51
|
Li D, Pan C, Lu J, Zaman W, Zhao H, Zhang J, Lü S. Lupeol Accumulation Correlates with Auxin in the Epidermis of Castor. Molecules 2021; 26:molecules26102978. [PMID: 34067825 PMCID: PMC8156332 DOI: 10.3390/molecules26102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.
Collapse
Affiliation(s)
- Donghai Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Cheng Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Jianjun Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Wajid Zaman
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jixing Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia University for Nationalities, Tongliao 028000, China;
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- Correspondence: ; Tel.: +86-27-88663882
| |
Collapse
|
52
|
Bachořík J, Urban M. Biocatalysis in the Chemistry of Lupane Triterpenoids. Molecules 2021; 26:2271. [PMID: 33919839 PMCID: PMC8070785 DOI: 10.3390/molecules26082271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 01/15/2023] Open
Abstract
Pentacyclic triterpenes are important representatives of natural products that exhibit a wide variety of biological activities. These activities suggest that these compounds may represent potential medicines for the treatment of cancer and viral, bacterial, or protozoal infections. Naturally occurring triterpenes usually have several drawbacks, such as limited activity and insufficient solubility and bioavailability; therefore, they need to be modified to obtain compounds suitable for drug development. Modifications can be achieved either by methods of standard organic synthesis or with the use of biocatalysts, such as enzymes or enzyme systems within living organisms. In most cases, these modifications result in the preparation of esters, amides, saponins, or sugar conjugates. Notably, while standard organic synthesis has been heavily used and developed, the use of the latter methodology has been rather limited, but it appears that biocatalysis has recently sparked considerably wider interest within the scientific community. Among triterpenes, derivatives of lupane play important roles. This review therefore summarizes the natural occurrence and sources of lupane triterpenoids, their biosynthesis, and semisynthetic methods that may be used for the production of betulinic acid from abundant and inexpensive betulin. Most importantly, this article compares chemical transformations of lupane triterpenoids with analogous reactions performed by biocatalysts and highlights a large space for the future development of biocatalysis in this field. The results of this study may serve as a summary of the current state of research and demonstrate the potential of the method in future applications.
Collapse
Affiliation(s)
- Jan Bachořík
- Department of Organic Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic;
| | - Milan Urban
- Medicinal Chemistry, Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University in Olomouc, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| |
Collapse
|
53
|
Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Molecules 2021; 26:molecules26041081. [PMID: 33670791 PMCID: PMC7922983 DOI: 10.3390/molecules26041081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023] Open
Abstract
Betulinic acid (BA, 3β-hydroxy-lup-20(29)-en-28-oic acid) is a pentacyclic triterpene acid present predominantly in Betula ssp. (Betulaceae) and is also widely spread in many species belonging to different plant families. BA presents a wide spectrum of remarkable pharmacological properties, such as cytotoxic, anti-HIV, anti-inflammatory, antidiabetic and antimicrobial activities, including antiprotozoal effects. The present review first describes the sources of BA and discusses the chemical strategies to produce this molecule starting from betulin, its natural precursor. Next, the antiprotozoal properties of BA are briefly discussed and the chemical strategies for the synthesis of analogues displaying antiplasmodial, antileishmanial and antitrypanosomal activities are systematically presented. The antiplasmodial activity described for BA was moderate, nevertheless, some C-3 position acylated analogues showed an improvement of this activity and the hybrid models—with artesunic acid—showed the most interesting properties. Some analogues also presented more intense antileishmanial activities compared with BA, and, in addition to these, heterocycles fused to C-2/C-3 positions and amide derivatives were the most promising analogues. Regarding the antitrypanosomal activity, some interesting antitrypanosomal derivatives were prepared by amide formation at the C-28 carboxylic group of the lupane skeleton. Considering that BA can be produced either by isolation of different plant extracts or by chemical transformation of betulin, easily obtained from Betula ssp., it could be said that BA is a molecule of great interest as a starting material for the synthesis of novel antiprotozoal agents.
Collapse
|
54
|
Anti-atherosclerotic activity of Betulinic acid loaded polyvinyl alcohol/methylacrylate grafted Lignin polymer in high fat diet induced atherosclerosis model rats. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
55
|
Melnikova NB, Malygina DS, Vorobyova OA, Solovyeva AG, Belyaeva KL, Orekhov DV, Knyazev AV. Properties of Langmuir and immobilized layers of betulin diphosphate on aqueous solutions of zinc sulfate and on the surface of zinc oxide nanoparticles. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
56
|
Bakun P, Czarczynska-Goslinska B, Goslinski T, Lijewski S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med Chem Res 2021; 30:834-846. [PMID: 33551629 PMCID: PMC7847300 DOI: 10.1007/s00044-021-02701-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
Azulene is an aromatic hydrocarbon that possesses a unique chemical structure and interesting biological properties. Azulene derivatives, including guaiazulene or chamazulene, occur in nature as components of many plants and mushrooms, such as Matricaria chamomilla, Artemisia absinthium, Achillea millefolium, and Lactarius indigo. Due to physicochemical properties, azulene and its derivatives have found many potential applications in technology, especially in optoelectronic devices. In medicine, the ingredients of these plants have been widely used for hundreds of years in antiallergic, antibacterial, and anti-inflammatory therapies. Herein, the applications of azulene, its derivatives and their conjugates with biologically active compounds are presented. The potential use of these compounds concerns various areas of medicine, including anti-inflammatory with peptic ulcers, antineoplastic with leukemia, antidiabetes, antiretroviral with HIV-1, antimicrobial, including antimicrobial photodynamic therapy, and antifungal. ![]()
Collapse
Affiliation(s)
- Paweł Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Sebastian Lijewski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
57
|
Sousa JLC, Gonçalves C, Ferreira RM, Cardoso SM, Freire CSR, Silvestre AJD, Silva AMS. Functionalization of Betulinic Acid with Polyphenolic Fragments for the Development of New Amphiphilic Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020148. [PMID: 33498465 PMCID: PMC7909560 DOI: 10.3390/antiox10020148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 01/03/2023] Open
Abstract
The present work aimed at the valorization of biomass derived compounds by their transformation into new added-value compounds with enhanced antioxidant properties. In this context, betulinic acid (BA) was decorated with polyphenolic fragments, and polyhydroxylated (E)-2-benzylidene-19,28-epoxyoleanane-3,28-diones 4a–d were obtained. For that, the synthetic strategy relied on base-promoted aldol condensation reactions of methyl betulonate, which was previously prepared from natural BA, with appropriate benzaldehydes, followed by cleavage of the methyl protecting groups with BBr3. It is noteworthy that the HBr release during the work-up of the cleavage reactions led to the rearrangement of the lupane-type skeleton of the expected betulonic acid derivatives into oleanane-type compounds 4a–d. The synthesized compounds 4a–d were designed to have specific substitution patterns at C-2 of the triterpene scaffold, allowing the establishment of a structure-activity relationship. The radical scavenging ability of 4a–d was evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+) scavenging assays. In particular, derivative 4c, bearing a catechol unit, revealed to be the most efficient scavenger against both free radicals DPPH• and ABTS•+. Subsequently, we designed two analogues of the hit derivative 4c in order to achieve more potent antioxidant agents: (i) the first analogue carries an additional unsaturation in its lateral chain at C-2 (analogue 5) and (ii) in the second analogue, E-ring was kept in its open form (analogue 6). It was observed that the presence of an extended π-conjugated system at C-2 contributed to an increased scavenging effect, since analogue 5 was more active than 6, α-tocopherol, and 4c in the ABTS•+ assay.
Collapse
Affiliation(s)
- Joana L. C. Sousa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.G.); (R.M.F.); (S.M.C.)
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.S.R.F.); (A.J.D.S.)
- Correspondence: (J.L.C.S.); (A.M.S.S.); Tel.: +351-234-370-714 (A.M.S.S.)
| | - Cristiana Gonçalves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.G.); (R.M.F.); (S.M.C.)
| | - Ricardo M. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.G.); (R.M.F.); (S.M.C.)
