51
|
Walker MR, Zhong J, Waspe AC, Piorkowska K, Nguyen LN, Anastakis DJ, Drake JM, Hodaie M. Peripheral Nerve Focused Ultrasound Lesioning-Visualization and Assessment Using Diffusion Weighted Imaging. Front Neurol 2021; 12:673060. [PMID: 34305786 PMCID: PMC8299784 DOI: 10.3389/fneur.2021.673060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Magnetic resonance-guided focused ultrasound (MRgFUS) is a non-invasive targeted tissue ablation technique that can be applied to the nervous system. Diffusion weighted imaging (DWI) can visualize and evaluate nervous system microstructure. Tractography algorithms can reconstruct fiber bundles which can be used for treatment navigation and diffusion tensor imaging (DTI) metrics permit the quantitative assessment of nerve microstructure in vivo. There is a need for imaging tools to aid in the visualization and quantitative assessment of treatment-related nerve changes in MRgFUS. We present a method of peripheral nerve tract reconstruction and use DTI metrics to evaluate the MRgFUS treatment effect. Materials and Methods: MRgFUS was applied bilaterally to the sciatic nerves in 6 piglets (12 nerves total). T1-weighted and diffusion images were acquired before and after treatment. Tensor-based and constrained spherical deconvolution (CSD) tractography algorithms were used to reconstruct the nerves. DTI metrics of fractional anisotropy (FA), and mean (MD), axial (AD), and radial diffusivities (RD) were measured to assess acute (<1-2 h) treatment effects. Temperature was measured in vivo via MR thermometry. Histological data was collected for lesion assessment. Results: The sciatic nerves were successfully reconstructed in all subjects. Tract disruption was observed after treatment using both CSD and tensor models. DTI metrics in the targeted nerve segments showed significantly decreased FA and increased MD, AD, and RD. Transducer output power was positively correlated with lesion volume and temperature and negatively correlated with MD, AD, and RD. No correlations were observed between FA and other measured parameters. Conclusions: DWI and tractography are effective tools for visualizing peripheral nerve segments for targeting in non-invasive surgical methods and for assessing the microstructural changes that occur following MRgFUS treatment.
Collapse
Affiliation(s)
- Matthew R Walker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jidan Zhong
- Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Adam C Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada
| | - Lananh N Nguyen
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Dimitri J Anastakis
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, ON, Canada
| | - James M Drake
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Department of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
52
|
Lehman VT, Lee KH, Klassen BT, Blezek DJ, Goyal A, Shah BR, Gorny KR, Huston J, Kaufmann TJ. MRI and tractography techniques to localize the ventral intermediate nucleus and dentatorubrothalamic tract for deep brain stimulation and MR-guided focused ultrasound: a narrative review and update. Neurosurg Focus 2021; 49:E8. [PMID: 32610293 DOI: 10.3171/2020.4.focus20170] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2020] [Indexed: 11/06/2022]
Abstract
The thalamic ventral intermediate nucleus (VIM) can be targeted for treatment of tremor by several procedures, including deep brain stimulation (DBS) and, more recently, MR-guided focused ultrasound (MRgFUS). To date, such targeting has relied predominantly on coordinate-based or atlas-based techniques rather than directly targeting the VIM based on imaging features. While general regional differences of features within the thalamus and some related white matter tracts can be distinguished with conventional imaging techniques, internal nuclei such as the VIM are not discretely visualized. Advanced imaging methods such as quantitative susceptibility mapping (QSM) and fast gray matter acquisition T1 inversion recovery (FGATIR) MRI and high-field MRI pulse sequences that improve the ability to image the VIM region are emerging but have not yet been shown to have reliability and accuracy to serve as the primary method of VIM targeting. Currently, the most promising imaging approach to directly identify the VIM region for clinical purposes is MR diffusion tractography.In this review and update, the capabilities and limitations of conventional and emerging advanced methods for evaluation of internal thalamic anatomy are briefly reviewed. The basic principles of tractography most relevant to VIM targeting are provided for familiarization. Next, the key literature to date addressing applications of DTI and tractography for DBS and MRgFUS is summarized, emphasizing use of direct targeting. This literature includes 1-tract (dentatorubrothalamic tract [DRT]), 2-tract (pyramidal and somatosensory), and 3-tract (DRT, pyramidal, and somatosensory) approaches to VIM region localization through tractography.The authors introduce a 3-tract technique used at their institution, illustrating the oblique curved course of the DRT within the inferior thalamus as well as the orientation and relationship of the white matter tracts in the axial plane. The utility of this 3-tract tractography approach to facilitate VIM localization is illustrated with case examples of variable VIM location, targeting superior to the anterior commissure-posterior commissure plane, and treatment in the setting of pathologic derangement of thalamic anatomy. Finally, concepts demonstrated with these case examples and from the prior literature are synthesized to highlight several potential advantages of tractography for VIM region targeting.
Collapse
Affiliation(s)
| | | | | | | | - Abhinav Goyal
- 4Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Bhavya R Shah
- 5Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
53
|
Bruno F, Catalucci A, Varrassi M, Arrigoni F, Sucapane P, Cerone D, Pistoia F, Torlone S, Tommasino E, De Santis L, Barile A, Ricci A, Marini C, Splendiani A, Masciocchi C. Comparative evaluation of tractography-based direct targeting and atlas-based indirect targeting of the ventral intermediate (Vim) nucleus in MRgFUS thalamotomy. Sci Rep 2021; 11:13538. [PMID: 34188190 PMCID: PMC8241849 DOI: 10.1038/s41598-021-93058-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022] Open
Abstract
To analyze and compare direct and indirect targeting of the Vim for MRgFUS thalamotomy. We retrospectively evaluated 21 patients who underwent unilateral MRgFUS Vim ablation and required targeting repositioning during the procedures. For each patient, in the three spatial coordinates, we recorded: (i) indirect coordinates; (ii) the coordinates where we clinically observed tremor reduction during the verification stage sonications; (iii) direct coordinates, measured on the dentatorubrothalamic tract (DRTT) at the after postprocessing of DTI data. The agreement between direct and indirect coordinates compared to clinically effective coordinates was evaluated through the Bland–Altman test and intraclass correlation coefficient. The median absolute percentage error was also calculated. Compared to indirect targeting, direct targeting showed inferior error values on the RL and AP coordinates (0.019 vs. 0.079 and 0.207 vs. 0.221, respectively) and higher error values on the SI coordinates (0.263 vs. 0.021). The agreement between measurements was higher for tractography along the AP and SI planes and lower along the RL planes. Indirect atlas-based targeting represents a valid approach for MRgFUS thalamotomy. The direct tractography approach is a valuable aid in assessing the possible deviation of the error in cases where no immediate clinical response is achieved.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy. .,Italian Society of Medical and Interventional Radiology, SIRM Foundation, Milan, Italy.
| | - Alessia Catalucci
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Marco Varrassi
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | | | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Silvia Torlone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Emanuele Tommasino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Luca De Santis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| |
Collapse
|
54
|
Sammartino F, Taylor P, Chen G, Reynolds RC, Glen D, Krishna V. Functional Neuroimaging During Asleep DBS Surgery: A Proof of Concept Study. Front Neurol 2021; 12:659002. [PMID: 34262518 PMCID: PMC8273165 DOI: 10.3389/fneur.2021.659002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Object: A real-time functional magnetic resonance imaging (fMRI) feedback during ventral intermediate nucleus (VIM) deep brain stimulation (DBS) under general anesthesia (or “asleep” DBS) does not exist. We hypothesized that it was feasible to acquire a reliable and responsive fMRI during asleep VIM DBS surgery. Methods: We prospectively enrolled 10 consecutive patients who underwent asleep DBS for the treatment of medication-refractory essential tremor. Under general anesthesia, we acquired resting-state functional MRI immediately before and after the cannula insertion. Reliability was determined by a temporal signal-to-noise-ratio >100. Responsiveness was determined based on the fMRI signal change upon insertion of the cannula to the VIM. Results: It was feasible to acquire reliable fMRI during asleep DBS surgery. The fMRI signal was responsive to the brain cannula insertion, revealing a reduction in the tremor network's functional connectivity, which did not reach statistical significance in the group analysis. Conclusions: It is feasible to acquire a reliable and responsive fMRI signal during asleep DBS. The acquisition steps and the preprocessing pipeline developed in these experiments will be useful for future investigations to develop fMRI-based feedback for asleep DBS surgery.
Collapse
Affiliation(s)
- Francesco Sammartino
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| | - Paul Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Richard C Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
55
|
Cranial MR-Guided Focused Ultrasound: Clinical Challenges and Future Directions. World Neurosurg 2021; 145:574-580. [PMID: 33348523 DOI: 10.1016/j.wneu.2020.08.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
Abstract
Magnetic resonance-guided focused ultrasound is a powerful new technology that is enabling development of noninvasive applications for complex brain disorders. This is currently revolutionizing the treatment of tremor disorders, and a variety of experimental applications are under active investigation. To fully realize the potential of this disruptive technology, many challenges have been identified, some of which have been addressed and others remain to be solved. As an image-based technology, optimal intraoperative imaging can be difficult to achieve and several factors can influence the quality of these images. Technical issues with current devices can also limit the effective delivery of ultrasound technology to particular targets. While lesioning is the primary approved application of magnetic resonance-guided focused ultrasound at present, the ability to transient and precisely open the blood-brain barrier has the potential to clear brain pathologies and deliver restorative therapies, but this more experimental method presents unique difficulties to overcome. Finally, regulatory and reimbursement hurdles currently remain complex and continue to limit widespread application of even approved, effective applications. Here we review many of these challenges, discuss several solutions that have already been developed, and propose potential options for addressing some of these complexities in the future.
Collapse
|
56
|
Agrawal M, Garg K, Samala R, Rajan R, Naik V, Singh M. Outcome and Complications of MR Guided Focused Ultrasound for Essential Tremor: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:654711. [PMID: 34025558 PMCID: PMC8137896 DOI: 10.3389/fneur.2021.654711] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Magnetic resonance guided focused ultrasound (MRgFUS) is a relatively novel technique to treat essential tremor (ET). The objective of this review was to analyze the efficacy and the safety profile of MRgFUS for ET. Methods: A systematic literature review was done. The post procedure changes in the Clinical Rating Scale for Tremor (CRST) score, hand score, disability and quality of life scores were analyzed. Results: We found 29 studies evaluating 617 patients. DTI based targeting was utilized in six cohorts. A significant difference was observed in the pooled standard mean difference between the pre and postoperative total CRST score (p-value < 0.001 and 0.0002), hand score (p-value 0.03 and 0.02); and the disability at 12 months (p-value 0.01). Head pain and dizziness were the most in procedure complications. The immediate pooled proportion of ataxia was 50%, while it was 20% for sensory complications, which, respectively, declined to 31 and 13% on long term follow up. A significant reduction (p = 0.03) in immediate ataxia related complications was seen with DTI targeting. Conclusion: MRgFUS for ET seems to be an effective procedure for relieving unilateral tremor. Use of DTI based targeting revealed a significant reduction in post procedure ataxia related complications as compared to traditional targeting techniques. Analysis of other complications further revealed a decreasing trend on follow up.
