51
|
Ommi O, Paoletti N, Bonardi A, Gratteri P, Bhalerao HA, Sau S, Nanduri S, Mohammed A, Kalia NP, Sonti R, Supuran CT, Yaddanapudi VM. Exploration of 3-aryl pyrazole-tethered sulfamoyl carboxamides as carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300309. [PMID: 37691073 DOI: 10.1002/ardp.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Herein, we report the design and synthesis of two series of pyrazole-tethered sulfamoyl phenyl acetamides and pyrazole-tethered sulfamoyl phenyl benzamides. The synthesized compounds were investigated for inhibiting two human carbonic anhydrases, human carbonic anhydrases (hCA) I and II, and those of the bacterial pathogen Mycobacterium tuberculosis, mtCA 1-3. The results indicate that, among the synthesized compounds, pyrazoles with 4-aminobenzene sulfonamide were more selective toward hCA I and II over mtCAs, and compounds with 3-aminobenzene sulfonamide were selective toward mtCA 1-3 over hCA I, II. Compound 6g showed significant and selective inhibition toward hCA I and II, with Ki values of 0.0366 and 0.0310 µM, respectively. Compound 5g exhibited the best inhibition toward mtCA 2, with a Ki value of 0.0617 µM. Among the benzamides, compound 9b exhibited significant activity toward mtCA 2, with a Ki value of 0.0696 µM. Selectivity of these compounds was further supported by docking studies. When tested for antitubercular activity, many compounds showed moderate to good inhibition against the Mtb H37Rv strain, with minimum inhibitory concentration (MIC) values in the range of 4-128 µg/mL.
Collapse
Affiliation(s)
- Ojaswitha Ommi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Niccolò Paoletti
- Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Alessandro Bonardi
- Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Arifuddin Mohammed
- Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad, India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Claudiu T Supuran
- Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (Florence), Italy
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
52
|
Begines P, Bonardi A, Nocentini A, Gratteri P, Giovannuzzi S, Ronca R, Tavani C, Luisa Massardi M, López Ó, Supuran CT. Design and synthesis of sulfonamides incorporating a biotin moiety: Carbonic anhydrase inhibitory effects, antiproliferative activity and molecular modeling studies. Bioorg Med Chem 2023; 94:117467. [PMID: 37722299 DOI: 10.1016/j.bmc.2023.117467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Sulfonamides constitute an important class of classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. Herein we have accomplished the conjugation of biotin with an ample number of sulfonamide motifs with the aim of testing them in vitro as inhibitors of the human carbonic anhydrase (hCA) isoforms I and II (cytosolic isozymes), as well as hCA IX and XII (transmembrane, tumor-associated enzymes). Most of these newly synthesized compounds exhibited interesting inhibition profiles, with activities in the nanomolar range. The presence of a 4-F-C6H4 moiety, also found in SLC-0111, afforded an excellent selectivity towards the tumor-associated hypoxia-induced hCA isoform XII with an inhibition constant (KI) of 4.5 nM. The 2-naphthyl derivative was the most potent inhibitor against hCA IX (KI = 6.2 nM), 4-fold stronger than AAZ (KI = 25 nM) with very good selectivity. Some compounds were chosen for antiproliferative activity testing against a panel of 3 human tumor cell lines, one compound showing anti-proliferative activity on glioblastoma, triple-negative breast cancer, and pancreatic carcinoma cell lines.
Collapse
Affiliation(s)
- Paloma Begines
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain
| | - Alessandro Bonardi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy; NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Camilla Tavani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maria Luisa Massardi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, Seville E-41071, Spain.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
53
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
54
|
Abdoli M, Krasniqi V, Bonardi A, Gütschow M, Supuran CT, Žalubovskis R. 4-Cyanamido-substituted benzenesulfonamides act as dual carbonic anhydrase and cathepsin inhibitors. Bioorg Chem 2023; 139:106725. [PMID: 37442043 DOI: 10.1016/j.bioorg.2023.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
A set of novel N-cyano-N-substituted 4-aminobenzenesulfonamide derivatives were synthesized and investigated for their inhibitory activity against four cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms (hCA I, II, VII and XIII) and two cathepsins (S and B). N-alkyl/benzyl-substituted derivatives were revealed to be very potent inhibitors against brain-associated hCA VII, but inactive against both cathepsins. On the other hand, N-acyl-substituted derivatives displayed significant inhibitory activities against cathepsin S, but only moderate to poor inhibitory potency against hCA VII. Both hCA VII and cathepsin S have recently been validated as therapeutic targets in neuropathic pain. This study provided an excellent starting point for further structural optimization of this class of bifunctional compounds to enhance their inhibitory activity and selectivity against hCA VII and cathepsin S and to achieve new compounds with an attractive dual mechanism of action as anti-neuropathic agents.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Vesa Krasniqi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Claudiu T Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy.
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia; Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
55
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
56
|
Elsawi AE, Elbadawi MM, Nocentini A, Almahli H, Giovannuzzi S, Shaldam M, Salem R, Ibrahim TM, Abdel-Aziz HA, Supuran CT, Eldehna WM. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J Med Chem 2023; 66:10558-10578. [PMID: 37501287 DOI: 10.1021/acs.jmedchem.3c00721] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Presently, dual targeting by a single small molecule stands out as an effective cancer-fighting weapon. Carbonic anhydrase (CA) and vascular-endothelial growth factor (VEGF) are hypoxia-activatable genes that are implicated in tumorigenesis and progression of hypoxic tumors at different levels. Herein, we designed and synthesized 30 1,5-diaryl-1,2,4-triazole-tethered sulfonamides (11a-f, 12a-l, 13a-f, 15a-f) as novel SLC-0111 analogues with dual CA IX/XII and VEGFR-2 inhibitory activities. The 4-fluorophenyl SLC-0111 tail was replaced by substituted 1,5-diaryl-1,2,4-triazoles. Changing the sulfamoyl motif position provided regioisomers 11a-f and 12a-l. Elongation of the ureido linker yielded derivatives 15a-f. Inhibitory evaluations included a panel of hCAs (hCA I, II, IX, and XII) and screening against 60 cancer cell lines. Promising candidates were assessed for VEGFR-2 inhibition and selectivity and further evaluated on breast cancer cell lines (MCF-7 and T-47D) and the non-tumorigenic (MCF-10A) cells. Molecular docking studies explored the binding modes of the sulfonamides against hCA IX/XII and VEGFR-2 kinase.
Collapse
Affiliation(s)
- Ahmed E Elsawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Simone Giovannuzzi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| |
Collapse
|
57
|
Osman A, Gu C, Kim DE, Duan D, Barron B, Pham LV, Polotsky VY, Jun JC. Ketogenic diet acutely improves gas exchange and sleep apnoea in obesity hypoventilation syndrome: A non-randomized crossover study. Respirology 2023; 28:784-793. [PMID: 37246156 DOI: 10.1111/resp.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/17/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Obesity hypoventilation syndrome (OHS) causes hypercapnia which is often refractory to current therapies. We examine whether hypercapnia in OHS can be improved by a ketogenic dietary intervention. METHODS We conducted a single-arm crossover clinical trial to examine the impact of a ketogenic diet on CO2 levels in patients with OHS. Patients were instructed to adhere to 1 week of regular diet, 2 weeks of ketogenic diet, followed by 1 week of regular diet in an ambulatory setting. Adherence was assessed with capillary ketone levels and continuous glucose monitors. At weekly visits, we measured blood gases, calorimetry, body composition, metabolic profiles, and sleep studies. Outcomes were assessed with linear mixed models. RESULTS A total of 20 subjects completed the study. Blood ketones increased from 0.14 ± 0.08 during regular diet to 1.99 ± 1.11 mmol/L (p < 0.001) after 2 weeks of ketogenic diet. Ketogenic diet decreased venous CO2 by 3.0 mm Hg (p = 0.008), bicarbonate by 1.8 mmol/L (p = 0.001), and weight by 3.4 kg (p < 0.001). Sleep apnoea severity and nocturnal oxygen levels significantly improved. Ketogenic diet lowered respiratory quotient, fat mass, body water, glucose, insulin, triglycerides, leptin, and insulin-like growth factor 1. Rebound hypercapnia was observed after resuming regular diet. CO2 lowering was dependent on baseline hypercapnia, and associated with circulating ketone levels and respiratory quotient. The ketogenic diet was well tolerated. CONCLUSION This study demonstrates for the first time that a ketogenic diet may be useful for control of hypercapnia and sleep apnoea in patients with obesity hypoventilation syndrome.
