51
|
R(+)-Thioctic Acid Effects on Oxidative Stress and Peripheral Neuropathy in Type II Diabetic Patients: Preliminary Results by Electron Paramagnetic Resonance and Electroneurography. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1767265. [PMID: 29849866 PMCID: PMC5914101 DOI: 10.1155/2018/1767265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Objectives Diabetic neuropathy is the most common complication of diabetes. The idea of alterations in energy metabolism in diabetes is emerging. The biogenic antioxidant R(+)-thioctic acid has been successfully used in the treatment of diabetic polyneuropathic (DPN) patients. Methods The effects of R(+)-thioctic acid (1 tablet, 1.6 g) administration were evaluated in 12 DPN patients at baseline and at 15, 30, 60, and 120 administration days throughout the assessment of oxidative stress (OxS); ROS production rate by electron paramagnetic resonance (EPR) technique; and oxidative damage biomarkers (thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC)), electroneurography (ENG) and visual analogue scale. Results Supplementation induced significant changes (p < 0.05) at 30 and 60 days. ROS production rate up to -16%; TBARS (-31%), PC (-38%), and TAC up to +48%. Motor nerve conduction velocity in SPE and ulnar nerves (+22% and +16%) and sensor conduction velocity in sural and median nerves (+22% and +5%). Patients reported a general wellness sensation improvement (+35%) at 30 days: lower limb pain sensation (-40%) and upper limbs (-23%). Conclusion The results strongly indicate that an increased antioxidant capacity plays an important role in OxS, nerve conduction velocity, pain, and general wellness improvement. Nevertheless, the effects of the antioxidant compound were found positive up to 60 days. Then, a hormesis effect was observed. Novelty of the research would be a challenge for investigators to carefully address issues, including dose range factors, appropriate administration time, and targeting population to counteract possible "boomerang effects." The great number of monitored parameters would firmly stress these conclusions.
Collapse
|
52
|
Botanicals and phytochemicals active on cognitive decline: The clinical evidence. Pharmacol Res 2018; 130:204-212. [DOI: 10.1016/j.phrs.2017.12.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/05/2017] [Accepted: 12/27/2017] [Indexed: 01/31/2023]
|
53
|
Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res 2018; 32:1163-1180. [PMID: 29575316 DOI: 10.1002/ptr.6063] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Many scientific articles proved that green tea (GT), Camellia sinensis, has a great potential to manage central nervous system, cardiovascular, and metabolic diseases and treat cancer and inflammatory disorders. However, it is important to consider that "natural" is not always "safe." Some relevant articles reported side effects of GT, detrimental effects on health. The aim of this study is to provide a classified report about the toxicity of GT and its main constituents in acute, subacute, subchronic, and chronic states. Furthermore, it discusses on the cytotoxicity, genotoxicity, mutagenicity, carcinogenicity, and developmental toxicity of GT and its main constituents. The most important side effects have been reported hepatotoxicity and gastrointestinal disorders specially while consumed on an empty stomach. GT and its main components are not major teratogen, mutagen, or carcinogen substances. However, there is limited data in using them during pregnancy, and they should be used with caution in pregnancy, breast-feeding, and susceptible people. Because GT and its main components have a wide variety of drug interactions, consideration should be taken in coadministration of them with narrow therapeutic indexed drugs. Furthermore, they evoke selective cytotoxicity on cancerous cells that could engage them as an adjuvant substance in cancer therapy.
Collapse
Affiliation(s)
- Zeinab Bedrood
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
54
|
Aaseth J, Ajsuvakova OP, Skalny AV, Skalnaya MG, Tinkov AA. Chelator combination as therapeutic strategy in mercury and lead poisonings. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
55
|
Zhang W, Li X, Hua F, Chen W, Wang W, Chu GX, Bao GH. Interaction between Ester-Type Tea Catechins and Neutrophil Gelatinase-Associated Lipocalin: Inhibitory Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1147-1156. [PMID: 29355013 DOI: 10.1021/acs.jafc.7b05399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Tea is thought to alleviate neurotoxicity due to the antioxidative effect of ester-type tea catechins (ETC). Neutrophil gelatinase-associated lipocalin (NGAL) can sensitize β-amyloid (Aβ) induced neurotoxicity, and inhibitors of NGAL may relieve associated symptoms. As such, the interactions of ETC with NGAL were investigated by fluorescence spectrometry and molecular simulation. NGAL fluorescence is quenched regularly when being added with six processing types of tea infusion (SPTT) and ETC. Thermodynamic analyses suggest that ETC with more catechol moieties has a stronger binding capacity with NGAL especially in the presence of Fe3+. (-)-Epicatechin 3-O-caffeoate (ECC), a natural product isolated from Zijuan green tea, shows the strongest binding ability with NGAL (Kd = 15.21 ± 8.68 nM in the presence of Fe3+). All ETC are effective in protecting nerve cells against H2O2 or Aβ1-42 induced injury. The inhibitory mechanism of ETC against NGAL supports its potential use in attenuation of neurotoxicity.
Collapse
Affiliation(s)
- Wei Zhang
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Xiao Li
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Fang Hua
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Wei Chen
- Department of Nephrology, Affiliated Anhui Provincial Hospital, University of Science and Technology of China , Hefei, 230026 People's Republic of China
| | - Wei Wang
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Gang-Xiu Chu
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Lab of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University , Hefei, 230036 People's Republic of China
| |
Collapse
|
56
|
Antioxidant action of grape seed polyphenols and aerobic exercise in improving neuronal number in the hippocampus is associated with decrease in lipid peroxidation and hydrogen peroxide in adult and middle-aged rats. Exp Gerontol 2018; 101:101-112. [DOI: 10.1016/j.exger.2017.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
|
57
|
Prakash Upputuri RT, Azad Mandal AK. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:277-283. [PMID: 29845080 DOI: 10.15171/ijb.1322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/30/2017] [Accepted: 10/08/2017] [Indexed: 01/16/2023]
Abstract
Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro, antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL-1. In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.
Collapse
Affiliation(s)
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
58
|
Soares MB, Ramalho JB, Izaguirry AP, Pavin NF, Spiazzi CC, Schimidt HL, Mello-Carpes PB, Santos FW. Comparative effect of Camellia sinensis teas on object recognition test deficit and metabolic changes induced by cafeteria diet. Nutr Neurosci 2017; 22:531-540. [PMID: 29280418 DOI: 10.1080/1028415x.2017.1418726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: Consumption of high-fat and high-sugar diets in Western countries has increased significantly causing major global health problems including metabolic syndrome and obesity. In addition, studies have suggested that obesity can lead to learning and memory deficits. In this context, the use of natural compounds with low costs, minor side effects and increased antioxidant activity, such as teas, could reduce the damages induced by obesity. We investigated the effect of white, green, red, and black teas (Camellia sinensis) and their possible neuroprotective mechanisms in an experimental obesity model induced by a cafeteria diet (CD). Methods: Female Swiss mice (20-30 g) were used; they received a normal diet or a hypercaloric diet (CD) during 8 weeks. Concomitantly, some mice received orally white, green, red, or black teas (1% dose) or water. Results: The mice subjected to CD showed weight gain, body fat accumulation, increased glucose, cholesterol, and triglycerides, associated to recognition memory deficits and increased reactive species (RS) levels and acetylcholinesterase (AChE) activity in the hippocampus. All teas significantly reduced AChE activity and partially reduced fat accumulation. Green and red teas reduced memory deficit. White, green, and black teas reduced RS levels, while only green and black tea reduced plasma triglyceride levels. Discussion: According to the results obtained it is possible to conclude that green tea was better than other teas in reducing effects of the CD model, being able to protect a greater number of parameters.