Collapse
Affiliation(s)
- Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Kanwaljeet Garg
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Samala
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Naik
- Department of Neurosurgery, Bangalore Medical College, Bangalore, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
57
|
Tsuboi T, Wong JK, Eisinger RS, Okromelidze L, Burns MR, Ramirez-Zamora A, Almeida L, Wagle Shukla A, Foote KD, Okun MS, Grewal SS, Middlebrooks EH. Comparative connectivity correlates of dystonic and essential tremor deep brain stimulation. Brain 2021; 144:1774-1786. [PMID: 33889943 DOI: 10.1093/brain/awab074] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
The pathophysiology of dystonic tremor and essential tremor remains partially understood. In patients with medication-refractory dystonic tremor or essential tremor, deep brain stimulation (DBS) targeting the thalamus or posterior subthalamic area has evolved into a promising treatment option. However, the optimal DBS targets for these disorders remains unknown. This retrospective study explored the optimal targets for DBS in essential tremor and dystonic tremor using a combination of volumes of tissue activated estimation and functional and structural connectivity analyses. We included 20 patients with dystonic tremor who underwent unilateral thalamic DBS, along with a matched cohort of 20 patients with essential tremor DBS. Tremor severity was assessed preoperatively and approximately 6 months after DBS implantation using the Fahn-Tolosa-Marin Tremor Rating Scale. The tremor-suppressing effects of DBS were estimated using the percentage improvement in the unilateral tremor-rating scale score contralateral to the side of implantation. The optimal stimulation region, based on the cluster centre of gravity for peak contralateral motor score improvement, for essential tremor was located in the ventral intermediate nucleus region and for dystonic tremor in the ventralis oralis posterior nucleus region along the ventral intermediate nucleus/ventralis oralis posterior nucleus border (4 mm anterior and 3 mm superior to that for essential tremor). Both disorders showed similar functional connectivity patterns: a positive correlation between tremor improvement and involvement of the primary sensorimotor, secondary motor and associative prefrontal regions. Tremor improvement, however, was tightly correlated with the primary sensorimotor regions in essential tremor, whereas in dystonic tremor, the correlation was tighter with the premotor and prefrontal regions. The dentato-rubro-thalamic tract, comprising the decussating and non-decussating fibres, significantly correlated with tremor improvement in both dystonic and essential tremor. In contrast, the pallidothalamic tracts, which primarily project to the ventralis oralis posterior nucleus region, significantly correlated with tremor improvement only in dystonic tremor. Our findings support the hypothesis that the pathophysiology underpinning dystonic tremor involves both the cerebello-thalamo-cortical network and the basal ganglia-thalamo-cortical network. Further our data suggest that the pathophysiology of essential tremor is primarily attributable to the abnormalities within the cerebello-thalamo-cortical network. We conclude that the ventral intermediate nucleus/ventralis oralis posterior nucleus border and ventral intermediate nucleus region may be a reasonable DBS target for patients with medication-refractory dystonic tremor and essential tremor, respectively. Uncovering the pathophysiology of these disorders may in the future aid in further improving DBS outcomes.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Joshua K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Robert S Eisinger
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Mathew R Burns
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
58
|
Klebe S, Coenen V. [Deep brain stimulation in neurological and psychiatric diseases]. DER NERVENARZT 2021; 92:1042-1051. [PMID: 33630100 PMCID: PMC8484136 DOI: 10.1007/s00115-021-01079-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
Die invasive Hirnstimulation (tiefe Hirnstimulation [THS], „deep brain stimulation“ [DBS]) ist mittlerweile ein etabliertes Therapieverfahren bei einer Reihe neurologischer Erkrankungen insbesondere Bewegungsstörungen. Die Anzahl der mit einer THS versorgten Patienten steigt stetig, die technische Entwicklung der THS-Systeme schreitet voran und neue Indikationen werden aktuell in Studien überprüft. Im folgenden Beitrag soll ein Überblick über die aktuellen Indikationen und ein Ausblick auf zukünftige Entwicklungen der THS bei Bewegungsstörungen und psychiatrischen Erkrankungen gegeben werden.
Collapse
Affiliation(s)
- Stephan Klebe
- Klinik für Neurologie, Universitätsmedizin Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - Volker Coenen
- Abteilung Stereotaktische und Funktionelle Neurochirurgie, Klinik für Neurochirurgie, Neurozentrum, Universitätsklinikum Freiburg, Breisacher Str. 64, 79106, Freiburg, Deutschland
| |
Collapse
|
59
|
NAKAJIMA Y, KAMBE D, TODA H, NISHIDA N, NAGAO S, SAWAMOTO N, OKUMURA R, OZAKI A, IWASAKI K. Thalamic Deep Brain Stimulation for Refractory Atypical Tremor after Encephalitis of Unknown Etiology: A Case Report. NMC Case Rep J 2021; 8:247-252. [PMID: 35079471 PMCID: PMC8769394 DOI: 10.2176/nmccrj.cr.2020-0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Tremor associated with encephalitis is usually transient and rarely becomes chronic and refractory. Treatment for such tremor using deep brain stimulation (DBS) has not yet been reported. We report an uncommon case of chronic tremor after encephalitis of unknown etiology and its outcome treated with thalamic DBS. A 47-year-old man presented with a 6-month history of medically refractory tremor after non-infectious and probable autoimmune encephalitis. The patient showed an atypical mixture of resting, postural, kinetic, and intention tremor. The tremor significantly disabled the patient’s activities of daily life (ADL). The patient underwent bilateral thalamic DBS surgery. DBS leads were placed to cross the border between the ventralis oralis posterior (Vop) nucleus and ventralis intermedius (Vim) nucleus of the thalamus. Stimulation of both the Vop and Vim using the bipolar contacts controlled the mixed occurrence of tremor. The ADL and performance scores on The Essential Tremor Rating Assessment Scale (TETRAS) improved from 47 to 0 and from 44 to 9, respectively. The therapeutic effects have lasted for 24 months. Administration of combined Vop and Vim DBS may control uncommon tremor of atypical etiology and phenomenology.
Collapse
Affiliation(s)
- Yusuke NAKAJIMA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Osaka, Japan
| | - Daisuke KAMBE
- Department of Neurology, Kyoto University, Kyoto, Kyoto, Japan
| | - Hiroki TODA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Osaka, Japan
- Department of Neurosurgery, Japanese Red Cross Fukui Hospital, Fukui, Fukui, Japan
| | - Namiko NISHIDA
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Osaka, Japan
| | - Shigeto NAGAO
- Department of Neurology, Saiseikai-Nakatsu Hospital, Osaka, Osaka, Japan
| | | | - Ryosuke OKUMURA
- Department of Radiology, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Osaka, Japan
| | - Akihiko OZAKI
- Department of Neurology, Saiseikai-Nakatsu Hospital, Osaka, Osaka, Japan
| | - Koichi IWASAKI
- Department of Neurosurgery, Tazuke Kofukai Medical Research Institute and Kitano Hospital, Osaka, Osaka, Japan
| |
Collapse
|
60
|
Holanda VM, Okun MS, Middlebrooks EH, Gungor A, Barry ME, Forder J, Foote KD. Postmortem Dissections of Common Targets for Lesion and Deep Brain Stimulation Surgeries. Neurosurgery 2020; 86:860-872. [PMID: 31504849 DOI: 10.1093/neuros/nyz318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The subthalamic nucleus (STN), globus pallidus internus (GPi), and pedunculopontine nucleus (PPN) are effective targets for deep brain stimulation (DBS) in many pathological conditions. Previous literature has focused on appropriate stimulation targets and their relationships with functional neuroanatomic pathways; however, comprehensive anatomic dissections illustrating these nuclei and their connections are lacking. This information will provide insight into the anatomic basis of stimulation-induced DBS benefits and side effects. OBJECTIVE To combine advanced cadaveric dissection techniques and ultrahigh field magnetic resonance imaging (MRI) to explore the anatomy of the STN, GPi, and PPN with their associated fiber pathways. METHODS A total of 10 cadaveric human brains and 2 hemispheres of a cadaveric head were examined using fiber dissection techniques. The anatomic dissections were compared with 11.1 Tesla (T) structural MRI and 4.7 T MRI fiber tractography. RESULTS The extensive connections of the STN (caudate nucleus, putamen, medial frontal cortex, substantia innominata, substantia nigra, PPN, globus pallidus externus (GPe), GPi, olfactory tubercle, hypothalamus, and mammillary body) were demonstrated. The connections of GPi to the thalamus, substantia nigra, STN, amygdala, putamen, PPN, and GPe were also illustrated. The PPN was shown to connect to the STN and GPi anteriorly, to the cerebellum inferiorly, and to the substantia nigra anteriorly and superiorly. CONCLUSION This study demonstrates connections using combined anatomic microdissections, ultrahigh field MRI, and MRI tractography. The anatomic findings are analyzed in relation to various stimulation-induced clinical effects. Precise knowledge of neuroanatomy, anatomic relationships, and fiber connections of the STN, GPi, PPN will likely enable more effective targeting and improved DBS outcomes.
Collapse
Affiliation(s)
- Vanessa M Holanda
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida.,Center of Neurology and Neurosurgery Associates (NeuroCENNA), BP - A Beneficência Portuguesa de São Paulo, São Paulo SP, Brazil.,Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, Florida
| | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic College of Medicine, Jacksonville, Florida
| | - Abuzer Gungor
- Department of Neurosurgery, Acιbadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Margaret E Barry
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| | - John Forder
- Department of Radiology, University of Florida, Gainesville, Florida
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, Florida
| |
Collapse
|
61
|
Structure-function relationship of the posterior subthalamic area with directional deep brain stimulation for essential tremor. NEUROIMAGE-CLINICAL 2020; 28:102486. [PMID: 33395977 PMCID: PMC7674616 DOI: 10.1016/j.nicl.2020.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/10/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022]
Abstract
Directional DBS of the DRTT and the zona incerta is correlated with tremor suppression. Activation patterns for tremor suppression and side effects involve mostly the dentato-rubro-thalamic tract and the zona incerta. Concomitant side effects often limit the therapeutic window of directional deep brain stimulation.
Deep Brain Stimulation of the posterior subthalamic area is an emergent target for the treatment of Essential Tremor. Due to the heterogeneous and complex anatomy of the posterior subthalamic area, it remains unclear which specific structures mediate tremor suppression and different side effects. The objective of the current work was to yield a better understanding of what anatomical structures mediate the different clinical effects observed during directional deep brain stimulation of that area. We analysed a consecutive series of 12 essential tremor patients. Imaging analysis and systematic clinical testing performed 4–6 months postoperatively yielded location, clinical efficacy and corresponding therapeutic windows for 160 directional contacts. Overlap ratios between individual activation volumes and neighbouring thalamic and subthalamic nuclei as well as individual fiber tracts were calculated. Further, we generated stimulation heatmaps to assess the area of activity and structures stimulated during tremor suppression and occurrence of side effects. Stimulation of the dentato-rubro-thalamic tract and the zona incerta was most consistently correlated with tremor suppression. Both individual and group analysis demonstrated a similar pattern of activation for tremor suppression and different sorts of side-effects. Unlike current clinical concepts, induction of spasms and paresthesia were not correlated with stimulation of the corticospinal tract and the medial lemniscus. Furthermore, we noticed a significant difference in the therapeutic window between the best and worst directional contacts. The best directional contacts did not provide significantly larger therapeutic windows than omnidirectional stimulation at the same level. Deep brain stimulation of the posterior subthalamic area effectively suppresses all aspects of ET but can be associated with concomitant side effects limiting the therapeutic window. Activation patterns for tremor suppression and side effects were similar and predominantly involved the dentato-rubro-thalamic tract and the zona incerta. We found no different activation patterns between different types of side effects and no clear correlation between structure and function. Future studies with use of more sophisticated modelling of activation volumes taking into account fiber heterogeneity and orientation may eventually better delineate these different clusters, which may allow for a refined targeting and programming within this area.
