51
|
van den Berg M, Krauskopf J, Ramaekers J, Kleinjans J, Prickaerts J, Briedé J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 2020; 185:101732. [DOI: 10.1016/j.pneurobio.2019.101732] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
|
52
|
Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM, Voinea SC. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9:E276. [PMID: 31979244 PMCID: PMC7072450 DOI: 10.3390/cells9020276] [Citation(s) in RCA: 701] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) represent a class of small, non-coding RNAs with the main roles of regulating mRNA through its degradation and adjusting protein levels. In recent years, extraordinary progress has been made in terms of identifying the origin and exact functions of miRNA, focusing on their potential use in both the research and the clinical field. This review aims at improving the current understanding of these molecules and their applicability in the medical field. A thorough analysis of the literature consulting resources available in online databases such as NCBI, PubMed, Medline, ScienceDirect, and UpToDate was performed. There is promising evidence that in spite of the lack of standardized protocols regarding the use of miRNAs in current clinical practice, they constitute a reliable tool for future use. These molecules meet most of the required criteria for being an ideal biomarker, such as accessibility, high specificity, and sensitivity. Despite present limitations, miRNAs as biomarkers for various conditions remain an impressive research field. As current techniques evolve, we anticipate that miRNAs will become a routine approach in the development of personalized patient profiles, thus permitting more specific therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Andreea Boboc
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, 020395 Bucharest, Romania; (C.E.C.); (D.C.T.); (M.G.B.); (O.L.B.); (A.B.); (D.C.); (N.S.)
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
- Department of Obstetrics and Gynecology, Polizu Clinical Hospital, Alessandrescu-Rusescu National Institute for Mother and Child Health, 020395 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Alexandru Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 252 Fundeni Rd., 022328 Bucharest, Romania;
| |
Collapse
|
53
|
Ramaswamy P, Yadav R, Pal PK, Christopher R. Clinical Application of Circulating MicroRNAs in Parkinson's Disease: The Challenges and Opportunities as Diagnostic Biomarker. Ann Indian Acad Neurol 2020; 23:84-97. [PMID: 32055127 PMCID: PMC7001448 DOI: 10.4103/aian.aian_440_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Discovery of evolutionarily conserved, nonprotein-coding, endogenous microRNAs has induced a paradigm shift in the overall understanding of gene regulation. Now, microRNAs are considered and classified as master regulators of gene expression as they regulate a wide range of processes – gene regulation, splicing, translation and posttranscriptional modifications. Besides, dysregulated microRNAs have been related to many diseases, including Parkinson's and related disorders. Several studies proposed that differentially expressed microRNAs as a potential biomarker. So far, there is no accepted clinical diagnostic test for Parkinson's disease based on biochemical analysis of biological fluids. However, circulating microRNAs possess many vital features typical of reliable biomarkers and discriminates Parkinson's patients from healthy control with much higher sensitivity and specificity. Though they show tremendous promise as a putative biomarker, translating these research findings to clinical application is often met with many obstacles. Most of the candidate microRNAs reported as a diagnostic biomarker is not organ-specific, and their overlap is low between studies. Therefore this review aimed to highlight the challenges in the application of microRNA in guiding disease discrimination decisions and its future prospects as a diagnostic biomarker in Parkinson's Disease.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
54
|
Goh SY, Chao YX, Dheen ST, Tan EK, Tay SSW. Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 2019; 20:E5649. [PMID: 31718095 PMCID: PMC6888719 DOI: 10.3390/ijms20225649] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD. Here, we identified 15 miRNAs from 34 reported screening studies that demonstrated dysregulation in the brain and/or neuronal models, cerebrospinal fluid (CSF) and blood. Specific miRNAs-of-interest that have been implicated in PD pathogenesis include miR-30, miR-29, let-7, miR-485 and miR-26. However, there are several challenges and limitations in drawing definitive conclusions due to the small sample size in clinical studies, varied laboratory techniques and methodologies and their incomplete penetrance of the blood-brain barrier. Developing an optimal delivery system and unravelling druggable targets of miRNAs in both experimental and human models and clinical validation of the results may pave way for novel therapeutics in PD.
Collapse
Affiliation(s)
- Suh Yee Goh
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Yin Xia Chao
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Medical Education, Research and Evaluation (MERE) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Shaikali Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| | - Eng-King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
- Neuroscience and Behavioral Disorders (NBD) department, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Samuel Sam-Wah Tay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore 117594, Singapore; (S.Y.G.); (S.T.D.)
| |
Collapse
|
55
|
Bohler S, Liu X, Krauskopf J, Caiment F, Aubrecht J, Nicolaes GAF, Kleinjans JCS, Briedé JJ. Acetaminophen Overdose as a Potential Risk Factor for Parkinson's Disease. Clin Transl Sci 2019; 12:609-616. [PMID: 31305025 PMCID: PMC6853143 DOI: 10.1111/cts.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Four complementary approaches were used to investigate acetaminophen overdose as a risk factor for Parkinson's disease (PD). Circulating microRNAs (miRNAs) serum profiles from acetaminophen-overdosed patients were compared with patients with terminal PD, revealing four shared miRNAs. Similarities were found among molecular structures of dopamine (DA), acetaminophen, and two known PD inducers indicating affinity for dopaminergic transport. Potential interactions between acetaminophen and the human DA transporter were confirmed by molecular docking modeling and binding free energy calculations. Thus, it is plausible that acetaminophen is taken up by the dopaminergic transport system into the substantia nigra (SN). A ChEMBL query identified proteins that are similarly targeted by DA and acetaminophen. Here, we highlight CYP3A4, present in the SN, a predominant metabolizer of acetaminophen into its toxic metabolite N-acetyl-p-benzoquinone imine and shown to be regulated in PD. Overall, based on our results, we hypothesize that overdosing of acetaminophen is a potential risk factor for parkinsonism.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Xiaosong Liu
- Department of BiochemistryMaastricht UniversityMaastrichtThe Netherlands
| | - Julian Krauskopf
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Florian Caiment
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | | | | | | | - Jacco J. Briedé
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
56
|
Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer's disease and dementia with Lewy bodies. Transl Neurodegener 2019; 8:31. [PMID: 31592314 PMCID: PMC6775659 DOI: 10.1186/s40035-019-0169-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background Because of the increasing life expectancy in our society, aging-related neurodegenerative disorders are one of the main issues in global health. Most of these diseases are characterized by the deposition of misfolded proteins and a progressive cognitive decline. Among these diseases, Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are the most common types of degenerative dementia. Although both show specific features, an important neuropathological and clinical overlap between them hampers their correct diagnosis. In this work, we identified molecular biomarkers aiming to improve the misdiagnosis between both diseases. Methods Plasma extracellular vesicles (EVs) -from DLB, AD and healthy controls- were isolated using size-exclusion chromatography (SEC) and characterized by flow cytometry, Nanoparticle Tracking Analysis (NTA) and cryo-electron microscopy. Next Generation Sequencing (NGS) and related bibliographic search was performed and a selected group of EV-associated microRNAs (miRNAs) was analysed by qPCR. Results Results uncovered two miRNAs (hsa-miR-451a and hsa-miR-21-5p) significantly down-regulated in AD samples respect to DLB patients, and a set of four miRNAs (hsa-miR-23a-3p, hsa-miR-126-3p, hsa-let-7i-5p, and hsa-miR-151a-3p) significantly decreased in AD respect to controls. The two miRNAs showing decreased expression in AD in comparison to DLB provided area under the curve (AUC) values of 0.9 in ROC curve analysis, thus suggesting their possible use as biomarkers to discriminate between both diseases. Target gene analysis of these miRNAs using prediction online tools showed accumulation of phosphorylation enzymes, presence of proteasome-related proteins and genes involved in cell death among others. Conclusion Our data suggest that plasma-EV associated miRNAs may reflect a differential profile for a given dementia-related disorder which, once validated in larger cohorts of patients, could help to improve the differential diagnosis of DLB versus AD. Electronic supplementary material The online version of this article (10.1186/s40035-019-0169-5) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019; 30:656-673. [PMID: 31447320 PMCID: PMC6774861 DOI: 10.1016/j.cmet.2019.07.011] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/25/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
miRNAs can be found in serum and other body fluids and serve as biomarkers for disease. More importantly, secreted miRNAs, especially those in extracellular vesicles (EVs) such as exosomes, may mediate paracrine and endocrine communication between different tissues and thus modulate gene expression and the function of distal cells. When impaired, these processes can lead to tissue dysfunction, aging, and disease. Adipose tissue is an especially important contributor to the pool of circulating exosomal miRNAs. As a result, alterations in adipose tissue mass or function, which occur in many metabolic conditions, can lead to changes in circulating miRNAs, which then function systemically. Here we review the findings that led to these conclusions and discuss how this sets the stage for new lines of investigation in which extracellular miRNAs are recognized as important mediators of intercellular communication and potential candidates for therapy of disease.