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.G.); (R.M.F.); (S.M.C.)
| | - Carmen S. R. Freire
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.S.R.F.); (A.J.D.S.)
| | - Armando J. D. Silvestre
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.S.R.F.); (A.J.D.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.G.); (R.M.F.); (S.M.C.)
- Correspondence: (J.L.C.S.); (A.M.S.S.); Tel.: +351-234-370-714 (A.M.S.S.)
| |
Collapse
|
58
|
Gonzalez G, Hodoň J, Kazakova A, D'Acunto CW, Kaňovský P, Urban M, Strnad M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur J Med Chem 2021; 213:113168. [PMID: 33508480 DOI: 10.1016/j.ejmech.2021.113168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Novel triterpene derivatives were prepared and evaluated in salsolinol (SAL)- and glutamate (Glu)-induced models of neurodegeneration in neuron-like SH-SY5Y cells. Among the tested compounds, betulin triazole 4 bearing a tetraacetyl-β-d-glucose substituent showed a highly potent neuroprotective effect. Further studies revealed that removal of tetraacetyl-β-d-glucose part (free triazole derivative 10) resulted in strong neuroprotection in the SAL model at 1 μM, but this derivative suffered from cytotoxicity at higher concentrations. Both compounds modulated oxidative stress and caspase-3,7 activity, but 10 showed a superior effect comparable to the Ac-DEVD-CHO inhibitor. Interestingly, while both 4 and 10 outperformed the positive controls in blocking mitochondrial permeability transition pore opening, only 4 demonstrated potent restoration of the mitochondrial membrane potential (MMP) in the model. Derivatives 4 and 10 also showed neuroprotection in the Glu model, with 10 exhibiting the strongest oxidative stress reducing effect among the tested compounds, while the neuroprotective activity of 4 was probably due recovery of the MMP.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Cosimo Walter D'Acunto
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Milan Urban
- Department of Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic.
| |
Collapse
|
59
|
Pakulski Z, Cmoch P, Korda A, Luboradzki R, Gwardiak K, Karczewski R. Rearrangements of the Betulin Core. Synthesis of Terpenoids Possessing the Bicyclo[3.3.1]nonane Fragment by Rearrangement of Lupane-Type Epoxides. J Org Chem 2020; 86:1084-1095. [PMID: 33353300 DOI: 10.1021/acs.joc.0c02560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rearrangements of dihydrobetulin, dihydrobetulinic acid, and abeo-lupane epoxides under acidic conditions (HCl, montmorillonite K10, and BF3·Et2O) were studied. The treatment of dihydrobetulin with HCl or K10 produced abeo-lupane olefins. Their epoxidation afforded epoxides, which, in the presence of protic or Lewis acids, rearranged to dienes or lupanes bearing a bicyclo[3.3.1]nonane fragment. The structure of final products depended on the nature of the catalyst. The HCl promoted 1,4-elimination of water, whereas in the presence of BF3·Et2O bond migration took place preferentially. Montmorillonite K10 favored cyclization to bicyclononane.
Collapse
Affiliation(s)
- Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Korda
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Gwardiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Romuald Karczewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
60
|
Grymel M, Pastuch-Gawołek G, Lalik A, Zawojak M, Boczek S, Krawczyk M, Erfurt K. Glycoconjugation of Betulin Derivatives Using Copper-Catalyzed 1,3-Dipolar Azido-Alkyne Cycloaddition Reaction and a Preliminary Assay of Cytotoxicity of the Obtained Compounds. Molecules 2020; 25:molecules25246019. [PMID: 33353244 PMCID: PMC7766341 DOI: 10.3390/molecules25246019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pentacyclic lupane-type triterpenoids, such as betulin and its synthetic derivatives, display a broad spectrum of biological activity. However, one of the major drawbacks of these compounds as potential therapeutic agents is their high hydrophobicity and low bioavailability. On the other hand, the presence of easily transformable functional groups in the parent structure makes betulin have a high synthetic potential and the ability to form different derivatives. In this context, research on the synthesis of new betulin derivatives as conjugates of naturally occurring triterpenoid with a monosaccharide via a linker containing a heteroaromatic 1,2,3-triazole ring was presented. It has been shown that copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) provides an easy and effective way to synthesize new molecular hybrids based on natural products. The chemical structures of the obtained betulin glycoconjugates were confirmed by spectroscopic analysis. Cytotoxicity of the obtained compounds was evaluated on a human breast adenocarcinoma cell line (MCF-7) and colorectal carcinoma cell line (HCT 116). The obtained results show that despite the fact that the obtained betulin glycoconjugates do not show interesting antitumor activity, the idea of adding a sugar unit to the betulin backbone may, after some modifications, turn out to be correct and allow for the targeted transport of betulin glycoconjugates into the tumor cells.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-032-237-1873
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Seweryn Boczek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
61
|
Kirstgen M, Lowjaga KAAT, Müller SF, Goldmann N, Lehmann F, Alakurtti S, Yli-Kauhaluoma J, Glebe D, Geyer J. Selective hepatitis B and D virus entry inhibitors from the group of pentacyclic lupane-type betulin-derived triterpenoids. Sci Rep 2020; 10:21772. [PMID: 33303817 PMCID: PMC7729925 DOI: 10.1038/s41598-020-78618-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP’s physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure–activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.
Collapse
Affiliation(s)
- Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Kira Alessandra Alicia Theresa Lowjaga
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Simon Franz Müller
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Nora Goldmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Felix Lehmann
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sami Alakurtti
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland.,VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, 02044, Espoo, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, 00014, Helsinki, Finland
| | - Dieter Glebe
- National Reference Center for Hepatitis B Viruses and D Viruses, Institute of Medical Virology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstr. 81, 35392, Giessen, Germany.