Collapse
|
62
|
Yang AI, Chaibainou H, Wang S, Hitti FL, McShane BJ, Tilden D, Korn M, Blanke A, Dayan M, Wolf RL, Baltuch GH. Focused Ultrasound Thalamotomy for Essential Tremor in the Setting of a Ventricular Shunt: Technical Report. Oper Neurosurg (Hagerstown) 2020; 17:376-381. [PMID: 30888021 DOI: 10.1093/ons/opz013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/07/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A recent randomized controlled trial of magnetic resonance imaging (MRI)-guided focused ultrasound (FUS) for essential tremor (ET) demonstrated safety and efficacy. Patients with ventricular shunts may be good candidates for FUS to minimize hardware-associated infections. OBJECTIVE To demonstrate feasibility of FUS in this subset of patients. METHODS A 74-yr-old male with medically refractory ET, and a right-sided ventricular shunt for normal pressure hydrocephalus, underwent FUS to the right ventro-intermedius (VIM) nucleus. The VIM nucleus was directly targeted using deterministic tractography. Clinical outcomes were measured using the Clinical Rating Scale for Tremor. RESULTS Shunt components required 6% of the total ultrasound transducer elements to be shut off. Eight therapeutic sonications were delivered (maximum temperature, 64°), leading to a 90% improvement in hand tremor and a 100% improvement in functional disability at the 3-mo follow-up. No complications were noted. CONCLUSION This is the first case of FUS thalamotomy in a patient with a shunt. Direct VIM targeting and achievement of therapeutic temperatures with acoustic energy is feasible in this subset of patients.
Collapse
Affiliation(s)
- Andrew I Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hanane Chaibainou
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sumei Wang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frederick L Hitti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brendan J McShane
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
63
|
Ranjan M, Elias GJB, Boutet A, Zhong J, Chu P, Germann J, Devenyi GA, Chakravarty MM, Fasano A, Hynynen K, Lipsman N, Hamani C, Kucharczyk W, Schwartz ML, Lozano AM, Hodaie M. Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. J Neurosurg 2020; 133:1002-1009. [PMID: 31561221 DOI: 10.3171/2019.6.jns19612] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Tractography-based targeting of the thalamic ventral intermediate nucleus (T-VIM) is a novel method conferring patient-specific selection of VIM coordinates for tremor surgery; however, its accuracy and clinical utility in magnetic resonance imaging-guided focused ultrasound (MRgFUS) thalamotomy compared to conventional indirect targeting has not been specifically addressed. This retrospective study sought to compare the treatment locations and potential adverse effect profiles of T-VIM with indirect targeting in a large cohort of MRgFUS thalamotomy patients. METHODS T-VIM was performed using diffusion tractography outlining the pyramidal and medial lemniscus tracts in 43 MRgFUS thalamotomy patients. T-VIM coordinates were compared with the indirect treatment coordinates used in the procedure. Thalamotomy lesions were delineated on postoperative T1-weighted images and displaced ("translated") by the anteroposterior and mediolateral difference between T-VIM and treatment coordinates. Both translated and actual lesions were normalized to standard space and subsequently overlaid with areas previously reported to be associated with an increased risk of motor and sensory adverse effects when lesioned during MRgFUS thalamotomy. RESULTS T-VIM coordinates were 2.18 mm anterior and 1.82 mm medial to the "final" indirect treatment coordinates. Translated lesions lay more squarely within the boundaries of the VIM compared to nontranslated lesions and showed significantly less overlap with areas associated with sensory adverse effects. Translated lesions overlapped less with areas associated with motor adverse effects; however, this difference was not significant. CONCLUSIONS T-VIM leads to the selection of more anterior and medial coordinates than the conventional indirect methods. Lesions moved toward these anteromedial coordinates avoid areas associated with an increased risk of motor and sensory adverse effects, suggesting that T-VIM may improve clinical outcomes.
Collapse
Affiliation(s)
- Manish Ranjan
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Gavin J B Elias
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Alexandre Boutet
- 1University Health Network, Toronto
- 3Joint Department of Medical Imaging, University of Toronto, Ontario
| | | | | | | | - Gabriel A Devenyi
- 4Cerebral Imaging Center, Douglas Mental Health University, McGill University; Departments of
- 5Psychiatry and
| | - M Mallar Chakravarty
- 4Cerebral Imaging Center, Douglas Mental Health University, McGill University; Departments of
- 5Psychiatry and
- 6Biological and Biomedical Engineering, McGill University, Montreal, Quebec
| | - Alfonso Fasano
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
- 7The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto
| | - Kullervo Hynynen
- 8Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto
- 9Department of Medical Biophysics, University of Toronto
- 10Institute of Biomaterials and Biomedical Engineering, University of Toronto
| | - Nir Lipsman
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
- 12Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Clement Hamani
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
- 12Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Center, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 3Joint Department of Medical Imaging, University of Toronto, Ontario
| | - Michael L Schwartz
- 11Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto; and
| | - Andres M Lozano
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| | - Mojgan Hodaie
- 1University Health Network, Toronto
- 2Krembil Brain Institute, Toronto
| |
Collapse
|
64
|
Tian Q, Bilgic B, Fan Q, Liao C, Ngamsombat C, Hu Y, Witzel T, Setsompop K, Polimeni JR, Huang SY. DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning. Neuroimage 2020; 219:117017. [PMID: 32504817 PMCID: PMC7646449 DOI: 10.1016/j.neuroimage.2020.117017] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor magnetic resonance imaging (DTI) is unsurpassed in its ability to map tissue microstructure and structural connectivity in the living human brain. Nonetheless, the angular sampling requirement for DTI leads to long scan times and poses a critical barrier to performing high-quality DTI in routine clinical practice and large-scale research studies. In this work we present a new processing framework for DTI entitled DeepDTI that minimizes the data requirement of DTI to six diffusion-weighted images (DWIs) required by conventional voxel-wise fitting methods for deriving the six unique unknowns in a diffusion tensor using data-driven supervised deep learning. DeepDTI maps the input non-diffusion-weighted (b = 0) image and six DWI volumes sampled along optimized diffusion-encoding directions, along with T1-weighted and T2-weighted image volumes, to the residuals between the input and high-quality output b = 0 image and DWI volumes using a 10-layer three-dimensional convolutional neural network (CNN). The inputs and outputs of DeepDTI are uniquely formulated, which not only enables residual learning to boost CNN performance but also enables tensor fitting of resultant high-quality DWIs to generate orientational DTI metrics for tractography. The very deep CNN used by DeepDTI leverages the redundancy in local and non-local spatial information and across diffusion-encoding directions and image contrasts in the data. The performance of DeepDTI was systematically quantified in terms of the quality of the output images, DTI metrics, DTI-based tractography and tract-specific analysis results. We demonstrate rotationally-invariant and robust estimation of DTI metrics from DeepDTI that are comparable to those obtained with two b = 0 images and 21 DWIs for the primary eigenvector derived from DTI and two b = 0 images and 26-30 DWIs for various scalar metrics derived from DTI, achieving 3.3-4.6 × acceleration, and twice as good as those of a state-of-the-art denoising algorithm at the group level. The twenty major white-matter tracts can be accurately identified from the tractography of DeepDTI results. The mean distance between the core of the major white-matter tracts identified from DeepDTI results and those from the ground-truth results using 18 b = 0 images and 90 DWIs measures around 1-1.5 mm. DeepDTI leverages domain knowledge of diffusion MRI physics and power of deep learning to render DTI, DTI-based tractography, major white-matter tracts identification and tract-specific analysis more feasible for a wider range of neuroscientific and clinical studies.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
65
|
Kapadia AN, Elias GJB, Boutet A, Germann J, Pancholi A, Chu P, Zhong J, Fasano A, Munhoz R, Chow C, Kucharczyk W, Schwartz ML, Hodaie M, Lozano AM. Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. J Neurol Neurosurg Psychiatry 2020; 91:921-927. [PMID: 32651242 DOI: 10.1136/jnnp-2020-322745] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND MRI-guided focused ultrasound (MRgFUS) thalamotomy is a promising non-invasive treatment option for medication-resistant essential tremor. However, it has been associated with variable efficacy and a relatively high incidence of adverse effects. OBJECTIVES To assess the evolution of radiological findings after MRgFUS thalamotomy and to evaluate their significance for clinical outcomes. METHODS Ninety-four patients who underwent MRgFUS between 2012 and 2017 were retrospectively evaluated. Lesion characteristics were assessed on routine MRI sequences, as well as with tractography. Relationships between imaging appearance, extent of white matter tract lesioning (59/94, on a 4-point scale) and clinical outcome were investigated. Recurrence was defined as >33% loss of tremor suppression at 3 months relative to day 7. RESULTS Acute lesions demonstrated blood products, surrounding oedema and peripheral diffusion restriction. The extent of dentatorubrothalamic tract (DRTT) lesioning was significantly associated with clinical improvement at 1 year (t=4.32, p=0.001). Lesion size decreased over time (180.8±91.5 mm3 at day 1 vs 19.5±19.3 mm3 at 1-year post-treatment). Higher post-treatment oedema (t=3.59, p<0.001) was associated with larger lesions at 3 months. Patients with larger lesions at day 1 demonstrated reduced rates of tremor recurrence (t=2.67, p=0.019); however, lesions over 170 mm3 trended towards greater incidence of adverse effects (sensitivity=0.60, specificity=0.63). Lesion encroachment on the medial lemniscus (Sn=1.00, Sp=0.32) and pyramidal tract (Sn=1.00, Sp=0.12) were also associated with increased adverse effects incidence. CONCLUSION Lesion size at day 1 predicts symptom recurrence, with fewer recurrences seen with larger lesions. Greater DRTT lesioning is associated with treatment efficacy. These findings may have implications for lesion targeting and extent. TRIAL REGISTRATION NUMBER NCT02252380.
Collapse
Affiliation(s)
- Anish N Kapadia
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Aditiya Pancholi
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Powell Chu
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Jidan Zhong
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Renato Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University Health Network, Toronto, Ontario, Canada
| | - Clement Chow
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
66
|
Middlebrooks EH, Domingo RA, Vivas-Buitrago T, Okromelidze L, Tsuboi T, Wong JK, Eisinger RS, Almeida L, Burns MR, Horn A, Uitti RJ, Wharen RE, Holanda VM, Grewal SS. Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics. AJNR Am J Neuroradiol 2020; 41:1558-1568. [PMID: 32816768 DOI: 10.3174/ajnr.a6693] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indications. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based "circuitopathies," aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in understanding the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and device programming.