Collapse
Affiliation(s)
- Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Raissa G Ludwig
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Ruben Garcia-Martin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Bruna B Brandão
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER, Greenberg DS, Kadener S, Soreq H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 2019; 33:11223-11234. [PMID: 31311324 PMCID: PMC6766647 DOI: 10.1096/fj.201900830r] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Recent reports attribute numerous regulatory functions to the nuclear paraspeckle-forming long noncoding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in-house and web-available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron-specific formation of NEAT1-based paraspeckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)-induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up-regulation, whereas RNA interference-mediated depletion of NEAT1 exacerbated death of PQ-exposed cells in a leucine-rich repeat kinase 2-mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.-Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.
Collapse
Affiliation(s)
- Alon Simchovitz
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanan
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Niederhoffer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Yayon
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Estelle R. Bennett
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David S. Greenberg
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, Massachusetts, USA
| | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
59
|
Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, Chen YJ, Lin YW, Hsu CC, Chen YL, Lu CS, Wang HL. Upregulated Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front Cell Neurosci 2019; 13:399. [PMID: 31572127 PMCID: PMC6753175 DOI: 10.3389/fncel.2019.00399] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRs) downregulate or upregulate the mRNA level by binding to the 3′-untranslated region (3′UTR) of target gene. Dysregulated miR levels can be used as biomarkers of Parkinson’s disease (PD) and could participate in the etiology of PD. In the present study, 45 brain-enriched miRs were evaluated in serum samples from 50 normal subjects and 50 sporadic PD patients. The level of miR-204-5p was upregulated in serum samples from PD patients. An upregulated level of miR-204-5p was also observed in the serum and substantia nigra (SN) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Expression of miR-204-5p increased the level of α-synuclein (α-Syn), phosphorylated (phospho)-α-Syn, tau, or phospho-tau protein and resulted in the activation of endoplasmic reticulum (ER) stress in SH-SY5Y dopaminergic cells. Expression of miR-204-5p caused autophagy impairment and activation of c-Jun N-terminal kinase (JNK)-mediated apoptotic cascade in SH-SY5Y dopaminergic cells. Our study using the bioinformatic method and dual-luciferase reporter analysis suggests that miR-204-5p positively regulates mRNA expression of dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) by directly interacting with 3′UTR of DYRK1A. The mRNA and protein levels of DYRK1A were increased in SH-SY5Y dopaminergic cells expressing miR-204-5p and SN of MPTP-induced PD mouse model. Knockdown of DYRK1A expression or treatment of the DYRK1A inhibitor harmine attenuated miR-204-5p-induced increase in protein expression of phospho-α-Syn or phospho-tau, ER stress, autophagy impairment, and activation of JNK-mediated apoptotic pathway in SH-SY5Y dopaminergic cells or primary cultured dopaminergic neurons. Our results suggest that upregulated expression of miR-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated ER stress and apoptotic signaling cascade.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hua-Chien Chen
- Genomic Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Chen Hsu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
60
|
Rana P, Franco EF, Rao Y, Syed K, Barh D, Azevedo V, Ramos RTJ, Ghosh P. Evaluation of the Common Molecular Basis in Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2019; 20:E3730. [PMID: 31366155 PMCID: PMC6695669 DOI: 10.3390/ijms20153730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.
Collapse
Affiliation(s)
- Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Edian F Franco
- Institute of Biological Sciences, Federal University of Para, Belem-PA 66075-110, Brazil
| | - Yug Rao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Khajamoinuddin Syed
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
| | - Vasco Azevedo
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Rommel T J Ramos
- Institute of Biological Sciences, Federal University of Para, Belem-PA 66075-110, Brazil
- Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
61
|
Uwatoko H, Hama Y, Iwata IT, Shirai S, Matsushima M, Yabe I, Utsumi J, Sasaki H. Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson's disease. Mol Brain 2019; 12:49. [PMID: 31088501 PMCID: PMC6518614 DOI: 10.1186/s13041-019-0471-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous small (18–25 nt), single-stranded, non-coding RNAs that play key roles in post-transcriptional gene expression regulation. The expression profiles of miRNAs in biofluids and tissues change in various diseases. Multiple system atrophy (MSA) and Parkinson’s disease (PD) are both categorized as α-synucleinopathies and often present with similar clinical manifestations. This study aimed to identify miRNAs that are differently expressed in plasma samples of PD patients, MSA patients, and healthy controls. We used microarray analysis to screen for miRNAs that are up- and down-regulated in these patients and analyzed the relative-quantitative expression levels of the identified miRNAs by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Hsa-miR-671-5p, hsa-miR-19b-3p, and hsa-miR-24-3p showed significantly different expression levels among patients with MSA-C, MSA-P, or PD, and healthy controls. Hsa-miR-671-5p levels were lower in the MSA-P and PD than the MSA-C and control groups, hsa-miR-19b-3p levels were higher in the PD than the other groups, and hsa-miR-24-3p levels were higher in the PD than the MSA-C group. Hsa-miR-671-5p was the first miRNA shown to be expressed differently between MSA-C and MSA-P in plasma. Interestingly, the expression levels of hsa-miR-19b-3p and hsa-miR-24-3p were positively correlated, indicating that these miRNAs may be involved in the same processes in PD pathogenesis. Our findings suggest that hsa-miR-671-5p, hsa-miR-19b-3p, and hsa-miR-24-3p may reflect the pathophysiology or symptoms of PD and MSA.
Collapse
Affiliation(s)
- Hisashi Uwatoko
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan.
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Ikuko Takahashi Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Jun Utsumi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido, 060-8368, Japan
| |
Collapse
|
62
|
Brennan S, Keon M, Liu B, Su Z, Saksena NK. Panoramic Visualization of Circulating MicroRNAs Across Neurodegenerative Diseases in Humans. Mol Neurobiol 2019; 56:7380-7407. [PMID: 31037649 PMCID: PMC6815273 DOI: 10.1007/s12035-019-1615-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and dementia pose one of the greatest health challenges this century. Although these NDs have been looked at as single entities, the underlying molecular mechanisms have never been collectively visualized to date. With the advent of high-throughput genomic and proteomic technologies, we now have the opportunity to visualize these diseases in a whole new perspective, which will provide a clear understanding of the primary and secondary events vital in achieving the final resolution of these diseases guiding us to new treatment strategies to possibly treat these diseases together. We created a knowledge base of all microRNAs known to be differentially expressed in various body fluids of ND patients. We then used several bioinformatic methods to understand the functional intersections and differences between AD, PD, ALS, and MS. These results provide a unique panoramic view of possible functional intersections between AD, PD, MS, and ALS at the level of microRNA and their cognate genes and pathways, along with the entities that unify and separate them. While the microRNA signatures were apparent for each ND, the unique observation in our study was that hsa-miR-30b-5p overlapped between all four NDS, and has significant functional roles described across NDs. Furthermore, our results also show the evidence of functional convergence of miRNAs which was associated with the regulation of their cognate genes represented in pathways that included fatty acid synthesis and metabolism, ECM receptor interactions, prion diseases, and several signaling pathways critical to neuron differentiation and survival, underpinning their relevance in NDs. Envisioning this group of NDs together has allowed us to propose new ways of utilizing circulating miRNAs as biomarkers and in visualizing diverse NDs more holistically . The critical molecular insights gained through the discovery of ND-associated miRNAs, overlapping miRNAs, and the functional convergence of microRNAs on vital pathways strongly implicated in neurodegenerative processes can prove immensely valuable in the identifying new generation of biomarkers, along with the development of miRNAs into therapeutics.
Collapse
Affiliation(s)
- Samuel Brennan
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Matthew Keon
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Bing Liu
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Zheng Su
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| | - Nitin K. Saksena
- Neurodegenerative Disease section, Iggy Get Out, 19a Boundary Street, Darlinghurst NSW 2010, Sydney, Australia
| |
Collapse
|
63
|
Watson CN, Belli A, Di Pietro V. Small Non-coding RNAs: New Class of Biomarkers and Potential Therapeutic Targets in Neurodegenerative Disease. Front Genet 2019; 10:364. [PMID: 31080456 PMCID: PMC6497742 DOI: 10.3389/fgene.2019.00364] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) are becoming increasingly prevalent in the world, with an aging population. In the last few decades, due to the devastating nature of these diseases, the research of biomarkers has become crucial to enable adequate treatments and to monitor the progress of disease. Currently, gene mutations, CSF and blood protein markers together with the neuroimaging techniques are the most used diagnostic approaches. However, despite the efforts in the research, conflicting data still exist, highlighting the need to explore new classes of biomarkers, particularly at early stages. Small non-coding RNAs (MicroRNA, Small nuclear RNA, Small nucleolar RNA, tRNA derived small RNA and Piwi-interacting RNA) can be considered a "relatively" new class of molecule that have already proved to be differentially regulated in many NDs, hence they represent a new potential class of biomarkers to be explored. In addition, understanding their involvement in disease development could depict the underlying pathogenesis of particular NDs, so novel treatment methods that act earlier in disease progression can be developed. This review aims to describe the involvement of small non-coding RNAs as biomarkers of NDs and their potential role in future clinical applications.