Collapse
Affiliation(s)
- Adam Osman
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David E Kim
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daisy Duan
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bobbie Barron
- Institute for Clinical and Translational Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luu V Pham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
58
|
Hammoudan I, Chafi M. QSAR modeling of pyrazoline derivative as carbonic anhydrase inhibitors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28277-3. [PMID: 37405604 DOI: 10.1007/s11356-023-28277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The efficacy of 34 pyrazoline derivatives as carbonic anhydrase inhibitors was studied in silico. The quantum descriptors were calculated by the DFT/B3LYP method using the 6-31G(d) basis; the dataset was randomly divided into training and testing. By altering the compounds in the sets, four models were created, and they were then used to determine the predicted pIC50 values for the six chemicals in the test set. According to the OECD guidelines for QSAR model validation and the Golbraikh and Tropsha's criteria for model approval, each created model was independently validated both internally and externally, along with YRandomization. Model 3 is chosen because it has higher R2, R2test, and Q2cv values (R2 = 0.79, R2test = 0.95, Q2cv = 0.64). Only one descriptor has a proportional influence on pIC50 activity, but the other four descriptors have an inverse influence on pIC50 because of the negative contribution coefficient. Given the descriptors of the model, we could propose new molecules with remarkable inhibitory activity.
Collapse
Affiliation(s)
- Imad Hammoudan
- LIPE, Higher School of Technology, University Hassan II of Casablanca, B.P 8012 Oasis, Casablanca, Morocco
| | - Mohammed Chafi
- LIPE, Higher School of Technology, University Hassan II of Casablanca, B.P 8012 Oasis, Casablanca, Morocco.
| |
Collapse
|
59
|
Merabti A, Richeter S, Supuran CT, Clement S, Winum JY. Are tumour-associated carbonic anhydrases genuine therapeutic targets for photodynamic therapy? Expert Opin Ther Targets 2023; 27:817-826. [PMID: 37668158 DOI: 10.1080/14728222.2023.2255380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Photodynamic therapy (PDT) is a reactive oxygen species (ROS)-dependent treatment modality which has emerged as an alternative cancer therapy strategy. However, in solid tumors, the therapeutic efficacy of PDT is strongly reduced by hypoxia, a typical feature of many such tumors. The tumor-associated carbonic anhydrases IX (hCA IX) and XII (hCA XII), which are overexpressed under hypoxia are attractive, validated anticancer drug targets in solid tumors. Current challenges in therapeutic design of effective PDT systems aim to overcome the limitation of hypoxia by developing synergistic CA-targeted therapies combining photosensitizers and hCA IX/XII inhibitors. AREA COVERED In this review, the current literature on the use of hCA IX/XII inhibitors (CAi) for targeting photosensitizing chemical systems useful for PDT against hypoxic solid tumors is summarized, along with recent progress, challenges, and future prospects. EXPERT OPINION hCA IX/XII-focused photosensitizers have recently provided new generation of compounds of considerable potential. Proof of concept of in vivo efficacy studies suggested enhanced efficacy for CAi-PDT hybrid systems. Further research is needed to deepen our understanding of how hCA IX/hCA XII inhibition can enhance PDT and for obtaining more effective such derivatives.
Collapse
Affiliation(s)
- Amina Merabti
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| | | | | |
Collapse
|
60
|
Mareş C, Udrea AM, Şuţan NA, Avram S. Bioinformatics Tools for the Analysis of Active Compounds Identified in Ranunculaceae Species. Pharmaceuticals (Basel) 2023; 16:842. [PMID: 37375790 DOI: 10.3390/ph16060842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The chemical compounds from extracts of three Ranunculaceae species, Aconitum toxicum Rchb., Anemone nemorosa L. and Helleborus odorus Waldst. & Kit. ex Willd., respectively, were isolated using the HPLC purification technique and analyzed from a bioinformatics point of view. The classes of compounds identified based on the proportion in the rhizomes/leaves/flowers used for microwave-assisted extraction and ultrasound-assisted extraction were alkaloids and phenols. Here, the quantifying of pharmacokinetics, pharmacogenomics and pharmacodynamics helps us to identify the actual biologically active compounds. Our results showed that (i) pharmacokinetically, the compounds show good absorption at the intestinal level and high permeability at the level of the central nervous system for alkaloids; (ii) regarding pharmacogenomics, alkaloids can influence tumor sensitivity and the effectiveness of some treatments; (iii) and pharmacodynamically, the compounds of these Ranunculaceae species bind to carbonic anhydrase and aldose reductase. The results obtained showed a high affinity of the compounds in the binding solution at the level of carbonic anhydrases. Carbonic anhydrase inhibitors extracted from natural sources can represent the path to new drugs useful both in the treatment of glaucoma, but also of some renal, neurological and even neoplastic diseases. The identification of natural compounds with the role of inhibitors can have a role in different types of pathologies, both associated with studied and known receptors such as carbonic anhydrase and aldose reductase, as well as new pathologies not yet addressed.
Collapse
Affiliation(s)
- Cătălina Mareş
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Nicoleta Anca Şuţan
- Department of Natural Sciences, University of Piteşti, 1 Targul din Vale Str., 110040 Pitesti, Romania
| | - Speranţa Avram
- Department of Anatomy, Animal Physiology and Biophysics, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
61
|
Zhou W, Wang C, Zhang B, Gou S. Hybrids of carbonic anhydrase and cyclooxygenase inhibitors attenuate cardiac hypoxic inflammatory injuries. Eur J Pharmacol 2023; 950:175751. [PMID: 37116562 DOI: 10.1016/j.ejphar.2023.175751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 04/30/2023]
Abstract
Cardiac inflammation is easily accompanied by hypoxia, while hypoxia-induced injury and microenvironmental variations limit the efficacy of common anti-inflammatory drugs. In order to effectively attenuate myocardial injury caused by hypoxic and inflammatory injury, we designed and synthesized a kind of anti-inflammatory compounds by coupling cyclooxygenase (COX) and carbonic anhydrase (CA) inhibitors, and evaluated the activity and their mechanism in vitro and in vivo. It was found that these compounds were structurally stable and had two enzymatic inhibition activities. By inhibiting the activity of overexpressed CA under hypoxia, the acidic microenvironment can be regulated to inhibit the hypoxic injury, in which the pH-dependent primary drug resistance can be overcome to improve the anti-inflammatory effect of the COX inhibitor. Consequently, this study provides a new strategy for the treatment of cardiac inflammation accompanied by hypoxia.
Collapse
Affiliation(s)
- Wen Zhou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China
| | - Chunping Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Bin Zhang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
62
|
Silva JM, Cerofolini L, Carvalho AL, Ravera E, Fragai M, Parigi G, Macedo AL, Geraldes CFGC, Luchinat C. Elucidating the concentration-dependent effects of thiocyanate binding to carbonic anhydrase. J Inorg Biochem 2023; 244:112222. [PMID: 37068394 DOI: 10.1016/j.jinorgbio.2023.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023]
Abstract
Many proteins naturally carry metal centers, with a large share of them being in the active sites of several enzymes. Paramagnetic effects are a powerful source of structural information and, therefore, if the native metal is paramagnetic, or it can be functionally substituted with a paramagnetic one, paramagnetic effects can be used to study the metal sites, as well as the overall structure of the protein. One notable example is cobalt(II) substitution for zinc(II) in carbonic anhydrase. In this manuscript we investigate the effects of sodium thiocyanate on the chemical environment of the metal ion of the human carbonic anhydrase II. The electron paramagnetic resonance (EPR) titration of the cobalt(II) protein with thiocyanate shows that the EPR spectrum changes from A-type to C-type on passing from 1:1 to 1:1000-fold ligand excess. This indicates the occurrence of a change in the electronic structure, which may reflect a sizable change in the metal coordination environment in turn caused by a modification of the frozen solvent glass. However, paramagnetic nuclear magnetic resonance (NMR) data indicate that the metal coordination cage remains unperturbed even in 1:1000-fold ligand excess. This result proves that the C-type EPR spectrum observed at large ligand concentration should be ascribed to the low temperature at which EPR measurements are performed, which impacts on the structure of the protein when it is destabilized by a high concentration of a chaotropic agent.