Collapse
Affiliation(s)
- Melina Bucco Soares
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| | - Juliana Bernera Ramalho
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| | - Aryele Pinto Izaguirry
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| | - Natasha Frasson Pavin
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| | - Cristiano Chiapinotto Spiazzi
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| | - Helen Lidiane Schimidt
- b Applied Neuromechanics Research Group, Federal University of Pampa , CEP 97500-970 Uruguaiana , RS , Brazil
| | | | - Francielli Weber Santos
- a Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa , CEP 97500-970 , Uruguaiana , RS , Brazil
| |
Collapse
|
59
|
Pathophysiological significance of protein hydrophobic interactions: An emerging hypothesis. Med Hypotheses 2017; 110:15-22. [PMID: 29317059 DOI: 10.1016/j.mehy.2017.10.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
Fibrinogen is a unique protein that is converted into an insoluble fibrin in a single enzymatic event, which is a characteristic feature of fibrinogen due to its susceptibility to fibrinolytic degradation and dissolution. Although thrombosis is a result of activated blood coagulation, no explanation is being offered for the persistent presence of fibrin deposits in the affected organs. A classic example is stroke, in which the thrombolytic therapy is effective only during the first 3-4 h after the onset of thrombosis. This phenomenon can now be explained in terms of the modification of fibrinogen structure induced by hydroxyl radicals generated during the period of ischemia caused, in turn, by the blocking of the blood flow within the obstructed vessels. Fibrinogen modification involves intra-to intermolecular disulfide rearrangement induced by the reductive power of hydroxyl radicals that result in the exposition of buried hydrophobic epitopes. Such epitopes react readily with each other forming linkages stronger than the peptide covalent bonds, thus rendering them resistant to the proteolytic degradation. Also, limited reduction of human serum albumin (HSA) generates hydrophobic polymers that form huge insoluble complexes with fibrinogen. Consequently, such insoluble copolymers can be deposited within the circulation of various organs leading to their dysfunction. In conclusion, the study of protein hydrophobic interactions induced by a variety of nutritional and/or environmental factors can provide a rational explanation for a number of pathologic conditions including cardiovascular, neurologic, and other degenerative diseases including cancer.
Collapse
|
60
|
Menezes J, Neves BH, Souza M, Mello-Carpes PB. Green tea protects against memory deficits related to maternal deprivation. Physiol Behav 2017; 182:121-127. [PMID: 29031548 DOI: 10.1016/j.physbeh.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/12/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
Abstract
Maternal deprivation (MD) in early life affects the development of the brain, causing cognitive losses in adulthood. Oxidative imbalance may be one of the factors that trigger these deficits. Therapies with antioxidant components, like green tea from Camellia sinensis (GT) has been used to treat or prevent memory deficits in a variety of conditions related to oxidative stress. Here we demonstrate that memory deficits caused by MD can be prevented by GT antioxidant activity in hippocampus. Pregnant female rats were used. Her puppies were submitted to MD and intake of GT. Recognition and aversive memory were evaluated, as well as hippocampal oxidative status. Data showed that MD prejudice short and long-term recognition and aversive memory and that GT protected memory. Hippocampal reactive oxygen species levels were increased in MD rats; this increase was avoided by GT supplementation. GSH was decreased on hippocampus MD rats. GT did not avoid GSH decrease, but promote the increase of total antioxidant capacity in MD rats' hippocampus. In conclusion, GT protects against memory deficits related to MD, and one of the implicated mechanism seems to be the antioxidant effects of GT.
Collapse
Affiliation(s)
- Jefferson Menezes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Ben-Hur Neves
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Mauren Souza
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
61
|
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin Gallate Has a Neurorescue Effect in a Mouse Model of Parkinson Disease. J Nutr 2017; 147:1926-1931. [PMID: 28835392 PMCID: PMC5610551 DOI: 10.3945/jn.117.255034] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Parkinson disease (PD) is a neurodegenerative disorder that has been associated with many factors, including oxidative stress, inflammation, and iron accumulation. The antioxidant, anti-inflammatory, and iron-chelating properties of epigallocatechin gallate (EGCG), a major polyphenol in green tea, may offer protection against PD.Objective: We sought to determine the neurorescue effects of EGCG and the role of iron in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD.Methods: We evaluated the neurorescue effect of EGCG (25 mg/kg, 7 d, oral administration) against MPTP-induced (20 mg/kg, 3 d, intraperitoneal injection) neurodegeneration in C57 male black mice. Thirty mice weighing ∼25 g were divided into 3 groups: control, MPTP, and MPTP + EGCG. The neurorescue effect of EGCG was assessed with the use of motor behavior tests, neurotransmitter analysis, oxidative stress indicators, and iron-related protein expression.Results: Compared with the control group, MPTP treatment shortened the mice's latency to fall from the rotarod by 16% (P < 0.05), decreased the striatal dopamine concentration by 58% (P < 0.001) and dihydroxyphenylacetic acid by 35% (P < 0.05), and increased serum protein carbonyls by 71% (P = 0.07). However, EGCG rescued MPTP-induced neurotoxicity by increasing the rotational latency by 17% (P < 0.05) to a value similar to the control group. Striatal dopamine concentrations were 40% higher in the MPTP + EGCG group than in the MPTP group (P < 0.05), but the values were significantly lower than in the control group. Compared with the MPTP and control groups, mice in the MPTP + EGCG group had higher substantia nigra ferroportin expression (44% and 35%, respectively) (P < 0.05) but not hepcidin and divalent metal transporter 1 expression.Conclusion: Overall, our study demonstrated that EGCG regulated the iron-export protein ferroportin in substantia nigra, reduced oxidative stress, and exerted a neurorescue effect against MPTP-induced functional and neurochemical deficits in mice.
Collapse
Affiliation(s)
- Qi Xu
- Departments of Food Science and Human Nutrition and,School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Monica Langley
- Biomedical Sciences, Iowa State University, Ames, IA; and
| | | | | |
Collapse
|
62
|
Green Tea in Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Clinical Trial. HEPATITIS MONTHLY 2017. [DOI: 10.5812/hepatmon.14993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
63
|
Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem 2017; 241:480-492. [PMID: 28958556 DOI: 10.1016/j.foodchem.2017.08.117] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Antioxidant properties of five catechins and five other flavonoids were compared with several other natural and synthetic compounds and related to glutathione and ascorbate as key endogenous antioxidants in several in vitro tests and assays involving erythrocytes. Catechins showed the highest ABTS-scavenging capacity, the highest stoichiometry of Fe3+ reduction in the FRAP assay and belonged to the most efficient compounds in protection against SIN-1 induced oxidation of dihydrorhodamine 123, AAPH-induced fluorescein bleaching and hypochlorite-induced fluorescein bleaching. Glutathione and ascorbate were less effective. (+)-catechin and (-)-epicatechin were the most effective compounds in protection against AAPH-induced erythrocyte hemolysis while (-)-epicatechin gallate, (-)-epigallocatechin gallate and (-)-epigallocatechin protected at lowest concentrations against hypochlorite-induced hemolysis. Catechins [(-)-epigallocatechin gallate and (-)-epicatechin gallate)] were most efficient in the inhibition of AAPH-induced oxidation of 2'7'-dichlorodihydroflurescein contained inside erythrocytes. Excellent antioxidant properties of catechins and other flavonoids make them ideal candidates for nanoformulations to be used in antioxidant therapy.
