51
|
Beltrán D, Frutos-Lisón MD, García-Villalba R, Yuste JE, García V, Espín JC, Selma MV, Tomás-Barberán FA. NMR Spectroscopic Identification of Urolithin G, a Novel Trihydroxy Urolithin Produced by Human Intestinal Enterocloster Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11921-11928. [PMID: 37494568 PMCID: PMC10416303 DOI: 10.1021/acs.jafc.3c01675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Urolithins are gut microbiota metabolites of ellagic acid. Here, we have identified and chemically characterized a novel urolithin produced from urolithin D (3,4,8,9-tetrahydroxy urolithin) by in vitro incubation with different human gut Enterocloster species under anaerobic conditions. Urolithin G (3,4,8-trihydroxy urolithin) was identified by 1H NMR, 13C NMR, UV, HRMS, and 2D NMR. For the identification, NMR spectra of other known urolithins were also recorded and compared. Urolithin G was present in the feces of 12% of volunteers in an overweight-obese group after consuming an ellagitannin-rich pomegranate extract. The production of urolithin G required a bacterial 9-dehydroxylase activity and was not specific to the known human urolithin metabotypes A and B. The ability to produce urolithin G could be considered an additional metabolic feature for volunteer stratification and bioactivity studies. This is the first urolithin with a catechol group in ring A while having only one hydroxyl in ring B, a unique feature not found in human and animal samples so far.
Collapse
Affiliation(s)
- David Beltrán
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - María D. Frutos-Lisón
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - Rocío García-Villalba
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | | | | | - Juan C. Espín
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - María V. Selma
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| | - Francisco A. Tomás-Barberán
- Quality,
Safety and Bioactivity of Plant-Derived Foods, CEBAS-CSIC, University Campus, Edif. 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
52
|
Mostafa H, Cheok A, Meroño T, Andres-Lacueva C, Rodriguez-Mateos A. Biomarkers of Berry Intake: Systematic Review Update. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11789-11805. [PMID: 37499164 PMCID: PMC10416351 DOI: 10.1021/acs.jafc.3c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Berries are rich in (poly)phenols, and these compounds may be beneficial to human health. Estimating berry consumption through self-reported questionnaires has been challenging due to compliance issues and a lack of precision. Estimation via food-derived biomarkers in biofluids was proposed as a complementary alternative. We aimed to review and update the existing evidence on biomarkers of intake for six different types of berries. A systematic literature search was performed to update a previous systematic review on PubMed, Web of Science, and Scopus from January 2020 until December 2022. Out of 42 papers, only 18 studies were eligible. A multimetabolite panel is suggested for blueberry and cranberry intake. Proposed biomarkers for blueberries include hippuric acid and malvidin glycosides. For cranberries, suggested biomarkers are glycosides of peonidin and cyanidin together with sulfate and glucuronide conjugates of phenyl-γ-valerolactone derivatives. No new metabolite candidates have been found for raspberries, strawberries, blackcurrants, and blackberries. Further studies are encouraged to validate these multimetabolite panels for improving the estimation of berry consumption.
Collapse
Affiliation(s)
- Hamza Mostafa
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Alex Cheok
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| | - Tomás Meroño
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Cristina Andres-Lacueva
- Biomarkers
and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences
and Gastronomy, Nutrition and Food Safety Research Institute (INSA),
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Centro
de Investigación Biomédica en Red de Fragilidad y Envejecimiento
Saludable (CIBERFES), Instituto de Salud
Carlos III, Madrid 28029, Spain
| | - Ana Rodriguez-Mateos
- Department
of Nutritional Sciences, School of Life Course and Population Sciences,
Faculty of Life Sciences and Medicine, King’s
College London, 150 Stamford
Street, SE1 9NH London, U.K.