Collapse
Affiliation(s)
- José Malanho Silva
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Ana Luísa Carvalho
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Anjos L Macedo
- UCIBIO, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Carlos F G C Geraldes
- Department of Life Sciences, Faculty of Science and Technology, 3000-393 Coimbra, Portugal; Coimbra Chemistry Center- Institute of Molecular Sciences (CCC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino 50019, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy; Giotto Biotech, S.R.L, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
63
|
Le Pors MS, Santa Maria de la Parra L, Riafrecha LE, Vullo D, León IE, Supuran CT, Colinas PA. Glycosyl Isoxazoles for Targeting of Tumor Microenvironment and Cancer Cells: Highly Selective Inhibitors of Carbonic Anhydrases IX and XII Showing Cytotoxic Activity. ChemistrySelect 2023. [DOI: 10.1002/slct.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Macarena S. Le Pors
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115 1900 La Plata Argentina
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata. Blvd. 120N 1465 1900 La Plata Argentina
| | - Leonardo E. Riafrecha
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115 1900 La Plata Argentina
| | - Daniela Vullo
- Università degli Studi di Firenze NEUROFARBA Department, Section of Pharmaceutical Chemistry Via Ugo Schiff 6 50019 Sesto Fiorentino (Florence) Italy
| | - Ignacio E. León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata. Blvd. 120N 1465 1900 La Plata Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas Universidad Nacional de La Plata. 47 y 115 1900 La Plata Argentina
| | - Claudiu T. Supuran
- Università degli Studi di Firenze NEUROFARBA Department, Section of Pharmaceutical Chemistry Via Ugo Schiff 6 50019 Sesto Fiorentino (Florence) Italy
| | - Pedro A. Colinas
- CEDECOR (UNLP-CICBA), CONICET, Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115 1900 La Plata Argentina
| |
Collapse
|
64
|
MM/GBSA prediction of relative binding affinities of carbonic anhydrase inhibitors: effect of atomic charges and comparison with Autodock4 Zn. J Comput Aided Mol Des 2023; 37:167-182. [PMID: 36930332 PMCID: PMC10050039 DOI: 10.1007/s10822-023-00499-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Carbonic anhydrase is an attractive drug target for the treatment of many diseases. This paper examines the ability of end-state MM/GBSA methods to rank inhibitors of carbonic anhydrase in terms of their binding affinities. The MM/GBSA binding energies were evaluated using different atomic charge schemes (Mulliken, ESP and NPA) at different levels of theories, including Hartree-Fock, B3LYP-D3(BJ), and M06-2X with the 6-31G(d,p) basis set. For a large test set of 32 diverse inhibitors, the use of B3LYP-D3(BJ) ESP atomic charges yielded the strongest correlation with experiment (R2 = 0.77). The use of the recently enhanced Autodock Vina and zinc optimised AD4Zn force field also predicted ligand binding affinities with moderately strong correlation (R2 = 0.64) at significantly lower computational cost. However, the docked poses deviate significantly from crystal structures. Overall, this study demonstrates the applicability of docking to estimate ligand binding affinities for a diverse range of CA inhibitors, and indicates that more theoretically robust MM/GBSA simulations show promise for improving the accuracy of predicted binding affinities, as long as a validated set of parameters is used.
Collapse
|
65
|
Losev TV, Gerasimov IS, Panova MV, Lisov AA, Abdyusheva YR, Rusina PV, Zaletskaya E, Stroganov OV, Medvedev MG, Novikov FN. Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design. J Chem Inf Model 2023; 63:1239-1248. [PMID: 36763797 DOI: 10.1021/acs.jcim.2c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Bioisosteres are molecules that differ in substituents but still have very similar shapes. Bioisosteric replacements are ubiquitous in modern drug design, where they are used to alter metabolism, change bioavailability, or modify activity of the lead compound. Prediction of relative affinities of bioisosteres with computational methods is a long-standing task; however, the very shape closeness makes bioisosteric substitutions almost intractable for computational methods, which use standard force fields. Here, we design a quantum mechanical (QM)-cluster approach based on the GFN2-xTB semi-empirical quantum-chemical method and apply it to a set of H → F bioisosteric replacements. The proposed methodology enables advanced prediction of biological activity change upon bioisosteric substitution of -H with -F, with the standard deviation of 0.60 kcal/mol, surpassing the ChemPLP scoring function (0.83 kcal/mol), and making QM-based ΔΔG estimation comparable to ∼0.42 kcal/mol standard deviation of in vitro experiment. The speed of the method and lack of tunable parameters makes it affordable in current drug research.
Collapse
Affiliation(s)
- Timofey V Losev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russian Federation.,A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor S Gerasimov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Maria V Panova
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Alexey A Lisov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Yana R Abdyusheva
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Polina V Rusina
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Eugenia Zaletskaya
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| | - Oleg V Stroganov
- BioMolTech Corp., 226 York Mills Rd, Toronto, Ontario M2L 1L1, Canada
| | - Michael G Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Fedor N Novikov
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation.,National Research University Higher School of Economics, Myasnitskaya Street 20, 101000 Moscow, Russian Federation
| |
Collapse
|
66
|
O’Herin C, Moriuchi YW, Bemis TA, Kohlbrand AJ, Burkart MD, Cohen SM. Development of Human Carbonic Anhydrase II Heterobifunctional Degraders. J Med Chem 2023; 66:2789-2803. [PMID: 36735827 PMCID: PMC9969396 DOI: 10.1021/acs.jmedchem.2c01843] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a metalloenzyme essential to critical physiological processes in the body. hCA inhibitors are used clinically for the treatment of indications ranging from glaucoma to epilepsy. Targeted protein degraders have emerged as a promising means of inducing the degradation of disease-implicated proteins by using the endogenous quality control mechanisms of a cell. Here, a series of heterobifunctional degrader candidates targeting hCAII were developed from a simple aryl sulfonamide fragment. Degrader candidates were functionalized to produce either cereblon E3 ubiquitin ligase (CRBN) recruiting proteolysis targeting chimeras (PROTACs) or adamantyl-based hydrophobic tags (HyTs). Screens in HEK293 cells identified two PROTAC small-molecule degraders of hCA. Optimization of linker length and composition yielded a degrader with sub-nanomolar potency and sustained depletion of hCAII over prolonged treatments. Mechanistic studies suggest that this optimized degrader depletes hCAII through the same mechanism as previously reported CRBN-recruiting heterobifunctional degraders.
Collapse
|
67
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
68
|
Carey A, Fossati S. Hypertension and hyperhomocysteinemia as modifiable risk factors for Alzheimer's disease and dementia: New evidence, potential therapeutic strategies, and biomarkers. Alzheimers Dement 2023; 19:671-695. [PMID: 36401868 PMCID: PMC9931659 DOI: 10.1002/alz.12871] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
This review summarizes recent evidence on how mid-life hypertension, hyperhomocysteinemia (HHcy) and blood pressure variability, as well as late-life hypotension, exacerbate Alzheimer's disease (AD) and dementia risk. Intriguingly, HHcy also increases the risk for hypertension, revealing the importance of understanding the relationship between comorbid cardiovascular risk factors. Hypertension-induced dementia presents more evidently in women, highlighting the relevance of sex differences in the impact of cardiovascular risk. We summarize each major antihypertensive drug class's effects on cognitive impairment and AD pathology, revealing how carbonic anhydrase inhibitors, diuretics modulating cerebral blood flow, have recently gained preclinical evidence as promising treatment against AD. We also report novel vascular biomarkers for AD and dementia risk, highlighting those associated with hypertension and HHcy. Importantly, we propose that future studies should consider hypertension and HHcy as potential contributors to cognitive impairment, and that uncovering the underlying molecular mechanisms and biomarkers would aid in the identification of preventive strategies.