Collapse
Affiliation(s)
- Callum N. Watson
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
64
|
Starhof C, Hejl A, Heegaard NH, Carlsen AL, Burton M, Lilje B, Winge K. The biomarker potential of cell‐free microRNA from cerebrospinal fluid in Parkinsonian Syndromes. Mov Disord 2018; 34:246-254. [DOI: 10.1002/mds.27542] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Charlotte Starhof
- Department of NeurologyBispebjerg University Hospital Copenhagen Denmark
| | - Anne‐Mette Hejl
- Department of NeurologyBispebjerg University Hospital Copenhagen Denmark
| | - Niels H.H. Heegaard
- Department of Autoimmunology and BiomarkersStatens Serum Institute Copenhagen Denmark
- Department of Clinical BiochemistryUniversity of Southern Denmark Odense Denmark
| | - Anting L. Carlsen
- Department of Autoimmunology and BiomarkersStatens Serum Institute Copenhagen Denmark
| | - Mark Burton
- Department of Clinical GeneticsOdense University Hospital Odense Denmark
| | - Berit Lilje
- Department of Microbiology and Infection ControlStatens Serum Institute Copenhagen Denmark
| | - Kristian Winge
- Department of NeurologyBispebjerg University Hospital Copenhagen Denmark
- Department of NeurologyZealand University Hospital Roskilde Denmark
| |
Collapse
|
65
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
66
|
Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM. The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol 2018; 19:62-73. [PMID: 30107296 PMCID: PMC6092527 DOI: 10.1016/j.redox.2018.07.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
DJ-1 is a highly conserved protein that protects neurons against oxidative stress and whose loss of function mutations are linked to recessively inherited Parkinson's disease (PD). While a number of signaling pathways have been shown to be regulated by DJ-1, its role in controlling cell survival through non-coding RNAs remains poorly understood. Here, using a microarray screen, we found that knocking down DJ-1 in human neuroblastoma cells results in down-regulation of microRNA-221 (miR-221). This is one of the most abundant miRNAs in the human brain and promotes neurite outgrowth and neuronal differentiation. Yet the molecular mechanism linking miR-221 to genetic forms of PD has not been studied. Consistent with the microarray data, miR-221 expression is also decreased in DJ-1-/- mouse brains. Re-introduction of wild-type DJ-1, but not its PD-linked pathogenic M26I mutant, restores miR-221 expression. Notably, over-expression of miR-221 is protective against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death, while inhibition of endogenous miR-221 sensitizes cells to this toxin. Additionally, miR-221 down-regulates the expression of several pro-apoptotic proteins at basal conditions and prevents oxidative stress-induced up-regulation of bcl-2-like protein 11 (BIM). Accordingly, miR-221 protects differentiated DJ-1 knock-down ReNcell VM human dopaminergic neuronal cells from MPP+-induced neurite retraction and cell death. DJ-1 is a known activator of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway and may modulate miR-221 levels in part through this pathway. We found that inhibiting ERK1/2 decreases miR-221 levels, whereas over-expressing ERK1 in DJ-1 knock-down cells increases miR-221 levels. These findings point to a new cytoprotective mechanism by which DJ-1 may increase miR-221 expression through the MAPK/ERK pathway, subsequently leading to repression of apoptotic molecules. The inability of a pathogenic DJ-1 mutant to modulate miR-221 further supports the relevance of this mechanism in neuronal health and its failure in DJ-1-linked PD.
Collapse
Affiliation(s)
- Stephanie E Oh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA
| | - Hye-Jin Park
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA
| | - Liqiang He
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA
| | - Catherine Skibiel
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA
| | - Eunsung Junn
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
| |
Collapse
|
67
|
Roser AE, Caldi Gomes L, Schünemann J, Maass F, Lingor P. Circulating miRNAs as Diagnostic Biomarkers for Parkinson's Disease. Front Neurosci 2018; 12:625. [PMID: 30233304 PMCID: PMC6135037 DOI: 10.3389/fnins.2018.00625] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Its main neuropathological hallmarks are the degeneration of dopaminergic neurons in the substantia nigra and alpha-synuclein containing protein inclusions, called Lewy Bodies. The diagnosis of idiopathic PD is still based on the assessment of clinical criteria, leading to an insufficient diagnostic accuracy. Additionally, there is no biomarker available allowing the prediction of the disease course or monitoring the response to therapeutic approaches. So far, protein biomarker candidates such as alpha-synuclein have failed to improve diagnosis of PD. Circulating microRNAs (miRNAs) in body fluids are promising biomarker candidates for PD, as they are easily accessible by non- or minimally-invasive procedures and changes in their expression are associated with pathophysiological processes relevant for PD. Advances in miRNA analysis methods resulted in numerous recent publications on miRNAs as putative biomarkers. Here, we discuss the applicability of different body fluids as sources for miRNA biomarkers, highlight technical aspects of miRNA analysis and give an overview on published studies investigating circulating miRNAs as biomarker candidates for diagnosis of PD and other Parkinsonian syndromes.
Collapse
Affiliation(s)
- Anna Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Schünemann
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
68
|
Ramaswamy P, Christopher R, Pal PK, Yadav R. MicroRNAs to differentiate Parkinsonian disorders: Advances in biomarkers and therapeutics. J Neurol Sci 2018; 394:26-37. [PMID: 30196132 DOI: 10.1016/j.jns.2018.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022]
Abstract
Parkinsonian disorders are a set of progressive neurodegenerative movement disorders characterized by rigidity, tremor, bradykinesia, postural instability and their distinction has significant implications in terms of management and prognosis. Parkinson's disease (PD) is the most common among them. Its clinical diagnosis is challenging and, it can be misdiagnosed in the early stages. Multiple system atrophy and progressive supranuclear palsy are the close mimickers in early stages, due to overlapping clinical features. MicroRNAs are a class of stable non-coding small RNA molecules implicated in post-transcriptional gene regulation. Current studies propose that miRNAs play an essential role in the pathobiology of multiple neurodegenerative disorders including Parkinsonism, and they seem to be one of the reasonably available methods to aid in the differential diagnosis between PD and related disorders. MicroRNA-based diagnostic biomarkers and therapeutics are a powerful tool to understand and explore the function of the pathogenic gene/s, their mechanism in the disease pathobiology, and to validate drug targets. In this review, we emphasize on the recent developments in the usage of miRNAs as diagnostic biomarkers to identify PD and to differentiate it from atypical parkinsonian conditions, their role in disease pathogenesis, and their possible utility in the therapy of these disorders.
Collapse
Affiliation(s)
- Palaniswamy Ramaswamy
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India.
| |
Collapse
|
69
|
Rosas-Hernandez H, Chigurupati S, Raymick J, Robinson B, Cuevas E, Hanig J, Sarkar S. Identification of altered microRNAs in serum of a mouse model of Parkinson's disease. Neurosci Lett 2018; 687:1-9. [PMID: 30025832 DOI: 10.1016/j.neulet.2018.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, whose hallmark is the loss of dopamine terminals in the substantia nigra pars compacta (SNpc). PD is usually diagnosed after the appearance of motor symptoms, when about 70% of neurons in the SNpc have already been lost. Because of that, it is important to search for new methods that aid in the early diagnosis of PD. In recent years, microRNAs (miRs) have emerged as potential biomarkers for a variety of diseases and hold the potential to be used to aid in the diagnosis of PD. Therefore, the aim of this study was to characterize if specific miRs are differentially expressed in serum in a mouse model of PD. To induce PD-like damage, mice were subcutaneously injected with 25 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) by administering 10 doses over a period of 5 weeks, with 3.5 days between doses. Expression of 71 different microRNAs was quantified in serum separated from blood collected at day 35, using next-generation sequencing. Histological analysis and quantification of neurotransmitters were performed to confirm dopaminergic neurodegeneration. Chronic MPTP treatment induced loss of dopaminergic terminals in the SNpc and caudate putamen, confirmed by a decrease in the number of tyrosine hydroxylase and dopamine transporter positive cells. In addition, MPTP decreased the concentration of dopamine and its metabolites in the SNpc, simulating the damage observed in PD. From the 71 miRs analyzed, only 4 were differentially expressed after MPTP treatment. Serum levels of miR19b, miR124, miR126a and miR133b were significantly decreased in MPTP-treated mice compared to control. These data suggest that specific miRs are downregulated in a pre-clinical model of PD and hold the potential to be used as biomarkers to aid in the diagnosis of this disease. Further experiments need to be conducted to validate the use of these miRs as biomarkers of PD in additional pre-clinical models as well as in samples from patients diagnosed with PD.