| |
Collapse
|
53
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| |
Collapse
|
54
|
Ciccone L, Nencetti S, Rossello A, Orlandini E. Pomegranate: A Source of Multifunctional Bioactive Compounds Potentially Beneficial in Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1036. [PMID: 37513947 PMCID: PMC10385237 DOI: 10.3390/ph16071036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pomegranate fruit (PF) is a fruit rich in nutraceuticals. Nonedible parts of the fruit, especially peels, contain high amounts of bioactive components that have been largely used in traditional medicine, such as the Chinese, Unani, and Ayurvedic ones, for treating several diseases. Polyphenols such as anthocyanins, tannins, flavonoids, phenolic acids, and lignans are the major bioactive molecules present in PF. Therefore, PF is considered a source of natural multifunctional agents that exert simultaneously antioxidant, anti-inflammatory, antitumor, antidiabetic, cardiovascular, and neuroprotective activities. Recently, several studies have reported that the nutraceuticals contained in PF (seed, peel, and juice) have a potential beneficial role in Alzheimer's disease (AD). Research suggests that the neuroprotective effect of PF is mostly due to its potent antioxidant and anti-inflammatory activities which contribute to attenuate the neuroinflammation associated with AD. Despite the numerous works conducted on PF, to date the mechanism by which PF acts in combatting AD is not completely known. Here, we summarize all the recent findings (in vitro and in vivo studies) related to the positive effects that PF and its bioactive components can have in the neurodegeneration processes occurring during AD. Moreover, considering the high biotransformation characteristics of the nutraceuticals present in PF, we propose to consider the chemical structure of its active metabolites as a source of inspiration to design new molecules with the same beneficial effects but less prone to be affected by the metabolic degradation process.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio", University of Pisa, 56122 Pisa, Italy
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
55
|
Yin Y, Martínez R, Zhang W, Estévez M. Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Crit Rev Food Sci Nutr 2023; 64:10009-10035. [PMID: 37335106 DOI: 10.1080/10408398.2023.2219763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Remigio Martínez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
- Infectious Diseases Unit. Animal Health Department, University of Extremadura, Caceres, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
56
|
Habib HM, El-Gendi H, El-Fakharany EM, El-Ziney MG, El-Yazbi AF, Al Meqbaali FT, Ibrahim WH. Antioxidant, Anti-Inflammatory, Antimicrobial, and Anticancer Activities of Pomegranate Juice Concentrate. Nutrients 2023; 15:2709. [PMID: 37375613 DOI: 10.3390/nu15122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Pomegranate juice concentrate (PJC) is a rich source of polyphenols, which exhibit significant antioxidant activity and potential health benefits for disease prevention and therapy. In this study, the polyphenolic profile of PJC was investigated for the first time, and it was found that PJC can inhibit oxidative damage to bovine serum albumin (BSA) and deoxyribonucleic acid (DNA), as well as acetylcholinesterase, α-amylase, and tyrosinase activities. The primary polyphenols identified in PJC were 4-Hydroxy-3-Methoxybenzoate, epicatechin, catechin, rutin, ferulic acid, P-coumaric acid, and cinnamic acid. Additionally, PJC demonstrated potent antibacterial effects against human pathogens such as Streptococcus mutans and Aeromonas hydrophila and dose-dependently reduced the proliferation of colorectal, breast, and hepatic cancer cells via apoptosis. Furthermore, PJC blocked B-cell lymphoma 2 (BCl-2) and the expression of a potent cyclin-dependent kinase inhibitor (P21) and enhanced tumor protein (P53) expression, compared to both untreated cells and cells treated with fluoropyrimidine 5-fluorouracil (5-FU). As a result, PJC may be a beneficial ingredient in the formulation of emerging natural-compound-based chemotherapy and functional foods and could be utilized by the food, nutraceutical, and pharmaceutical industries.