| |
Collapse
|
62
|
Zhou Y, Wen J, Wang G. Identification of cytochrome P450 isoenzymes involved in the metabolism of 23-hydroxybetulinic acid in human liver microsomes. PHARMACEUTICAL BIOLOGY 2020; 58:60-63. [PMID: 31868554 PMCID: PMC6968681 DOI: 10.1080/13880209.2019.1701500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Context: 23-Hydroxybetulinic acid (23-HBA), a major active constituent of Pulsatilla chinensis (Bunge) Regel (Ranunculaceae), exhibits potential antitumor activity. Its metabolism, however, has not yet been studied.Objective: This study focuses on the metabolism of 23-HBA in vitro by human liver microsomes.Materials and methods: The metabolic kinetics of 23-HBA (0.5-100 µM) and the effects of selective CYP450 (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) inhibitors on metabolism of 23-HBA were evaluated in human liver microsomes incubation system and then determined by LC-MS method. The Michaelis-Menten parameters Km and Vmax were initially estimated by analysing Lineweaver-Burk plot. The clearance (CLint) was also calculated.Results: The Vmax, Km, and CLint of 23-HBA were 256.41 ± 11.20 pmol/min/mg, 11.10 ± 1.07 μM, and 23.10 ± 1.32 μL/min/mg, respectively. The metabolism of 23-HBA was significantly inhibited by furafylline (0.05 μM, p < 0.01) and ketoconazole (0.02 μM, p < 0.05). Ticlopidine (1.3 μM, p < 0.05) could inhibit the metabolism of 23-HBA, while the other inhibitors (sulfaphenazole and quinidine) showed nonsignificant inhibition on the metabolism of 23-HBA.Discussion and conclusions: This is the first investigation of the metabolism of 23-HBA in human liver microsomes. The in vitro study indicates that CYP1A2 and CYP3A4 are mainly involved in the metabolism of 23-HBA. Special attention should be given to the pharmacokinetic and clinical outcomes when 23-HBA was co-administrated with other compounds mainly undergoing CYP1A2/CYP3A4-mediated metabolism. Further studies are needed to evaluate the significance of this interaction and strengthen the understanding of traditional Chinese medicine.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhua Wen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
63
|
Chen F, Zhong Z, Tan HY, Guo W, Zhang C, Cheng C, Wang N, Ren J, Feng Y. Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p. Clin Transl Med 2020; 10:e190. [PMID: 33135336 PMCID: PMC7586994 DOI: 10.1002/ctm2.190] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Betulinic acid (BA) is a natural product extracted from a broad range of medicinal and edible herbal plants. Previous studies showed that BA induces cell death in tumors derived from multiple tissues; however, the underlying mechanism remains obscure. The present study aimed to study the effects of BA on autophagy and apoptosis of hepatocellular carcinoma (HCC). Human HCC cell lines and orthotopic HCC implanted mice were employed to examine the BA-induced tumor suppression; RT2 long noncoding RNA (lncRNA) PCR array and database analysis were used to explore the possible mechanisms; validation of pathways was performed using siRNA and miRNA inhibitors. The results indicated that BA regulated autophagy and induced apoptosis in HCC. The degradation of inhibitor of apoptosis proteins (IAPs), the conversion of LC3-I to LC3-II, and p62 accumulation were enhanced by BA, thereby suggesting that the downregulation of IAPs and autophagic cell death are induced by BA. The addition of autophagy and lysosomal inhibitors indicated that BA induced autophagy-independent apoptosis via degradation of IAPs. Moreover, RT2 lncRNA PCR array and database analysis suggested that BA downregulated the levels of lncRNA MALAT1, which is considered to be an oncogene. Further investigations demonstrated that lncRNA MALAT1 functioned as a ceRNA (competing endogenous RNA) to contribute to BA-mediated degradation of IAPs by sponging miR-22-3p. Therefore, BA could be developed as a potential anticancer agent for HCC.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Chien‐Shan Cheng
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| | - Junguo Ren
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingP. R. China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong S.A.R.P. R. China
| |
Collapse
|
64
|
Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588:119799. [PMID: 32828973 DOI: 10.1016/j.ijpharm.2020.119799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
To evaluate the effect of particle size on the cellular internalization, tissue distribution, and bioavailability of betulinic acid nanosuspensions (BA/NSs) and further investigate the combined effect of BA/NSs and Taxol® on breast cancer, BA/NSs with different particle sizes (160 nm, 400 nm, and 700 nm) were prepared by an efficient universal green technology. The use of BA/NS (160 nm) was more likely to increase the BA release rate and enhance bioavailability compared with the use of larger size particles. BA/NSs were internalized by 4T1 cells in different ways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis. For the 4T1 orthotopic tumor model, BA/NS (160 nm) showed a tendency to accumulate at a higher level in tumor tissue. Moreover, combination therapy with BA/NSs and Taxol® showed remarkable potential to enhance antitumor activity in vitro and in vivo. The cytotoxicity and apoptotic ability of the different preparations decreased in the following order: BA/NS (160 nm) + Taxol®, BA/NS (400 nm) + Taxol®, and BA/NS (700 nm) + Taxol®. The tumor inhibition rates of BA/NSs (160 nm, 400 nm, and 700 nm) combined with Taxol® were 2.35-, 1.74- and 1.12-fold higher than that of free BA, respectively. The combined chemotherapy showed good safety, indicating that it had the effect of enhancing treatment and reducing toxicity.
Collapse
|
65
|
Li YH, Zou M, Han Q, Deng LR, Weinshilboum RM. Therapeutic potential of triterpenoid saponin anemoside B4 from Pulsatilla chinensis. Pharmacol Res 2020; 160:105079. [PMID: 32679180 DOI: 10.1016/j.phrs.2020.105079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
Pulsatilla Decoction (Bai-Tou-Weng-Tang) has been used medically in China for thousands of years for the treatment of diseases caused by bacteria. In recent decades, Pulsatilla Decoction is becoming a well-known formula prescription used for the treatment of ulcerative colitis in traditional Chinese medicine. Pulsatilla chinensis is the chief herbal source of Pulsatilla Decoction, and it is rich in triterpenoid saponins, such as anemoside B4, anemoside A3, and 23-hydroxybetulinic acid. Anemoside B4 is the most abundant of that group and has been used as a quality control marker for Pulsatilla chinensis. As the major active component of Pulsatilla chinensis, anemoside B4 has also received attention as a pure compound for its therapeutic potential. In this review, we systematically analyze the findings on triterpenoid saponins, especially anemoside B4, anemoside A3 and 23-hydroxybetulinic acid, included in Pulsatilla chinensis and Pulsatilla Decoction. We discuss the pharmacokinetics and tissue distribution of these triterpenoid saponins as well as their biological activities. We also summarize the pharmacological effects of anemoside B4 and its two possible metabolites, anemoside A3 and 23-hydroxybetulinic acid, as pure compounds. In summary, this review sketches a profile of the state of existing knowledge with regard to the pharmacological effects of anemoside B4, especially its anti-inflammatory and immunomodulatory effects. These findings point to the possibility that anemoside B4 has potential to be studied further as a natural compound-originated immunomodulatory agent for the treatment of inflammatory diseases such as ulcerative colitis and thus, may represent one of the most important active components of Pulsatilla Decoction responsible for its anti-ulcerative colitis efficacy.
Collapse
Affiliation(s)
- Yan-Hong Li
- School of Medicine, South China University of Technology, Guangzhou, China; Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Min Zou
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qian Han
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Rong Deng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
66
|
Kazakova OB, Lopatina TV, Baikova IP, Zileeva ZR, Vakhitova YV, Suponitsky KY. Synthesis, evaluation of cytotoxicity, and antimicrobial activity of A-azepano- and A-seco-3-amino-C28-aminolupanes. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02577-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
67
|
Liao L, Liu C, Xie X, Zhou J. Betulinic acid induces apoptosis and impairs migration and invasion in a mouse model of ovarian cancer. J Food Biochem 2020; 44:e13278. [PMID: 32412117 DOI: 10.1111/jfbc.13278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Betulinic acid (BA) was verified to possess plenty of biological activities including anti-tumor, anti-inflammatory and so on. In our research, we studied the growth inhibition, apoptosis promotion and metastasis resistance of ovarian cancer cells by BA. The result showed that BA showed a time- and dose-dependent inhibitory effect on ovarian cancer cell lines. SKOV3 cell line proliferation has a concentration- and time-dependently, which may be inhibited by BA. Furthermore, BA inhibited the metastasis of tumor cells remarkably by inhibiting epithelial-mesenchymal transition process. Beyond that, the weight and volume of subcutaneous tumor was distinctly suppressed by administration of BA in tumor-bearing mice of SKOV3 cells. Pathological and immunohistochemical tests showed that Ki-67+ and MMP-2+ cells were dramatically decreased after BA administration, indicating that BA can not only suppress proliferation, but also inhibit migration of tumor cells. Taken together, BA can be a valuable candidate drug for the treatment of ovarian cancer. PRACTICAL APPLICATIONS: Betulinic acid (BA) isolated from natural plants such as fenugreek, eucalyptus bulb and mulberry has been reported with many biological activities. Results from this study revealed that in vitro and in vivo BA-induced apoptosis and inhibited migration and invasion of human ovarian cancer cells. Therefore, BA from natural plants may be developed as a potential drug for inhibition the development of ovarian cancer cells.