Collapse
Affiliation(s)
- Hector Rosas-Hernandez
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Srinivasulu Chigurupati
- Office of Regulatory Affairs, Office of Regulatory Science, Food and Drug Administration, Parklawn Drive, Rockville, MD, 20857, USA
| | - James Raymick
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Bonnie Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Joseph Hanig
- Office of Testing & Research, CDER/FDA, White Oak, MD, 20993, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
70
|
Su L, Wang C, Zheng C, Wei H, Song X. A meta-analysis of public microarray data identifies biological regulatory networks in Parkinson's disease. BMC Med Genomics 2018; 11:40. [PMID: 29653596 PMCID: PMC5899355 DOI: 10.1186/s12920-018-0357-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a long-term degenerative disease that is caused by environmental and genetic factors. The networks of genes and their regulators that control the progression and development of PD require further elucidation. METHODS We examine common differentially expressed genes (DEGs) from several PD blood and substantia nigra (SN) microarray datasets by meta-analysis. Further we screen the PD-specific genes from common DEGs using GCBI. Next, we used a series of bioinformatics software to analyze the miRNAs, lncRNAs and SNPs associated with the common PD-specific genes, and then identify the mTF-miRNA-gene-gTF network. RESULT Our results identified 36 common DEGs in PD blood studies and 17 common DEGs in PD SN studies, and five of the genes were previously known to be associated with PD. Further study of the regulatory miRNAs associated with the common PD-specific genes revealed 14 PD-specific miRNAs in our study. Analysis of the mTF-miRNA-gene-gTF network about PD-specific genes revealed two feed-forward loops: one involving the SPRK2 gene, hsa-miR-19a-3p and SPI1, and the second involving the SPRK2 gene, hsa-miR-17-3p and SPI. The long non-coding RNA (lncRNA)-mediated regulatory network identified lncRNAs associated with PD-specific genes and PD-specific miRNAs. Moreover, single nucleotide polymorphism (SNP) analysis of the PD-specific genes identified two significant SNPs, and SNP analysis of the neurodegenerative disease-specific genes identified seven significant SNPs. Most of these SNPs are present in the 3'-untranslated region of genes and are controlled by several miRNAs. CONCLUSION Our study identified a total of 53 common DEGs in PD patients compared with healthy controls in blood and brain datasets and five of these genes were previously linked with PD. Regulatory network analysis identified PD-specific miRNAs, associated long non-coding RNA and feed-forward loops, which contribute to our understanding of the mechanisms underlying PD. The SNPs identified in our study can determine whether a genetic variant is associated with PD. Overall, these findings will help guide our study of the complex molecular mechanism of PD.
Collapse
Affiliation(s)
- Lining Su
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Chunjie Wang
- Department of Basic Medicine, Zhangjiakou University, Zhangjiakou, 75000, Hebei, China
| | - Chenqing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd, Shenzhen, 518081, Guangdong, China
| | - Huiping Wei
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Xiaoqing Song
- Department of Biology of Basic Medical Science College, Hebei North University, Zhangjiakou, 075000, Hebei, China
| |
Collapse
|
71
|
Redenšek S, Dolžan V, Kunej T. From Genomics to Omics Landscapes of Parkinson's Disease: Revealing the Molecular Mechanisms. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:1-16. [PMID: 29356624 PMCID: PMC5784788 DOI: 10.1089/omi.2017.0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular mechanisms of Parkinson's disease (PD) have already been investigated in various different omics landscapes. We reviewed the literature about different omics approaches between November 2005 and November 2017 to depict the main pathological pathways for PD development. In total, 107 articles exploring different layers of omics data associated with PD were retrieved. The studies were grouped into 13 omics layers: genomics-DNA level, transcriptomics, epigenomics, proteomics, ncRNomics, interactomics, metabolomics, glycomics, lipidomics, phenomics, environmental omics, pharmacogenomics, and integromics. We discussed characteristics of studies from different landscapes, such as main findings, number of participants, sample type, methodology, and outcome. We also performed curation and preliminary synthesis of multiple omics data, and identified overlapping results, which could lead toward selection of biomarkers for further validation of PD risk loci. Biomarkers could support the development of targeted prognostic/diagnostic panels as a tool for early diagnosis and prediction of progression rate and prognosis. This review presents an example of a comprehensive approach to revealing the underlying processes and risk factors of a complex disease. It urges scientists to structure the already known data and integrate it into a meaningful context.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
72
|
Leggio L, Vivarelli S, L'Episcopo F, Tirolo C, Caniglia S, Testa N, Marchetti B, Iraci N. microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci 2017; 18:ijms18122698. [PMID: 29236052 PMCID: PMC5751299 DOI: 10.3390/ijms18122698] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023] Open
Abstract
Parkinson’s disease (PD) is the most prevalent central nervous system (CNS) movement disorder and the second most common neurodegenerative disease overall. PD is characterized by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc) within the midbrain, accumulation of alpha-synuclein (α-SYN) in Lewy bodies and neurites and excessive neuroinflammation. The neurodegenerative processes typically begin decades before the appearance of clinical symptoms. Therefore, the diagnosis is achievable only when the majority of the relevant DAergic neurons have already died and for that reason available treatments are only palliative at best. The causes and mechanism(s) of this devastating disease are ill-defined but complex interactions between genetic susceptibility and environmental factors are considered major contributors to the etiology of PD. In addition to the role of classical gene mutations in PD, the importance of regulatory elements modulating gene expression has been increasingly recognized. One example is the critical role played by microRNAs (miRNAs) in the development and homeostasis of distinct populations of neurons within the CNS and, in particular, in the context of PD. Recent reports demonstrate how distinct miRNAs are involved in the regulation of PD genes, whereas profiling approaches are unveiling variations in the abundance of certain miRNAs possibly relevant either to the onset or to the progression of the disease. In this review, we provide an overview of the miRNAs recently found to be implicated in PD etiology, with particular focus on their potential relevance as PD biomarkers, as well as their possible use in PD targeted therapy.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| | - Francesca L'Episcopo
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Salvo Caniglia
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Nunzio Testa
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via S. Sofia 97, 95125 Catania, Italy.
| |
Collapse
|
73
|
Lu J, Xu Y, Quan Z, Chen Z, Sun Z, Qing H. Dysregulated microRNAs in neural system: Implication in pathogenesis and biomarker development in Parkinson’s disease. Neuroscience 2017; 365:70-82. [DOI: 10.1016/j.neuroscience.2017.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/03/2023]
|
74
|
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S. A review of genome-wide transcriptomics studies in Parkinson's disease. Eur J Neurosci 2017; 47:1-16. [DOI: 10.1111/ejn.13760] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Genevie Borrageiro
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - William Haylett
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - Soraya Seedat
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| |
Collapse
|
75
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
76
|
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci 2017; 10:352. [PMID: 29163029 PMCID: PMC5671573 DOI: 10.3389/fnmol.2017.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ahmad R. Arshad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Siti A. Sulaiman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Amalia A. Saperi
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| |
Collapse
|
77
|
Wang Y, Yang Z, Le W. Tiny But Mighty: Promising Roles of MicroRNAs in the Diagnosis and Treatment of Parkinson's Disease. Neurosci Bull 2017; 33:543-551. [PMID: 28762215 PMCID: PMC5636733 DOI: 10.1007/s12264-017-0160-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer's disease. To date, the clinical diagnosis of PD is primarily based on the late onset of motor impairments. Unfortunately, at this stage, most of the dopaminergic neurons may have already been lost, leading to the limited clinical benefits of current therapeutics. Therefore, early identification of PD, especially at the prodromal stage, is still a main challenge in the diagnosis and management of this disease. Recently, microRNAs (miRNAs) in cerebrospinal fluid or peripheral blood have been proposed as putative biomarkers to assist in PD diagnosis and therapy. In this review, we systematically summarize the changes of miRNA expression profiles in PD patients, and highlight their putative roles in the diagnosis and treatment of this devastating disease.
Collapse
Affiliation(s)
- Ying Wang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Zhaofei Yang
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Collaborative Innovation Center for Brain Science, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
78
|
Bai X, Tang Y, Yu M, Wu L, Liu F, Ni J, Wang Z, Wang J, Fei J, Wang W, Huang F, Wang J. Downregulation of blood serum microRNA 29 family in patients with Parkinson's disease. Sci Rep 2017; 7:5411. [PMID: 28710399 PMCID: PMC5511199 DOI: 10.1038/s41598-017-03887-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/05/2017] [Indexed: 11/09/2022] Open
Abstract
There is currently no reliable and easily applicable diagnostic marker for Parkinson’s disease (PD). The aims of the present study were to compare the expression profiles of the microRNA29 family (miR-29s) in blood serum from patients with PD with healthy controls and to clarify whether the expression of miR-29s is correlated with disease severity, duration or L-dopa therapy and whether expression depends on the gender and age of patients. The levels of blood serum miR-29s in 80 patients with PD and 80 unaffected controls were assessed by reverse transcription-quantitative real-time PCR. The PCR products were confirmed by cloning and sequencing. Additionally, the expression of miR-7 in the blood serum from PD patients and control subjects was assessed. Serum miR-29 levels were significantly downregulated in PD patients compared to healthy controls. The serum miR-29 levels in female PD patients were markedly higher than in male PD patients. The expression of serum miR-29a and miR-29c expression tended to decrease with disease severity. Moreover, we found that serum miR-7 levels did not differ between PD patients and control subjects. Therefore, the reduction of serum miR-29 levels, particularly miR-29a and miR-29c, warrants further investigation of its potential serving as biomarkers for PD.