Collapse
Affiliation(s)
- Michalina Grzesik
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Katarzyna Naparło
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszów, ul. Zelwerowicza 4, 35-601 Rzeszów, Poland.
| |
Collapse
|
64
|
Ruan Q, Ruan J, Zhang W, Qian F, Yu Z. Targeting NAD + degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacol Res 2017; 128:345-358. [PMID: 28847709 DOI: 10.1016/j.phrs.2017.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 01/04/2023]
Abstract
Flavonoids are efficacious candidates as pharmaceuticals or nutraceuticals in the treatment of Alzheimer's disease (AD), aging and other age-related chronic inflammatory diseases. Natural flavonoids reduce pathological hallmarks, extracellular amyloid deposits and neurofibrillary tangles by mediating amyloid precursor protein (APP) processing, Aβ accumulation and tau pathology. The antioxidant and anti-inflammatory actions as well as modulation of sirtuins and telomeres are also involved in the amelioration of aging, neurodegeneration and other age-related diseases. Recently, some flavonoids were shown to inhibit poly (ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADP) synthases (CD38 and CD157), elevate intracellular nicotinamide adenine dinucleotide+ (NAD+) levels and activate NAD+ dependent sirtuin -mediated signaling pathways. We summarized how flavonoids reduce the degradation of NAD+ with an emphasis on the mechanisms through which flavonoids affect the NAD+-sirtuin axis to protect against AD. Aging and age-related diseases as well as a decline in the physiological reserve are the risk factors for cognitive frailty. Flavonoids with multiple therapeutic targets may also be potential candidates for the prevention and treatment of cognitive frailty.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jian Ruan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Zhang
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhuowei Yu
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
65
|
Short-term green tea supplementation prevents recognition memory deficits and ameliorates hippocampal oxidative stress induced by different stroke models in rats. Brain Res Bull 2017; 131:78-84. [DOI: 10.1016/j.brainresbull.2017.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022]
|
66
|
Soeizi E, Rafraf M, Asghari-Jafarabadi M, Ghaffari A, Rezamand A, Doostan F. Effects of Green Tea on Serum Iron Parameters and Antioxidant Status in Patients with β–Thalassemia Major. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
67
|
Liu QS, Li SR, Li K, Li X, Yin X, Pang Z. Ellagic acid improves endogenous neural stem cells proliferation and neurorestoration through Wnt/β-catenin signaling in vivo and in vitro. Mol Nutr Food Res 2016; 61. [PMID: 27794200 DOI: 10.1002/mnfr.201600587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023]
Abstract
SCOPE The aim of this study is to research the effects of the polyphenol ellagic acid (EA) on brain cells and to explore its mechanism of action, and to evaluate whether EA can be safely utilized by humans as a functional food or therapeutic agent. METHODS AND RESULTS A photothrombosis-induced model of brain injury in rats was created, and EA was administered intragastrically to rats on 7 consecutive days post-venous ischemia. An oxygen-glucose deprivation and re-perfusion model was established in neural stem cells in order to research the effects on proliferation after 2 days of EA treatment in vitro. The administration of EA improved the rats' nerve-related abilities, remedied infarct volumes and morphological changes in the brain, and enhanced the content of nestin protein in the brain semidarkness zone. The proliferation of NSCs and the expression of β-catenin and Cyclin D1 genes were also increased in primary cultured NSCs. CONCLUSIONS EA administration can improve brain injury outcomes and increase the proliferation of NSCs through the Wnt/β-catenin signaling pathway. The presented results represent new insights on the mechanisms of the brain cell protective activity of EA. Thus, EA may be used in functional foods or medicines to help treat nerve dysfunction, neurodegenerative disease and aging.
Collapse
Affiliation(s)
- Qing-Shan Liu
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Shu-Ran Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Keqin Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xu Li
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Zongran Pang
- Key Lab of Ministry of Education, National Research Center for Minority Medicine and Nutrition, Minzu University of China, Beijing, China
| |
Collapse
|
68
|
Rameshrad M, Razavi BM, Hosseinzadeh H. Protective effects of green tea and its main constituents against natural and chemical toxins: A comprehensive review. Food Chem Toxicol 2016; 100:115-137. [PMID: 27915048 DOI: 10.1016/j.fct.2016.11.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 01/26/2023]
Abstract
Toxins are natural or chemical poisonous substances with severe side effects on health. Humans are generally exposed by widespread toxic contaminations via air, soil, water, food, fruits and vegetables. Determining a critical antidote agent with extensive effects on different toxins is an ultimate goal for all toxicologists. Traditional medicine is currently perceived as a safe and natural approach against toxins. In this regard, we focused on the protective effects of green tea (Camellia sinensis) and its main components such as catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin and epigallocatechin gallate as a principal source of antioxidants against both natural and chemical toxins. This literate review demonstrates that protective effects of green tea and its constituents were mainly attributed to their anti-oxidative, radical scavenging, chelating, anti-apoptotic properties and modulating inflammatory responses. Although, some studies reveal they have protective effects by increasing toxin metabolism and neutralizing PLA2, proteases, hyaluronidase and l-amino acid oxidase enzymes.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
69
|
Mahmoodabadi N, Ajloo D. QSAR, docking, and Molecular dynamic studies on the polyphenolic as inhibitors of β-amyloid aggregation. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1620-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
Gheysarzadeh A, Yazdanparast R. STAT5 reactivation by catechin modulates H2O 2-induced apoptosis through miR-182/FOXO1 pathway in SK-N-MC cells. Cell Biochem Biophys 2016; 71:649-56. [PMID: 25231457 DOI: 10.1007/s12013-014-0244-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been suggested that oxidative stress-induced apoptosis is a major contributing factor in the pathogenesis of Alzheimer's and Parkinson's diseases. However, the molecular mechanism of the oxidative stress-associated apoptosis is far to be elucidated. Herein, we investigated whether STAT5, which is involved in many signaling pathways, is affected by oxidative stress. Previously, it has been shown that STAT5 is a direct activator of miR-182 which is in turn a robust inhibitor of FOXO1. Our results showed that oxidative stress inactivated STAT5 may be in a JAK2-independent manner. Thus, under oxidative stress and miR-182 down-regulation, FOXO1 has the opportunity to be translated leading to FOXO1 over-expression. Finally, pro-apoptotic gene targets of FOXO1 e.g., Bim and Bax are up-regulated leading to apoptosis. To further confirm such events, we also demonstrated that Catechin, a well-known natural antioxidant, partially restored both the STAT5 activation and miR-182 expression resulting in cell survival. To the best of our knowledge, this is the first study demonstrating that STAT5/miRNA-182 negatively regulates FOXO1 in response to oxidative stress.
Collapse
Affiliation(s)
- Ali Gheysarzadeh
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | | |
Collapse
|
71
|
Zhao D, Shah NP. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2238-2246. [PMID: 26790920 DOI: 10.1021/acs.jafc.5b05742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.