Collapse
Affiliation(s)
- Ashley Carey
- Alzheimer’s Center at Temple, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia
| |
Collapse
|
69
|
Kugler M, Hadzima M, Dzijak R, Rampmaier R, Srb P, Vrzal L, Voburka Z, Majer P, Řezáčová P, Vrabel M. Identification of specific carbonic anhydrase inhibitors via in situ click chemistry, phage-display and synthetic peptide libraries: comparison of the methods and structural study. RSC Med Chem 2023; 14:144-153. [PMID: 36760748 PMCID: PMC9890587 DOI: 10.1039/d2md00330a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The development of highly active and selective enzyme inhibitors is one of the priorities of medicinal chemistry. Typically, various high-throughput screening methods are used to find lead compounds from a large pool of synthetic compounds, and these are further elaborated and structurally refined to achieve the desired properties. In an effort to streamline this complex and laborious process, new selection strategies based on different principles have recently emerged as an alternative. Herein, we compare three such selection strategies with the aim of identifying potent and selective inhibitors of human carbonic anhydrase II. All three approaches, in situ click chemistry, phage-display libraries and synthetic peptide libraries, led to the identification of more potent inhibitors when compared to the parent compounds. In addition, one of the inhibitor-peptide conjugates identified from the phage libraries showed greater than 100-fold selectivity for the enzyme isoform used for the compound selection. In an effort to rationalize the binding properties of the conjugates, we performed detailed crystallographic and NMR structural analysis, which revealed the structural basis of the compound affinity towards the enzyme and led to the identification of a novel exosite that could be utilized in the development of isoform specific inhibitors.
Collapse
Affiliation(s)
- Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Martin Hadzima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University Albertov 6 12800 Praha 2 Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Robert Rampmaier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Lukáš Vrzal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16000 Prague Czech Republic
| |
Collapse
|
70
|
Fanfrlík J, Brynda J, Kugler M, Lepšík M, Pospíšilová K, Holub J, Hnyk D, Nekvinda J, Grüner B, Řezáčová P. B-H⋯π and C-H⋯π interactions in protein-ligand complexes: carbonic anhydrase II inhibition by carborane sulfonamides. Phys Chem Chem Phys 2023; 25:1728-1733. [PMID: 36594655 DOI: 10.1039/d2cp04673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Among non-covalent interactions, B-H⋯π and C-H⋯π hydrogen bonding is rather weak and less studied. Nevertheless, since both can affect the energetics of protein-ligand binding, their understanding is an important prerequisite for reliable predictions of affinities. Through a combination of high-resolution X-ray crystallography and quantum-chemical calculations on carbonic anhydrase II/carborane-based inhibitor systems, this paper provides the first example of B-H⋯π hydrogen bonding in a protein-ligand complex. It shows that the B-H⋯π interaction is stabilized by dispersion, followed by electrostatics. Furthermore, it demonstrates that the similar C-H⋯π interaction is twice as strong, with a slightly smaller contribution of dispersion and a slightly higher contribution of electrostatics. Such a detailed insight will facilitate the rational design of future protein ligands, controlling these types of non-covalent interactions.
Collapse
Affiliation(s)
- Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | - Michael Kugler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | - Klára Pospíšilová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Drahomír Hnyk
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Jan Nekvinda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
71
|
Indisulam Reduces Viability and Regulates Apoptotic Gene Expression in Pediatric High-Grade Glioma Cells. Biomedicines 2022; 11:biomedicines11010068. [PMID: 36672576 PMCID: PMC9855339 DOI: 10.3390/biomedicines11010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022] Open
Abstract
Pediatric high-grade glioma (pHGG) is one of the most aggressive brain tumors. Treatment includes surgery, radiotherapy, chemotherapy, or combination therapy in children older than 3−5 years of age. These devastating tumors are influenced by the hypoxic microenvironment that coordinatively increases the expression of carbonic anhydrases (CA9 and CA12) that are involved in pH regulation, metabolism, cell invasion, and resistance to therapy. The synthetic sulphonamide Indisulam is a potent inhibitor of CAs. The aim of this study was to evaluate the effects of Indisulam on CA9 and CA12 enzymes in pHGG cell lines. Our results indicated that, under hypoxia, the gene and protein expression of CA9 and CA12 are increased in pHGG cells. The functional effects of Indisulam on cell proliferation, clonogenic capacity, and apoptosis were measured in vitro. CA9 and CA12 gene and protein expression were analyzed by RT-PCR and western blot. The treatment with Indisulam significantly reduced cell proliferation (dose-time-dependent) and clonogenic capacity (p < 0.05) and potentiated the effect of apoptosis (p < 0.01). Indisulam promoted an imbalance in the anti-apoptotic BCL2 and pro-apoptotic BAX protein expression. Our results demonstrate that Indisulam contributes to apoptosis via imbalance of apoptotic proteins (BAX/BCL2) and suggests a potential to overcome chemotherapy resistance caused by the regulation these proteins.
Collapse
|
72
|
Investigation on Hydrazonobenzenesulfonamides as Human Carbonic Anhydrase I, II, IX and XII Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010091. [PMID: 36615285 PMCID: PMC9822402 DOI: 10.3390/molecules28010091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
A small series of hydrazonobenzenesulfonamides was designed, synthesized and studied for their human carbonic anhydrase (hCA) inhibitory activity. The synthesized compounds were evaluated against hCA I, II, IX and XII isoforms using acetazolamide (AAZ) as the standard inhibitor. Various hydrazonosulfonamide derivatives showed inhibitory activity at low nanomolar levels with selectivity against the cytosolic hCA II isoform, as well as the transmembrane, tumor-associated enzymes hCA IX and XII. The most potent and selective hydrazones 8, 9, 10, 11, 19 and 24 were docked into isoforms I, II, IX and XII to better understand their activity and selectivity for the different CA isoforms.
Collapse
|
73
|
Nyambe MM, Archibong EF, Chinsembu KC. A DFT and molecular docking study of xerantholide and its interaction with Neisseria gonorrhoeae carbonic anhydrase. Comput Biol Chem 2022; 101:107779. [DOI: 10.1016/j.compbiolchem.2022.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
|
74
|
Yusuf ZS, Uysal TK, Simsek E, Nocentini A, Osman SM, Supuran CT, Özensoy Güler Ö. The inhibitory effect of boric acid on hypoxia-regulated tumour-associated carbonic anhydrase IX. J Enzyme Inhib Med Chem 2022; 37:1340-1345. [PMID: 35535546 PMCID: PMC9103596 DOI: 10.1080/14756366.2022.2072837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Carbonic anhydrases (EC 4.2.1.1) catalyse the reversible hydration of CO2 into bicarbonate and protons. As a hypoxia-sensitive and tumour-associated isoform, isoform CA IX, is significantly overexpressed in various malignancies, being a validated target for new anticancer/antimetastatic drugs. A multitude of studies has shown that CA IX inhibition decreases cancer cell proliferation and metastasis through pHe/pHi modulation and enhancement of ferroptosis among others. Numerous studies demonstrated increased efficacy of cytotoxic drugs combined with CA inhibitors (CAIs) in various cancer types. We tested the inhibitory effect of boric acid (BA), an inorganic Lewis acid, on CA IX as well as other isoforms (CA I, II, and XII). BA acted as a millimolar in vitro CAI, decreased proliferation of two cancer cell lines, although not strong correlations between the in vitro inhibition and in vivo effects were observed. The mechanism of antiproliferative action of BA should be investigated in more detail.
Collapse
Affiliation(s)
- Zainab Saad Yusuf
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Tugba Kevser Uysal
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ender Simsek
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Alessio Nocentini
- Neurofarba Department, Section of Pharmaceutical Chemistry, Universita degli Studi di Firenze, Florence, Italy
| | - Sameh Mohamed Osman
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Chemistry, Universita degli Studi di Firenze, Florence, Italy
| | - Özen Özensoy Güler
- Department of Medical Biology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
75
|
Abo-Ashour MF, Almahli H, Bonardia A, Khalil A, Al-Warhi T, Al-Rashood ST, Abdel-Aziz HA, Nocentini A, Supuran CT, Eldehna WM. Enaminone-based carboxylic acids as novel non-classical carbonic anhydrases inhibitors: design, synthesis and in vitro biological assessment. J Enzyme Inhib Med Chem 2022; 37:2256-2264. [PMID: 36000171 PMCID: PMC9466612 DOI: 10.1080/14756366.2022.2114079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In searching for new molecular drug targets, Carbonic Anhydrases (CAs) have emerged as valuable targets in diverse diseases. CAs play critical functions in maintaining pH and CO2 homeostasis, metabolic pathways, and much more. So, it is becoming attractive for medicinal chemists to design novel inhibitors for this class of enzymes with improved potency and selectivity towards the different isoforms. In the present study, three sets of carboxylic acid derivatives 5a-q, 7a-b and 12a-c were designed, developed and evaluated for the hCA inhibitory effects against hCA I, II, IX and XII. Compounds 5l, 5m, and 5q elicited the highest inhibitory activities against hCA II, IX and XII. In summary, structural rigidification, regioisomerism and structural extension, all played obvious roles in the degree of hCA inhibition. This present work could be a good starting point for the design of more non-classical selective hCA inhibitors as potential targets for several diseases.