Collapse
Affiliation(s)
- Xiaochen Bai
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yilin Tang
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Mei Yu
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Lei Wu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Fengtao Liu
- Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jianliang Ni
- Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang Province, China
| | - Zishan Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jinghui Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Shanghai Research Center for Model Organisms, Pudong, Shanghai, 201203, China
| | - Wei Wang
- Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou, 310012, Zhejiang Province, China.
| | - Fang Huang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jian Wang
- The State Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China. .,Department of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
79
|
Zhang X, Yang R, Hu BL, Lu P, Zhou LL, He ZY, Wu HM, Zhu JH. Reduced Circulating Levels of miR-433 and miR-133b Are Potential Biomarkers for Parkinson's Disease. Front Cell Neurosci 2017; 11:170. [PMID: 28690499 PMCID: PMC5481393 DOI: 10.3389/fncel.2017.00170] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 11/15/2022] Open
Abstract
Aberrant expression of microRNA (miRNA) in tissues may lead to altered level in circulation. Considerable evidence has suggested that miRNA deregulation is involved in the pathogenesis of Parkinson’s disease (PD). In this study, we screened a set of PD-associated miRNAs and aimed to identify differentially expressed miRNAs in plasma of PD patients and to evaluate their potentiality to serve as PD biomarkers. A total of 95 subjects consisting of 46 sporadic PD cases and 49 controls were recruited. Plasma levels of six miRNAs including miR-433, miR-133b, miR-34b, miR-34c, miR-153, and miR-7 were evaluated using reverse transcribed quantitative PCR, among which we found that miR-34c and miR-7 were below detection limit under our condition. The results showed that levels of circulating miR-433 (P = 0.003) and miR-133b (P = 0.006), but not miR-34b and miR-153, were reduced in PD patients. miR-433 and miR-133b were strongly correlated in both control and PD groups (rs = 0.87 and 0.85, respectively). The correlation between miR-34b and miR-153 expressions was significantly reduced (P < 0.05) in the PD group. Although miR-433 and miR-133b were likely to be functionally complimentary as suggested by Pathway and Gene Ontology analyses, these two miRNAs per se might not be sufficient to predict PD. No correlation was observed between the four miRNAs and age or severity of disease. Collectively, our results demonstrate that circulating miR-433 and miR-133b are significantly altered in PD and may serve as PD biomarkers.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina.,Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Rui Yang
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Bei-Lei Hu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina
| | - Pengcheng Lu
- Department of Biostatistics Graduate Program, University of Kansas Medical Center, Kansas CityKS, United States
| | - Li-Li Zhou
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Zhi-Yong He
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, WenzhouChina.,Department of Preventive Medicine, Wenzhou Medical University, WenzhouChina.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, WenzhouChina
| |
Collapse
|
80
|
Abstract
Three neurodegenerative diseases [Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD)] have many characteristics like pathological mechanisms and genes. In this sense some researchers postulate that these diseases share the same alterations and that one alteration in a specific protein triggers one of these diseases. Analyses of gene expression may shed more light on how to discover pathways, pathologic mechanisms associated with the disease, biomarkers and potential therapeutic targets. In this review, we analyze four microarrays related to three neurodegenerative diseases. We will systematically examine seven genes (CHN1, MDH1, PCP4, RTN1, SLC14A1, SNAP25 and VSNL1) that are altered in the three neurodegenerative diseases. A network was built and used to identify pathways, miRNA and drugs associated with ALS, AD and PD using Cytoscape software an interaction network based on the protein interactions of these genes. The most important affected pathway is PI3K-Akt signalling. Thirteen microRNAs (miRNA-19B1, miRNA-107, miRNA-124-1, miRNA-124-2, miRNA-9-2, miRNA-29A, miRNA-9-3, miRNA-328, miRNA-19B2, miRNA-29B2, miRNA-124-3, miRNA-15A and miRNA-9-1) and four drugs (Estradiol, Acetaminophen, Resveratrol and Progesterone) for new possible treatments were identified.
Collapse
Affiliation(s)
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
81
|
Singh A, Sen D. MicroRNAs in Parkinson's disease. Exp Brain Res 2017; 235:2359-2374. [PMID: 28526930 DOI: 10.1007/s00221-017-4989-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/16/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease is the second most common neurodegenerative disease commonly affecting the older population. Loss of dopaminergic neurons in the substantia nigra of brain leads to impairment of motor activities as well as cognitive defects. There are many underlying causes to this disease, both genetic and epigenetic, which are yet to be fully explored. Non-coding RNAs are significant part of our genome and are involved in various cellular processes. MicroRNAs, which are small non-coding RNAs having 20-22 nucleotides, are involved in many underlying mechanisms of pathogenesis of several neurodegenerative diseases including Parkinson's. This review focuses on the role played by microRNAs in regulating various genes responsible for the onset and pathogenesis of Parkinson's disease and various literature evidences pointing at the usefulness of targeting specific microRNAs as a potential alternate therapeutic strategy for successful impairment of the disease progression. This review also discusses about various biofluid-based microRNA markers which may be potentially utilized for diagnostic purposes.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, 632014, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
82
|
Liu Y, Song Y, Zhu X. MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson's Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways. Med Sci Monit 2017; 23:1597-1606. [PMID: 28365714 PMCID: PMC5386441 DOI: 10.12659/msm.900218] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background microRNA (miR)-181a has been reported to be downregulated in Parkinson’s disease (PD), but the regulatory mechanism of miR-181a on neuron apoptosis and autophagy is still poorly understood. We aimed to investigate the neuroprotective effects of miR-181a on PD in vitro. Material/Methods Human SK-N-SH neuroblastoma cells were incubated with different concentrations of 1-methyl-4-phenylpyridinium ion (MPP+) to induce the PD model. The expression of miR-181a was then analyzed. After transfection with miR-181a mimic or scramble following MPP+ treatment, the expression of autophagy protein markers (LC3II, LC3I, and Beclin 1) and p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling proteins (p-p38, p38, p-JNK, and JNK) and cell apoptosis were detected. Furthermore, the cells were transfected with miR-181a inhibitor and cultured in the presence or absence of p38 inhibitor SB203582 or JNK inhibitor SP600125, and the cell apoptosis was tested again. Results The expression of miR-181a was gradually decreased with the increase of MPP+ concentration (P<0.05, P<0.01, or P<0.001). Overexpression of miR-181a significantly decreased the LC3II/LC3I ratio, Beclin 1 expression, cell apoptosis, and the expression of p-p38 and p-JNK compared to the MPP+ + miR-181a scramble group (all P<0.05). In addition, we observed that SB203582 or SP600125 showed no effects on cell apoptosis, but the effects of miR-181a inhibitor on cell apoptosis were reversed by administration of SB203582 or SP600125 compared to the scramble group (P<0.05). Conclusions Our results suggest that miR-181a regulates apoptosis and autophagy in PD by inhibiting the p38 MAPK/JNK pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Internal Medicine Neurology, HuaMei Branch of the 2nd People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Yanfeng Song
- Department of Internal Medicine Neurology, HuaMei Branch of the 2nd People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| | - Xiaotun Zhu
- Department of Internal Medicine Neurology, HuaMei Branch of the 2nd People's Hospital of Liaocheng, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
83
|
Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging 2017; 55:123-131. [PMID: 28454844 PMCID: PMC5455071 DOI: 10.1016/j.neurobiolaging.2017.03.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative condition characterized by loss of motor neurones and progressive muscle wasting. There is no diagnostic test for ALS therefore robust biomarkers would not only be valuable for diagnosis, but also for the classification of disease subtypes, monitoring responses to drugs and tracking disease progression. As regulators of gene expression, microRNAs (miRNAs) are increasingly used for diagnostic and prognostic purposes in various disease states with increasing exploration in neurodegenerative disorders. We hypothesize that circulating blood-based miRNAs will serve as biomarkers and use miRNA profiling to determine miRNA signatures from the serum of sporadic ALS patients compared to healthy controls and patients with diseases that mimic ALS. A number of differentially expressed miRNAs were identified in each set of patient comparisons. Validation in an additional patient cohort showed that miR-206 and miR-143-3p were increased and miR-374b-5p was decreased compared to controls. A continued change in miRNA expression persisted during disease progression indicating the potential use of these particular miRNAs as longitudinal biomarkers in ALS.