Collapse
Affiliation(s)
- Danyue Zhao
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| |
Collapse
|
72
|
Jourdan JP, Since M, El Kihel L, Lecoutey C, Corvaisier S, Legay R, Sopkova-de Oliveira Santos J, Cresteil T, Malzert-Fréon A, Rochais C, Dallemagne P. Novel benzylidenephenylpyrrolizinones with pleiotropic activities potentially useful in Alzheimer's disease treatment. Eur J Med Chem 2016; 114:365-79. [PMID: 27046230 DOI: 10.1016/j.ejmech.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
This work describes the synthesis and the biological evaluation of novel benzylidenephenylpyrrolizinones as potential antioxidant, metal chelating or amyloid β (βA) aggregation inhibitors. Some derivatives exhibited interesting results in regard to several of the performed evaluations and appear as valuable Multi-Target Directed Ligands with potential therapeutic interest in Alzheimer's disease. Among them, compound 29 particularly appears as a valuable radical and NO scavenger, a Cu(II) and Fe(II) chelating agent and exhibits moderate βA aggregation inhibition properties. These activities, associated to a good predictive bioavailability and a lack of cytotoxicity, design it as a promising hit for further in vivo investigation.
Collapse
Affiliation(s)
- Jean-Pierre Jourdan
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Marc Since
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Laïla El Kihel
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Cédric Lecoutey
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Sophie Corvaisier
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Rémi Legay
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | | | - Thierry Cresteil
- CIBLOT, IPSIT - IFR14, 5 rue Jean Baptiste Clément, 92290 Chatenay-Malabry, France
| | - Aurélie Malzert-Fréon
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| | - Patrick Dallemagne
- Normandie Université, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France.
| |
Collapse
|
73
|
Sereniki A, Linard-Medeiros CF, Silva SN, Silva JB, Peixoto Sobrinho TJ, da Silva JR, Alves LD, Smaili SS, Wanderley AG, Lafayette SS. Schinus terebinthifolius administration prevented behavioral and biochemical alterations in a rotenone model of Parkinson's disease. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
74
|
Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Del Grande P, Ninfali P. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with α-tocopherol. Food Funct 2016; 6:394-400. [PMID: 25474041 DOI: 10.1039/c4fo00817k] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vitamin E and polyphenols could exhibit a therapeutic role in the treatment of oxidative stress-induced neurodegenerative diseases. Therefore, their ability to cross the blood-brain barrier (BBB) represents an important issue to be explored by different diet combinations. In this study, we have evaluated the ability of α-tocopherol to support epigallocatechin-3-gallate (EGCG), quercetin and rutin to cross the BBB, following oral administration. Eighteen rats were fed a standard diet (C), a diet supplemented with α-tocopherol (A), with a mixture of EGCG, quercetin and rutin (P); or with a mixture of α-tocopherol and the three flavonoids (AP). Flavonoids and their conjugated derivatives were assayed in brain and plasma by HPLC-MS, whereas α-tocopherol was detected by RP-HPLC. The oxidative damage, due to the potential pro-oxidant activity of flavonoids, was evaluated by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in hippocampal Cornus Ammonis, one of the most vulnerable sites in the brain. Our results indicate that α-tocopherol is able to promote quercetin transport across the BBB. The mixture of rutin and quercetin seems to favour the accumulation of quercetin and/or its conjugated derivatives in the brain. In contrast, α-tocopherol does not affect EGCG transport across the BBB. The densitometric analysis of 8-OHdG immunoreactivity does not reveal any difference of oxidative damage among the experimental groups. Our results suggest that α-tocopherol may promote quercetin transport across the BBB, leading to a significant increase of α-tocopherol and quercetin concentration in the brain.
Collapse
Affiliation(s)
- Paola Ferri
- Department of Earth, Life and Environmental Sciences, University of Urbino "Carlo Bo", Via Ca' Le Suore 2/4, 61029 Urbino, PU, Italy
| | | | | | | | | | | | | |
Collapse
|
75
|
Sengupta T, Vinayagam J, Singh R, Jaisankar P, Mohanakumar KP. Plant-Derived Natural Products for Parkinson's Disease Therapy. ADVANCES IN NEUROBIOLOGY 2016; 12:415-96. [PMID: 27651267 DOI: 10.1007/978-3-319-28383-8_23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD.
Collapse
Affiliation(s)
- T Sengupta
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - J Vinayagam
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - R Singh
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | - P Jaisankar
- Division of Chemistry, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - K P Mohanakumar
- Division of Cell Biology & Physiology, Indian Institute of Chemical Biology (CSIR, Govt of India), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700 032, India. .,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686009, Kerala, India.
| |
Collapse
|
76
|
Zengin G, Karanfil A, Uren MC, Kocak MS, Sarikurkcu C, Gungor H, Nancy Picot CM, Mahomoodally MF. Phenolic content, antioxidant and enzyme inhibitory capacity of two Trametes species. RSC Adv 2016. [DOI: 10.1039/c6ra09991b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The phenolic composition, antioxidant and enzyme inhibitory activities of two mushrooms (Trametes gibbosa and Trametes hirsuta) were characterised for the first time which proved to be potential candidates for new functional food formulations.
Collapse
Affiliation(s)
- Gokhan Zengin
- Selcuk University
- Science Faculty
- Department of Biology
- Konya
- Turkey
| | - Abdullah Karanfil
- Manisa Celal Bayar University
- Faculty of Arts and Science
- Department of Chemistry
- Manisa
- Turkey
| | - Mehmet Cemil Uren
- Süleyman Demirel University
- Atabey Vocational School
- Department of Medicinal and Aromatic Plants
- Isparta
- Turkey
| | - Mehmet Sefa Kocak
- Süleyman Demirel University
- Atabey Vocational School
- Department of Medicinal and Aromatic Plants
- Isparta
- Turkey
| | - Cengiz Sarikurkcu
- Suleyman Demirel University
- Faculty of Pharmacy
- Department of Analytical Chemistry
- Isparta
- Turkey
| | - Halil Gungor
- Mugla Sıtkı Koçman University
- Science Faculty
- Department of Biology
- Mugla
- Turkey
| | | | | |
Collapse
|
77
|
Oliveira MRD, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacol Res 2015; 104:70-85. [PMID: 26731017 DOI: 10.1016/j.phrs.2015.12.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023]
Abstract
Epigallocatechin gallate (EGCG) is a flavonoid belonging to the chemical class of falvan-3-ols (catechins) esterified with gallic acid. It is the main catechin found in green tea (Camellia sinensis L.) accounting for about 50% of its total polyphenols. Extensive research performed in recent years has revealed that green tea demonstrates a wide range of positive biological activities against serious chronic diseases such as cardiovascular and neurodegenerative pathologies, cancer, metabolic syndrome and type 2 diabetes. These protective properties can be traced back to the potent antioxidant and anti-inflammatory activities of EGCG. Recent studies have suggested that it may exert its beneficial effects by modulating mitochondrial functions impacting mitochondrial biogenesis, bioenergetic control (ATP production and anabolism), alteration of the cell cycle, and mitochondria-related apoptosis. This review evaluates recent evidence on the ability of EGCG to exert critical influence on the above mentioned pathways.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry, ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900 Cuiabá, MT, Brazil.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
78
|
MA LIJIE, WANG RUIXUAN, NAN YANDONG, LI WANGPING, WANG QINGWEI, JIN FAGUANG. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 2015; 48:843-53. [DOI: 10.3892/ijo.2015.3304] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 11/06/2022] Open
|
79
|
Dutta D, Mohanakumar KP. Tea and Parkinson's disease: Constituents of tea synergize with antiparkinsonian drugs to provide better therapeutic benefits. Neurochem Int 2015; 89:181-90. [DOI: 10.1016/j.neuint.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
|
80
|
Effects of supplementation with green tea catechins on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2015; 31:1061-71. [DOI: 10.1016/j.nut.2015.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/29/2015] [Accepted: 02/09/2015] [Indexed: 02/05/2023]