Collapse
Affiliation(s)
- Mahmoud F Abo-Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, El saleheya El Gadida University, Cambridge, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alessandro Bonardia
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Amira Khalil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
76
|
Al-Warhi T, Elbadawi MM, Bonardi A, Nocentini A, Al-Karmalawy AA, Aljaeed N, Alotaibi OJ, Abdel-Aziz HA, Supuran CT, Eldehna WM. Design and synthesis of benzothiazole-based SLC-0111 analogues as new inhibitors for the cancer-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2022; 37:2635-2643. [PMID: 36146927 PMCID: PMC9518259 DOI: 10.1080/14756366.2022.2124409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In this work, different series of benzothiazole-based sulphonamides 8a-c, 10, 12, 16a-b and carboxylic acids 14a-c were developed as novel SLC-0111 analogues with the goal of generating potent carbonic anhydrase (CA) inhibitors. The adopted strategy involved replacing the 4-fluorophenyl tail in SLC-0111 with a benzothiazole motif that attached to the ureido linker to produce compounds 8c and its regioisomers 8a-b. In addition, the ureido spacer was elongated by methylene or ethylene groups to afford the counterparts 10 and 12. In turn, the primary sulfamoyl zinc binding group (ZBG) was either substituted or replaced by carboxylic acid functionality in order to provide the secondary sulphonamide-based SLC-0111 analogues 16a-b, and the carboxylic acid derivatives 14a-c, respectively. All compounds (8a-c, 10, 12, 14a-c and 16a-b) were tested for their ability to inhibit CA isoforms CA I, II, IX and XII. Additionally, the in vitro anticancer properties of the developed CAIs were evaluated.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| | - Alessandro Bonardi
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, Egypt
| | - Nada Aljaeed
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ohoud J Alotaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Egypt
| | - Claudiu T Supuran
- Department of NE.UROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-sheikh, Egypt
| |
Collapse
|
77
|
Krymov SK, Scherbakov AM, Dezhenkova LG, Salnikova DI, Solov’eva SE, Sorokin DV, Vullo D, De Luca V, Capasso C, Supuran CT, Shchekotikhin AE. Indoline-5-Sulfonamides: A Role of the Core in Inhibition of Cancer-Related Carbonic Anhydrases, Antiproliferative Activity and Circumventing of Multidrug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15121453. [PMID: 36558903 PMCID: PMC9783868 DOI: 10.3390/ph15121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The overexpression and activity of carbonic anhydrase (CA, EC 4.2.1.1) isoforms CA IX and CA XII promote the accumulation of exceeding protons and acidosis in the extracellular tumor environment. Sulfonamides are effective inhibitors of most families of CAs. In this study, using scaffold-hopping, indoline-5-sulfonamide analogs 4a-u of the CA IX-selective inhibitor 3 were designed and synthesized to evaluate their biological properties. 1-Acylated indoline-5-sulfonamides demonstrated inhibitory activity against tumor-associated CA IX and XII with KI values up to 132.8 nM and 41.3 nM. Compound 4f, as one of the most potent inhibitors of CA IX and XII, exhibits hypoxic selectivity, suppressing the growth of MCF7 cells at 12.9 µM, and causes partial inhibition of hypoxia-induced CA IX expression in A431 skin cancer cells. 4e and 4f reverse chemoresistance to doxorubicin of K562/4 with overexpression of P-gp.
Collapse
Affiliation(s)
- Stepan K. Krymov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Alexander M. Scherbakov
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Diana I. Salnikova
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Svetlana E. Solov’eva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
| | - Danila V. Sorokin
- Department of Experimental Tumor Biology, Blokhin N.N. National Medical Research Center of Oncology, 115522 Moscow, Russia
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50122 Florence, Italy
- Correspondence: (C.T.S.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia
- Correspondence: (C.T.S.); (A.E.S.)
| |
Collapse
|
78
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|
79
|
Sri Wahyu Effendi S, Lin JY, Ng IS. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2022; 363:127980. [PMID: 36137445 DOI: 10.1016/j.biortech.2022.127980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Human carbonic anhydrase II (hCAII) is a rapid-acting zinc-metalloenzyme that catalyzes CO2 hydration reversibly, with encouraging applications in carbon capture, sequestration, and utilization (CCSU). However, biocatalyst durability is a major challenge. Herein, hCAII is emphasized in 4 different Escherichia coli strains and designated under dual promoters from sigma factor 70 (σ70) and heat shock protein (HSP70A) to suppress the usage of inducer and stimulate activity in heat environments. As a result, hCAII under high-efficient dual promoters regulation retained high residual activity in CO2 biomineralization of 68.8 % after 4 cycles at 40 °C. Moreover, co-expression of CAC9 with lysine decarboxylase (CadA) simultaneously sequestered CO2 release up to 95.7 % and increased cadaverine titer from 18.0 to 36.7 g/L by using E. coli MG1655. The remnant biomass from cadaverine synthesis sustained converting CO2 to 57.9 mg-CaCO3. Thus, the dual promoters design demonstrated the promising potential for CCSU through simultaneous CO2 utilization and cadaverine synthesis.
Collapse
Affiliation(s)
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
80
|
Zain-Alabdeen AI, El-Moselhy TF, Sharafeldin N, Angeli A, Supuran CT, El-Hamamsy MH. Synthesis and anticancer activity of new benzensulfonamides incorporating s-triazines as cyclic linkers for inhibition of carbonic anhydrase IX. Sci Rep 2022; 12:16756. [PMID: 36202955 PMCID: PMC9537541 DOI: 10.1038/s41598-022-21024-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Limited presence of hCA IX in normal physiological tissues and their overexpression only in solid hypoxic tumors made this isoform excellent possible target for developing new anticancer agents. We reported designing and synthesis of two novel series of benzenesulfonamides derivatives as hCA IX inhibitors bearing rigid cyclic linkers (1,3,5-dihydrotriazine in series A and 1,3,5-triazine in series B) in replace of traditional linear linkers. Also, novel cyanoethenyl spacer was assembled next to the 1,3,5-triazine linker in series B. Target compounds of series (A) and (B) were screened against four hCA isoforms. Human CA IX efficiently inhibited in series (A) by compound 5a (KI = 134.8 nM). Meanwhile, in series (B) the most active inhibitor was 12i (KI = 38.8 nM). US-NCI protocol was followed to evaluate the anticancer activity of target compounds against panel of sixty cancer cell lines. Compound 12d, exposed the best activity towards breast cancer (MDA-MB-468) with GI% = 62%. The most active analogues, 12d and 12i were further screened for in vitro cytotoxic activity under hypoxic condition against breast cancer (MDA-MB-468) (IC50 = 3.99 ± 0.21 and 1.48 ± 0.08 µM, respectively) and leukemia (CCRF-CM) cell line (IC50 = 4.51 ± 0.24 and 9.83 ± 0.52 µM, respectively). In addition, 12d arrested breast cancer MDA-MB-468 cell cycle in G0-G1 and S phases and induced its apoptosis which indicated by increasing the level of cleaved caspases 3 and 9. Molecular docking was performed for selected analogues to understand their biological alterations. This study revealed that insertion of 1,3,5-triazines as cyclic linkers enhanced the significant anticancer and hCA IX inhibition activity of benzenesulfonamides.
Collapse
Affiliation(s)
- Abdelrahman I Zain-Alabdeen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt.
