis. The mutant mice also exhibited decreased Osx and Periostin but increased αSMA and PECAM-1 protein expression in the hard callus. We further used a Gli1LacZ reporter and found that Hh signaling was significantly upregulated in the mutant callus at later stages of healing. Interestingly, altered protein expression and Hh signaling did not correlate with labeled Prx1-lineage cells, suggesting loss of cilia altered Hh signaling non-autonomously. Overall, cilium KO mice demonstrated severely delayed and incomplete fracture healing, and our findings suggest Prx1-expressing cell primary cilia are necessary to tune Hh signaling for proper fracture repair.
Collapse
Affiliation(s)
| | - O Amandhi Mathews
- Harvard School of Dental Medicine, Boston, MA, USA; University of Dallas, Irving, TX, USA
| | - Yichen Yao
- Harvard School of Dental Medicine, Boston, MA, USA; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Yang
- Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
91
|
Tehrani KF, Pendleton EG, Southern WM, Call JA, Mortensen LJ. Spatial frequency metrics for analysis of microscopic images of musculoskeletal tissues. Connect Tissue Res 2021; 62:4-14. [PMID: 33028134 PMCID: PMC7718369 DOI: 10.1080/03008207.2020.1828381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Imaging-based metrics for analysis of biological tissues are powerful tools that can extract information such as shape, size, periodicity, and many other features to assess the requested qualities of a tissue. Muscular and osseous tissues consist of periodic structures that are directly related to their function, and so analysis of these patterns likely reflects tissue health and regeneration.Methods: A method for assessment of periodic structures is by analyzing them in the spatial frequency domain using the Fourier transform. In this paper, we present two filters which we developed in the spatial frequency domain for the purpose of analyzing musculoskeletal structures. These filters provide information about 1) the angular orientation of the tissues and 2) their periodicity. We explore periodic structural patterns in the mitochondrial network of skeletal muscles that are reflective of muscle metabolism and myogenesis; and patterns of collagen fibers in the bone that are reflective of the organization and health of bone extracellular matrix.Results: We present an analysis of mouse skeletal muscle in healthy and injured muscles. We used a transgenic mouse that ubiquitously expresses fluorescent protein in their mitochondria and performed 2-photon microscopy to image the structures. To acquire the collagen structure of the bone we used non-linear SHG microscopy of mouse flat bone. We analyze and compare juvenile versus adult mice, which have different structural patterns.Conclusions: Our results indicate that these metrics can quantify musculoskeletal tissues during development and regeneration.
Collapse
Affiliation(s)
- Kayvan Forouhesh Tehrani
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA
| | - Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA
| | - W. Michael Southern
- Department of Kinesiology, University of Georgia, Athens,
GA 30602, USA,Currently with Department of Biochemistry, Molecular
Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA,Department of Kinesiology, University of Georgia, Athens,
GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS,
University of Georgia, Athens, GA 30602, USA,School of Chemical, Materials and Biomedical Engineering,
University of Georgia, Athens, GA 30602, USA,
| |
Collapse
|
92
|
Abstract
The Society of Skeletal Radiology (SSR) Practice Guidelines and Technical Standards Committee identified musculoskeletal infection as a White Paper topic, and selected a Committee, tasked with developing a consensus on nomenclature for MRI of musculoskeletal infection outside the spine. The objective of the White Paper was to critically assess the literature and propose standardized terminology for imaging findings of infection on MRI, in order to improve both communication with clinical colleagues and patient care.A definition was proposed for each term; debate followed, and the committee reached consensus. Potential controversies were raised, with formulated recommendations. The committee arrived at consensus definitions for cellulitis, soft tissue abscess, and necrotizing infection, while discouraging the nonspecific term phlegmon. For bone infection, the term osteitis is not useful; the panel recommends using terms that describe the likelihood of osteomyelitis in cases where definitive signal changes are lacking. The work was presented virtually to SSR members, who had the opportunity for review and modification prior to submission for publication.