Collapse
Affiliation(s)
- E H Middlebrooks
- From the Departments of Radiology (E.H.M., L.O.) .,Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - R A Domingo
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | | | | | - T Tsuboi
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida.,Department of Neurology (T.T., J.K.W., R.S.E., L.A., M.R.B.), Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, Florida
| | - J K Wong
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - R S Eisinger
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - L Almeida
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - M R Burns
- and Neurology (R.J.U.), Mayo Clinic, Jacksonville, Florida
| | - A Horn
- Department of Neurology (T.T.), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - R J Uitti
- Department for Neurology (A.H.), Charité, University Medicine Berlin, Berlin, Germany
| | - R E Wharen
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| | - V M Holanda
- Center of Neurology and Neurosurgery Associates (V.M.H.), BP-A Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | - S S Grewal
- Neurosurgery (E.H.M., R.A.D., T.V.-B., R.E.W., S.S.G.)
| |
Collapse
|
67
|
Su JH, Choi EY, Tourdias T, Saranathan M, Halpern CH, Henderson JM, Pauly KB, Ghanouni P, Rutt BK. Improved Vim targeting for focused ultrasound ablation treatment of essential tremor: A probabilistic and patient-specific approach. Hum Brain Mapp 2020; 41:4769-4788. [PMID: 32762005 PMCID: PMC7643361 DOI: 10.1002/hbm.25157] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) ablation of the ventral intermediate (Vim) thalamic nucleus is an incisionless treatment for essential tremor (ET). The standard initial targeting method uses an approximate, atlas-based stereotactic approach. We developed a new patient-specific targeting method to identify an individual's Vim and the optimal MRgFUS target region therein for suppression of tremor. In this retrospective study of 14 ET patients treated with MRgFUS, we investigated the ability of WMnMPRAGE, a highly sensitive and robust sequence for imaging gray matter-white matter contrast, to identify the Vim, FUS ablation, and a clinically efficacious region within the Vim in individual patients. We found that WMnMPRAGE can directly visualize the Vim in ET patients, segmenting this nucleus using manual or automated segmentation capabilities developed by our group. WMnMPRAGE also delineated the ablation's core and penumbra, and showed that all patients' ablation cores lay primarily within their Vim segmentations. We found no significant correlations between standard ablation features (e.g., ablation volume, Vim-ablation overlap) and 1-month post-treatment clinical outcome. We then defined a group-based probabilistic target, which was nonlinearly warped to individual brains; this target was located within the Vim for all patients. The overlaps between this target and patient ablation cores correlated significantly with 1-month clinical outcome (r = -.57, p = .03), in contrast to the standard target (r = -.23, p = .44). We conclude that WMnMPRAGE is a highly sensitive sequence for segmenting Vim and ablation boundaries in individual patients, allowing us to find a novel tremor-associated center within Vim and potentially improving MRgFUS treatment for ET.
Collapse
Affiliation(s)
- Jason H Su
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Thomas Tourdias
- Department of Neuroradiology, Bordeaux University Hospital, Bordeaux, France.,INSERM U1215, Neurocentre Magendie, University of Bordeaux, Bordeaux, France
| | | | - Casey H Halpern
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
68
|
Xiao Y, Lau JC, Hemachandra D, Gilmore G, Khan AR, Peters TM. Image Guidance in Deep Brain Stimulation Surgery to Treat Parkinson's Disease: A Comprehensive Review. IEEE Trans Biomed Eng 2020; 68:1024-1033. [PMID: 32746050 DOI: 10.1109/tbme.2020.3006765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deep brain stimulation (DBS) is an effective therapy as an alternative to pharmaceutical treatments for Parkinson's disease (PD). Aside from factors such as instrumentation, treatment plans, and surgical protocols, the success of the procedure depends heavily on the accurate placement of the electrode within the optimal therapeutic targets while avoiding vital structures that can cause surgical complications and adverse neurologic effects. Although specific surgical techniques for DBS can vary, interventional guidance with medical imaging has greatly contributed to the development, outcomes, and safety of the procedure. With rapid development in novel imaging techniques, computational methods, and surgical navigation software, as well as growing insights into the disease and mechanism of action of DBS, modern image guidance is expected to further enhance the capacity and efficacy of the procedure in treating PD. This article surveys the state-of-the-art techniques in image-guided DBS surgery to treat PD, and discusses their benefits and drawbacks, as well as future directions on the topic.
Collapse
|
69
|
Coenen VA, Sajonz BE, Reisert M, Urbach H, Reinacher PC. There's more to the picture than meets the eye : Reply to: Letter to the editor of Acta Neurochirurgica: Blind men and the elephant-comment on "The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series". Acta Neurochir (Wien) 2020; 162:1869-1870. [PMID: 32337611 PMCID: PMC7360644 DOI: 10.1007/s00701-020-04348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany.
- Center for Deep Brain Stimulation, Freiburg University Medical Center, Freiburg i.Br., Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Faculty of Freiburg University, Freiburg University Medical Center, Freiburg i.Br., Germany
| |
Collapse
|
70
|
Lau JC, Xiao Y, Haast RAM, Gilmore G, Uludağ K, MacDougall KW, Menon RS, Parrent AG, Peters TM, Khan AR. Direct visualization and characterization of the human zona incerta and surrounding structures. Hum Brain Mapp 2020; 41:4500-4517. [PMID: 32677751 PMCID: PMC7555067 DOI: 10.1002/hbm.25137] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
The zona incerta (ZI) is a small gray matter region of the deep brain first identified in the 19th century, yet direct in vivo visualization and characterization has remained elusive. Noninvasive detection of the ZI and surrounding region could be critical to further our understanding of this widely connected but poorly understood deep brain region and could contribute to the development and optimization of neuromodulatory therapies. We demonstrate that high resolution (submillimetric) longitudinal (T1) relaxometry measurements at high magnetic field strength (7 T) can be used to delineate the ZI from surrounding white matter structures, specifically the fasciculus cerebellothalamicus, fields of Forel (fasciculus lenticularis, fasciculus thalamicus, and field H), and medial lemniscus. Using this approach, we successfully derived in vivo estimates of the size, shape, location, and tissue characteristics of substructures in the ZI region, confirming observations only previously possible through histological evaluation that this region is not just a space between structures but contains distinct morphological entities that should be considered separately. Our findings pave the way for increasingly detailed in vivo study and provide a structural foundation for precise functional and neuromodulatory investigation.
Collapse
Affiliation(s)
- Jonathan C Lau
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.,School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Yiming Xiao
- Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Roy A M Haast
- Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Greydon Gilmore
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada.,School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Kâmil Uludağ
- IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea.,Department of Biomedical Engineering, N Center, Sungkyunkwan University, Suwon, South Korea.,Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada
| | - Ravi S Menon
- Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada
| | - Terry M Peters
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.,School of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Ali R Khan
- Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, London, Ontario, Canada.,Imaging Research Laboratories, Robarts Research Institute Canada, Western University, London, Ontario, Canada.,Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada.,School of Biomedical Engineering, Western University, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| |
Collapse
|
71
|
Chung S, Storey P, Shepherd TM, Lui YW. MR Susceptibility Imaging with a Short TE (MR-SISET): A Clinically Feasible Technique to Resolve Thalamic Nuclei. AJNR Am J Neuroradiol 2020; 41:1629-1631. [PMID: 32675340 DOI: 10.3174/ajnr.a6683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/11/2020] [Indexed: 11/07/2022]
Abstract
The thalamus consists of several functionally distinct nuclei, some of which serve as targets for functional neurosurgery. Visualization of such nuclei is a major challenge due to their low signal contrast on conventional imaging. We introduce MR susceptibility imaging with a short TE, leveraging susceptibility differences among thalamic nuclei, to automatically delineate 15 thalamic subregions. The technique has the potential to enable direct targeting of thalamic nuclei for functional neurosurgical guidance.
Collapse
Affiliation(s)
- S Chung
- From the Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York.
| | - P Storey
- From the Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| | - T M Shepherd
- From the Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| | - Y W Lui
- From the Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
72
|
Human brain connectivity: Clinical applications for clinical neurophysiology. Clin Neurophysiol 2020; 131:1621-1651. [DOI: 10.1016/j.clinph.2020.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
|
73
|
Al-Fatly B, Ewert S, Kübler D, Kroneberg D, Horn A, Kühn AA. Connectivity profile of thalamic deep brain stimulation to effectively treat essential tremor. Brain 2020; 142:3086-3098. [PMID: 31377766 DOI: 10.1093/brain/awz236] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/19/2023] Open
Abstract
Essential tremor is the most prevalent movement disorder and is often refractory to medical treatment. Deep brain stimulation offers a therapeutic approach that can efficiently control tremor symptoms. Several deep brain stimulation targets (ventral intermediate nucleus, zona incerta, posterior subthalamic area) have been discussed for tremor treatment. Effective deep brain stimulation therapy for tremor critically involves optimal targeting to modulate the tremor network. This could potentially become more robust and precise by using state-of-the-art brain connectivity measurements. In the current study, we used two normative brain connectomes (structural and functional) to show the pattern of effective deep brain stimulation electrode connectivity in 36 patients with essential tremor. Our structural and functional connectivity models were significantly predictive of postoperative tremor improvement in out-of-sample data (P < 0.001 for both structural and functional leave-one-out cross-validation). Additionally, we segregated the somatotopic brain network based on head and hand tremor scores. These resulted in segregations that mapped onto the well-known somatotopic maps of both motor cortex and cerebellum. Crucially, this shows that slightly distinct networks need to be modulated to ameliorate head versus hand tremor and that those networks could be identified based on somatotopic zones in motor cortex and cerebellum. Finally, we propose a multi-modal connectomic deep brain stimulation sweet spot that may serve as a reference to enhance clinical care, in the future. This spot resided in the posterior subthalamic area, encroaching on the inferior borders of ventral intermediate nucleus and sensory thalamus. Our results underscore the importance of integrating brain connectivity in optimizing deep brain stimulation targeting for essential tremor.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dorothee Kübler
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Horn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
74
|
Gravbrot N, Saranathan M, Pouratian N, Kasoff WS. Advanced Imaging and Direct Targeting of the Motor Thalamus and Dentato-Rubro-Thalamic Tract for Tremor: A Systematic Review. Stereotact Funct Neurosurg 2020; 98:220-240. [PMID: 32403112 DOI: 10.1159/000507030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/27/2020] [Indexed: 12/06/2024]
Abstract
Direct targeting methods for stereotactic neurosurgery in the treatment of essential tremor have been the subject of active research over the past decade but have not yet been systematically reviewed. We present a clinically oriented topic review based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses Group guidelines. Our focus is studies using advanced magnetic resonance imaging (MRI) techniques (ultrahigh-field structural MRI, diffusion-weighted imaging, diffusion-tensor tractography, and functional MRI) for patient specific, in vivo identification of the ventral intermediate nucleus and the dentato-rubro-thalamic tract.