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| | - Nabaweya Sharafeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, El Giesh Street, Tanta, 31527, Egypt
| |
Collapse
|
81
|
Beatriz Vermelho A, Rodrigues GC, Nocentini A, Mansoldo FRP, Supuran CT. Discovery of novel drugs for Chagas disease: is carbonic anhydrase a target for antiprotozoal drugs? Expert Opin Drug Discov 2022; 17:1147-1158. [PMID: 36039500 DOI: 10.1080/17460441.2022.2117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giseli Capaci Rodrigues
- UNIGRANRIO - Universidade do Grande Rio Programa de Pós-Graduação em Ensino das Ciências, Rio de Janeiro, Brazil
| | - Alessio Nocentini
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| | - Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts, and Bioenergy, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences University of Florence, Florence, Italy
| |
Collapse
|
82
|
Zhou W, Wang C, Liu Z, Gou S. Hypoxia-Activated Prodrugs with Dual COX-2/CA Inhibitory Effects on Attenuating Cardiac Inflammation under Hypoxia. J Med Chem 2022; 65:13436-13451. [PMID: 36170566 DOI: 10.1021/acs.jmedchem.2c01355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardiac inflammation is generally accompanied by hypoxia, while myocardial injury and an abnormal microenvironment caused by hypoxia tend to suppress the efficacy of common anti-inflammatory drugs. To improve the anti-inflammatory effect under hypoxia, a hypoxia-activated prodrug HAP1 consisting of a cyclooxygenase-2 (COX-2) inhibitor Ind and a carbonic anhydrase (CA) inhibitor Ace was synthesized. HAP1 was found to be activated by nitroreductase (NTR) under hypoxia to release two pharmacophores and achieve the combinatory medication intensively at the hypoxic site, better than Ind or Ace alone. When NTR activity was inhibited by Na2WO4 under hypoxia, no pharmacophores were found to release from HAP1 without exhibiting its activity. However, the efficacy of the Ind and Ace combination group (I&A) was not affected. Furthermore, HAP1 showed advantages over I&A in vivo not only in improving bioavailability but also in reducing side effects. The HAP approach turns out to inhibit cardiac inflammation efficiently and safely under hypoxia.
Collapse
Affiliation(s)
- Wen Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Chunping Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Zhikun Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, Jiangsu, P. R. China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, P. R. China
| |
Collapse
|
83
|
Rasool A, Batool Z, Khan M, Halim SA, Shafiq Z, Temirak A, Salem MA, Ali TE, Khan A, Al-Harrasi A. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep 2022; 12:16095. [PMID: 36167735 PMCID: PMC9515202 DOI: 10.1038/s41598-022-19975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we report the synthesis, carbonic anhydrase-II (CA-II) inhibition and structure–activity relationship studies of cinnamaldehyde-clubbed thiosemicarbazones derivatives. The derivatives showed potent activities in the range of 10.3 ± 0.62–46.6 ± 0.62 µM. Among all the synthesized derivatives, compound 3n (IC50 = 10.3 ± 0.62 µM), 3g (IC50 = 12.1 ± 1.01 µM), and 3h (IC50 = 13.4 ± 0.52 µM) showed higher inhibitory activity as compared to the standard inhibitor, acetazolamide. Furthermore, molecular docking of all the active compounds was carried out to predict their behavior of molecular binding. The docking results indicate that the most active hit (3n) specifically mediate ionic interaction with the Zn ion in the active site of CA-II. Furthermore, the The199 and Thr200 support the binding of thiosemicarbazide moiety of 3n, while Gln 92 supports the interactions of all the compounds by hydrogen bonding. In addition to Gln92, few other residues including Asn62, Asn67, The199, and Thr200 play important role in the stabilization of these molecules in the active site by specifically providing H-bonds to the thiosemicarbazide moiety of compounds. The docking score of active hits are found in range of − 6.75 to − 4.42 kcal/mol, which indicates that the computational prediction correlates well with the in vitro results.
Collapse
Affiliation(s)
- Asif Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Muhayil, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
84
|
Gantner ME, Prada Gori DN, Llanos MA, Talevi A, Angeli A, Vullo D, Supuran CT, Gavernet L. Identification of New Carbonic Anhydrase VII Inhibitors by Structure-Based Virtual Screening. J Chem Inf Model 2022; 62:4760-4770. [PMID: 36126250 DOI: 10.1021/acs.jcim.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human carbonic anhydrase VII (hCA VII) constitutes a promising molecular target for the treatment of epileptic seizures and other central nervous system disorders due to its almost exclusive expression in neurons. Achieving isoform selectivity is one of the main challenges for the discovery of new hCA inhibitors, since nonspecific inhibition may lead to tolerance and side effects. In the present work, we report the development of a molecular docking protocol based on AutoDock4Zn for the search of new hCA VII inhibitors by virtual screening. The docking protocol was applied to the screening of two sets of compounds: a ZINC15 subset of sulfur-containing structures and an in-house library consisting of synthetic and commercial candidates (including approved drugs). Five compounds were selected from the first screening campaign and three from the second one, and they were tested in vitro against the enzyme. Among the eight selected structures, four showed Ki values in the low nanomolar range. These confirmed hits include three approved drugs: meloxicam, piroxicam, and nitrofurantoin, which also showed good selectivity for hCA VII versus hCA II.
Collapse
Affiliation(s)
- Melisa E Gantner
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Denis N Prada Gori
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Manuel A Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Florence, Italy
| | - Luciana Gavernet
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, National University of La Plata (UNLP), 47&115, La Plata B1900ADU, Buenos Aires, Argentina
| |
Collapse
|
85
|
Khurshid U, Ahmad S, Saleem H, LodhI AH, Pervaiz I, Khan MA, Khan H, AlamrI A, AnsarI M, LocatellI M, Arshad MA, Wazir MA, Butt J, Anwar S. Multifaced Assessment of Antioxidant Power, Phytochemical Metabolomics, In-Vitro Biological Potential and In-Silico Studies of Neurada procumbens L.: An Important Medicinal Plant. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185849. [PMID: 36144585 PMCID: PMC9501585 DOI: 10.3390/molecules27185849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
This work was undertaken to explore the phytochemical composition, antioxidant, and enzyme-inhibiting properties of Neurada procumbens L. extracts/fractions of varying polarity (methanol extract and its fractions including n-hexane, chloroform, n-butanol, and aqueous fractions). A preliminary phytochemical study of all extracts/fractions, HPLC-PDA polyphenolic quantification, and GC-MS analysis of the n-hexane fraction were used to identify the phytochemical makeup. Antioxidant (DPPH), enzyme inhibition (against xanthine oxidase, carbonic anhydrase, and urease enzymes), and antibacterial activities against seven bacterial strains were performed for biological investigation. The GC-MS analysis revealed the tentative identification of 22 distinct phytochemicals in the n-hexane fraction, the majority of which belonged to the phenol, flavonoid, sesquiterpenoid, terpene, fatty acid, sterol, and triterpenoid classes of secondary metabolites. HPLC-PDA analysis quantified syringic acid, 3-OH benzoic acid, t-ferullic acid, naringin, and epicatechin in a significant amount. All of the studied extracts/fractions displayed significant antioxidant capability, with methanol extract exhibiting the highest radical-scavenging activity, as measured by an inhibitory percentage of 81.4 ± 0.7 and an IC50 value of 1.3 ± 0.3. For enzyme inhibition experiments, the n-hexane fraction was shown to be highly potent against xanthine oxidase and urease enzymes, with respective IC50 values of 2.3 ± 0.5 and 1.1 ± 0.4 mg/mL. Similarly, the methanol extract demonstrated the strongest activity against the carbonic anhydrase enzyme, with an IC50 value of 2.2 ± 0.4 mg/mL. Moreover, all the studied extracts/fractions presented moderate antibacterial potential against seven bacterial strains. Molecular docking of the five molecules β-amyrin, campesterol, ergosta-4,6,22-trien-3β-ol, stigmasterol, and caryophyllene revealed the interaction of these ligands with the investigated enzyme (xanthine oxidase). The results of the present study suggested that the N. procumbens plant may be evaluated as a possible source of bioactive compounds with multifunctional therapeutic applications.
Collapse
Affiliation(s)
- Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (U.K.); (H.S.)