|
81
|
Pavlin M, Repič M, Vianello R, Mavri J. The Chemistry of Neurodegeneration: Kinetic Data and Their Implications. Mol Neurobiol 2015; 53:3400-3415. [PMID: 26081152 DOI: 10.1007/s12035-015-9284-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
We collected experimental kinetic rate constants for chemical processes responsible for the development and progress of neurodegeneration, focused on the enzymatic and non-enzymatic degradation of amine neurotransmitters and their reactive and neurotoxic metabolites. A gross scheme of neurodegeneration on the molecular level is based on two pathways. Firstly, reactive species oxidise heavy atom ions, which enhances the interaction with alpha-synuclein, thus promoting its folding to the beta form and giving rise to insoluble amyloid plaques. The latter prevents the function of vesicular transport leading to gradual neuronal death. In the second pathway, radical species, OH(·) in particular, react with the methylene groups of the apolar part of the lipid bilayer of either the cell or mitochondrial wall, resulting in membrane leakage followed by dyshomeostasis, loss of resting potential and neuron death. Unlike all other central neural system (CNS)-relevant biogenic amines, dopamine and noradrenaline are capable of a non-enzymatic auto-oxidative reaction, which produces hydrogen peroxide. This reaction is not limited to the mitochondrial membrane where scavenging enzymes, such as catalase, are located. On the other hand, dopamine and its metabolites, such as dopamine-o-quinone, dopaminechrome, 5,6-dihydroxyindole and indo-5,6-quinone, also interact directly with alpha-synuclein and reversibly inhibit plaque formation. We consider the role of the heavy metal ions, selected scavengers and scavenging enzymes, and discuss the relevance of certain foods and food supplements, including curcumin, garlic, N-acetyl cysteine, caffeine and red wine, as well as the long-term administration of non-steroid anti-inflammatory drugs and occasional tobacco smoking, that could all act toward preventing neurodegeneration. The current analysis can be employed in developing strategies for the prevention and treatment of neurodegeneration, and, hopefully, aid in the building of an overall kinetic molecular model of neurodegeneration itself.
Collapse
Affiliation(s)
- Matic Pavlin
- Computational Biophysics, German Research School for Simulation Sciences, Joint Venture of RWTH Aachen University and Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Biomedicine, Institute for Advanced Simulations (IAS-5/INM-9), 52425, Jülich, Germany
| | - Matej Repič
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Robert Vianello
- Quantum Organic Chemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
82
|
Navanesan S, Wahab NA, Manickam S, Sim KS. Evaluation of selected biological capacities of Baeckea frutescens. Altern Ther Health Med 2015; 15:186. [PMID: 26081250 PMCID: PMC4470289 DOI: 10.1186/s12906-015-0712-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/08/2015] [Indexed: 11/14/2022]
Abstract
Background Baeckea frutescens is a natural remedy recorded to be used in curing various health conditions. In Peninsular Malaysia, B. frutescens is found on the mountain tops, quartz ridge and sandy coasts. To our knowledge, there is only limited published literature on B. frutescens. Methods B. frutescens leaf crude methanol and its fractionated extracts (hexane, ethyl acetate and water) were prepared. Folin-Ciocalteau’s method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by the scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, reducing power assay through the Prussian blue complex formation, the metal chelating assay as well as the β-Carotene-linoleic acid system assay. The cytotoxic activity of the extracts were evaluated against two lung carcinoma cell lines with varying molecular characteristics using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay. Lastly the toxicity of the crude methanol extract was evaluated using the acute oral toxicity experiment. Results The methanolic extract with highest phenolic content showed the strongest β-carotene bleaching inhibition, whilst the water extract exhibited the highest activity in metal chelating and reducing power assays. The hexane extract displayed a mild cytotoxic effect on both A549 and NCI-H1299 human lung carcinoma cell lines. No mortalities and no adverse effects were observed in the acute oral toxicity investigation at the highest dose of 5000 mg/kg. Conclusion The findings in the present study suggest B. frutescens may be considered as a safe source of compounds with antioxidant and cytotoxic properties for therapeutic and functional food applications.
Collapse
|
83
|
Porzoor A, Alford B, Hügel HM, Grando D, Caine J, Macreadie I. Anti-amyloidogenic properties of some phenolic compounds. Biomolecules 2015; 5:505-27. [PMID: 25898401 PMCID: PMC4496683 DOI: 10.3390/biom5020505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
A family of 21 polyphenolic compounds consisting of those found naturally in danshen and their analogues were synthesized and subsequently screened for their anti-amyloidogenic activity against the amyloid beta peptide (Aβ42) of Alzheimer’s disease. After 24 h incubation with Aβ42, five compounds reduced thioflavin T (ThT) fluorescence, indicative of their anti-amyloidogenic propensity (p < 0.001). TEM and immunoblotting analysis also showed that selected compounds were capable of hindering fibril formation even after prolonged incubations. These compounds were also capable of rescuing the yeast cells from toxic changes induced by the chemically synthesized Aβ42. In a second assay, a Saccharomyces cerevisiae AHP1 deletant strain transformed with GFP fused to Aβ42 was treated with these compounds and analyzed by flow cytometry. There was a significant reduction in the green fluorescence intensity associated with 14 compounds. We interpret this result to mean that the compounds had an anti-amyloid-aggregation propensity in the yeast and GFP-Aβ42 was removed by proteolysis. The position and not the number of hydroxyl groups on the aromatic ring was found to be the most important determinant for the anti-amyloidogenic properties.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Benjamin Alford
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Helmut M Hügel
- School of Applied Sciences, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Danilla Grando
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Joanne Caine
- Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | - Ian Macreadie
- School of Applied Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
84
|
Resveratrol reduces amyloid-beta (Aβ₁₋₄₂)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 2015; 55:741-747. [PMID: 25851110 DOI: 10.1007/s00394-015-0894-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Resveratrol is a polyphenol present in red wine for which the capability of directly interfering with the hallmark of Alzheimer's disease (AD), i.e. toxic β-amyloid protein (Aβ) aggregation, has been shown recently. Since the stimulation of proteostasis could explain reduced Aβ-aggregation, we searched for proteostasis targets of resveratrol. METHODS The transgenic Caenorhabditis elegans strain CL2006, expressing Aβ1-42 under control of a muscle-specific promoter and responding to Aβ-toxicity with paralysis, was used as a model. Target identification was accomplished through specific knockdowns of proteostasis genes by RNA interference. Effects of resveratrol on protein aggregation were identified using ProteoStat(®) Detection Reagent, and activation of proteasomal degradation by resveratrol was finally proven using a specific fluorogenic peptide substrate. RESULTS Resveratrol at a concentration of 100 µM caused a 40 % decrease in paralysis. UBL-5 involved in unfolded protein response (UPR) in mitochondria proved to be necessary for the prevention of Aβ-toxicity by resveratrol. Also XBP-1, which represents an endoplasmic reticulum-resident factor involved in UPR, was identified to be necessary for the effects of resveratrol. Regarding protein degradation pathways, the inhibition of macroautophagy and chaperone-mediated autophagy prevented resveratrol from reducing paralysis as did the inhibition of proteasomal degradation. Finally, resveratrol reduced the amount of lysosomes, suggesting increased flux of proteins through the autophagy pathways and activated proteasomal degradation. CONCLUSIONS Resveratrol reduces the Aβ-induced toxicity in a C. elegans model of AD by targeting specific proteins involved in proteostasis and thereby reduces the amount of aggregated Aβ.