Collapse
Affiliation(s)
- Lingyun Liao
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| | - Chi Liu
- College of Medical & Life Sciences, Chengdu University of TCM, Chengdu, P.R. China
| | - Xiaoying Xie
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| | - Jieli Zhou
- Department of obstetrics and gynecology, First Affiliated Hospital of Gannan Medical College, Ganzhou, P.R. China
| |
Collapse
|
68
|
Adewole KE, Ishola AA. A Computational Approach to Investigate the HDAC6 and HDAC10 Binding Propensity of Psidium guajava-derived Compounds as Potential Anticancer Agents. Curr Drug Discov Technol 2020; 18:423-436. [PMID: 32357815 DOI: 10.2174/1568009620666200502013657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Different parts of Psidium guajava are consumed as food and used for medicinal purposes around the world. Although studies have reported their antiproliferative effects via different biochemical mechanisms, their modulatory effects on epigenetic modification of DNA molecules via histone deacetylases (HDACs) are largely unknown. OBJECTIVE This study was carried out to investigate the histone deacetylase 6 (HDAC6) and histone deacetylase 10 (HDAC10) binding propensity of guava-derived compounds, using in silico methods, in other to identify compounds with HDAC inhibitory potentials. METHODS Fifty-nine guava-derived compounds and apicidin, a standard HDAC inhibitor, were docked with HDAC6 and HDAC10 using AutodockVina after modeling (SWISS-MODEL server) and validating (ERRAT and VERIFY-3D) the structure of HDAC10. Molecular interactions between the ligands and the HDACs were viewed with Discovery Studio Visualizer. Prediction of binding sites, surface structural pockets, active sites, area, shape and volume of every pocket and internal cavities of proteins was done using Computed Atlas of Surface Topography of proteins (CASTp) server, while absorption, distribution, metabolism, and excretion (ADME) study of notable compounds was done using Swiss online ADME web tool. RESULTS 2α-hydroxyursolic acid, asiatic acid, betulinic acid, crategolic acid, guajadial A and B, guavacoumaric acid, guavanoic acid, ilelatifol D, isoneriucoumaric acid, jacoumaric acid, oleanolic acid, psiguadial A, B, and C demonstrated maximum interaction with the selected HDACs. ADME studies revealed that although isoneriucoumaric and jacoumaric acid ranked very high as HDAC inhibitors, they both violated the Lipinski's rule of 5. CONCLUSION This study identified 13 drugable guava-derived compounds that can be enlisted for further studies as potential HDAC6 and HDAC10 inhibitors.
Collapse
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo City, Ondo State, Nigeria
| | - Ahmed Adebayo Ishola
- Central Research Laboratories Limited, 132B University Road Ilorin, Kwara State, Nigeria
| |
Collapse
|
69
|
Korda A, Rárová L, Pakulski Z, Strnad M, Oklešťková J, Kuczynska K, Cmoch P, Gwardiak K, Karczewski R. New lupane bidesmosides exhibiting strong cytotoxic activities in vitro. Bioorg Chem 2020; 100:103868. [PMID: 32388425 DOI: 10.1016/j.bioorg.2020.103868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Triterpene bidesmosides are considered as highly cytotoxic saponins, usually less toxic against normal cells than monodesmosides, and less haemolytic. Biological activity of the betulin-type bidesmosides, rarely found in Nature, and seldom prepared due to serious synthetic problems, is poorly recognized. We report herein a protocol for the preparation of disubstituted lupane saponins (betulin bidesmosides) by treatment of their benzoates with potassium carbonate in dichloromethane / methanol solution. Cytotoxicity of all compounds was tested in vitro for a series of cancer cell lines, as well as normal human skin BJ fibroblasts. Presence of l-rhamnose moiety is crucial for cytotoxicity of betulin bidesmosides. On the other hand, l-arabinose fragment connected to lupane C-3 carbon atom significantly decreases activity. Presented results clearly show that betulin bidesmosides have significant clinical potential as anticancer agents.
Collapse
Affiliation(s)
- Anna Korda
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| | - Jana Oklešťková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kinga Kuczynska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Gwardiak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Romuald Karczewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
70
|
Tao R, Wang C, Lu Y, Zhang C, Zhou H, Chen H, Li W. Characterization and Cytotoxicity of Polyprenol Lipid and Vitamin E-TPGS Hybrid Nanoparticles for Betulinic Acid and Low-Substituted Hydroxyl Fullerenol in MHCC97H and L02 Cells. Int J Nanomedicine 2020; 15:2733-2749. [PMID: 32368052 PMCID: PMC7184125 DOI: 10.2147/ijn.s249773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study demonstrated an innovative formulation including the polyprenol (GBP) lipid and vitamin E-TPGS hybrid nanoparticles (NPs) which was aimed to control the transfer of betulinic acid (BA) and low-substituted hydroxyl fullerenol (C60(OH)n). Additionally, it developed BA-C60(OH)n-GBP-TPGS-NPs delivery system and researched the anti-hepatocellular carcinoma (HCC) effects. Materials and Methods The NPs were prepared by nanoprecipitation with ultrasonic-assisted emulsification (UAE) method. It was characterized by scanning electronic microscopy (SEM), transmission electron microscopy (TEM), FTIR spectrum, size distribution and zeta potential. Physical and chemical properties were evaluated through measurement of drug release, stability studies, drug loading efficiency (DE) and encapsulation efficiency (EE). Biological activities were evaluated through measurement of MTT assay, lactate dehydrogenase leakage assay (LDH), cell proliferation assays, cell apoptosis analysis, comet assay, wound healing assay, cell invasion and Western blot analysis. Results and Conclusions The NPs exhibited clear distribution characteristics, improved solubility and stability. BA and C60(OH)n for the NPs displayed a biphasic release pattern with sustained drug release properties. The mixture of C60(OH)n with different hydroxyl groups may have a certain effect on the stability of the NPs system itself. The NPs could effectively inhibit MHCC97H cell proliferation, migration and invasion in vitro. Combined use of C60(OH)n and BA in GBP lipids may improve the inhibit effect of C60(OH)n or BA against HCC cells and reduce cytotoxicity and genotoxicity of C60(OH)n for normal cells. We concluded that one of the important mechanisms of BA-C60(OH)n-GBP-TPGS-NPs inhibiting MHCC97H cells is achieved by up-regulating the expression of Caspase-3, Caspase-8 and Caspase-9.
Collapse
Affiliation(s)
- Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Yin Lu
- General Hospital of Eastern Theater Command, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Changwei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China.,Research Institute of Forestry New Technology, CAF, Beijing 100091, People's Republic of China
| | - Hongxia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - WenJun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, People's Republic of China
| |
Collapse
|
71
|
Oliveira VC, Naves MPC, de Morais CR, Constante SAR, Orsolin PC, Alves BS, Rinaldi Neto F, da Silva LHD, de Oliveira LTS, Ferreira NH, Esperandim TR, Cunha WR, Tavares DC, Spanó MA. Betulinic acid modulates urethane-induced genotoxicity and mutagenicity in mice and Drosophila melanogaster. Food Chem Toxicol 2020; 138:111228. [DOI: 10.1016/j.fct.2020.111228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
|
72
|
Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020; 11:147. [PMID: 32210799 PMCID: PMC7069061 DOI: 10.3389/fphar.2020.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common benign disease in women of reproductive age. It has been defined as a disorder characterized by inflammation, compromised immunity, hormone dependence, and neuroangiogenesis. Unfortunately, the mechanisms of endometriosis have not yet been fully elucidated, and available treatment methods are currently limited. The discovery of new therapeutic drugs and improvements in existing treatment schemes remain the focus of research initiatives. Chinese medicine can improve the symptoms associated with endometriosis. Many Chinese herbal medicines could exert antiendometriosis effects via comprehensive interactions with multiple targets. However, these interactions have not been defined. This study used association rule mining and systems pharmacology to discover a method by which potential antiendometriosis herbs can be investigated. We analyzed various combinations and mechanisms of action of medicinal herbs to establish molecular networks showing interactions with multiple targets. The results showed that endometriosis treatment in Chinese medicine is mainly based on methods of supplementation with blood-activating herbs and strengthening qi. Furthermore, we used network pharmacology to analyze the main herbs that facilitate the decoding of multiscale mechanisms of the herbal compounds. We found that Chinese medicine could affect the development of endometriosis by regulating inflammation, immunity, angiogenesis, and other clusters of processes identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The antiendometriosis effect of Chinese medicine occurs mainly through nervous system–associated pathways, such as the serotonergic synapse, the neurotrophin signaling pathway, and dopaminergic synapse, among others, to reduce pain. Chinese medicine could also regulate VEGF signaling, toll-like reporter signaling, NF-κB signaling, MAPK signaling, PI3K-Akt signaling, and the HIF-1 signaling pathway, among others. Synergies often exist in herb pairs and herbal prescriptions. In conclusion, we identified some important targets, target pairs, and regulatory networks, using bioinformatics and data mining. The combination of data mining and network pharmacology may offer an efficient method for drug discovery and development from herbal medicines.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangyong Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heng Weng
- Department of Big Medical Data, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
73
|
Synthesis, structure analysis and activity against breast and cervix cancer cells of a triterpenoid thiazole derived from ochraceolide A. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
74
|
Betulinic Acid-Nitrogen Heterocyclic Derivatives: Design, Synthesis, and Antitumor Evaluation in Vitro. Molecules 2020; 25:molecules25040948. [PMID: 32093264 PMCID: PMC7070564 DOI: 10.3390/molecules25040948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/02/2020] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Betulinic acid (BA) is a star member of the pentacyclic triterpenoid family, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, 21 BA-nitrogen heterocyclic derivatives were synthetized, in addition to four intermediates, 23 of which were first reported. Moreover, they were screened for in-vitro cytotoxicity against four tumor cell lines (Hela, HepG-2, BGC-823 and SK-SY5Y) by a standard methylthiazol tetrazolium (MTT) assay. The majority of these derivatives showed much stronger cytotoxic activity than BA. Remarkably, the most potent compound 7e (the half maximal inhibitory concentration (IC50) of which was 2.05 ± 0.66 μM) was 12-fold more toxic in vitro than BA-treated Hela. Furthermore, multiple fluorescent staining techniques and flow cytometry collectively revealed that compound 7e could induce the early apoptosis of Hela cells. Structure–activity relationships were also briefly discussed. The present study highlighted the importance of introducing nitrogen heterocyclic rings into betulinic acid in the discovery and development of novel antitumor agents.