Collapse
Affiliation(s)
- Hosam M Habib
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab P.O. Box 21934, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El Arab P.O. Box 21934, Egypt
| | - Mohamed G El-Ziney
- Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria P.O. Box 21545, Egypt
| | - Ahmed F El-Yazbi
- Research & Innovation Hub, Alamein International University (AIU), Alamein City 5060310, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City 5060310, Egypt
| | - Fatima T Al Meqbaali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Wissam H Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
57
|
Duarte S, Puchades A, Jiménez-Hernández N, Betoret E, Gosalbes MJ, Betoret N. Almond ( Prunus dulcis) Bagasse as a Source of Bioactive Compounds with Antioxidant Properties: An In Vitro Assessment. Antioxidants (Basel) 2023; 12:1229. [PMID: 37371960 DOI: 10.3390/antiox12061229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The presence of components of nutritional interest makes fresh almond bagasse an interesting by-product for obtaining functional ingredients. Stabilization through a dehydration process is an interesting option for its integral use, ensuring its conservation and management. Subsequently, it can be turned into powder, facilitating its use as an ingredient. The aim of this paper was to determine the effects of hot air drying at 60 and 70 °C and lyophilization on the release of phenolic components and antiradical capacity in in vitro gastrointestinal digestion and colonic fermentation, as well as on growing microbiota composition by applying high throughput sequencing. The novelty of this study lies in this holistic approach; considering both technological and physiological aspects related to gastrointestinal digestion and colonic fermentation will provide the best conditions for functional foods. The results obtained showed that lyophilization provides a powder with a total phenol content and antiradical capacity higher than hot air drying. Furthermore, in dehydrated samples, both in vitro digestion and colonic fermentation revealed a phenol content and anti-radical capacity superior to those existing in undigested products. In addition, after colonic fermentation, beneficial bacteria species have been identified. Obtaining powders from almond bagasse is presented as an interesting opportunity for the valorization of this by-product.
Collapse
Affiliation(s)
- Stevens Duarte
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Almudena Puchades
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Nuria Jiménez-Hernández
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, 46020 Valencia, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ester Betoret
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María José Gosalbes
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana-Salud Pública, 46020 Valencia, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Noelia Betoret
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
58
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
59
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
60
|
Alalawi S, Albalawi F, Ramji DP. The Role of Punicalagin and Its Metabolites in Atherosclerosis and Risk Factors Associated with the Disease. Int J Mol Sci 2023; 24:ijms24108476. [PMID: 37239823 DOI: 10.3390/ijms24108476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ACVD) is the leading cause of death worldwide. Although current therapies, such as statins, have led to a marked reduction in morbidity and mortality from ACVD, they are associated with considerable residual risk for the disease together with various adverse side effects. Natural compounds are generally well-tolerated; a major recent goal has been to harness their full potential in the prevention and treatment of ACVD, either alone or together with existing pharmacotherapies. Punicalagin (PC) is the main polyphenol present in pomegranates and pomegranate juice and demonstrates many beneficial actions, including anti-inflammatory, antioxidant, and anti-atherogenic properties. The objective of this review is to inform on our current understanding of the pathogenesis of ACVD and the potential mechanisms underlying the beneficial actions of PC and its metabolites in the disease, including the attenuation of dyslipidemia, oxidative stress, endothelial cell dysfunction, foam cell formation, and inflammation mediated by cytokines and immune cells together with the regulation of proliferation and migration of vascular smooth muscle cells. Some of the anti-inflammatory and antioxidant properties of PC and its metabolites are due to their strong radical-scavenging activities. PC and its metabolites also inhibit the risk factors of atherosclerosis, including hyperlipidemia, diabetes mellitus, inflammation, hypertension, obesity, and non-alcoholic fatty liver disease. Despite the promising findings that have emerged from numerous in vitro, in vivo, and clinical studies, deeper mechanistic insights and large clinical trials are required to harness the full potential of PC and its metabolites in the prevention and treatment of ACVD.