Collapse
Affiliation(s)
- Nicholas Gravbrot
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Willard S Kasoff
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA,
| |
Collapse
|
75
|
Buch VP, McShane BJ, Beatson N, Yang A, Blanke A, Tilden D, Korn M, Chaibainou H, Ramayya A, Wombacher K, Maier S, Marashlian T, Wolf R, Baltuch GH. Focused Ultrasound Thalamotomy with Dentato-Rubro-Thalamic Tractography in Patients with Spinal Cord Stimulators and Cardiac Pacemakers. Stereotact Funct Neurosurg 2020; 98:263-269. [PMID: 32403106 DOI: 10.1159/000507031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022]
Abstract
Magnetic resonance image-guided high-intensity focused ultrasound (MRgFUS)-based thermal ablation of the ventral intermediate nucleus of the thalamus (VIM) is a minimally invasive treatment modality for essential tremor (ET). Dentato-rubro-thalamic tractography (DRTT) is becoming increasingly popular for direct targeting of the presumed VIM ablation focus. It is currently unclear if patients with implanted pulse generators (IPGs) can safely undergo MRgFUS ablation and reliably acquire DRTT suitable for direct targeting. We present an 80-year-old male with a spinal cord stimulator (SCS) and an 88-year-old male with a cardiac pacemaker who both underwent MRgFUS for medically refractory ET. Clinical outcomes were measured using the Clinical Rating Scale for Tremor (CRST). DRTT was successfully created and imaging parameter adjustments did not result in any delay in procedural time in either case. In the first case, 7 therapeutic sonications were delivered. The patient improved immediately and durably with a 90% CRST-disability improvement at 6-week follow-up. In our second case, 6 therapeutic sonications were delivered with durable, 75% CRST-disability improvement at 6 weeks. These are the first cases of MRgFUS thalamotomy in patients with IPGs. DRTT targeting and MRgFUS-based thermal ablation can be safely performed in these patients using a 1.5-T MRI.
Collapse
Affiliation(s)
- Vivek P Buch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| | - Brendan J McShane
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan Beatson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | - Hanane Chaibainou
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirsten Wombacher
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon Maier
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tigran Marashlian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
76
|
MRI follow-up after magnetic resonance-guided focused ultrasound for non-invasive thalamotomy: the neuroradiologist's perspective. Neuroradiology 2020; 62:1111-1122. [PMID: 32363482 PMCID: PMC7410861 DOI: 10.1007/s00234-020-02433-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Abstract
Purpose Magnetic resonance-guided focused ultrasound (MRgFUS) systems are increasingly used to non-invasively treat tremor; consensus on imaging follow-up is poor in these patients. This study aims to elucidate how MRgFUS lesions evolve for a radiological readership with regard to clinical outcome. Methods MRgFUS-induced lesions and oedema were retrospectively evaluated based on DWI, SWI, T2-weighted and T1-weighted 3-T MRI data acquired 30 min and 3, 30 and 180 days after MRgFUS (n = 9 essential tremor, n = 1 Parkinson’s patients). Lesions were assessed volumetrically, visually and by ADC measurements and compared with clinical effects using non-parametric testing. Results Thirty minutes after treatment, all lesions could be identified on T2-weighted images. Immediate oedema was rare (n = 1). Lesion volume as well as oedema reached a maximum on day 3 with a mean lesion size of 0.4 ± 0.2 cm3 and an oedema volume 3.7 ± 1.2 times the lesion volume. On day 3, a distinct diffusion-restricted rim was noted that corresponded well with SWI. Lesion shrinkage after day 3 was observed in all sequences. Lesions were no longer detectable on DWI in n = 7/10, on T2-weighted images in n = 4/10 and on T1-weighted images in n = 4/10 on day 180. No infarcts or haemorrhage were observed. There was no correlation between lesion size and initial motor skill improvement (p = 0.99). Tremor reduction dynamics correlated strongly with lesion shrinkage between days 3 and 180 (p = 0.01, R = 0.76). Conclusion In conclusion, cerebral MRgFUS lesions variably shrink over months. SWI is the sequence of choice to identify lesions after 6 months. Lesion volume is arguably associated with intermediate-term outcome.
Collapse
|
77
|
Coenen VA, Sajonz B, Prokop T, Reisert M, Piroth T, Urbach H, Jenkner C, Reinacher PC. The dentato-rubro-thalamic tract as the potential common deep brain stimulation target for tremor of various origin: an observational case series. Acta Neurochir (Wien) 2020; 162:1053-1066. [PMID: 31997069 PMCID: PMC7156360 DOI: 10.1007/s00701-020-04248-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.
Collapse
Affiliation(s)
- Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany.
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany.
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany.
- NeuroModul Basics (Center for Basics in NeuroModulation), Freiburg University, Freiburg (i.Br.), Germany.
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| | - Tobias Piroth
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Brain Links/Brain Tools Cluster of Excellence, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neurology and Neurophysiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Horst Urbach
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg (i.Br.), Germany
| | - Carolin Jenkner
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
- Clinical Trials Unit, Freiburg University Medical Center, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg (i.Br.), Germany
- Faculty of Medicine, Freiburg University, Freiburg (i.Br.), Germany
| |
Collapse
|
78
|
Mahajan A, Bader A, Wang LL, Rekhtman A, Espay AJ, Dwivedi AK, Sturchio A, Marsili L, Duker AP, Krishna V, Mandybur GT, Merola A. Thalamic Deep Brain Stimulation for tremor: The critical role of intraoperative testing. Parkinsonism Relat Disord 2020; 73:45-49. [PMID: 32247245 DOI: 10.1016/j.parkreldis.2020.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Optimal placement of Deep Brain Stimulation (DBS) lead is critical to ensure an adequate therapeutic benefit and minimize stimulation-induced side effects. METHODS We reviewed data from 2004 to 2018 of all cases of essential tremor treated with thalamic DBS at the University of Cincinnati. All procedures were performed with the patient awake. Change in parallel trajectory was classified as major repositioning, whereas a change in depth of electrode classified as minor repositioning. The following data were compared between groups (no vs. minor vs. major repositioning): age at surgery, sex, AC-PC length, third ventricle width, cerebral atrophy, small vessel disease burden, and intraoperative tremor control. Univariate and multivariate analyses were conducted to identify factors associated with intraoperative repositioning. RESULTS Of the 127 encounters with essential tremor, 71 required repositioning (33 major and 38 minor). Comparing procedures with major, minor, and no repositioning, mean number of changes per procedure (4 vs. 1.2 vs 0; p < 0.001) and AC-PC length (26 vs. 27 vs. 27.2 mm; p = 0.021) differed between the three groups. Older age at surgery (OR 1.04, p = 0.042), left side (OR 2.56, p = 0.04) and decrease in AC-PC length (OR 1.33, p = 0.026) were associated with greater odds of any (minor or major) repositioning. A decrease in AC-PC length was associated with greater odds of major repositioning (OR 1.37, p = 0.009). CONCLUSION Intraoperative functional testing may be critical to ensure the accuracy of thalamic DBS targeting based on neuroimaging data, particularly in patients with reduced AC-PC length.
Collapse
Affiliation(s)
- Abhimanyu Mahajan
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander Bader
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Lily L Wang
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | | | - Alberto J Espay
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Alok K Dwivedi
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew P Duker
- James J. and Joan A. Gardner Center for Parkinson's disease and Movement disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Vibhor Krishna
- The Ohio State Wexner Medical Center, Department of Neurosurgery, Columbus, OH, USA
| | | | - Aristide Merola
- The Ohio State Wexner Medical Center, Department of Neurology, Columbus, OH, USA.
| |
Collapse
|
79
|
Tohyama S, Walker MR, Sammartino F, Krishna V, Hodaie M. The Utility of Diffusion Tensor Imaging in Neuromodulation: Moving Beyond Conventional Magnetic Resonance Imaging. Neuromodulation 2020; 23:427-435. [DOI: 10.1111/ner.13107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/08/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sarasa Tohyama
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
| | - Matthew R. Walker
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
| | - Francesco Sammartino
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Vibhor Krishna
- Center for Neuromodulation, Department of Neurosurgery The Ohio State University Columbus OH USA
| | - Mojgan Hodaie
- Division of Brain, Imaging, and Behaviour–Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital University Health Network Toronto ON Canada
- Institute of Medical Science, Faculty of Medicine University of Toronto Toronto ON Canada
- Department of Surgery, Faculty of Medicine University of Toronto Toronto ON Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital University Health Network Toronto ON Canada
| |
Collapse
|
80
|
Hori H, Yamaguchi T, Konishi Y, Taira T, Muragaki Y. Correlation between fractional anisotropy changes in the targeted ventral intermediate nucleus and clinical outcome after transcranial MR-guided focused ultrasound thalamotomy for essential tremor: results of a pilot study. J Neurosurg 2020; 132:568-573. [PMID: 30771772 DOI: 10.3171/2018.10.jns18993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study evaluated changes of fractional anisotropy (FA) in the ventral intermediate nucleus (VIM) of the thalamus after transcranial MR-guided focused ultrasound (TcMRgFUS) thalamotomy and their associations with clinical outcome. METHODS Clinical and radiological data of 12 patients with medically refractory essential tremor (mean age 76.5 years) who underwent TcMRgFUS thalamotomy with VIM targeting were analyzed retrospectively. The Clinical Rating Scale for Tremor (CRST) score was calculated before and at 1 year after treatment. Measurements of the relative FA (rFA) values, defined as ratio of the FA value in the targeted VIM to the FA value in the contralateral VIM, were performed before thalamotomy, and 1 day and 1 year thereafter. RESULTS TcMRgFUS thalamotomy was well tolerated and no long-term complications were noted. At 1-year follow-up, 8 patients demonstrated relief of tremor (improvement group), whereas in 4 others persistent tremor was noted (recurrence group). In the entire cohort, mean rFA values in the targeted VIM before treatment, and at 1 day and 1 year after treatment, were 1.12 ± 0.15, 0.44 ± 0.13, and 0.82 ± 0.22, respectively (p < 0.001). rFA values were consistently higher in the recurrence group compared with the improvement group, and the difference reached statistical significance at 1 day (p < 0.05) and 1 year (p < 0.01) after treatment. There was a statistically significant (p < 0.01) positive correlation between rFA values in the targeted VIM at 1 day after thalamotomy and CRST score at 1 year after treatment. Receiver operating characteristic curve analysis revealed that the optimal cutoff value of rFA at 1 day after thalamotomy for prediction of symptomatic improvement at 1-year follow-up is 0.54. CONCLUSIONS TcMRgFUS thalamotomy results in significant decrease of rFA in the targeted VIM, at both 1 day and 1 year after treatment. Relative FA values at 1 day after treatment showed significant correlation with CRST score at 1-year follow-up. Therefore, FA may be considered a possible imaging biomarker for early prediction of clinical outcome after TcMRgFUS thalamotomy for essential tremor.