Collapse
|
75
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
76
|
Synthesis of a new betulinic acid glycoconjugate with N-acetyl-d-galactosamine for the targeted delivery to hepatocellular carcinoma cells. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2737-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
77
|
Goldoni FC, Barretta C, Nunes R, Broering MF, De Faveri R, Molleri HT, Corrêa TP, Farias IV, Amorin CK, Pastor MVD, Meyre-Silva C, Bresolin TMB, de Freitas RA, Quintão NLM, Santin JR. Effects of Eugenia umbelliflora O. Berg (Myrtaceae)-leaf extract on inflammation and hypersensitivity. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112133. [PMID: 31377260 DOI: 10.1016/j.jep.2019.112133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Eugenia species are widely used in popular medicine to treat several diseases, such as arthritis, rheumatism and diabetes. Eugenia umbelliflora O. Berg is popularly known in Brazil as "baguaçu", name also conferred to Eugenia jambolana probably due to their apparent similarity. Although the popular use scientifically proved of E. jambolana as anti-diabetes and also as anti-inflammatory, there are only two scientific studies demonstrating anti-ulcer and bactericide activities of E. umbelliflora leaves extract, without reference to its possible anti-inflammatory activity. AIM OF THE STUDY The aim of this study was to show the anti-oxidant and anti-inflammatory activity of the methanol extract obtained from E. umbelliflora leaves (EuL) using in vitro and in vivo protocols. MATERIALS AND METHODS The total phenolic content was evaluated using the folin-Ciocalteu colorimetric method and phloroglucinols content by HPLC. The anti-oxidant activity was evaluated by ORAC, ABTS•+, DPPH, and metal chelation methods. The anti-inflammatory activity was investigated using carrageenan-induced inflammation in the subcutaneous tissue of male Swiss mice orally pre-treated with the EuL (0.3, 1 or 3 mg/kg). The leukocyte influx (optical microscopy) and secretion of chemical mediators (TNF, IL-6, IL-1β and CXCL1, by enzyme-linked immunosorbent assay) were quantified in the inflamed exudate. Histological analysis of the pouches was also performed. The anti-hypersensitive activity was investigated using carrageenan-induced mechanical hypersensitivity and mice were then evaluated using the von Frey filaments. The Open Field test was used to evaluate possible interference of adverse effect of EuL on locomotor activity that could lead to misinterpretation of the hypersensitivity evaluation. RESULTS The EuL demonstrated important and moderate reducing capacity on ABTS•+ and DPPH assays, respectively, but with slight activity in ORAC test. It reflects low protection against cell damage. The EuL also presented 30% of phenolic compounds. The phloroglucinols content of EuL was 25.9 mg/g, 18.4 mg/g and 16.6 mg/g of eugenial C, eugenial D and eugenial E, respectively. The in vivo analysis of the inflammatory exudate of EuL-treated mice demonstrated reduction in the polymorphonuclear cells (PMN) migration to the inflamed tissue, as well as the reduction of the pro-inflammatory cytokine IL-1β. Histologically, it was observed evident decrease in the oedema, formed essentially by non-haemorrhagic fibrin exudate, as well as PMN infiltrate, when compared with control mice injected with carrageenan. Furthermore, the extract also presented effective reduction of the mechanical hypersensitivity induced by carrageenan without any interference in animal's locomotor and exploratory activity. CONCLUSIONS Together, the results herein obtained show that EuL presented anti-inflammatory activity by decreasing the influx of PMN to the inflamed tissue, as well as the cytokine IL-1β level. This anti-inflammatory activity was also accompanied by significant anti-hypersensitive effect. The effects presented by EuL seem not to be correlated with an antioxidant activity. However other extract chemical compounds could be responsible for its important anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Claiza Barretta
- Nutrition, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil; Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Roberta Nunes
- Pharmacy, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil; Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Milena Fronza Broering
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Renata De Faveri
- Biomedicine, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Thiago Patrício Corrêa
- Physical Therapy, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Ingrid Vicente Farias
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Maria Veronica Davila Pastor
- Biomedicine, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil; Nutrition, Courses, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Christiane Meyre-Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Tania Mari Belle Bresolin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Rilton Alves de Freitas
- Postgraduate Program in Pharmaceutical Science, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.
| |
Collapse
|
78
|
|
79
|
Betulin efficiently suppresses the process of an experimental Listeria monocytogenes infection as an antagonist against listeriolysin O. Fitoterapia 2019; 139:104409. [PMID: 31698059 DOI: 10.1016/j.fitote.2019.104409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
Listeria monocytogenes (Lm) is a widespread foodborne intracellular pathogen that invades a variety of cells, causing abortions and severe human diseases. After internalization into host cells, pore-forming cytolysin listeriolysin O (LLO) disrupts the phagosome, which allows the bacterium to survive and colonize the cytoplasm, providing the bacterium the chance to infect neighboring cells. Betulin is an extracted natural compound from birch bark with diverse pharmacological activities. Here, we showed that LLO-induced rabbit red blood cell lysis in vitro was inhibited by preincubation with betulin, which suppressed the oligomerization process. Infectious assays performed with human monocyte macrophages indicated that betulin significantly protected cells against Lm-induced cell injury. In addition, Balb/c mice were used to perform a general infection, and betulin administration obviously inhibited organ damage and bacterial burden in livers and spleens of infected mice. In conclusion, betulin obviously inhibited Lm-induced cell injury in vitro and protected against infection in vivo through an antivirulence effect. Our results showed betulin as a new candidate against listeriosis by targeting LLO and highlight the potential of natural product-based medicine to be applied in the treatment of pathogenic infections.