Collapse
Affiliation(s)
- Sulaiman Alalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Faizah Albalawi
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
61
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
62
|
Soto-Huelin B, Babiy B, Pastor O, Díaz-García M, Toledano-Zaragoza A, Frutos MD, Espín JC, Tomás-Barberán FA, Busto R, Ledesma MD. Ellagic acid and its metabolites urolithins A/B ameliorate most common disease phenotypes in cellular and mouse models for lysosomal storage disorders by enhancing extracellular vesicle secretion. Neurobiol Dis 2023; 182:106141. [PMID: 37121555 DOI: 10.1016/j.nbd.2023.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023] Open
Abstract
Niemann Pick diseases types A (NPDA) and C (NPDC) are lysosomal storage disorders (LSDs) leading to cognitive impairment, neurodegeneration, and early death. NPDA and NPDC have different genetic origins, being caused by mutations in the acid sphingomyelinase (ASM) or the cholesterol transport protein NPC1, respectively. However, they share a common pathological hallmark in the accumulation of lipids in the endolysosomal compartment. Here, we tested the hypothesis that polyphenols reduce lipid overload in NPD cells by enhancing the secretion of extracellular vesicles (ECVs). We show that among the polyphenols tested, the ellagic acid metabolites, urolithin A and B, were the safest and most efficient in increasing ECV secretion. They reduced levels of accumulating lipids and lysosomal size and permeabilization in cultured bone marrow-derived macrophages and neurons from ASMko and NPC1 mutant mice, which mimic NPDA and NPDC, respectively. Moreover, oral treatment with ellagic acid reduced lipid levels, ameliorated lysosomal alterations, and diminished microglia activation in the brain of NPD mice. These results support the therapeutic value of ECV secretion and polyphenols for NPDs, which may also help treat other LSDs characterized by intracellular lipid overload.
Collapse
Affiliation(s)
| | - Bohdan Babiy
- Servicio de Bioquímica-Clínica, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Oscar Pastor
- Servicio de Bioquímica-Clínica, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Mario Díaz-García
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid 28049, Spain
| | | | - María Dolores Frutos
- Food and Health Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Murcia 30100, Spain
| | - Juan Carlos Espín
- Food and Health Laboratory, Department of Food Science and Technology, CEBAS-CSIC, Murcia 30100, Spain
| | | | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain.
| | | |
Collapse
|
63
|
Fan N, Fusco JL, Rosenberg DW. Antioxidant and Anti-Inflammatory Properties of Walnut Constituents: Focus on Personalized Cancer Prevention and the Microbiome. Antioxidants (Basel) 2023; 12:982. [PMID: 37237848 PMCID: PMC10215340 DOI: 10.3390/antiox12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Walnuts have been lauded as a 'superfood', containing a remarkable array of natural constituents that may have additive and/or synergistic properties that contribute to reduced cancer risk. Walnuts are a rich source of polyunsaturated fatty acids (PUFAs: alpha-linolenic acid, ALA), tocopherols, antioxidant polyphenols (including ellagitannins), and prebiotics, including fiber (2 g/oz). There is a growing body of evidence that walnuts may contribute in a positive way to the gut microbiome, having a prebiotic potential that promotes the growth of beneficial bacteria. Studies supporting this microbiome-modifying potential include both preclinical cancer models as well as several promising human clinical trials. Mediated both directly and indirectly via its actions on the microbiome, many of the beneficial properties of walnuts are related to a range of anti-inflammatory properties, including powerful effects on the immune system. Among the most potent constituents of walnuts are the ellagitannins, primarily pedunculagin. After ingestion, the ellagitannins are hydrolyzed at low pH to release ellagic acid (EA), a non-flavonoid polyphenolic that is subsequently metabolized by the microbiota to the bioactive urolithins (hydroxydibenzo[b,d]pyran-6-ones). Several urolithins, including urolithin A, reportedly have potent anti-inflammatory properties. These properties of walnuts provide the rationale for including this tree nut as part of a healthy diet for reducing overall disease risk, including colorectal cancer. This review considers the latest information regarding the potential anti-cancer and antioxidant properties of walnuts and how they may be incorporated into the diet to provide additional health benefits.