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
- Correspondence: (U.K.); (H.S.)
| | - Arslan Hussain LodhI
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Irfan Pervaiz
- Department of Pharmacy, University of Chenab, Gujrat 50700, Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Haroon Khan
- Gomal Centre of Pharmaceutical Sciences Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Abdulwahab AlamrI
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81451, Saudi Arabia
| | - Mukhtar AnsarI
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81451, Saudi Arabia
| | - Marcello LocatellI
- Department of Pharmacy, University ‘G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Muhammad Adeel Arshad
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health sciences, Lahore College for Women University, Lahore 54000, Pakistan
| | - Muhammad Asif Wazir
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Juwairiya Butt
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81451, Saudi Arabia
| |
Collapse
|
86
|
Development of benzene and benzothiazole-sulfonamide analogues as selective inhibitors of the tumor-associated carbonic anhydrase IX. Eur J Med Chem 2022; 243:114793. [DOI: 10.1016/j.ejmech.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
87
|
Insights into the effect of elaborating coumarin-based aryl enaminones with sulfonamide or carboxylic acid functionality on carbonic anhydrase inhibitory potency and selectivity. Bioorg Chem 2022; 126:105888. [DOI: 10.1016/j.bioorg.2022.105888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
|
88
|
Chu N, Wang Y, Jia H, Han J, Wang X, Hou Z. Design, Synthesis and Biological Evaluation of New Carbohydrate-Based Coumarin Derivatives as Selective Carbonic Anhydrase IX Inhibitors via “Click” Reaction. Molecules 2022; 27:molecules27175464. [PMID: 36080232 PMCID: PMC9458059 DOI: 10.3390/molecules27175464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, we designed a series of new carbohydrate-based coumarin carbonic anhydrase IX inhibitors by using 1,2,3-triazoles as linker. Next, these designed compounds were synthesized by the optimized one-pot click chemistry reaction condition. Subsequently, these target compounds were assayed for the inhibition of three carbonic anhydrase isoforms (CA I, CA II and CA IX). Intriguingly, all the compounds showed better CA IX inhibitory activity than initial coumarin fragments. Among them, compound 10a (IC50: 11 nM) possessed the most potent CA IX inhibitory activity, which was more potent than the reference drug acetazolamide (IC50: 30 nM). Notably, compound 10a showed 3018-fold, 1955-fold selectivity relative to CA I and CA II, respectively. Meanwhile, representative compounds could reduce tumor cell viability and the extracellular acidification in HT-29 and MDA-MB-231 cancer cell lines. Even more interestingly, our target compounds had no apparent cytotoxicity toward MCF-10A cell line. In addition, the in vitro stability assays also indicated our developed compounds possessed good liver microsomal metabolic stabilities and plasma stability. Furthermore, representative compounds revealed relatively low hERG cardiac toxicity and acute toxicity. Furthermore, docking studies were carried out to understand the interactions of our target compounds with the protein target CA IX. Collectively, our results suggest that compound 10a, as a selective CA IX inhibitor, could be an important lead compound for further optimization and development as an anticancer agent.
Collapse
Affiliation(s)
- Naying Chu
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yitong Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Jia
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Jie Han
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Xiaoyi Wang
- Department of Pharmacy, The First People’s Hospital of Shangqiu, Suiyang District, 292 Kaixuan Road, Shangqiu 476000, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence:
| |
Collapse
|
89
|
Mancuso F, Angeli A, De Luca V, Bucolo F, De Luca L, Capasso C, Supuran CT, Gitto R. Synthesis and biological evaluation of sulfonamide-based compounds as inhibitors of carbonic anhydrase from Vibrio cholerae. Arch Pharm (Weinheim) 2022; 355:e2200070. [PMID: 35739618 DOI: 10.1002/ardp.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/06/2022]
Abstract
This study reports our continued efforts to identify inhibitors capable of targeting carbonic anhydrases (CAs) expressed in bacteria. Based on previously identified chemotypes, we designed and synthesized new analogs that were screened toward the α, β, and γ classes encoded in Vibrio cholerae (Vch). The Ki values measured in the stopped-flow hydrase assay revealed that very simple structural modifications might induce a relevant impact on the inhibitory effects as well as the selectivity profile over ubiquitous human isozymes (hCA I/II). Unfortunately, the best active VchCA inhibitors demonstrated a dramatic loss of hCA II selectivity when compared to previously reported compounds. Among the new series of sulfonamides, several molecules proved to be about sevenfold more potent against VchCAγ than the reference compound acetazolamide, thus furnishing new insights for further development of inhibitors targeting CAs expressed in bacteria.
Collapse
Affiliation(s)
| | - Andrea Angeli
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Viviana De Luca
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Federica Bucolo
- CHIBIOFARAM Department, University of Messina, Messina, Italy
| | - Laura De Luca
- CHIBIOFARAM Department, University of Messina, Messina, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | | | - Rosaria Gitto
- CHIBIOFARAM Department, University of Messina, Messina, Italy
| |
Collapse
|
90
|
Yamali C, Sakagami H, Satoh K, Bandow K, Uesawa Y, Bua S, Angeli A, Supuran CT, Inci Gul H. Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone linker and zinc-binding benzenesulfonamide pharmacophores. Bioorg Chem 2022; 127:105969. [DOI: 10.1016/j.bioorg.2022.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
|
91
|
Aspatwar A, Barker H, Aisala H, Zueva K, Kuuslahti M, Tolvanen M, Primmer CR, Lumme J, Bonardi A, Tripathi A, Parkkila S, Supuran CT. Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris. J Enzyme Inhib Med Chem 2022; 37:1577-1586. [PMID: 35637617 PMCID: PMC9176631 DOI: 10.1080/14756366.2022.2080818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) was cloned from the genome of the Monogenean platyhelminth Gyrodactylus salaris, a parasite of Atlantic salmon. The new enzyme, GsaCAβ has a significant catalytic activity for the physiological reaction, CO2 + H2O ⇋ HCO3− + H+ with a kcat of 1.1 × 105 s−1 and a kcat/Km of 7.58 × 106 M−1 × s−1. This activity was inhibited by acetazolamide (KI of 0.46 µM), a sulphonamide in clinical use, as well as by selected inorganic anions and small molecules. Most tested anions inhibited GsaCAβ at millimolar concentrations, but sulfamide (KI of 81 µM), N,N-diethyldithiocarbamate (KI of 67 µM) and sulphamic acid (KI of 6.2 µM) showed a rather efficient inhibitory action. There are currently very few non-toxic agents effective in combating this parasite. GsaCAβ is subsequently proposed as a new drug target for which effective inhibitors can be designed.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martti Tolvanen
- Department of Computing, University of Turku, Turku, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Amit Tripathi
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
92
|
Abdoli M, Giovannuzzi S, Supuran CT, Žalubovskis R. 4-(3-Alkyl/benzyl-guanidino)benzenesulfonamides as selective carbonic anhydrase VII inhibitors. J Enzyme Inhib Med Chem 2022; 37:1568-1576. [PMID: 35635139 PMCID: PMC9154774 DOI: 10.1080/14756366.2022.2080816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Giovannuzzi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
- Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
93
|
Angeli A, Ferraroni M, Carta F, Häberli C, Keiser J, Costantino G, Supuran CT. Development of Praziquantel sulphonamide derivatives as antischistosomal drugs. J Enzyme Inhib Med Chem 2022; 37:1479-1494. [PMID: 35635137 PMCID: PMC9154761 DOI: 10.1080/14756366.2022.2078970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The almost empty armamentarium to treat schistosomiasis, a neglected parasitic disorder caused by trematode flatworms of the genus Schistosoma, except Praziquantel (PZQ), urged to find new alternatives to fight this infection. Carbonic Anhydrase from Schistosoma mansoni (SmCA) is a possible new target against this nematode. Here, we propose new PZQ derivatives bearing a primary sulphonamide group in order to obtain hybrid drugs. All compounds were evaluated for their inhibition profiles on both humans and Schistosoma CAs, X-ray crystal data of SmCA and hCA II in adduct with some inhibitors were obtained allowing the understanding of the main structural factors responsible of activity. The compounds showed in vitro inhibition of immature and adult S. mansoni, but further optimisation is required for improved activity.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Florence, Italy
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Florence, Italy
| | - Marta Ferraroni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Florence, Italy
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Gabriele Costantino
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, Florence, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Florence, Italy
| |
Collapse
|
94
|
Nerella SG, Singh P, Arifuddin M, Supuran CT. Anticancer carbonic anhydrase inhibitors: a patent and literature update 2018-2022. Expert Opin Ther Pat 2022; 32:833-847. [PMID: 35616541 DOI: 10.1080/13543776.2022.2083502] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Cancer affects an increasing number of patients each year with an unacceptable death toll worldwide. A new therapeutic approach to combat tumors consists in targeting human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII, which are tumor-associated, overexpressed enzymes in hypoxic tumors, being involved in metabolism, pH regulation, ferroptosis and overall tumor progression. AREAS COVERED Small molecule hCA IX/XII and antibody drug conjugate inhibitors targeting the two enzymes and their applications in the management of cancer are discussed. EXPERT OPINION The available 3D crystal structures of hCA IX, XII as well as the off target isoforms hCA I and II, afforded structure-based drug design opportunities, which led to the development of various isoform-selective small molecule inhibitors belonging to diverse classes (sulfonamides, sulfamates, benzoxaboroles, selenols, coumarins, sulfocoumarins and isocoumarins). Many patents focused on small inhibitors containing sulfonamide/ sulfamate/sulfamide derivatives as well as hybrids incorporating sulfonamides and different antitumor chemotypes, such as cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors. The most investigated candidate belonging to the class is the sulfonamide SLC-0111, in Phase Ib/II clinical trials for the management of advanced, metastatic solid tumors.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.,Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Gachibowli, Hyderabad 500032, T.S.India
| | - Claudiu T Supuran
- Neurofarba Dept., Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
95
|
Banoglu E, Ercanlı T, Gür Maz T, Vullo D, Bonardi A, Gratteri P, Supuran CT. A Series of Thiadiazolyl-Benzenesulfonamides Incorporating an Aromatic Tail as Isoform-Selective, Potent Carbonic Anhydrase II/XII Inhibitors. ChemMedChem 2022; 17:e202200056. [PMID: 35266325 DOI: 10.1002/cmdc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Indexed: 11/08/2022]
Abstract
We describe the synthesis of a series of thiadiazolyl-benzenesulfonamide derivatives carrying an aromatic tail linked by an amide linker (12-34), as human carbonic anhydrase (hCA) inhibitors. These thiadiazol derivatives were evaluated against four physiologically relevant CA isoforms (hCA I, II, IX, and XII), and demonstrated intriguing inhibitory activity against CA II with Ki values in the range of 2.4-31.6 nM. Besides hCA II, also hCA XII activity was potently inhibited by some of the derivatives (Ki =1.5-88.5 nM), producing dual inhibitors of both isoforms. Notably, compound 17 was the most potent dual CA II (Ki =3.1 nM) and XII (Ki =1.5 nM) inhibitor with a significant selectivity ratio over CA I and IX isoforms. In conclusion, although all compounds exhibited preferential activity towards hCA II, the nature of the substituents at the tail part of the main scaffold influenced the activity and selectivity toward other isoforms.