Collapse
|
80
|
Jin X, Zhou J, Zhang Z, Lv H. Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment. Int J Pharm 2019; 571:118751. [PMID: 31605722 DOI: 10.1016/j.ijpharm.2019.118751] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022]
Abstract
Synergistic combination therapy involving the integration of chemotherapeutics and chemosensitizers into micelles has demonstrated great potential for tumor-specific location release. Here, the natural product betulinic acid (BA) and chemical drug lonidamine (LN) were used as chemosensitizers in combination with doxorubicin (DOX) for ovarian cancer treatment. We designed pH-sensitive peptide derivatives and constructed an all-in-one multifunctional multidrug pH-sensitive targeting delivery system for the synergistic co-delivery of DOX and BA (or LN). The combination of DOX and BA was found to elicit better therapeutic effects and lower cardiotoxicity than the DOX and LN combination in Skvo3 cells. Further, loading DOX/BA into the present micellar systems enabled burst release at the tumor location, leading to enhanced anti-tumor effects and reduced off-target effects. More importantly, DOX/BA micelles elicited fewer adverse effects on cardiac function and leukocyte counts in Skvo3 subcutaneous xenograft models. These features suggest that the designed micelles represent a promising multifunctional strategy for the efficient treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian Branch Jiangsu Province Hospital, 120 Suzhilu, Suqian 223800, China; Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhenhai Zhang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine affiliated with Nanjing University of Chinese Medicine, 100 Shizijie, Nanjing 210000, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
81
|
Recent Achievements in Medicinal and Supramolecular Chemistry of Betulinic Acid and Its Derivatives ‡. Molecules 2019; 24:molecules24193546. [PMID: 31574991 PMCID: PMC6803882 DOI: 10.3390/molecules24193546] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023] Open
Abstract
The subject of this review article refers to the recent achievements in the investigation of pharmacological activity and supramolecular characteristics of betulinic acid and its diverse derivatives, with special focus on their cytotoxic effect, antitumor activity, and antiviral effect, and mostly covers a period 2015–2018. Literature sources published earlier are referred to in required coherences or from historical points of view. Relationships between pharmacological activity and supramolecular characteristics are included if such investigation has been done in the original literature sources. A wide practical applicability of betulinic acid and its derivatives demonstrated in the literature sources is also included in this review article. Several literature sources also focused on in silico calculation of physicochemical and ADME parameters of the developed compounds, and on a comparison between the experimental and calculated data.
Collapse
|
82
|
Fradj N, Gonçalves Dos Santos KC, de Montigny N, Awwad F, Boumghar Y, Germain H, Desgagné-Penix I. RNA-Seq de Novo Assembly and Differential Transcriptome Analysis of Chaga ( Inonotus obliquus) Cultured with Different Betulin Sources and the Regulation of Genes Involved in Terpenoid Biosynthesis. Int J Mol Sci 2019; 20:E4334. [PMID: 31487924 PMCID: PMC6770048 DOI: 10.3390/ijms20184334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 12/15/2022] Open
Abstract
Chaga (Inonotus obliquus) is a medicinal fungus used in traditional medicine of Native American and North Eurasian cultures. Several studies have demonstrated the medicinal properties of chaga's bioactive molecules. For example, several terpenoids (e.g., betulin, betulinic acid and inotodiol) isolated from I. obliquus cells have proven effectiveness in treating different types of tumor cells. However, the molecular mechanisms and regulation underlying the biosynthesis of chaga terpenoids remain unknown. In this study, we report on the optimization of growing conditions for cultured I. obliquus in presence of different betulin sources (e.g., betulin or white birch bark). It was found that better results were obtained for a liquid culture pH 6.2 at 28 °C. In addition, a de novo assembly and characterization of I. obliquus transcriptome in these growth conditions using Illumina technology was performed. A total of 219,288,500 clean reads were generated, allowing for the identification of 20,072 transcripts of I. obliquus including transcripts involved in terpenoid biosynthesis. The differential expression of these genes was confirmed by quantitative-PCR. This study provides new insights on the molecular mechanisms and regulation of I. obliquus terpenoid production. It also contributes useful molecular resources for gene prediction or the development of biotechnologies for the alternative production of terpenoids.
Collapse
Affiliation(s)
- Narimene Fradj
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Centre d'étude des Procédés Chimiques du Québec, 6220 rue Sherbrooke Est, Montréal, Québec, QC H1N 1C1, Canada.
| | - Karen Cristine Gonçalves Dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Nicolas de Montigny
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Fatima Awwad
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Yacine Boumghar
- Centre d'étude des Procédés Chimiques du Québec, 6220 rue Sherbrooke Est, Montréal, Québec, QC H1N 1C1, Canada.
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, QC G9A 5H7, Canada.
| |
Collapse
|
83
|
Hodon J, Borkova L, Pokorny J, Kazakova A, Urban M. Design and synthesis of pentacyclic triterpene conjugates and their use in medicinal research. Eur J Med Chem 2019; 182:111653. [PMID: 31499360 DOI: 10.1016/j.ejmech.2019.111653] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023]
Abstract
Triterpenoids are natural products from plants and many other organisms that have various biological activities, such as antitumor, antiviral, antimicrobial, and protective activities. This review covers the synthesis and biological evaluation of pentacyclic triterpene (PT) conjugates with other molecules that have been found to increase the IC50 or improve the pharmacological profile of the parent PT. Some of these molecules are designed to target specific proteins or cellular organelles, which has resulted in highly selective lead structures for drug development. Other PT conjugates are useful for investigating their mechanism of action. This concept has been very successful: 1) Many compounds, especially mitochondria-targeting PT conjugates, have reached a selective cytotoxicity at low nanomolar concentrations in cancer cells. 2) A number of PT conjugates have had high activity against HIV or the influenza virus. 3) Fluorescent PT conjugates have been able to visualize the PT in living cells, which has allowed quantification of the uptake and distribution of the PT within the cell. 4) Biotinylated PT conjugates have been used to identify target proteins, which may help to show their mechanism of action. 5) A large number of PT conjugates with polyethylene glycol (PEG), polyamines, etc. form nanometer-sized micelles that have a much better pharmacological profile than the PT alone. In summary, the connection of a PT to an appropriate modifying molecule has resulted in extremely useful semisynthetic compounds with a high potential to treat cancer or viral infections or compounds that are useful for the study of the mechanism of action of PTs at the molecular level.
Collapse
Affiliation(s)
- Jiri Hodon
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Lucie Borkova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Jan Pokorny
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Milan Urban
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 779 00, Olomouc, Czech Republic.
| |
Collapse
|
84
|
Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8781690. [PMID: 31531187 PMCID: PMC6721262 DOI: 10.1155/2019/8781690] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/26/2019] [Indexed: 12/26/2022]
Abstract
Targeting aberrant metabolism is a promising strategy for inhibiting cancer growth and metastasis. Research is now geared towards investigating the inhibition of glycolysis for anticancer drug development. Betulinic acid (BA) has demonstrated potent anticancer activities in multiple malignancies. However, its regulatory effects on glycolysis and the underlying molecular mechanisms are still unclear. BA inhibited invasion and migration of highly aggressive breast cancer cells. Moreover, BA could suppress aerobic glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and downregulation of aerobic glycolysis-related proteins. In this study, glucose-regulated protein 78 (GRP78) was also identified as the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown abrogated the inhibitory effect of BA on glycolysis. Further studies demonstrated that overexpressed GRP78 activated the endoplasmic reticulum (ER) stress sensor PERK. Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin expression, which resulted in the inhibition of c-Myc-mediated glycolysis. Coimmunoprecipitation assay revealed that BA interrupted the binding between GRP78 and PERK, thereby initiating the glycolysis inhibition cascade. Finally, the lung colonization model validated that BA inhibited breast cancer metastasis in vivo, as well as suppressed the expression of aerobic glycolysis-related proteins. In conclusion, our study not only provided a promising drug for aerobic glycolysis inhibition but also revealed that GRP78 is a novel molecular link between glycolytic metabolism and ER stress during tumor metastasis.