Collapse
Affiliation(s)
| | | | - Daniel W. Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| |
Collapse
|
64
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
65
|
Van der Auwera A, Peeters L, Foubert K, Piazza S, Vanden Berghe W, Hermans N, Pieters L. In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics 2023; 15:pharmaceutics15041291. [PMID: 37111776 PMCID: PMC10146082 DOI: 10.3390/pharmaceutics15041291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro anti-inflammatory activity was evaluated by testing the inhibition of NF-κB activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.
Collapse
Affiliation(s)
- Anastasia Van der Auwera
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Stefano Piazza
- Laboratory of Pharmacognosy, Department of Pharmacological and Biomolecular Sciences, University of Milan, 20134 Milan, Italy
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
66
|
Iglesias-Aguirre CE, González-Sarrías A, Cortés-Martín A, Romo-Vaquero M, Osuna-Galisteo L, Cerón JJ, Espín JC, Selma MV. In vivo administration of gut bacterial consortia replicates urolithin metabotypes A and B in a non-urolithin-producing rat model. Food Funct 2023; 14:2657-2667. [PMID: 36866688 DOI: 10.1039/d2fo03957e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Urolithin (Uro) production capacity and, consequently, at least partly, the health effects attributed to ellagitannin and ellagic acid consumption vary among individuals. The reason is that not all individuals have the gut bacterial ecology needed to produce the different Uro metabolites. Three human urolithin metabotypes (UM-A, UM-B, and UM-0) based on dissimilar Uro production profiles have been described in populations worldwide. Recently, the gut bacterial consortia involved in ellagic acid metabolism to yield the urolithin-producing metabotypes (UM-A and UM-B) in vitro have been identified. However, the ability of these bacterial consortia to customize urolithin production to mimic UM-A and UM-B in vivo is still unknown. In the present study, two bacterial consortia were assessed for their capacity to colonize the intestine of rats and convert UM-0 (Uro non-producers) animals into Uro-producers that mimic UM-A and UM-B, respectively. Two consortia of Uro-producing bacteria were orally administered to non-urolithin-producing Wistar rats for 4 weeks. Uro-producing bacterial strains effectively colonized the rats' gut, and the ability to produce Uros was also effectively transferred. Bacterial strains were well tolerated. No changes in other gut bacteria, except Streptococcus reduction, or adverse effects on haematological and biochemical parameters were observed. Besides, two novel qPCR procedures were designed and successfully optimized to detect and quantify Ellagibacter and Enterocloster genera in faecal samples. These results suggest that the bacterial consortia are safe and could be potential probiotics for human trials, which is especially relevant for UM-0 individuals, who cannot produce bioactive Uros.
Collapse
Affiliation(s)
- Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
- APC Microbiome Ireland & School of Microbiology, University College Cork, T12 YT20 Cork, Ireland
| | - María Romo-Vaquero
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - Leire Osuna-Galisteo
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain.
| |
Collapse
|
67
|
In Silico and In Vitro Study of Antioxidant Potential of Urolithins. Antioxidants (Basel) 2023; 12:antiox12030697. [PMID: 36978945 PMCID: PMC10045577 DOI: 10.3390/antiox12030697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
In this work, quantum chemical calculations based on density functional theory (DFT) were performed to predict the antioxidant potential of four bioactive gut microbiota metabolites of the natural polyphenols ellagitannins (ETs) and ellagic acid (EA), also known as urolithins (UROs). In order to evaluate their ability to counter the effect of oxidative stress caused by reactive oxygen species (ROS), such as the hydroperoxyl radical (•OOH), different reaction mechanisms were investigated, considering water and lipid-like environments. Through our in silico results, it emerged that at physiological pH, the scavenging activity of all urolithins, except urolithin B, are higher than that of trolox and other potent antioxidants existing in nature, such as EA, α-mangostin, allicin, caffeine and melatonin. These findings were confirmed by experimental assays.