Collapse
|
84
|
Cao XY, Lu JM, Zhao ZQ, Li MC, Lu T, An XS, Xue LJ. MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644:94-99. [PMID: 28223160 DOI: 10.1016/j.neulet.2017.02.045] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a progressive age-related debilitating motor disorder and the second most common neurodegenerative disease after Alzheimer's disease. In this study, we aimed to investigate the expression of 24 candidate miRNAs in PD and to assess their diagnostic value in patients with PD. We collected serum samples from 109 patients with PD and 40 age- and sex-matched healthy volunteers (control group). RNAs encapsulated in exosome-like microvesicles in serum were extracted and reverse transcribed. Serum miRNAs were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the ability of the miRNAs to accurately discriminate PD was analyzed by receiver operating characteristic curves. Based on our analysis, we further validated the downregulation of miR-19b and the upregulation of miR-195 and miR-24 in patients with PD. When compared with the control group, the area under the curve (AUC) values for miR-19b, miR-24, and miR-195 were 0.753, 0.908, and 0.697, respectively. Therefore, analysis of the expression levels of miR-19b, miR-24, and miR-195 in serum may be useful for the diagnosis of PD.
Collapse
Affiliation(s)
- Xiang-Yang Cao
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Jing-Min Lu
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Zhi-Qiang Zhao
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Ming-Chao Li
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Ting Lu
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Xu-Sheng An
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Liu-Jun Xue
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|
85
|
Kumar S, Vijayan M, Bhatti JS, Reddy PH. MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:47-94. [PMID: 28253991 DOI: 10.1016/bs.pmbts.2016.12.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are found in the circulatory biofluids considering the important molecules for biomarker study in aging and age-related diseases. Blood or blood components (serum/plasma) are primary sources of circulatory miRNAs and can release these in cell-free form either bound with some protein components or encapsulated with microvesicle particles, called exosomes. miRNAs are quite stable in the peripheral circulation and can be detected by high-throughput techniques like qRT-PCR, microarray, and sequencing. Intracellular miRNAs could modulate mRNA activity through target-specific binding and play a crucial role in intercellular communications. At a pathological level, changes in cellular homeostasis lead to the modulation of molecular function of cells; as a result, miRNA expression is deregulated. Deregulated miRNAs came out from cells and frequently circulate in extracellular body fluids as part of various human diseases. Most common aging-associated diseases are cardiovascular disease, cancer, arthritis, dementia, cataract, osteoporosis, diabetes, hypertension, and neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Variation in the miRNA signature in a diseased peripheral circulatory system opens up a new avenue in the field of biomarker discovery. Here, we measure the biomarker potential of circulatory miRNAs in aging and various aging-related pathologies. However, further more confirmatory researches are needed to elaborate these findings at the translation level.
Collapse
Affiliation(s)
- S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
86
|
Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomark Med 2017; 11:151-167. [PMID: 28125293 DOI: 10.2217/bmm-2016-0242] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the result of progressive deterioration of neurons, ultimately leading to disabilities. There is no effective cure for NDDs at present; ongoing therapies are mainly aimed at treating the most bothersome symptoms. Since early treatment is crucial in NDDs, there is an urgent need for specific and sensitive biomarkers that can aid in early diagnosis of these disorders. Recently, altered expression of miRNAs has been implicated in several neurological disorders, including NDDs. miRNA expression has been extensively investigated in the cells, tissues and body fluids of patients with different types of NDDs. The aim of this review is to provide a comprehensive overview of miRNAs as biomarkers and therapeutic targets for NDDs.
Collapse
Affiliation(s)
- Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mahesh M Vasu
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431 3192, Japan
| | - Suresh A Poovathinal
- Department of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
87
|
Ma W, Li Y, Wang C, Xu F, Wang M, Liu Y. Serum miR-221 serves as a biomarker for Parkinson's disease. Cell Biochem Funct 2017; 34:511-515. [PMID: 27748571 DOI: 10.1002/cbf.3224] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the common age-related neurodegenerative disorder. Sensitive, noninvasive biomarkers that facilitate PD diagnosis and stage assignment are currently unavailable. This study aims to investigate the potential of 16 previous reported PD-associated miRNAs as novel biomarkers for PD. The expression of 16 serum miRNAs was measured by quantitative reverse transcriptase polymerase chain reaction in 138 PD patients and 112 control populations. Analyses were undertaken to assess the specificity and sensitivity of miRNAs to predict PD. In addition, the relationship between deregulated miRNAs and Part III of the United Parkinson's Disease Rating Scale (UPDRS-III) and Part V of the UPDRS (UPDRS-V; the modified Hoehn and Yahr staging of PD) in PD patients was also assessed. It was found that the serums miR-29c, miR-146a, miR-214, and miR-221 were significantly decreased in PD patients compared with healthy control populations. In addition, serum miR-221 was positively correlated with UPDRS-III (r = .4702) and UPDRS-V (r = .4788) score in PD patients. Furthermore, the receiver operating characteristic result of serum miR-221 for prediction of PD was 0.787. Our preliminary findings indicate that downregulated serum miR-221 might be a potential biomarker for PD evaluation.
Collapse
Affiliation(s)
- Wenbin Ma
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yingying Li
- Department of Pediatrics, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
- Department of Pediatrics Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Chao Wang
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fan Xu
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, People's Republic of China
| | - Meiling Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
88
|
Yılmaz ŞG, Geyik S, Neyal AM, Soko ND, Bozkurt H, Dandara C. Hypothesis: Do miRNAs Targeting the Leucine-Rich Repeat Kinase 2 Gene (LRRK2) Influence Parkinson's Disease Susceptibility? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:224-8. [PMID: 27093107 DOI: 10.1089/omi.2016.0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parkinson's disease (PD) is a frequently occurring neurodegenerative motor disorder adversely impacting global health. There is a paucity of biomarkers and diagnostics that can forecast susceptibility to PD. A new research frontier for PD pathophysiology is the study of variations in microRNA (miRNA) expression whereby miRNAs serve as "upstream regulators" of gene expression in relation to functioning of the dopamine neuronal pathways. Leucine-Rich Repeat Kinase 2 (LRRK2) is a frequently studied gene in PD. Little is known about the ways in which expression of miRNAs targeting LRKK2 impact PD susceptibility. In a sample of 204 unrelated subjects (102 persons with PD and 102 healthy controls), we report here candidate miRNA expression in whole blood samples as measured by real-time PCR (hsa-miR-4671-3p, hsa-miR-335-3p, hsa-miR-561-3p, hsa-miR-579-3p, and hsa-miR-3143) that target LRRK2. Using step-wise logistic regression, and controlling for covariates such as age, gender, PD disease severity, concomitant medications, and co-morbidity, we found that the combination of has-miR-335-3p, has-miR-561-3p, and has-miR-579-3p account for 50% of the variation in regards to PD susceptibility (p<0.0001). Notably, the hsa-miR-561-3p expression was the most robust predictor of PD in both univariate and multivariate analyses (p<0.001). Moreover, the biological direction (polarity) of the association was plausible in that the candidate miRNAs displayed a diminished expression in patients. This is consistent with the hypothesis that decreased levels of miRNAs targeting LRRK2 might result in a gain of function for LRRK2, and by extension, loss of neuronal viability. To the best of our knowledge, this is the first clinical association study of the above candidate miRNAs' expression in PD using peripheral samples. These observations may guide future clinical diagnostics research on PD.
Collapse
Affiliation(s)
- Şenay Görücü Yılmaz
- 1 Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep University , Gaziantep, Turkey
| | - Sırma Geyik
- 2 Faculty of Medicine, Department of Neurology, Gaziantep University , Gaziantep, Turkey
| | - Ayşe Münife Neyal
- 2 Faculty of Medicine, Department of Neurology, Gaziantep University , Gaziantep, Turkey
| | - Nyarai D Soko
- 3 Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| | - Hakan Bozkurt
- 4 Neurology Department, Gaziantep Medical Park Hospital , Gaziantep, Turkey
| | - Collet Dandara
- 3 Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , South Africa
| |
Collapse
|
89
|
Quinlan S, Kenny A, Medina M, Engel T, Jimenez-Mateos EM. MicroRNAs in Neurodegenerative Diseases. MIRNAS IN AGING AND CANCER 2017; 334:309-343. [DOI: 10.1016/bs.ircmb.2017.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
90
|
Recent developments in circulating biomarkers in Parkinson’s disease: the potential use of miRNAs in a clinical setting. Bioanalysis 2016; 8:2497-2518. [DOI: 10.4155/bio-2016-0166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting 5% of the elderly population. PD diagnosis is still based on the identification of neuromotor symptoms although nonmotor manifestations emerge years prior to diagnosis. The discovery of biomarkers at the earliest stages of PD is of extreme interest. miRNAs have been considered potential biomarkers for neurodegenerative diseases, but only a limited number have been found to be PD related. This review focuses on the current findings in the field of circulating miRNAs in PD and the challenges surrounding clinical utility and validation. We briefly describe the more established circulating biomarkers in PD and provide a more thorough review of miRNAs differentially expressed in PD. We highlight their potential for being considered as biomarkers for diagnosis while emphasizing the challenges for adequate validation of the findings and how miRNAs can be envisioned in a clinical setting satisfying regulatory bodies.