Collapse
|
93
|
Deng YX, He WG, Cai HJ, Jiang JH, Yang YY, Dan YR, Luo HH, Du Y, Chen L, He BC. Analysis and Validation of Hub Genes in Blood Monocytes of Postmenopausal Osteoporosis Patients. Front Endocrinol (Lausanne) 2021; 12:815245. [PMID: 35095774 PMCID: PMC8792966 DOI: 10.3389/fendo.2021.815245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis is a common systemic bone disease caused by the imbalance between osteogenic activity and osteoclastic activity. Aged women are at higher risk of osteoporosis, partly because of estrogen deficiency. However, the underlying mechanism of how estrogen deficiency affects osteoclast activity has not yet been well elucidated. In this study, GSE2208 and GSE56815 datasets were downloaded from GEO database with 25 PreH BMD women and 25 PostL BMD women in total. The RRA algorithm determined 38 downregulated DEGs and 30 upregulated DEGs. Through GO analysis, we found that downregulated DEGs were mainly enriched in myeloid cell differentiation, cytokine-related functions while upregulated DEGs enriched in immune-related biological processes; pathways like Notch signaling and MAPK activation were found in KEGG/Rectome pathway database; a PPI network which contains 66 nodes and 91 edges was constructed and three Modules were obtained by Mcode; Correlation analysis helped us to find highly correlated genes in each module. Moreover, three hub genes FOS, PTPN6, and CTSD were captured by Cytohubba. Finally, the hub genes were further confirmed in blood monocytes of ovariectomy (OVX) rats by real-time PCR assay. In conclusion, the integrative bioinformatics analysis and real-time PCR analysis were utilized to offer fresh light into the role of monocytes in premenopausal osteoporosis and identified FOS, PTPN6, and CTSD as potential biomarkers for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yi-Xuan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hai-Jun Cai
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Jin-Hai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yuan-Yuan Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yan-Rong Dan
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Hong-Hong Luo
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
| | - Yu Du
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Liang Chen, ; Bai-Cheng He,
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- *Correspondence: Liang Chen, ; Bai-Cheng He,
| |
Collapse
|
94
|
Wei X, Qi B, Ma R, Zhang Y, Liu N, Fang S, Zhu Y, Xie Y, Dai J, Zhu L. Quantitative Proteomics Revealed the Pharmacodynamic Network of Bugu Shengsui Decoction Promoting Osteoblast Proliferation. Front Endocrinol (Lausanne) 2021; 12:833474. [PMID: 35145485 PMCID: PMC8822948 DOI: 10.3389/fendo.2021.833474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE With high morbidity and disability, osteoporosis is a worldwide bone metabolism disease, regulated by complex pathological processes. Insufficient osteogenesis is greatly essential to osteoporosis. Traditional Chinese Medicine, a complex natural herbal medicine system, has increasingly attracted attention all over the world. Bugu Shengsui Decoction, a compound formula for osteoporosis, has significant clinical effects in the treatment of osteoporosis. Yet the detailed mechanisms are unclear. Thus, we investigated the effects and mechanism of Bugu Shengsui Decoction on osteoporotic rats and osteoblasts in vitro. METHODS In this study, we evaluated the effect of Bugu Shengsui Decoction in an animal model of orchiectomy. Multi-pharmacology indexes revealed that Bugu Shengsui Decoction obviously improved bone metabolism, bone mineral density, bone morphology, and biomechanics in the castrated rats. Then, serum pharmacology was employed to unveil that Bugu Shengsui Decoction promoted the proliferation and differentiation of osteoblasts. Moreover, quantitative proteomics combined with RNA interference assay was used to analyze and verify the pathway and key targets in pro-proliferation of MC3T3-E1 cells. RESULTS Bugu Shengsui Decoction obviously improved the worse parameters of bone metabolism, bone mineral density, bone morphology, and biomechanics in a castrated rat model. In vitro, Bugu Shengsui Decoction exerted proliferation- and differentiation-promoting effects of osteoblasts induced by serum starvation. Moreover, quantitative proteomics analysis combined with RNA interfere assay illustrated that Bugu Shengsui Decoction promoted osteogenesis via the PI3K-AKT pathway. CONCLUSION Summarily, our discoveries certify that Bugu Shengsui Decoction is an effective treatment for osteoporosis via PI3K-AKT. This study is not only a beneficial attempt to explore the detailed mechanism of Traditional Chinese formula but also will provide inspiration for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyun Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Fang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanning Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| |
Collapse
|
95
|
Abstract
This chapter provides an overview of the growth factors active in bone regeneration and healing. Both normal and impaired bone healing are discussed, with a focus on the spatiotemporal activity of the various growth factors known to be involved in the healing response. The review highlights the activities of most important growth factors impacting bone regeneration, with a particular emphasis on those being pursued for clinical translation or which have already been marketed as components of bone regenerative materials. Current approaches the use of bone grafts in clinical settings of bone repair (including bone grafts) are summarized, and carrier systems (scaffolds) for bone tissue engineering via localized growth factor delivery are reviewed. The chapter concludes with a consideration of how bone repair might be improved in the future.