Collapse
Affiliation(s)
- Hiroki Hori
- 1Faculty of Advanced Techno-Surgery and
- 3Department of Radiology and
| | - Toshio Yamaguchi
- 4Research Institute for Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kawasaki, Kanagawa, Japan
| | | | - Takaomi Taira
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| | - Yoshihiro Muragaki
- 1Faculty of Advanced Techno-Surgery and
- 2Department of Neurosurgery, Tokyo Women's Medical University, Tokyo; and
| |
Collapse
|
81
|
Yang AI, Buch VP, Heman-Ackah SM, Ramayya AG, Hitti FL, Beatson N, Chaibainou H, Yates M, Wang S, Verma R, Wolf RL, Baltuch GH. Thalamic Deep Brain Stimulation for Essential Tremor: Relation of the Dentatorubrothalamic Tract with Stimulation Parameters. World Neurosurg 2020; 137:e89-e97. [PMID: 31954907 DOI: 10.1016/j.wneu.2020.01.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND In deep brain stimulation (DBS) for essential tremor, the primary target ventrointermedius (VIM) nucleus cannot be clearly visualized with structural imaging. As such, there has been much interest in the dentatorubrothalamic tract (DRTT) for target localization, but evidence for the DRTT as a putative stimulation target in tremor suppression is lacking. We evaluated proximity of the DRTT in relation to DBS stimulation parameters. METHODS This is a retrospective analysis of 26 consecutive patients who underwent DBS with microelectrode recordings (46 leads). Fiber tracking was performed with a published deterministic technique. Clinically optimized stimulation parameters were obtained in all patients at the time of most recent follow-up (6.2 months). Volume of tissue activated (VTA) around contacts was calculated from a published model. RESULTS Tremor severity was reduced in all treated hemispheres, with 70% improvement in the treated hand score of the Clinical Rating Scale for Tremor. At the level of the active contact (2.9 ± 2.0 mm superior to the commissural plane), the center of the DRTT was lateral to the contacts (5.1 ± 2.1 mm). The nearest fibers of the DRTT were 2.4 ± 1.7 mm from the contacts, whereas the radius of the VTA was 2.9 ± 0.7 mm. The VTA overlapped with the DRTT in 77% of active contacts. The distance from active contact to the DRTT was positively correlated with stimulation voltage requirements (Kendall τ = 0.33, P = 0.006), whereas distance to the atlas-based VIM coordinates was not. CONCLUSIONS Active contacts in proximity to the DRTT had lower voltage requirements. Data from a large cohort provide support for the DRTT as an effective stimulation target for tremor control.
Collapse
Affiliation(s)
- Andrew I Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek P Buch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sabrina M Heman-Ackah
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Frederick L Hitti
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan Beatson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hanane Chaibainou
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Sumei Wang
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ragini Verma
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
82
|
Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A. Prospective Tractography-Based Targeting for Improved Safety of Focused Ultrasound Thalamotomy. Neurosurgery 2020; 84:160-168. [PMID: 29579287 DOI: 10.1093/neuros/nyy020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Focused ultrasound thalamotomy (FUS-T) was recently approved for the treatment of refractory essential tremor (ET). Despite its noninvasive approach, FUS-T reinitiated concerns about the adverse effects and long-term efficacy after lesioning. OBJECTIVE To prospectively assess the outcomes of FUS-T in 10 ET patients using tractography-based targeting of the ventral intermediate nucleus (VIM). METHODS VIM was identified at the intercommissural plane based on its neighboring tracts: the pyramidal tract and medial lemniscus. FUS-T was performed at the center of tractography-defined VIM. Tremor outcomes, at baseline and 3 mo, were assessed independently by the Tremor Research Group. We analyzed targeting coordinates, clinical outcomes, and adverse events. The FUS-T lesion location was analyzed in relation to unbiased thalamic parcellation using probabilisitic tractography. Quantitative diffusion-weighted imaging changes were also studied in fiber tracts of interest. RESULTS The tractography coordinates were more anterior than the standard. Intraoperatively, therapeutic sonications at the tractography target improved tremor (>50% improvement) without motor or sensory side effects. Sustained improvement in tremor was observed at 3 mo (tremor score: 18.3 ± 6.9 vs 8.1 ± 4.4, P = .001). No motor weakness and sensory deficits after FUS-T were observed during 6-mo follow-up. Ataxia was observed in 3 patients. FUS-T lesions overlapped with the VIM parcellated with probablisitic tractography. Significant microstructural changes were observed in the white matter connecting VIM with cerebellum and motor cortex. CONCLUSION This is the first report of prospective VIM targeting with tractography for FUS-T. These results suggest that tractography-guided targeting is safe and has satisfactory short-term clinical outcomes.
Collapse
Affiliation(s)
- Vibhor Krishna
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| | | | - Punit Agrawal
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| | | | - Eric Bourekas
- De-partment of Radiology, The Ohio State University, Columbus, Ohio
| | - Michael V Knopp
- De-partment of Radiology, The Ohio State University, Columbus, Ohio
| | - Ali Rezai
- Center for Neuromodulation, The Ohio State University, Columbus, Ohio
| |
Collapse
|
83
|
Network-Based Imaging and Connectomics. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
84
|
Patel NJ, Gavvala JR, Jimenez-Shahed J. Awake Testing to Confirm Target Engagement. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
85
|
Krishna V, Young NA, Sammartino F. Imaging: Patient Selection, Targeting, and Outcome Biomarkers. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
86
|
Essential Tremor: Lesions. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
87
|
Walker MR, Zhong J, Waspe AC, Looi T, Piorkowska K, Hawkins C, Drake JM, Hodaie M. Acute MR-Guided High-Intensity Focused Ultrasound Lesion Assessment Using Diffusion-Weighted Imaging and Histological Analysis. Front Neurol 2019; 10:1069. [PMID: 31681145 PMCID: PMC6803785 DOI: 10.3389/fneur.2019.01069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
Objectives: The application of magnetic resonance-guided focused ultrasound (MRgFUS) for the treatment of neurological conditions has been of increasing interest. Conventional MR imaging can provide structural information about the effect of MRgFUS, where differences in ablated tissue can be seen, but it lacks information about the status of the cellular environment or neural microstructure. We investigate in vivo acute changes in water diffusion and white matter tracts in the brain of a piglet model after MRgFUS treatment using diffusion-weighted imaging (DWI) with histological verification of treatment-related changes. Methods: MRgFUS was used to treat the anterior body of the fornix in four piglets. T1 and diffusion-weighted images were collected before and after treatment. Mean diffusion-weighted imaging (MDWI) images were generated to measure lesion volumes via signal intensity thresholds. Histological data were collected for volume comparison and assessment of treatment effect. DWI metric maps of fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were generated for quantitative assessment. Fornix-related fiber tracts were generated before and after treatment for qualitative assessment. Results: The volume of treated tissue measured via MDWI did not differ significantly from histological measurements, and both were significantly larger than the treatment cell volume. Diffusion metrics in the treatment region were significantly decreased following MRgFUS treatment, with the peak change seen at the lesion core and decreasing radially. Histological analysis confirmed an area of coagulative necrosis in the targeted region with sharp demarcation zone with surrounding brain. Tractography from the lesion core and the fornix revealed fiber disruptions following treatment. Conclusions: Diffusion maps and fiber tractography are an effective method for assessing lesion volumes and microstructural changes in vivo following MRgFUS treatment. This study demonstrates that DWI has the potential to advance MRgFUS by providing convenient in vivo microstructural lesion and fiber tractography assessment after treatment.
Collapse
Affiliation(s)
- Matthew R Walker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jidan Zhong
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Adam C Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada
| | - Karolina Piorkowska
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, Division of Neuropathology, Hospital for Sick Children, Toronto, ON, Canada
| | - James M Drake
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
88
|
Harary M, Essayed WI, Valdes PA, McDannold N, Cosgrove GR. Volumetric analysis of magnetic resonance-guided focused ultrasound thalamotomy lesions. Neurosurg Focus 2019; 44:E6. [PMID: 29385921 DOI: 10.3171/2017.11.focus17587] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy was recently approved for use in the treatment of medication-refractory essential tremor (ET). Previous work has described lesion appearance and volume on MRI up to 6 months after treatment. Here, the authors report on the volumetric segmentation of the thalamotomy lesion and associated edema in the immediate postoperative period and 1 year following treatment, and relate these radiographic characteristics with clinical outcome. METHODS Seven patients with medication-refractory ET underwent MRgFUS thalamotomy at Brigham and Women's Hospital and were monitored clinically for 1 year posttreatment. Treatment effect was measured using the Clinical Rating Scale for Tremor (CRST). MRI was performed immediately postoperatively, 24 hours posttreatment, and at 1 year. Lesion location and the volumes of the necrotic core (zone I) and surrounding edema (cytotoxic, zone II; vasogenic, zone III) were measured on thin-slice T2-weighted images using Slicer 3D software. RESULTS Patients had significant improvement in overall CRST scores (baseline 51.4 ± 10.8 to 24.9 ± 11.0 at 1 year, p = 0.001). The most common adverse events (AEs) in the 1-month posttreatment period were transient gait disturbance (6 patients) and paresthesia (3 patients). The center of zone I immediately posttreatment was 5.61 ± 0.9 mm anterior to the posterior commissure, 14.6 ± 0.8 mm lateral to midline, and 11.0 ± 0.5 mm lateral to the border of the third ventricle on the anterior commissure-posterior commissure plane. Zone I, II, and III volumes immediately posttreatment were 0.01 ± 0.01, 0.05 ± 0.02, and 0.33 ± 0.21 cm3, respectively. These volumes increased significantly over the first 24 hours following surgery. The edema did not spread evenly, with more notable expansion in the superoinferior and lateral directions. The spread of edema inferiorly was associated with the incidence of gait disturbance. At 1 year, the remaining lesion location and size were comparable to those of zone I immediately posttreatment. Zone volumes were not associated with clinical efficacy in a statistically significant way. CONCLUSIONS MRgFUS thalamotomy demonstrates sustained clinical efficacy at 1 year for the treatment of medication-refractory ET. This technology can create accurate, predictable, and small-volume lesions that are stable over time. Instances of AEs are transient and are associated with the pattern of perilesional edema expansion. Additional analysis of a larger MRgFUS thalamotomy cohort could provide more information to maximize clinical effect and reduce the rate of long-lasting AEs.
Collapse
Affiliation(s)
| | | | | | - Nathan McDannold
- 2Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
89
|
Wang TR, Bond AE, Dallapiazza RF, Blanke A, Tilden D, Huerta TE, Moosa S, Prada FU, Elias WJ. Transcranial magnetic resonance imaging-guided focused ultrasound thalamotomy for tremor: technical note. Neurosurg Focus 2019; 44:E3. [PMID: 29385914 DOI: 10.3171/2017.10.focus17609] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the use of focused ultrasound (FUS) in neurosurgery dates to the 1950s, its clinical utility was limited by the need for a craniotomy to create an acoustic window. Recent technological advances have enabled efficient transcranial delivery of US. Moreover, US is now coupled with MRI to ensure precise energy delivery and monitoring. Thus, MRI-guided transcranial FUS lesioning is now being investigated for myriad neurological and psychiatric disorders. Among the first transcranial FUS treatments is thalamotomy for the treatment of various tremors. The authors provide a technical overview of FUS thalamotomy for tremor as well as important lessons learned during their experience with this emerging technology.