Collapse
|
91
|
Recasens A, Perier C, Sue CM. Role of microRNAs in the Regulation of α-Synuclein Expression: A Systematic Review. Front Mol Neurosci 2016; 9:128. [PMID: 27917109 PMCID: PMC5116472 DOI: 10.3389/fnmol.2016.00128] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that increased levels of α-synuclein might contribute to the pathogenesis of Parkinson’s disease (PD) and therefore, it is crucial to understand the mechanisms underlying α-synuclein expression. Recently, microRNAs (miRNAs) have emerged as key regulators of gene expression involved in several diseases such as PD and other neurodegenerative disorders. A systematic literature search was performed here to identify microRNAs that directly or indirectly impact in α-synuclein expression/accumulation and describe its mechanism of action. A total of 27 studies were incorporated in the review article showing evidences that six microRNAs directly bind and regulate α-synuclein expression while several miRNAs impact on α-synuclein expression indirectly by targeting other genes. In turn, α-synuclein overexpression also impacts miRNAs expression, indicating the complex network between miRNAs and α-synuclein. From the current knowledge on the central role of α-synuclein in PD pathogenesis/progression, miRNAs are likely to play a crucial role at different stages of PD and might potentially be considered as new PD therapeutic approaches.
Collapse
Affiliation(s)
- Ariadna Recasens
- Department of Neurogenetics, Kolling Institute, The Royal North Shore Hospital, Northern Sydney Local Health DistrictSt. Leonards, NSW, Australia; Northern Clinical School, Sydney Medical School, University of SydneySydney, NSW, Australia
| | - Celine Perier
- Neurodegenerative Disease Laboratory, Vall d'Hebron Research Institute and Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Barcelona, Spain
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, The Royal North Shore Hospital, Northern Sydney Local Health DistrictSt. Leonards, NSW, Australia; Northern Clinical School, Sydney Medical School, University of SydneySydney, NSW, Australia
| |
Collapse
|
92
|
Marques TM, Kuiperij HB, Bruinsma IB, van Rumund A, Aerts MB, Esselink RAJ, Bloem BR, Verbeek MM. MicroRNAs in Cerebrospinal Fluid as Potential Biomarkers for Parkinson's Disease and Multiple System Atrophy. Mol Neurobiol 2016; 54:7736-7745. [PMID: 27844283 PMCID: PMC5684261 DOI: 10.1007/s12035-016-0253-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022]
Abstract
Parkinson’s disease (PD) and multiple system atrophy (MSA) are both part of the spectrum of neurodegenerative movement disorders and α-synucleinopathies with overlap of symptoms especially at early stages of the disease but with distinct disease progression and responses to dopaminergic treatment. Therefore, having biomarkers that specifically classify patients, which could discriminate PD from MSA, would be very useful. MicroRNAs (miRNAs) regulate protein translation and are observed in biological fluids, including cerebrospinal fluid (CSF), and may therefore have potential as biomarkers of disease. The aim of our study was to determine if miRNAs in CSF could be used as biomarkers for either PD or MSA. Using quantitative PCR (qPCR), we evaluated expression levels of 10 miRNAs in CSF patient samples from PD (n = 28), MSA (n = 17), and non-neurological controls (n = 28). We identified two miRNAs (miR-24 and miR-205) that distinguished PD from controls and four miRNAs that differentiated MSA from controls (miR-19a, miR-19b, miR-24, and miR-34c). Combinations of miRNAs accurately discriminated either PD (area under the curve (AUC) = 0.96) or MSA (AUC = 0.86) from controls. In MSA, we also observed that miR-24 and miR-148b correlated with cerebellar ataxia symptoms, suggesting that these miRNAs are involved in cerebellar degeneration in MSA. Our findings support the potential of miRNA panels as biomarkers for movement disorders and may provide more insights into the pathological mechanisms related to these disorders.
Collapse
Affiliation(s)
- Tainá M Marques
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.,Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Ilona B Bruinsma
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Anouke van Rumund
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Marjolein B Aerts
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Bas R Bloem
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center and Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands. .,Department of Laboratory Medicine, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands. .,Parkinson Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
93
|
Zhang M, Mu H, Shang Z, Kang K, Lv H, Duan L, Li J, Chen X, Teng Y, Jiang Y, Zhang R. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease. Neuroscience 2016; 340:398-410. [PMID: 27840232 DOI: 10.1016/j.neuroscience.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD.
Collapse
Affiliation(s)
- Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongbo Mu
- College of Science, Northeast Forestry University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lian Duan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinren Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanbo Teng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
94
|
Tatura R, Kraus T, Giese A, Arzberger T, Buchholz M, Höglinger G, Müller U. Parkinson's disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord 2016; 33:115-121. [PMID: 27717584 DOI: 10.1016/j.parkreldis.2016.09.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION In order to better understand the role of epigenetic influences in the etiology of Parkinson's disease (PD), we studied the expression of microRNAs in gyri cinguli of patients and controls. METHODS Expression profiling of 744 well-characterized microRNAs in gyri cinguli from patients and controls using TaqMan array microRNA cards. Verification of significantly dysregulated microRNAs by SYBR Green qRT-PCR. RESULTS First screen by TaqMan array identified 43 microRNAs that were upregulated in gyri cinguli from patients. Of those microRNAs, 13 are predicted to regulate at least one of six genes mutated in monogenic forms of PD (DJ-1, PARK2, PINK1, LRRK2, SNCA, and HTRA2). Five of these 13 microRNAs (-144, -199b, -221, -488, -544) were also found upregulated by SYBR Green qRT-PCR and are predicted to regulate either SNCA, PARK2, LRRK2 or combinations thereof. Consistently, expression of SNCA, PARK2, and LRRK2 was reduced in patients. An additional 5 out of ten potential target genes tested were downregulated. These are DRAM (DNA damage regulated autophagy modulator 1), predicted to be regulated by miR-144, EVC (Ellis Van Creveld Protein) by miR-221, ZNF440 (Zinc Finger Protein 440) by miR-199b, MTFMT (Mitochondrial Methionyl-tRNA Formyltransferase) by miR-488 and XIRP2 (Xin Actin Binding Repeat Containing) possibly controlled by miR-544a. CONCLUSION The study identified five microRNAs that play a role in the etiology of Parkinson's disease likely by modifying expression of SNCA, PARK2, LRRK2 and additional genes required for normal cellular function.
Collapse
Affiliation(s)
- Roman Tatura
- Institute of Human Genetics, Justus-Liebig-University, Schlangenzahl 14, Gießen, Germany
| | - Theo Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research (ZNP), Ludwig Maximilians-University Munich, Feodor-Lynen-Str. 23, München, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstraße 7, Munich, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, Philipps-University, Baldingerstrasse, Marburg, Germany
| | - Günter Höglinger
- Department of Neurology, Technical University of Munich and German Center for Neurodegenerative Diseases e.V. (DZNE) Munich, Feodor-Lynen Str. 17, Munich, Germany
| | - Ulrich Müller
- Institute of Human Genetics, Justus-Liebig-University, Schlangenzahl 14, Gießen, Germany.
| |
Collapse
|
95
|
da Silva FC, Iop RDR, Vietta GG, Kair DA, Gutierres Filho PJB, de Alvarenga JGS, da Silva R. microRNAs involved in Parkinson's disease: A systematic review. Mol Med Rep 2016; 14:4015-4022. [PMID: 27666518 DOI: 10.3892/mmr.2016.5759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/21/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the expression of blood microRNAs (miRNAs) involved in PD in humans. For this purpose the following electronic databases were selected: MEDLINE by Pubmed, Scopus and Web of Science. The search strategy included the proposed descriptors in the Medical Subject Headings. There were no restrictions with respect to the language of the publication. In the study selection two independent reviewers initially evaluated studies that were identified by the search strategy according to titles and abstracts. The reviewers evaluated (also unassisted) the complete articles and selected studies according to the eligibility criteria specified above. Studies that were not in accordance with the adopted criteria were excluded according to the boundaries imposed by the search strategy. The following data were extracted from the selected studies: Publication identification, location where the study was conducted, study design, the sample size, the participants' characteristics, the miRNAs involved in PD, the miRNA detection and analysis method, and the type of miRNA dysregulation in PD. Through this systematic review of the literature published over the last 10 years, the expression of 91 different miRNAs were analyzed in the context of PD, with the expression of 39 of these miRNAs differing significantly between individuals with PD and healthy controls and/or between treated and untreated patients with PD. The miRNAs were extracted from mononuclear cells, leukocytes, plasma, serum and peripheral blood, and the majority of the studies used reverse transcription‑quantitative polymerase chain reaction (RT-qPCR), which is considered to be the gold standard for miRNA analysis.