Collapse
|
85
|
Vineetha VP, Soumya RS, Raghu KG. Phloretin ameliorates arsenic trioxide induced mitochondrial dysfunction in H9c2 cardiomyoblasts mediated via alterations in membrane permeability and ETC complexes. Eur J Pharmacol 2015; 754:162-72. [PMID: 25746422 DOI: 10.1016/j.ejphar.2015.02.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 02/07/2023]
Abstract
Arsenic trioxide (ATO), though a very effective drug for the treatment of acute promyelocytic leukemia, leads to cardiotoxicity. As mitochondria are the center of attention of cardiac cell׳s general metabolic status, it is primarily important to see the interaction of ATO with mitochondria. Studies related exclusively to the alterations in mitochondria and its associated functions caused by ATO are very limited. The present investigation aims to explore the effect of ATO on various components of electron transport chain, oxygen consumption, ATP production, mitochondrial superoxide generation, transmembrane potential, permeability pore opening, calcium homeostasis and apoptosis. Attempts were also made to see the efficacy of phloretin, a potent antioxidant flavonoid found majorly in apple peel on cardiotoxicity. The H9c2 cells exposed to ATO (5µM) exhibited increased oxidative stress with reduced innate antioxidant status, mitochondrial dysfunctions and apoptosis. It increased the intracellular calcium content, caused alterations in the activity of transcription factor Nrf2, xanthine oxidase, aconitase and caspase 3 compared to the control group. Phloretin at 2.5 and 5µM concentrations were able to protect the cells from ATO toxicity via protecting mitochondria through its antioxidant potential. The present investigation based on mitochondria reveals the probability of cardioprotective potential of phloretin for the cancer patients on ATO chemotherapy.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Agroprocessing and Natural Products Division, Council for Scientific and Industrial Research - National Institute for Interdisciplinary Science and Technology (CSIR - NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Rema Sreenivasan Soumya
- Agroprocessing and Natural Products Division, Council for Scientific and Industrial Research - National Institute for Interdisciplinary Science and Technology (CSIR - NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Kozhiparambil Gopalan Raghu
- Agroprocessing and Natural Products Division, Council for Scientific and Industrial Research - National Institute for Interdisciplinary Science and Technology (CSIR - NIIST), Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
86
|
Chaturvedi R, Banerjee S, Chattopadhyay P, Bhattacharjee CR, Raul P, Borah K. High iron accumulation in hair and nail of people living in iron affected areas of Assam, India. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:216-20. [PMID: 25261608 DOI: 10.1016/j.ecoenv.2014.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 05/12/2023]
Abstract
Human populace of Assam, India repeatedly exposed to high concentration of iron in groundwater results in adverse health effects like hemochromatosis, liver cirrhosis and siderosis. In the present study, human hair and nail analysis were carried out to establish a possible relationship between iron toxicity and its deposition among the residents. Nail and hair iron concentrations ranged from 28.2 to 1046μgg(-1) (n=114) and 26.5-838 (n=108)μgg(-1) levels, respectively, among all the study participants. The iron content of the groundwater (421-5340μgL(-1)) (n=64) used for drinking purposes was positively correlated with both nail (r=0.788, p<0.0001) and hair (r=0.709, p<0.0001) iron concentrations. Age- and sex-matched controls corresponding to each group were selected from population residing in other parts of the country where groundwater does not have excess iron. All the study groups included population drinking iron-contaminated water above the WHO/BIS limit (>300µgL(-1)) for 5 years (Group 1), for more than 5-10 years (Group 2) and for more than 10 years (Group 3). Results suggested that the participants consuming groundwater exceeding the WHO limit of iron had significantly more iron accumulation than those using groundwater containing ≤300μgL(-1) iron (p<0.01). There was statistically higher concentration of iron in the nail samples than the hair samples in all the study groups (p<0.01). There was a positive correlation in iron concentration and the residence time of the participants (p<0.01). Iron levels in the male participants were significantly higher than the female participants in the present study (p<0.01). The current findings are sufficiently compelling to warrant more extensive study of iron exposure through drinking water and adverse effects to the human in the areas where iron concentration is high.
Collapse
Affiliation(s)
- Richa Chaturvedi
- Department of Chemistry, Defence Research Laboratory, Tezpur-784001, Assam; Department of Chemistry, Assam University, Silchar-788001, Assam
| | - Saumen Banerjee
- Department of Chemistry, Defence Research Laboratory, Tezpur-784001, Assam.
| | | | | | - Prasanta Raul
- Department of Chemistry, Defence Research Laboratory, Tezpur-784001, Assam
| | - Kusum Borah
- Department of Chemistry, Defence Research Laboratory, Tezpur-784001, Assam
| |
Collapse
|
87
|
Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:512081. [PMID: 25525446 PMCID: PMC4267163 DOI: 10.1155/2014/512081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we excavated all of the targets of green tea polyphenolics (GTPs) though literature mining and target calculation and analyzed the multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200 Homo sapiens targets were identified for fifteen GTPs. These targets were classified into six groups according to their related disease, which included cancer, diabetes, neurodegenerative disease, cardiovascular disease, muscular disease, and inflammation. Moreover, these targets mapped into 143 KEGG pathways, 26 of which were more enriched, as determined though pathway enrichment analysis and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by analyzing the corresponding “drug-target-pathway-disease” interaction network.
Collapse
|
88
|
Shi C, Zhu X, Wang J, Long D. Estrogen receptor α promotes non-amyloidogenic processing of platelet amyloid precursor protein via the MAPK/ERK pathway. J Steroid Biochem Mol Biol 2014; 144 Pt B:280-5. [PMID: 25017047 DOI: 10.1016/j.jsbmb.2014.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/14/2014] [Accepted: 06/21/2014] [Indexed: 02/03/2023]
Abstract
Deposition of amyloid β peptide (Aβ), a proteolytic product of amyloid precursor protein (APP), in senile plaques and in the walls of cerebral blood vessels is a hallmark of Alzheimer's disease (AD). Platelets contain high levels of APP and Aβ and may contribute to amyloid deposits seen in AD. However, the biochemical mechanism(s) involved in the regulation of platelet APP metabolism are largely unknown. The estrogen receptor α (ERα) is found to be expressed in platelets. It has not been elucidated whether ERα-mediated non-genomic signaling intervenes with platelet APP processing. Using ERα knock-out (α-ERKO) mice and wild type (WT) littermates, the present study demonstrated that ERα-specific agonist propylpyrazole triol (PPT) promoted non-amyloidogenic processing of platelet APP via the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathway. The underlying basis involves direct association of activated ERK with a disintegrin and metalloprotease domain 17 (ADAM17, an α-secretase candidate) and ERK-dependent threonine phosphorylation of ADAM17. These results suggest that selective modulation of ERα in peripheral target tissues may serve as an anti-amyloidogenic strategy for AD and other amyloidogenic diseases.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, China.