Collapse
Affiliation(s)
- Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle, 06560, Ankara, Turkey
| | - Taner Ercanlı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle, 06560, Ankara, Turkey
| | - Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle, 06560, Ankara, Turkey
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
96
|
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Marciniak B, Drozda R, Kontek R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022; 37:1278-1298. [PMID: 35506234 PMCID: PMC9090362 DOI: 10.1080/14756366.2022.2052868] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Carbonic anhydrases IX and CAXII (CAIX/CAXII) are transmembrane zinc metalloproteins that catalyze a very basic but crucial physiological reaction: the conversion of carbon dioxide into bicarbonate with a release of the proton. CA, especially CAIX and CAXII isoforms gained the attention of many researchers interested in anticancer drug design due to pivotal functions of enzymes in the cancer cell metastasis and response to hypoxia, and their expression restricted to malignant cells. This offers an opportunity to develop new targeted therapies with fewer side effects. Continuous efforts led to the discovery of a series of diverse compounds with the most abundant sulphonamide derivatives. Here we review current knowledge considering small molecule and antibody-based targeting of CAIX/CAXII in cancer.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland.,Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Somdutt Mujwar
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Laboratory of Cytogenetics, University of Lodz, Lodz, Poland
| |
Collapse
|
97
|
Toward the Discovery of a Novel Class of Leads for High Altitude Disorders by Virtual Screening and Molecular Dynamics Approaches Targeting Carbonic Anhydrase. Int J Mol Sci 2022; 23:ijms23095054. [PMID: 35563445 PMCID: PMC9104310 DOI: 10.3390/ijms23095054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023] Open
Abstract
For decades, carbonic anhydrase (CA) inhibitors, most notably the acetazolamide-bearing 1,3,4-thiadiazole moiety, have been exploited at high altitudes to alleviate acute mountain sickness, a syndrome of symptomatic sensitivity to the altitude characterized by nausea, lethargy, headache, anorexia, and inadequate sleep. Therefore, inhibition of CA may be a promising therapeutic strategy for high-altitude disorders. In this study, co-crystallized inhibitors with 1,3,4-thiadiazole, 1,3-benzothiazole, and 1,2,5-oxadiazole scaffolds were employed for pharmacophore-based virtual screening of the ZINC database, followed by molecular docking and molecular dynamics simulation studies against CA to find possible ligands that may emerge as promising inhibitors. Compared to the co-crystal ligands of PDB-1YDB, 6BCC, and 6IC2, ZINC12336992, ZINC24751284, and ZINC58324738 had the highest docking scores of -9.0, -9.0, and -8.9 kcal/mol, respectively. A molecular dynamics (MD) simulation analysis of 100 ns was conducted to verify the interactions of the top-scoring molecules with CA. The system's backbone revealed minor fluctuations, indicating that the CA-ligand complex was stable during the simulation period. Simulated trajectories were used for the MM-GBSA analysis, showing free binding energies of -16.00 ± 0.19, -21.04 ± 0.17, and -19.70 ± 0.18 kcal/mol, respectively. In addition, study of the frontier molecular orbitals of these compounds by DFT-based optimization at the level of B3LYP and the 6-311G(d,p) basis set showed negative values of the HOMO and LUMO, indicating that the ligands are energetically stable, which is essential for forming a stable ligand-protein complex. These molecules may prove to be a promising therapy for high-altitude disorders, necessitating further investigations.
Collapse
|
98
|
Tawfik HO, Shaldam MA, Nocentini A, Salem R, Almahli H, Al-Rashood ST, Supuran CT, Eldehna WM. Novel 3-(6-methylpyridin-2-yl)coumarin-based chalcones as selective inhibitors of cancer-related carbonic anhydrases IX and XII endowed with anti-proliferative activity. J Enzyme Inhib Med Chem 2022; 37:1043-1052. [PMID: 35437108 PMCID: PMC9037210 DOI: 10.1080/14756366.2022.2056734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Carbonic anhydrases (CAs) are one of the promising targets for the development of anticancer agents. CA isoforms are implicated in various physiological processes and are expressed in both normal and cancerous cells. Thus, non-isoform selective inhibitors are associated with several side effects. Consequently, designing selective inhibitors towards cancer-related hCA IX/XII rather than the ubiquitous cytosolic isozymes hCA I and II is the main research objective in the field. Herein, a new series of 3-(6-methylpyridin-2-yl)coumarin derivatives 3 and 5a–o was designed and synthesised. The CA inhibition activities for the synthesised coumarins were analysed on isoforms hCA I, II, IX, and XII. Interestingly, both cancer-linked isoforms hCA IX/XII were inhibited by the prepared coumarins with inhibition constants ranging from sub- to low-micromolar range, whereas hCA I and II isoforms haven’t been inhibited up to 100 µM. Furthermore, the target coumarins were assessed for their antitumor activity on NCI-59 human cancer types.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Polo Scientifico, Firenze, Italy
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of NEUROFARBA, University of Florence, Polo Scientifico, Firenze, Italy
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
99
|
Tanini D, Capperucci A, Locuoco M, Ferraroni M, Costantino G, Angeli A, Supuran CT. Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorg Chem 2022; 122:105751. [PMID: 35344894 DOI: 10.1016/j.bioorg.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
A series of benzoselenoates has been prepared and their inhibitory properties against the most relevant human Carbonic Anhydrases (CAs) isoforms, among which hCA I, II, IV, VII, IX, and XII were investigated. These inhibitors were designed considering the carboxylates and mono-/dithiocarbamates as lead and led to the observation that the COSe- is a new zinc-binding group (ZBG) for metalloenzymes possessing zinc ions at their active site. The substitution pattern on aromatic ring of the benzoselenoates is the crucial structural element influencing selectivity towards various isoforms. We elucidated the binding mode of benzoselenoates to hCA I and hCA II by using X-ray crystallography. The negatively charged selenium atom from the new ZBG was observed coordinated to the zinc ion from the CA active site at a distance of 2.30-2.40 Å from it. Overall, these data might be useful for the development of new inhibitors with higher selectivity and efficacy for various hCAs.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Maria Locuoco
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Angeli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
100
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|