Collapse
Affiliation(s)
- Franciele Cascaes da Silva
- Department of Physical Education, Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, University of State of Santa Catarina, Florianopolis 88080‑350, Brazil
| | - Rodrigo da Rosa Iop
- Department of Physical Education, Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, University of State of Santa Catarina, Florianopolis 88080‑350, Brazil
| | - Giovanna Grunewald Vietta
- Department of Physical Education, Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, University of State of Santa Catarina, Florianopolis 88080‑350, Brazil
| | - Diego Alessandro Kair
- Department of Physical Education, Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, University of State of Santa Catarina, Florianopolis 88080‑350, Brazil
| | | | | | - Rudney da Silva
- Department of Physical Education, Center for Health Sciences and Sports, Adapted Physical Activity Laboratory, University of State of Santa Catarina, Florianopolis 88080‑350, Brazil
| |
Collapse
|
96
|
Lim CH, Zainal NZ, Kanagasundram S, Zain SM, Mohamed Z. Preliminary examination of microRNA expression profiling in bipolar disorder I patients during antipsychotic treatment. Am J Med Genet B Neuropsychiatr Genet 2016; 171:867-74. [PMID: 27177356 DOI: 10.1002/ajmg.b.32457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/02/2016] [Indexed: 02/01/2023]
Abstract
Although major progress has been achieved in research and development of antipsychotic medications for bipolar disorder (BPD), knowledge of the molecular mechanisms underlying this disorder and the action of atypical antipsychotics remains incomplete. The levels of microRNAs (miRNAs)-small non-coding RNA molecules that regulate gene expression, including genes involved in neuronal function and plasticity-are frequently altered in psychiatric disorders. This study aimed to examine changes in miRNA expression in bipolar mania patients after treatment with asenapine and risperidone. Using a miRNA microarray, we analyzed miRNA expression in the blood of 10 bipolar mania patients following 12 weeks of treatment with asenapine or risperidone. Selected miRNAs were validated by using real-time PCR. A total of 16 miRNAs were differentially expressed after treatment in the asenapine group, 14 of which were significantly upregulated and the other two significantly downregulated. However, all three differentially expressed miRNAs in the risperidone group were downregulated. MiRNA target gene prediction and gene ontology analysis revealed significant enrichment for pathways associated with immune system response and regulation of programmed cell death and transcription. Our results suggest that candidate miRNAs may be involved in the mechanism of action of both antipsychotics in bipolar mania. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chor Hong Lim
- The Pharmacogenomics Laboratory, Faculty of Medicine, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Nor Zuraida Zainal
- Faculty of Medicine, Department of Psychological Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmilla Kanagasundram
- Faculty of Medicine, Department of Psychological Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Faculty of Medicine, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | - Zahurin Mohamed
- The Pharmacogenomics Laboratory, Faculty of Medicine, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
97
|
Kumar S, Reddy PH. Are circulating microRNAs peripheral biomarkers for Alzheimer's disease? BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1617-27. [PMID: 27264337 PMCID: PMC5343750 DOI: 10.1016/j.bbadis.2016.06.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/13/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss, multiple cognitive abnormalities and intellectual impairments. Currently, there are no drugs or agents that can delay and/or prevent the progression of disease in elderly individuals, and there are no peripheral biomarkers that can detect AD early in its pathogenesis. Research has focused on identifying biomarkers for AD so that treatment can be begun as soon as possible in order to restrict or prevent intellectual impairments, memory loss, and other cognitive abnormalities that are associated with the disease. One such potential biomarker is microRNAs that are found in circulatory biofluids, such as blood and blood components, serum and plasma. Blood and blood components are primary sources where miRNAs are released in either cell-free form and then bind to protein components, or are in an encapsulated form with microvesicle particles. Exosomal miRNAs are known to be stable in biofluids and can be detected by high throughput techniques, like microarray and RNA sequencing. In AD brain, enriched miRNAs encapsulated with exosomes crosses the blood brain barrier and secreted in the CSF and blood circulations. This review summarizes recent studies that have identified miRNAs in the blood, serum, plasma, exosomes, cerebral spinal fluids, and extracellular fluids as potential biomarkers of AD. Recent research has revealed only six miRNAs - miR-9, miR-125b, miR-146a, miR-181c, let-7g-5p, and miR-191-5p - that were reported by multiple investigators. Some studies analyzed the diagnostic potential of these six miRNAs through receiver operating curve analysis which indicates the significant area-under-curve values in different biofluid samples. miR-191-5p was found to have the maximum area-under-curve value (0.95) only in plasma and serum samples while smaller area-under-curve values were found for miR-125, miR-181c, miR-191-5p, miR-146a, and miR-9. This article shortlisted the promising miRNA candidates and discussed their diagnostic properties and cellular functions in order to search for potential biomarker for AD.
Collapse
Affiliation(s)
- Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Ste. E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
98
|
Batistela MS, Josviak ND, Sulzbach CD, de Souza RLR. An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer's and Parkinson's Diseases. Int J Neurosci 2016; 127:547-558. [PMID: 27381850 DOI: 10.1080/00207454.2016.1209754] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Circulating cell-free microRNAs (miRNAs) are stable in many biological fluids and their expression profiles can suffer changes under different physiological and pathological conditions. In the last few years, miRNAs have been proposed as putative noninvasive biomarkers in diagnosis, prognosis and response to treatment for several diseases, including neurodegenerative disorders as Alzheimer's disease (AD) and Parkinson's disease (PD). Cognitive and/or motor impairments are usually considered for establishing clinical diagnosis, and at this stage, the majority of the neurons may already be lost making difficult attempts of novel therapies. In this review, we intend to survey the circulating cell-free miRNAs found as dysregulated in cerebrospinal fluid, serum and plasma samples in AD and PD patients, and show how those miRNAs can be useful for early and differential diagnosis. Beyond that, we highlighted the miRNAs that are possibly related to common molecular mechanisms in the neurodegeneration process, as well those miRNAs related to specific disease pathways.
Collapse
|
99
|
Han W, Zhu Y, Su Y, Li G, Qu L, Zhang H, Wang K, Zou J, Liu H. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus). PLoS One 2016; 11:e0154958. [PMID: 27149515 PMCID: PMC4858148 DOI: 10.1371/journal.pone.0154958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.
Collapse
Affiliation(s)
- Wei Han
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Yunfen Zhu
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Yijun Su
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Guohui Li
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Liang Qu
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Huiyong Zhang
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Kehua Wang
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Jianmin Zou
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
- * E-mail: (JMZ); (HLL)
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, PR China
- * E-mail: (JMZ); (HLL)
| |
Collapse
|
100
|
Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH. microRNA Profiles in Parkinson's Disease Prefrontal Cortex. Front Aging Neurosci 2016; 8:36. [PMID: 26973511 PMCID: PMC4772525 DOI: 10.3389/fnagi.2016.00036] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/10/2016] [Indexed: 01/17/2023] Open
Abstract
Objective: The goal of this study was to compare the microRNA (miRNA) profile of Parkinson's disease (PD) frontal cortex with normal control brain, allowing for the identification of PD specific signatures as well as study the disease-related phenotypes of onset age and dementia. Methods: Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was employed to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction. The relationship of miRNA levels to onset age and PD with dementia (PDD) was also characterized in case-only analyses. Results: One twenty five miRNAs were differentially expressed in PD at a genome-wide level of significance (FDR q < 0.05). A set of 29 miRNAs classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia (PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity = 81.2%, specificity = 88.9%). Among differentially expressed miRNAs, miR-10b-5p had a positive association with onset age (q = 4.7e-2). Conclusions: Based on cortical miRNA levels, PD brains were accurately classified from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe pattern of alteration among those differentially expressed in PD. To evaluate the clinical utility of miRNAs as potential clinical biomarkers, further characterization and testing of brain-related miRNA alterations in peripheral biofluids is warranted.
Collapse
Affiliation(s)
- Andrew G Hoss
- Department of Neurology, Boston University School of MedicineBoston, MA, USA; Graduate Program in Genetics and Genomics, Boston University School of MedicineBoston, MA, USA
| | - Adam Labadorf
- Department of Neurology, Boston University School of MedicineBoston, MA, USA; Bioinformatics Program, Boston UniversityBoston, MA, USA
| | | | - Jeanne C Latourelle
- Department of Neurology, Boston University School of Medicine Boston, MA, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of MedicineBoston, MA, USA; Graduate Program in Genetics and Genomics, Boston University School of MedicineBoston, MA, USA; Bioinformatics Program, Boston UniversityBoston, MA, USA; Genome Science Institute, Boston University School of MedicineBoston, MA, USA
| |
Collapse
|