Collapse
|
96
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
97
|
Cao Y, Buckels EJ, Matthews BG. Markers for Identification of Postnatal Skeletal Stem Cells In Vivo. Curr Osteoporos Rep 2020; 18:655-665. [PMID: 33034805 DOI: 10.1007/s11914-020-00622-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The adult skeleton contains stem cells involved in growth, homeostasis, and healing. Mesenchymal or skeletal stem cells are proposed to provide precursors to osteoblasts, chondrocytes, marrow adipocytes, and stromal cells. We review the evidence for existence and functionality of different skeletal stem cell pools, and the tools available for identifying or targeting these populations in mouse and human tissues. RECENT FINDINGS Lineage tracing and single cell-based techniques in mouse models indicate that multiple pools of stem cells exist in postnatal bone. These include growth plate stem cells, stem and progenitor cells in the diaphysis, reticular cells that only form bone in response to injury, and injury-responsive periosteal stem cells. New staining protocols have also been described for prospective isolation of human skeletal stem cells. Several populations of postnatal skeletal stem and progenitor cells have been identified in mice, and we have an increasing array of tools to target these cells. Most Cre models lack a high degree of specificity to define single populations. Human studies are less advanced and require further efforts to refine methods for identifying stem and progenitor cells in adult bone.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Emma J Buckels
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
98
|
DNA Hybridization-Based Differential Peptide Display Identified Potential Osteogenic Peptides. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
A DNA hybridization-based differential peptide display (DPD) was developed for the screening of phage peptide library to find osteogenic peptides intended to bind to epigenetically induced osteogenic receptors on NIH/3T3 (3T3) cell surface. In the presence of DNA methylation inhibitor of 5-azacytidine (5AZC), an osteoblastic receptor of bone morphogenetic protein (BMP) receptor 1A (BMPR1A) was induced on the cell surface of NIH/3T3 fibroblasts. Cyclic heptamer-displaying phage library was screened against vehicle and 5AZC treated (Tx) 3T3 cells. Antisense oligo against library against library peptide coding DNA of control 3T3 cell bound phages were synthesized to subtract common binders from that of 5AZC-Tx 3T3 cell-bound phages that included 5AZC-induced receptor binders. The library peptide coding regions of conformational receptor binder-subtracted DPD were PCR-amplified and cloned into a plasmid vector specifically designed for short peptide expression. No unique binder was identified when 96 clones were randomly picked from the third round of panning against 5AZC-treated 3T3 cells, suggesting miscellaneous bindings to cell surface proteins. Unique binders showing homology to known function proteins were successfully identified when constitutive receptor binders were subtracted from 5AZC-induced protein binders. Some of identified peptides significantly increased alkaline phosphatase activity in 5AZC-Tx 3T3 cells. DPD can be a useful tool to screen functional peptide bindings to cell surface receptors.
Graphic Abstract
Collapse
|
99
|
Osteogenesis and Chondrogenesis of Primary Rabbit Periosteal Cells under Non-uniform 2-Axial Tensile Strain. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4408-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
100
|
Huang S, Jin M, Su N, Chen L. New insights on the reparative cells in bone regeneration and repair. Biol Rev Camb Philos Soc 2020; 96:357-375. [PMID: 33051970 DOI: 10.1111/brv.12659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang zhi Road, Yuzhong District, Chongqing, China
| |
Collapse
|