Collapse
Affiliation(s)
| | | | - Robert F Dallapiazza
- Division of Neurosurgery, Toronto Western Hospital University Health Network, Toronto, Ontario, Canada
| | | | | | - Thomas E Huerta
- Department of Radiology, Neuroradiology Division, University of Virginia Health System, Charlottesville, Virginia
| | | | - Francesco U Prada
- Department of Neurological Surgery, and.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | |
Collapse
|
90
|
Pineda-Pardo JA, Urso D, Martínez-Fernández R, Rodríguez-Rojas R, del-Alamo M, Millar Vernetti P, Máñez-Miró JU, Hernández-Fernández F, de Luis-Pastor E, Vela-Desojo L, Obeso JA. Transcranial Magnetic Resonance-Guided Focused Ultrasound Thalamotomy in Essential Tremor: A Comprehensive Lesion Characterization. Neurosurgery 2019; 87:256-265. [DOI: 10.1093/neuros/nyz395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/21/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) thalamotomy is a novel and effective treatment for controlling tremor in essential tremor patients.
OBJECTIVE
To provide a comprehensive characterization of the radiological, topographical, and volumetric aspects of the tcMRgFUS thalamic lesion, and to quantify how they relate to the clinical outcomes.
METHODS
In this study, clinical and radiological data from forty patients with medically-refractory essential tremor treated with unilateral tcMRgFUS thalamotomy were retrospectively analyzed. Treatment efficacy was assessed with Clinical Rating Scale for Tremor (CRST). Lesions were manually segmented on T1, T2, and susceptibility-weighted images, and 3-dimensional topographical analysis was then carried out. Statistical comparisons were performed using nonparametric statistics.
RESULTS
The greatest clinical improvement was correlated with a more inferior and posterior lesion, a bigger lesion volume, and percentage of the ventral intermediate nucleus covered by the lesion; whereas, the largest lesions accounted for the occurrence of gait imbalance. Furthermore, the volume of the lesion was significantly predicted by the number of sonications surpassing 52°C.
CONCLUSION
Here we provide a comprehensive characterization of the thalamic tcMRgFUS lesion including radiological and topographical analysis. Our results indicate that the location and volume of the lesion were significantly associated with the clinical outcome and that mid-temperatures may be responsible for the lesion size. This could serve ultimately to improve targeting and judgment and to optimize clinical outcome of tcMRgFUS thalamotomy.
Collapse
Affiliation(s)
- José Angel Pineda-Pardo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Daniele Urso
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Raul Martínez-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Rafael Rodríguez-Rojas
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| | - Marta del-Alamo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | | | - Jorge U Máñez-Miró
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - Frida Hernández-Fernández
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Nursing
| | | | - Lydia Vela-Desojo
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
| | - José A Obeso
- CINAC (Centro Integral de Neurociencias), University Hospital HM Puerta del Sur, CEU-San Pablo University, Móstoles, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
91
|
Nowacki A, Bogdanovic M, Sarangmat N, Fitzgerald J, Green A, Aziz TZ. Revisiting the rules for anatomical targeting of ventralis intermediate nucleus. J Clin Neurosci 2019; 68:97-100. [DOI: 10.1016/j.jocn.2019.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/23/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
92
|
Ramirez-Zamora A, Giordano J, Boyden ES, Gradinaru V, Gunduz A, Starr PA, Sheth SA, McIntyre CC, Fox MD, Vitek J, Vedam-Mai V, Akbar U, Almeida L, Bronte-Stewart HM, Mayberg HS, Pouratian N, Gittis AH, Singer AC, Creed MC, Lazaro-Munoz G, Richardson M, Rossi MA, Cendejas-Zaragoza L, D'Haese PF, Chiong W, Gilron R, Chizeck H, Ko A, Baker KB, Wagenaar J, Harel N, Deeb W, Foote KD, Okun MS. Proceedings of the Sixth Deep Brain Stimulation Think Tank Modulation of Brain Networks and Application of Advanced Neuroimaging, Neurophysiology, and Optogenetics. Front Neurosci 2019; 13:936. [PMID: 31572109 PMCID: PMC6751331 DOI: 10.3389/fnins.2019.00936] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging techniques for the treatment of a range of psychiatric and neurological conditions including Parkinson’s disease, essential tremor, Tourette syndrome, epilepsy, cognitive disorders, and addiction. Each section of this overview provides insight about the understanding of neuromodulation for specific disease and discusses current challenges and future directions. This year’s report addresses key issues in implementing advanced neurophysiological techniques, evolving use of novel modulation techniques to deliver DBS, ans improved neuroimaging techniques. The proceedings also offer insights into the new era of brain network neuromodulation and connectomic DBS to define and target dysfunctional brain networks. The proceedings also focused on innovations in applications and understanding of adaptive DBS (closed-loop systems), the use and applications of optogenetics in the field of neurostimulation and the need to develop databases for DBS indications. Finally, updates on neuroethical, legal, social, and policy issues relevant to DBS research are discussed.
Collapse
Affiliation(s)
- Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - James Giordano
- Neuroethics Studies Program, Department of Neurology and Department of Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| | - Edward S Boyden
- Media Laboratory, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aysegul Gunduz
- Department of Neuroscience and Department of Biomedical Engineering and Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Philip A Starr
- Graduate Program in Neuroscience, Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jerrold Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Vinata Vedam-Mai
- Department of Neurosurgery, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Umer Akbar
- Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Veterans Affairs Medical Center, Brown Institute for Brain Science, Brown University, Providence, RI, United States
| | - Leonardo Almeida
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Helen M Bronte-Stewart
- Department of Neurology and Department of Neurological Sciences and Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Aryn H Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Meaghan C Creed
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Mark Richardson
- Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Marvin A Rossi
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | | | - Winston Chiong
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Ro'ee Gilron
- Graduate Program in Neuroscience, Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Howard Chizeck
- Graduate Program in Neuroscience, Department of Electrical Engineering, University of Washington, Seattle, WA, United States
| | - Andrew Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Kenneth B Baker
- Movement Disorders Program, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Joost Wagenaar
- Department of Neurology, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Wissam Deeb
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Department of Neurosurgery, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
93
|
Nowacki A, Debove I, Rossi F, Schlaeppi JA, Petermann K, Wiest R, Schüpbach M, Pollo C. Targeting the posterior subthalamic area for essential tremor: proposal for MRI-based anatomical landmarks. J Neurosurg 2019; 131:820-827. [PMID: 30497206 DOI: 10.3171/2018.4.jns18373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the posterior subthalamic area (PSA) is an alternative to thalamic DBS for the treatment of essential tremor (ET). The dentato-rubro-thalamic tract (DRTT) has recently been proposed as the anatomical substrate underlying effective stimulation. For clinical purposes, depiction of the DRTT mainly depends on diffusion tensor imaging (DTI)-based tractography, which has some drawbacks. The objective of this study was to present an accurate targeting strategy for DBS of the PSA based on anatomical landmarks visible on MRI and to evaluate clinical effectiveness. METHODS The authors performed a retrospective cohort study of a prospective series of 11 ET patients undergoing bilateral DBS of the PSA. The subthalamic nucleus and red nucleus served as anatomical landmarks to define the target point within the adjacent PSA on 3-T T2-weighted MRI. Stimulating contact (SC) positions with reference to the midcommissural point were analyzed and projected onto the stereotactic atlas of Morel. Postoperative outcome assessment after 6 and 12 months was based on change in Tremor Rating Scale (TRS) scores. RESULTS Actual target position corresponded to the intended target based on anatomical landmarks depicted on MRI. The total TRS score was reduced (improved) from 47.2 ± 15.7 to 21.3 ± 10.7 (p < 0.001). No severe complication occurred. The mean SC position projected onto the PSA at the margin of the cerebellothalamic fascicle and the zona incerta. CONCLUSIONS Targeting of the PSA based on anatomical landmarks representable on MRI is reliable and leads to accurate lead placement as well as good long-term clinical outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Roland Wiest
- 3Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
94
|
Fasano A, Helmich RC. Tremor habituation to deep brain stimulation: Underlying mechanisms and solutions. Mov Disord 2019; 34:1761-1773. [PMID: 31433906 DOI: 10.1002/mds.27821] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/01/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
DBS of the ventral intermediate nucleus is an extremely effective treatment for essential tremor, although a waning benefit is observed after a variable time in a variable proportion of patients (ranging from 0% to 73%), a concept historically defined as "tolerance." Tolerance is currently an established concept in the medical community, although there is debate on its real existence. In fact, very few publications have actually addressed the problem, thus making tolerance a typical example of science based on "eminence rather than evidence." The underpinnings of the phenomena associated with the progressive loss of DBS benefit are not fully elucidated, although the interplay of different-not mutually exclusive-factors has been advocated. In this viewpoint, we gathered the evidence explaining the progressive loss of benefit observed after DBS. We grouped these factors in three categories: disease-related factors (tremor etiology and progression); surgery-related factors (electrode location, microlesional effect and placebo); and stimulation-related factors (not optimized stimulation, stimulation-induced side effects, habituation, and tremor rebound). We also propose possible pathophysiological explanations for the phenomenon and define a nomenclature of the associated features: early versus late DBS failure; tremor rebound versus habituation (to be preferred over tolerance). Finally, we provide a practical approach for preventing and treating this loss of DBS benefit, and we draft a possible roadmap for the research to come. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
| | - Rick C Helmich
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Nijmegen, The Netherlands
| |
Collapse
|
95
|
Miller TR, Zhuo J, Eisenberg HM, Fishman PS, Melhem ER, Gullapalli R, Gandhi D. Targeting of the dentato-rubro-thalamic tract for MR-guided focused ultrasound treatment of essential tremor. Neuroradiol J 2019; 32:401-407. [PMID: 31407957 DOI: 10.1177/1971400919870180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound ablation of the thalamic ventral intermediate nucleus is a safe and effective treatment for medically refractory essential tremor. However, indirect targeting of the ventral intermediate nucleus using stereotactic coordinates from normal neuroanatomy can be inefficient. We therefore evaluated the feasibility of supplementing this method with direct targeting of the dentato-rubro-thalamic tract. METHODS We retrospectively identified four patients undergoing magnetic resonance-guided focused ultrasound ablation for essential tremor in which preoperative diffusion tractography imaging of the dentato-rubro-thalamic tract was fused with T2 weighted-imaging and utilized for intra-procedural targeting. The size and location of the dentato-rubro-thalamic tract and 24-hour lesion, as well as the center of the stereotactic coordinates, was evaluated. Finally, the amount of overlap between the dentato-rubro-thalamic tract and the lesion was calculated. RESULTS The 24-hour lesion size was homogeneous in the cohort (mean 31.3 mm2, range 30-32 mm2), while there was substantial variation in the dentato-rubro-thalamic tract area (mean 14.3 mm2, range 3-24 mm2). The center of the stereotactic coordinates and dentato-rubro-thalamic tract diverged by more than 1 mm in mediolateral and anterposterior directions in all patients, while the dentato-rubro-thalamic tract and lesion centers were in close proximity (mean mediolateral separation 1 mm, range 0.1-2.2 mm; mean anteroposterior separation 0.75 mm, range 0.4-1.2 mm). There was greater than 50% coverage of the dentato-rubro-thalamic tract by the lesion in all patients (mean 82.9%, range 66.7-100%). All patients experienced durable tremor relief. CONCLUSION Direct targeting of the dentato-rubro-thalamic tract using diffusion tractography imaging fused to T2 weighted-imaging may be a useful strategy for focused ultrasound treatment of essential tremor. Further investigation of the technique is warranted.