| | - XiaoMing Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jisheng Wang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Dahong Long
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| |
Collapse
|
89
|
Brain catalase in the streptozotocin-rat model of sporadic Alzheimer's disease treated with the iron chelator-monoamine oxidase inhibitor, M30. J Neural Transm (Vienna) 2014; 122:559-64. [PMID: 25252744 DOI: 10.1007/s00702-014-1307-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
Low intracerebroventricular (icv) doses of streptozotocin (STZ) produce regionally specific brain neurochemical changes in rats that are similar to those found in the brain of patients with sporadic Alzheimer's disease (sAD). Since oxidative stress is thought to be one of the major pathologic processes in sAD, catalase (CAT) activity was estimated in the regional brain tissue of animals treated intracerebroventricularly with STZ and the multitarget iron chelator, antioxidant and MAO-inhibitor M30 [5-(N-methyl-N-propargylaminomethyl)-8-hydroxyquinoline]. Five-day oral pre-treatment of adult male Wistar rats with 10 mg/kg/day M30 dose was followed by a single injection of STZ (1 mg/kg, icv). CAT activity was measured colorimetrically in the hippocampus (HPC), brain stem (BS) and cerebellum (CB) of the control, STZ-, M30- and STZ + M30-treated rats, respectively, 4 weeks after the STZ treatment. STZ-treated rats demonstrated significantly lower CAT activity in all three brain regions in comparison to the controls (p < 0.05 for BS and CB, p < 0.01 for HPC). M30 pre-treatment of the control rats did not influence the CAT activity in HPC and CB, but significantly increased it in BS (p < 0.05). M30 pre-treatment of STZ-treated rats significantly increased CAT activity in the HPC in comparison to the STZ treatment alone (p < 0.05) and normalized to the control values. These findings are in line with the assumption that reactive oxygen species contribute to the pathogenesis of STZ in a rat model of sAD and indicate that multifunctional iron chelators such as M30 might also have beneficial effects in this non-transgenic sAD model.
Collapse
|
90
|
Naturally occurring polyphenolic inhibitors of amyloid beta aggregation. Bioorg Med Chem Lett 2014; 24:3108-12. [PMID: 24878198 DOI: 10.1016/j.bmcl.2014.05.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease and is one of the main causes of death in developed countries. Consumption of foods rich in polyphenolics is strongly correlated with reduced incidence of Alzheimer's disease. Our study has investigated the biological activity of previously untested polyphenolic compounds in preventing amyloid β aggregation. The anti-aggregatory potential of these compounds was assessed using the Thioflavin-T assay, transmission electron microscopy, dynamic light scattering and size exclusion chromatography. Two structurally related compounds, luteolin and transilitin were identified as potent inhibitors of Aβ fibril formation. Computational docking studies with an X-ray derived oligomeric structure offer a rationale for the inhibitory activity observed and may facilitate development of improved inhibitors of Aβ aggregation and toxicity.
Collapse
|
91
|
Chokor R, Lamy S, Annabi B. Transcriptional targeting of sphingosine-1-phosphate receptor S1P2 by epigallocatechin-3-gallate prevents sphingosine-1-phosphate-mediated signaling in macrophage-differentiated HL-60 promyelomonocytic leukemia cells. Onco Targets Ther 2014; 7:667-77. [PMID: 24855377 PMCID: PMC4019616 DOI: 10.2147/ott.s62717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Macrophage chemotaxis followed by blood–brain barrier transendothelial migration is believed to be associated with inflammation in the central nervous system. Antineuroinflammatory strategies have identified the dietary-derived epigallocatechin-3-gallate (EGCG) as an efficient agent to prevent neuroinflammation-associated neurodegenerative diseases by targeting proinflammatory mediator signaling. Methods Given that high levels of sphingosine kinase and its product, sphingosine-1-phosphate (S1P), are present in brain tumors, we used quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunoblotting to test whether EGCG may impact on S1P receptor gene expression and prevent S1P response in undifferentiated and in terminally differentiated macrophages. Results Promyelomonocytic human leukemia (HL)-60 cells were differentiated into macrophages, and S1P triggered phosphorylation in extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 mitogen-activated protein kinase (MAPK) intracellular signaling, as shown by Western blot analysis. Pretreatment of cells with EGCG prior to differentiation inhibited the response to S1P in all three pathways, while EGCG abrogated P38 MAPK phosphorylation when present only during differentiation. Terminally-differentiated macrophages were, however, insensitive to EGCG treatment. Using qRT-PCR, gene expression of the S1P receptors S1P1, S1P2, and S1P5 was predominantly induced in terminally-differentiated macrophages, while the S1P2 was decreased by EGCG treatment. Conclusion Our data suggest that diet-derived EGCG achieves efficient effects as a preventive agent, targeting signaling pathways prior to cell terminal differentiation. Such properties could impact on cell chemotaxis through the blood–brain barrier and prevent cancer-related neuroinflammation.
Collapse
Affiliation(s)
- Rima Chokor
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
| | - Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
92
|
Andrews M, Briones L, Jaramillo A, Pizarro F, Arredondo M. Effect of calcium, tannic acid, phytic acid and pectin over iron uptake in an in vitro Caco-2 cell model. Biol Trace Elem Res 2014; 158:122-7. [PMID: 24531910 DOI: 10.1007/s12011-014-9911-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/30/2014] [Indexed: 01/14/2023]
Abstract
Calcium, phytic acid, polyphenols and fiber are major inhibitors of iron absorption and they could be found in excess in some diets, thereby altering or modifying the iron nutrition status. The purpose of this study is to evaluate the effect of calcium, tannic acid, phytic acid, and pectin over iron uptake, using an in vitro model of epithelial cells (Caco-2 cell line). Caco-2 cells were incubated with iron (10-30 μM) with or without CaCl2 (500 and 1,000 μM) for 24 h. Then, cells were challenged with phytic acid (50-150 μM); pectin (50-150 nM) or tannic acid (100-500 μM) for another 24 h. Finally, (55)Fe (10 μM) uptake was determined. Iron dialyzability was studied using an in vitro digestion method. Iron uptake in cells pre-incubated with 20 and 30 μM Fe was inhibited by CaCl2 (500 μM). Iron uptake decreased in cells cultured with tannic acid (300 μM) and CaCl2 (500-1,000 μM) (two-way ANOVA, p = 0.002). Phytic acid also decreased iron uptake mainly when cells were treated with CaCl2 (1,000 μM) (two-way ANOVA; p < 0.05). Pectin slightly decreased iron uptake (p = NS). Iron dialyzability decreased when iron was mixed with CaCl2 and phytic or tannic acid (T test p < 0.0001, for both) but not when mixed with pectin. Phytic acid combined with calcium is a strong iron uptake inhibitor. Pectin slightly decreased iron uptake with or without calcium. Tannic acid showed an unexpected behavior, inducing an increase on iron uptake, despite its low Fe dialyzability.