Collapse
|
85
|
Grymel M, Zawojak M, Adamek J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:1719-1730. [PMID: 31141361 DOI: 10.1021/acs.jnatprod.8b00830] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring pentacyclic lupane triterpenoids such as betulin (1) or betulinic acid (2) and their synthetic derivatives display a broad spectrum of biological activities and, therefore, have been the subject of great interest. However, the use of these compounds as potential therapeutic agents is limited by their low bioavailability, high hydrophobicity, and insufficient intracellular accumulation. In this context, research on modifications of the parent structures that will improve their pharmacokinetic properties is particularly important. In the past few years, methods of synthesis as well as cytotoxic and antiparasitic properties of a series of lupane triterpenoids modified by introducing one or two triphenylphosphonium moieties at the C-2, C-3, C-28, or C-30 positions by carbon-carbon or ester bonds have been described. The presence of triphenylphosphonium groups affects not only physical properties but also the mechanism of action of a potential drug. This review summarizes published findings on synthetic methods and biological properties of the triphenylphosphonium derivatives of betulin and betulinic acid.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| |
Collapse
|
86
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
87
|
Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF- κB Pathway in Human Multiple Myeloma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5083158. [PMID: 31281581 PMCID: PMC6590575 DOI: 10.1155/2019/5083158] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Betulinic acid (BA), as a prospective natural compound, shows outstanding antitumor bioactivities against many solid malignancies. However, its mechanism against multiple myeloma (MM) remains elusive. Herein, for the first time, we studied the antitumor activity of BA against MM both in vivo and in vitro. We showed that BA mediated cytotoxicity in MM cells through apoptosis, S-phase arrest, mitochondrial membrane potential (MMP) collapse, and overwhelming reactive oxygen species (ROS) accumulation. Moreover, when the ROS scavenger N-acetyl cysteine (NAC) effectively abated elevated ROS, the BA-induced apoptosis was partially reversed. Our results revealed that BA-mediated ROS overproduction played a pivotal role in anticancer activity. Molecularly, we found that BA resulted in marked inhibition of the aberrantly activated NF-κB pathway in MM. As demonstrated by using the NF-κB pathway-specific activator TNF-α and the inhibitor BAY 11-7082, BA-mediated inhibition of the NF-κB pathway directly promoted the overproduction of ROS and, ultimately, cell death. Furthermore, BA also exerted enormous tumor-inhibitory effects via repressing proliferation and inhibiting the NF-κB pathway in our xenograft model. Overall, by blocking the NF-κB pathway that breaks redox homeostasis, BA, as a potent NF-κB inhibitor, is a promising therapeutic alternative for MM.
Collapse
|
88
|
Lewis TD, Malik M, Britten J, Parikh T, Cox J, Catherino WH. Ulipristal acetate decreases active TGF-β3 and its canonical signaling in uterine leiomyoma via two novel mechanisms. Fertil Steril 2019; 111:806-815.e1. [PMID: 30871768 DOI: 10.1016/j.fertnstert.2018.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/28/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To characterize the effect of ulipristal acetate (UPA) treatment on transforming growth factor (TGF) canonical and noncanonical signaling pathways in uterine leiomyoma tissue and cells. UPA decreased extracellular matrix in surgical specimens; we characterize the mechanism in this study. DESIGN Laboratory study. SETTING University. INTERVENTION(S) Exposure of leiomyoma cell lines to UPA. MAIN OUTCOME MEASURE(S) RNAseq was performed on matched myometrium and leiomyoma surgical specimens of placebo- and UPA-treated patients. Changes in gene expression and protein were measured using quantitative polymerase chain reaction and western immunoblot analysis, respectively. RESULT(S) In surgical specimen, mRNA for TGF-β3 was elevated 3.75-fold and TGFR2 was decreased 0.50-fold in placebo leiomyomas compared with myometrium. Analysis of leiomyomas from UPA-treated women by western blot revealed significant reductions of active TGF-β3 (0.64 ± 0.12-fold), p-TGFR2 (0.56 ± 0.23-fold), pSmad 2 (0.54 ± 0.04-fold), and pSmad 3 (0.65 ± 0.09-fold) compared with untreated leiomyomas. UPA treatment demonstrated statistically significant reduction in collagen 1, fibronectin, and versican proteins. Notably, there was a statistically significant increase of the extracellular matrix protein fibrillin in leiomyoma treated with UPA (1.48 ± 0.41-fold). Data from in vitro assays with physiologic concentrations of UPA supported the in vivo findings. CONCLUSION(S) TGF-β pathway is highly up-regulated in leiomyoma and is directly responsible for development of the fibrotic phenotype. UPA attenuates this pathway by reducing TGF-β3 message and protein expression, resulting in a reduction in TGF-β canonical signaling. In addition, UPA significantly increased fibrillin protein expression, which can serve to bind inactive TGF-β complexes. Therefore, UPA inhibits leiomyoma fibrosis by decreasing active TGF-β3 and diminishing signaling through the canonical pathway. CLINICAL TRIAL REGISTRATION NUMBER NCT00290251.
Collapse
Affiliation(s)
- Terrence D Lewis
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Toral Parikh
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jeris Cox
- Fort Belvoir Community Hospital, Fort Belvoir, Virginia
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
89
|
Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis 2019; 10:232. [PMID: 30850585 PMCID: PMC6408511 DOI: 10.1038/s41419-019-1470-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Betulinic acid (BA) and its derivatives are a class of high-profile drug candidates, but their anticancer effects on resistant cancer have rarely been reported. Although a few studies indicated mitophagy is related with drug resistance, its role in different cancer types and anticancer agents treatment remains largely unclear. Here, we find that B5G1, a new derivative of BA, induces cell death in multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR through mitochondrial-apoptosis pathway. B5G1 also triggers mitophagy independent on Atg5/Beclin 1. Further mechanistic study indicates that B5G1 upregulates PTEN-induced putative kinase 1 (PINK1) to recruit Parkin to mitochondria followed by ubiquitination of Mfn2 to initiate mitophagy. Inhibition of mitophagy by PINK1 siRNA, mdivi-1, or bafilomycin A1 (Baf A1) promotes B5G1-induced cell death. In addition, ROS production and mitochondrial damage in B5G1-treated HepG2/ADM cells cause mitochondrial apoptosis and mitophagy. In vivo study shown that B5G1 dramatically inhibits HepG2/ADM xenograft growth accompanied by apoptosis and mitophagy induction. Together, our results provide the first demonstration that B5G1, as a novel mitophagy inducer, has the potential to be developed into a drug candidate for treating multidrug resistant cancer.
Collapse
|
90
|
Sousa JLC, Freire CSR, Silvestre AJD, Silva AMS. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules 2019; 24:molecules24020355. [PMID: 30669472 PMCID: PMC6359067 DOI: 10.3390/molecules24020355] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others.
Collapse
Affiliation(s)
- Joana L C Sousa
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
91
|
Induction of apoptosis by in vitro and in vivo plant extracts derived from Menyanthes trifoliata L. in human cancer cells. Cytotechnology 2019; 71:165-180. [PMID: 30610508 PMCID: PMC6368494 DOI: 10.1007/s10616-018-0274-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Menyanthes trifoliata L. has been used in traditional medicine for centuries. It exists in Asia, Europe, North America and in Morocco and is exploited as a remedy for anemia and lack of appetite. This plant shows many pharmacological properties, but its most interesting one is its anti-cancer potential. The present study examines the induction of apoptosis in grade IV glioma cells after treatment with the extracts from aerial part and root of M. trifoliata plants derived from in vitro (MtAPV and MtRV, respectively) and from soil (MtAPS and MtRS, respectively) and presents the first comparison of the biological effects of four different extracts of M. trifoliata against glioblastoma cells. The root extracts of M. trifoliata plants were found to exhibit cytotoxic effects against grade IV glioma cells, but not normal human astrocytes. HPLC analysis demonstrated the presence of various polyphenolic compounds, including sinapinic acid, ferulic acid, syringic acid and vanilic acid. Higher amount of pentacyclic triterpene (betulinic acid) was also found in MtRV extract. The growth inhibition of human grade IV glioma cells mediated by MtRV extract appears to be associated with apoptosis and G2/M phase cell cycle arrest, and altered expression of the pro- and anti-apoptotic genes (Bax, Bcl-2, Cas-3 and TP53) and proteins (Bax, Bcl-2, Cas-3 and p53), as well as decreased mitochondrial membrane potential. Our results indicate that M. trifoliata gives promising results as an anti-cancer agent for human glioblastoma cell lines. However, further research is necessary in view of its therapeutic use.