Collapse
Affiliation(s)
- Timothy R Miller
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Jiachen Zhuo
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | | | - Paul S Fishman
- Department of Neurology, University of Maryland Medical Center, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Rao Gullapalli
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA
| | - Dheeraj Gandhi
- Department of Diagnostic Radiology, University of Maryland Medical Center, USA.,Department of Neurosurgery, University of Maryland Medical Center, USA.,Department of Neurology, University of Maryland Medical Center, USA
| |
Collapse
|
96
|
Boutet A, Ranjan M, Zhong J, Germann J, Xu D, Schwartz ML, Lipsman N, Hynynen K, Devenyi GA, Chakravarty M, Hlasny E, Llinas M, Lozano CS, Elias GJB, Chan J, Coblentz A, Fasano A, Kucharczyk W, Hodaie M, Lozano AM. Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain 2019; 141:3405-3414. [PMID: 30452554 DOI: 10.1093/brain/awy278] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance guided focused ultrasound (MRgFUS) thalamotomy is a novel and minimally invasive ablative treatment for essential tremor. The size and location of therapeutic lesions producing the optimal clinical benefits while minimizing adverse effects are not known. We examined these relationships in patients with essential tremor undergoing MRgFUS. We studied 66 patients with essential tremor who underwent MRgFUS between 2012 and 2017. We assessed the Clinical Rating Scale for Tremor (CRST) scores at 3 months after the procedure and tracked the adverse effects (sensory, motor, speech, gait, and dysmetria) 1 day (acute) and 3 months after the procedure. Clinical data associated with the postoperative Day 1 lesions were used to correlate the size and location of lesions with tremor benefit and acute adverse effects. Diffusion-weighted imaging was used to assess whether acute adverse effects were related to lesions encroaching on nearby major white matter tracts (medial lemniscus, pyramidal, and dentato-rubro-thalamic). The area of optimal tremor response at 3 months after the procedure was identified at the posterior portion of the ventral intermediate nucleus. Lesions extending beyond the posterior region of the ventral intermediate nucleus and lateral to the lateral thalamic border were associated with increased risk of acute adverse sensory and motor effects, respectively. Acute adverse effects on gait and dysmetria occurred with lesions inferolateral to the thalamus. Lesions inferolateral to the thalamus or medial to the ventral intermediate nucleus were also associated with acute adverse speech effects. Diffusion-weighted imaging revealed that lesions associated with adverse sensory and gait/dysmetria effects compromised the medial lemniscus and dentato-rubro-thalamic tracts, respectively. Lesions associated with adverse motor and speech effects encroached on the pyramidal tract. Lesions larger than 170 mm3 were associated with an increased risk of acute adverse effects. Tremor improvement and acute adverse effects of MRgFUS for essential tremor are highly dependent on the location and size of lesions. These novel findings could refine current MRgFUS treatment planning and targeting, thereby improving clinical outcomes in patients.
Collapse
Affiliation(s)
| | - Manish Ranjan
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jidan Zhong
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Jurgen Germann
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada
| | - David Xu
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Michael L Schwartz
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montreal, Canada.,Departments of Psychiatry, McGill University, Montreal, Canada
| | | | | | | | | | - Jason Chan
- University Health Network, Toronto, ON, Canada
| | | | - Alfonso Fasano
- Krembil Research Institute, Toronto, Ontario, Canada.,Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Walter Kucharczyk
- University Health Network, Toronto, ON, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Mojgan Hodaie
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- University Health Network, Toronto, ON, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
97
|
Pineda‐Pardo JA, Martínez‐Fernández R, Rodríguez‐Rojas R, Del‐Alamo M, Hernández F, Foffani G, Dileone M, Máñez‐Miró JU, De Luis‐Pastor E, Vela L, Obeso JA. Microstructural changes of the dentato-rubro-thalamic tract after transcranial MR guided focused ultrasound ablation of the posteroventral VIM in essential tremor. Hum Brain Mapp 2019; 40:2933-2942. [PMID: 30865338 PMCID: PMC6865586 DOI: 10.1002/hbm.24569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/05/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Essential tremor is the most common movement disorder in adults. In patients who are not responsive to medical treatment, functional neurosurgery and, more recently, transcranial MR-guided focused ultrasound thalamotomy are considered effective therapeutic approaches. However, the structural brain changes following a thalamotomy that mediates the clinical improvement are still unclear. In here diffusion weighted images were acquired in a cohort of 24 essential tremor patients before and 3 months after unilateral transcranial MR-guided focused ultrasound thalamotomy targeting at the posteroventral part of the VIM. Microstructural changes along the DRTT were quantified by means of probabilistic tractography, and later related to the clinical improvement of the patients at 3-months and at 1-year after the intervention. In addition the changes along two neighboring tracts, that is, the corticospinal tract and the medial lemniscus, were assessed, as well as the relation between these changes and the presence of side effects. Thalamic lesions produced local and distant alterations along the trajectory of the DRTT, and each correlated with clinical improvement. Regarding side effects, gait imbalance after thalamotomy was associated with greater impact on the DRTT, whereas the presence of paresthesias was significantly related to a higher overlap between the lesion and the medial lemniscus. This work represents the largest series describing the microstructural changes following transcranial MR-guided focused ultrasound thalamotomy in essential tremor. These results suggest that clinical benefits are specific for the impact on the cerebello-thalamo-cortical pathway, thus reaffirming the potential of tractography to aid thalamotomy targeting.
Collapse
Affiliation(s)
- Jose A. Pineda‐Pardo
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Raul Martínez‐Fernández
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Rafael Rodríguez‐Rojas
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - Marta Del‐Alamo
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Frida Hernández
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Guglielmo Foffani
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Hospital Nacional de ParapléjicosToledoSpain
| | - Michele Dileone
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | - Jorge U. Máñez‐Miró
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
| | | | - Lydia Vela
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| | - José A. Obeso
- CINAC (Centro Integral de Neurociencias)University Hospital HM Puerta del Sur, CEU‐San Pablo UniversityMadridSpain
- Network Center for Biomedical Research on Neurodegenerative DiseasesInstituto Carlos IIIMadridSpain
| |
Collapse
|
98
|
Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Curr Neurol Neurosci Rep 2019; 19:42. [DOI: 10.1007/s11910-019-0961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
99
|
Hidding U, Schaper M, Moll CKE, Gulberti A, Köppen J, Buhmann C, Gerloff C, Pötter-Nerger M, Hamel W, Choe CU. Mapping stimulation-induced beneficial and adverse effects in the subthalamic area of essential tremor patients. Parkinsonism Relat Disord 2019; 64:150-155. [PMID: 30981663 DOI: 10.1016/j.parkreldis.2019.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/19/2018] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Stimulation of the subthalamic area (STA) is an effective treatment in essential tremor patients, but limited by stimulation induced adverse effects. The aim of this study was to determine the spatial distribution of stimulus related tremor suppression, ataxia induction and paresthesia of the upper limb in the subthalamic area (STA) of essential tremor patients. METHODS We recruited eight patients with essential tremor in a stable postoperative condition (>3 months after surgery). Stimulation-induced effects were assessed with suprathreshold stimulation. Tremor severity was assessed with the Fahn-Tolosa-Marin tremor rating scale (TRS) and cerebellar impairment was evaluated using the international cooperative ataxia rating scale (ICARS). Patients rated paresthesia intensity with a visual analog scale. Linear regression analysis was performed to associate stereotactic coordinates with tremor, ataxia and paresthesia. RESULTS Suprathreshold stimulation significantly decreased tremor and elicited ataxia and paresthesia in all patients (P < 0.001). Tremor rating scale (TRS) total score was positively correlated with y-coordinates (r = 0.44, P < 0.05), i.e. anterior stimulation sites were more effective to suppress tremor. Concerning adverse effects, ataxia induction was positively correlated with z-coordinates almost reaching statistical significance (r = 0.50, P = 0.07), i.e. inferior stimulation sites elicit stronger ataxia. Furthermore, paresthesia was positively correlated with y-coordinates (r = 0.66; P < 0.01) and to a lesser degree with x-coordinates (r = 0.32; P = 0.08), i.e. posterior and lateral stimulation sites within the STA caused more paresthesia. CONCLUSION Antero-dorso-medial stimulation site in the STA were associated with less tremor and adverse effects in our small single-center cohort of ET patients with thalamic DBS.
Collapse
Affiliation(s)
- Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Köppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
100
|
Dallapiazza RF, Lee DJ, De Vloo P, Fomenko A, Hamani C, Hodaie M, Kalia SK, Fasano A, Lozano AM. Outcomes from stereotactic surgery for essential tremor. J Neurol Neurosurg Psychiatry 2019; 90:474-482. [PMID: 30337440 PMCID: PMC6581115 DOI: 10.1136/jnnp-2018-318240] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/17/2018] [Accepted: 09/25/2018] [Indexed: 11/03/2022]
Abstract
There are several different surgical procedures that are used to treat essential tremor (ET), including deep brain stimulation (DBS) and thalamotomy procedures with radiofrequency (RF), radiosurgery (RS) and most recently, focused ultrasound (FUS). Choosing a surgical treatment requires a careful presentation and discussion of the benefits and drawbacks of each. We conducted a literature review to compare the attributes and make an appraisal of these various procedures. DBS was the most commonly reported treatment for ET. One-year tremor reductions ranged from 53% to 63% with unilateral Vim DBS. Similar improvements were demonstrated with RF (range, 74%-90%), RS (range, 48%-63%) and FUS thalamotomy (range, 35%-75%). Overall, bilateral Vim DBS demonstrated more improvement in tremor reduction since both upper extremities were treated (range, 66%-78%). Several studies show continued beneficial effects from DBS up to five years. Long-term follow-up data also support RF and gamma knife radiosurgical thalamotomy treatments. Quality of life measures were similarly improved among patients who received all treatments. Paraesthesias, dysarthria and ataxia were commonly reported adverse effects in all treatment modalities and were more common with bilateral DBS surgery. Many of the neurological complications were transient and resolved after surgery. DBS surgery had the added benefit of programming adjustments to minimise stimulation-related complications. Permanent neurological complications were most commonly reported for RF thalamotomy. Thalamic DBS is an effective, safe treatment with a long history. For patients who are medically unfit or reluctant to undergo DBS, several thalamic lesioning methods have parallel benefits to unilateral DBS surgery. Each of these surgical modalities has its own nuance for treatment and patient selection. These factors should be carefully considered by both neurosurgeons and patients when selecting an appropriate treatment for ET.
Collapse
Affiliation(s)
| | - Darrin J Lee
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Philippe De Vloo
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Anton Fomenko
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Clement Hamani
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Mojgan Hodaie
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|