Collapse
Affiliation(s)
- M Andrews
- Micronutrient Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | | | | | | | | |
Collapse
|
93
|
Ku HC, Tsuei YW, Kao CC, Weng JT, Shih LJ, Chang HH, Liu CW, Tsai SW, Kuo YC, Kao YH. Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway. Gen Comp Endocrinol 2014; 199:46-55. [PMID: 24486085 DOI: 10.1016/j.ygcen.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/26/2023]
Abstract
This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20μM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | - Yi-Wei Tsuei
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Chung-Cheng Kao
- Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Jueng-Tsueng Weng
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan; Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Li-Jane Shih
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan; Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan
| | - Hsin-Huei Chang
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | - Chi-Wei Liu
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan
| | | | | | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, 300 Jhongda Road, Jhongli, Taoyuan 320, Taiwan.
| |
Collapse
|
94
|
Shi C, Zhu X, Wang J, Long D. Tanshinone IIA promotes non-amyloidogenic processing of amyloid precursor protein in platelets via estrogen receptor signaling to phosphatidylinositol 3-kinase/Akt. Biomed Rep 2014; 2:500-504. [PMID: 24944795 DOI: 10.3892/br.2014.263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
Amyloid β peptide (Aβ) is a proteolytic product of amyloid precursor protein (APP). Recent findings suggested that platelet-derived Aβ is closely associated with the pathogenesis of atherosclerosis (AS). Tanshinone IIA (Tan IIA), a pharmacologically active component of the Chinese herb Salvia miltiorrhiza Bunge, has long been used to treat AS and was also identified as a phytoestrogen. However, it has not been elucidated whether Tan IIA intervenes with platelet APP processing and whether such an intervention is associated with its estrogenic activity. Using human platelets, this study demonstrated that Tan IIA promoted the non-amyloidogenic cleavage of APP via estrogenic activity. The phosphatidylinositol 3-kinase/Akt pathway may be involved in this effect of Tan IIA on platelet APP metabolism as a downstream effector of estrogen receptor signaling. This study aimed to extend the existing data and provide new insights into the mechanism underlying the vasoprotective effect of Tan IIA.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaoming Zhu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Jisheng Wang
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Dahong Long
- Department of Anatomy, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
95
|
Cia D, Vergnaud-Gauduchon J, Jacquemot N, Doly M. Epigallocatechin Gallate (EGCG) Prevents H2O2-Induced Oxidative Stress in Primary Rat Retinal Pigment Epithelial Cells. Curr Eye Res 2014; 39:944-52. [DOI: 10.3109/02713683.2014.885532] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
96
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
97
|
Ren X, Guo X, Chen L, Guo M, Peng N, Li R. Attenuated migration by green tea extract (−)-epigallocatechin gallate (EGCG): involvement of 67 kDa laminin receptor internalization in macrophagic cells. Food Funct 2014; 5:1915-9. [PMID: 24953562 DOI: 10.1039/c4fo00143e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of macrophagic cell migration induced by green tea polyphenol EGCG may be linked to the internalization of 67 kDa laminin receptor.
Collapse
Affiliation(s)
- Xuezhi Ren
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
- The Third Affiliated Hospital
- Xi'an Jiaotong University School of Medicine
| | - Xingzhi Guo
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
- The Third Affiliated Hospital
- Xi'an Jiaotong University School of Medicine
| | - Li Chen
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Minxia Guo
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Ning Peng
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| | - Rui Li
- Department of Neurology
- Shaanxi Provincial People's Hospital
- Xi'an 710068, China
| |
Collapse
|
98
|
Rashid K, Wachira FN, Nyabuga JN, Wanyonyi B, Murilla G, Isaac AO. Kenyan purple tea anthocyanins ability to cross the blood brain barrier and reinforce brain antioxidant capacity in mice. Nutr Neurosci 2013; 17:178-85. [DOI: 10.1179/1476830513y.0000000081] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
99
|
Lee B, Sur B, Kwon S, Yeom M, Shim I, Lee H, Hahm DH. Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol Ther (Seoul) 2013; 21:313-22. [PMID: 24244817 PMCID: PMC3819905 DOI: 10.4062/biomolther.2013.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022] Open
Abstract
Previous studies have demonstrated that repeated administration of the exogenous stress hormone corticosterone (CORT) induces dysregulation in the hypothalamic-pituitary-adrenal (HPA) axis and results in depression and anxiety. The current study sought to verify the impact of catechin (CTN) administration on chronic CORT-induced behavioral alterations using the forced swimming test (FST) and the elevated plus maze (EPM) test. Additionally, the effects of CTN on central noradrenergic systems were examined by observing changes in neuronal tyrosine hydroxylase (TH) immunoreactivity in rat brains. Male rats received 10, 20, or 40 mg/kg CTN (i.p.) 1 h prior to a daily injection of CORT for 21 consecutive days. The activation of the HPA axis in response to the repeated CORT injections was confirmed by measuring serum levels of CORT and the expression of corticotrophin-releasing factor (CRF) in the hypothalamus. Daily CTN administration significantly decreased immobility in the FST, increased open-arm exploration in the EPM test, and significantly blocked increases of TH expression in the locus coeruleus (LC). It also significantly enhanced the total number of line crossing in the open-field test (OFT), while individual differences in locomotor activities between experimental groups were not observed in the OFT. Taken together, these findings indicate that the administration of CTN prior to high-dose exogenous CORT significantly improves helpless behaviors, possibly by modulating the central noradrenergic system in rats. Therefore, CTN may be a useful agent for the treatment or alleviation of the complex symptoms associated with depression and anxiety disorders.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center
| | | | | | | | | | | | | |
Collapse
|
100
|
Lipinski B, Pretorius E. The role of iron-induced fibrin in the pathogenesis of Alzheimer's disease and the protective role of magnesium. Front Hum Neurosci 2013; 7:735. [PMID: 24194714 PMCID: PMC3810650 DOI: 10.3389/fnhum.2013.00735] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022] Open
Abstract
Amyloid hypothesis of Alzheimer's disease (AD) has recently been challenged by the increasing evidence for the role of vascular and hemostatic components that impair oxygen delivery to the brain. One such component is fibrin clots, which, when they become resistant to thrombolysis, can cause chronic inflammation. It is not known, however, why some cerebral thrombi are resistant to the fibrinolytic degradation, whereas fibrin clots formed at the site of vessel wall injuries are completely, although gradually, removed to ensure proper wound healing. This phenomenon can now be explained in terms of the iron-induced free radicals that generate fibrin-like polymers remarkably resistant to the proteolytic degradation. It should be noted that similar insoluble deposits are present in AD brains in the form of aggregates with Abeta peptides that are resistant to fibrinolytic degradation. In addition, iron-induced fibrin fibers can irreversibly trap red blood cells (RBCs) and in this way obstruct oxygen delivery to the brain and induce chronic hypoxia that may contribute to AD. The RBC-fibrin aggregates can be disaggregated by magnesium ions and can also be prevented by certain polyphenols that are known to have beneficial effects in AD. In conclusion, we argue that AD can be prevented by: (1) limiting the dietary supply of trivalent iron contained in red and processed meat; (2) increasing the intake of chlorophyll-derived magnesium; and (3) consumption of foods rich in polyphenolic substances and certain aliphatic and aromatic unsaturated compounds. These dietary components are present in the Mediterranean diet known to be associated with the lower incidence of AD and other degenerative diseases.
Collapse
|