Collapse
|
92
|
Temporini C, Brusotti G, Pochetti G, Massolini G, Calleri E. Affinity-based separation methods for the study of biological interactions: The case of peroxisome proliferator-activated receptors in drug discovery. Methods 2018; 146:12-25. [DOI: 10.1016/j.ymeth.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 10/18/2022] Open
|
93
|
Synthesis of Betulinic Acid Derivatives with Modified A-Rings and their Application as Potential Drug Candidates. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
94
|
Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death Dis 2018; 9:636. [PMID: 29802332 PMCID: PMC5970196 DOI: 10.1038/s41419-018-0669-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
Abstract
Stress-induced cellular defense machinery has a critical role in mediating cancer drug resistance, and targeting stress-related signaling has become a novel strategy to improve chemosensitivity. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid with potent anticancer bioactivities in multiple malignancies, whereas its underlying mechanisms remain unclear. Here in, we found that BA has synergistic effects with taxol to induce breast cancer cells G2/M checkpoint arrest and apoptosis induction, but had little cytotoxicity effects on normal mammary epithelial cells. Drug affinity responsive target stability (DARTS) strategy further identified glucose-regulated protein 78 (GRP78) as the direct interacting target of BA. BA administration significantly elevated GRP78-mediated endoplasmic reticulum (ER) stress and resulted in the activation of protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor 2a/CCAAT/enhancer-binding protein homologous protein apoptotic pathway. GRP78 silencing or ER stress inhibitor salubrinal administration was revealed to abolish the anticancer effects of BA, indicating the critical role of GRP78 in mediating the bioactivity of BA. Molecular docking and coimmunoprecipitation assay further demonstrated that BA might competitively bind with ATPase domain of GRP78 to interrupt its interaction with ER stress sensor PERK, thereby initiating the downstream apoptosis cascade. In vivo breast cancer xenografts finally validated the chemosensitizing effects of BA and its biofunction in activating GRP78 to trigger ER stress-mediated apoptosis. Taken together, our study not only uncovers GRP78 as a novel target underlying the chemosensitizing effects of BA, but also highlights GRP78-based targeting strategy as a promising approach to improve breast cancer prognosis.
Collapse
|
95
|
Kahnt M, Heller L, Al-Harrasi A, Schäfer R, Kluge R, Wagner C, Otgonbayar C, Csuk R. Platanic acid-derived methyl 20-amino-30-norlupan-28-oates are potent cytotoxic agents acting by apoptosis. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
96
|
Jogi H, Maheshwari R, Raval N, Kuche K, Tambe V, Mak KK, Pichika MR, Tekade RK. Carbon nanotubes in the delivery of anticancer herbal drugs. Nanomedicine (Lond) 2018; 13:1187-1220. [DOI: 10.2217/nnm-2017-0397] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is estimated to be a significant health problem of the 21st century. The situation gets even tougher when it comes to its treatment using chemotherapy employing synthetic anticancer molecules with numerous side effects. Recently, there has been a paradigm shift toward the adoption of herbal drugs for the treatment of cancer. In this context, a suitable delivery system is principally warranted to deliver these herbal biomolecules specifically at the tumorous site. To achieve this goal, carbon nanotubes (CNTs) have been widely explored to deliver anticancer herbal molecules with improved therapeutic efficacy and safety. This review uniquely expounds the biopharmaceutical, clinical and safety aspects of different anticancer herbal drugs delivered through CNTs with a cross-talk on their outcomes. This review will serve as a one-stop-shop for the readers on various anticancer herbal drugs delivered through CNTs as a futuristic delivery device.
Collapse
Affiliation(s)
- Hardi Jogi
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Rahul Maheshwari
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kaushik Kuche
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| | - Kit-Kay Mak
- School of Postgraduate Studies & Research, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education & Research (NIPER) – Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat, 382355 India
| |
Collapse
|
97
|
Pettit GR, Melody N, Chapuis JC. Antineoplastic Agents. 606. The Betulastatins. JOURNAL OF NATURAL PRODUCTS 2018; 81:458-464. [PMID: 29303263 DOI: 10.1021/acs.jnatprod.7b00536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The medicinal potential of the plant pentacyclic triterpene betulin has generated long-term interest focused on various SAR research avenues. The present approach was based on producing further analogues (chimeras) arising from a studied modification of betulin bonded to the Dov-Val-Dil-Dap unit of the powerful anticancer drug dolastatin 10, which provided betulastatins 1 (7b), 2 (11b), 3 (16b), and 4 (18b). Betulastatin 1, 2, and 4 exhibited modest levels of cancer cell growth inhibition against six cancer cell lines. Betulastatin 3 proved to be the most potent cancer cell growth inhibitor (GI50 0.01 μg/mL) and seems worthy of further development, as the presumed mixture of anticancer mechanisms of action may prove to be useful.
Collapse
Affiliation(s)
- George R Pettit
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | - Noeleen Melody
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| | - Jean-Charles Chapuis
- Department of Chemistry and Biochemistry , Arizona State University , P.O. Box 871604, Tempe , Arizona 85287-1604 , United States
| |
Collapse
|
98
|
Pang KL, Vijayaraghavan K, Sayed BA, Seyed MA. Betulinic acid‑induced expression of nicotinamide adenine dinucleotide phosphate‑diaphorase in the immune organs of mice: A possible role of nitric oxide in immunomodulation. Mol Med Rep 2018; 17:3035-3041. [PMID: 29257292 PMCID: PMC5783524 DOI: 10.3892/mmr.2017.8262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to investigate the effects of betulinic acid (BetA) on the expression and distribution pattern of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH‑d), an indirect indicator of nitric oxide (NO) synthase in the thymus and spleen of mice. Mice were randomly assigned to four main groups (n=48 per group): Experimental group (BetA), positive control group (goniothalamin), vehicle control group (dimethyl sulfoxide) and control group (without vehicle). Each group was further divided into three equal subgroups according to the treatment length (4, 8 and 12 days). BetA treatment induced the expression of NADPH‑d activity in the thymus and spleen without any significant changes in the morphology of the organs. Furthermore, the expression pattern of NADPH‑d in BetA‑treated animals was significantly increased compared with that in the control animals. NADPH‑d expression in the thymus and spleen suggests that NO signaling may be a potential mechanism underlying the BetA‑induced immunomodulation in these organs. These findings are of direct clinical relevance and may contribute to the further development of BetA as a therapeutic drug.
Collapse
Affiliation(s)
- Kai Le Pang
- Faculty of Pharmacy, Universiti, Kebangsaan Malaysia (UKM), The National University of Malaysia, Kuala Lumpur 50300, Malaysia
| | | | - Badr Al Sayed
- Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | |
Collapse
|
99
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. Therapeutic applications of betulinic acid nanoformulations. Ann N Y Acad Sci 2018; 1421:5-18. [PMID: 29377164 DOI: 10.1111/nyas.13570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has gained attention in recent years owing to its broad-spectrum biological and medicinal properties. Despite the pharmacological activity of BA, it has been associated with some drawbacks, such as poor aqueous solubility and short half-life in vivo, which limit therapeutic application. To solve these problems, much work in recent years has focused on enhancing BA's aqueous solubility, half-life, and efficacy by using nanoscale drug delivery systems. Several different kinds of nanoscale delivery systems-including polymeric nanoparticles, magnetic nanoparticles, liposomes, polymeric conjugates, nanoemulsions, cyclodextrin complexes, and carbon nanotubes-have been developed for the delivery of BA. Here, we focus on the recent developments of novel nanoformulations used to deliver BA in order to improve its efficacy.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, New Delhi, India.,Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| |
Collapse
|
100
|
Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev 2018; 38:951-976. [PMID: 29350407 PMCID: PMC7168445 DOI: 10.1002/med.21484] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/20/2022]
Abstract
Viral infections cause many serious human diseases with high mortality rates. New drug‐resistant strains are continually emerging due to the high viral mutation rate, which makes it necessary to develop new antiviral agents. Compounds of plant origin are particularly interesting. The pentacyclic triterpenoids (PTs) are a diverse class of natural products from plants composed of three terpene units. They exhibit antitumor, anti‐inflammatory, and antiviral activities. Oleanolic, betulinic, and ursolic acids are representative PTs widely present in nature with a broad antiviral spectrum. This review focuses on the recent literatures in the antiviral efficacy of this class of phytochemicals and their derivatives. In addition, their modes of action are also summarized.
Collapse
Affiliation(s)
- Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenyu Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yufei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Longlong Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|