Collapse
|
68
|
Zhang C, Song Y, Yuan M, Chen L, Zhang Q, Hu J, Meng Y, Li S, Zheng G, Qiu Z. Ellagitannins-Derived Intestinal Microbial Metabolite Urolithin A Ameliorates Fructose-Driven Hepatosteatosis by Suppressing Hepatic Lipid Metabolic Reprogramming and Inducing Lipophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3967-3980. [PMID: 36825491 DOI: 10.1021/acs.jafc.2c05776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive fructose consumption exacerbates the progression of nonalcoholic fatty liver disease (NAFLD) by disrupting hepatic lipid homeostasis. This study sought to evaluate the efficacy of urolithin A (UroA) in a fructose-induced NAFLD mouse model. UroA was administered in the high-fructose-fed mice to investigate the antisteatotic effects in vivo. Fructose-stimulated HepG2 cells and primary hepatocytes were established for in vitro mechanistic assessment. The results suggested that UroA ameliorated fructose-induced hepatic steatosis in mice. Mechanistically, UroA impaired lipogenesis and enhanced β-oxidation in the livers of fructose-fed mice. Notably, UroA facilitated hepatic lipophagy through the AMPK/ULK1 pathway both in vivo and in vitro, degrading lipid droplets for fueling β-oxidation. This study indicates that UroA alleviates excessive lipid accumulation and restores lipid homeostasis in the livers of fructose-fed mice by suppressing lipid metabolic reprogramming and triggering lipophagy. Therefore, dietary supplementation of UroA or ellagitannins-rich foods may be beneficial for NAFLD individuals with high fructose intake.
Collapse
Affiliation(s)
- Cong Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yingying Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Qianyu Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
- Department of Biochemistry, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| |
Collapse
|
69
|
Iglesias-Aguirre C, García-Villalba R, Beltrán D, Frutos-Lisón MD, Espín JC, Tomás-Barberán FA, Selma MV. Gut Bacteria Involved in Ellagic Acid Metabolism To Yield Human Urolithin Metabotypes Revealed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4029-4035. [PMID: 36840624 PMCID: PMC9999415 DOI: 10.1021/acs.jafc.2c08889] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
We aimed to elucidate the gut bacteria that characterize the human urolithin metabotypes A and B (UM-A and UM-B). We report here a new bacterium isolated from the feces of a healthy woman, capable of producing the final metabolites urolithins A and B and different intermediates. Besides, we describe two gut bacterial co-cultures that reproduced the urolithin formation pathways upon in vitro fermentation of both UM-A and UM-B. This is the first time that the capacity of pure strains to metabolize ellagic acid cooperatively to yield urolithin profiles associated with UM-A and UM-B has been demonstrated. The urolithin-producing bacteria described herein could have potential as novel probiotics and in the industrial manufacture of bioactive urolithins to develop new ingredients, beverages, nutraceuticals, pharmaceuticals, and (or) functional foods. This is especially relevant in UM-0 individuals since they cannot produce bioactive urolithins.
Collapse
|
70
|
The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12030663. [PMID: 36978911 PMCID: PMC10045397 DOI: 10.3390/antiox12030663] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Flavonoids are a biodiverse family of dietary compounds that have antioxidant, anti-inflammatory, antiviral, and antibacterial cell protective profiles. They have received considerable attention as potential therapeutic agents in biomedicine and have been widely used in traditional complimentary medicine for generations. Such complimentary medical herbal formulations are extremely complex mixtures of many pharmacologically active compounds that provide a therapeutic outcome through a network pharmacological effects of considerable complexity. Methods are emerging to determine the active components used in complimentary medicine and their therapeutic targets and to decipher the complexities of how network pharmacology provides such therapeutic effects. The gut microbiome has important roles to play in the generation of bioactive flavonoid metabolites retaining or exceeding the antioxidative and anti-inflammatory properties of the intact flavonoid and, in some cases, new antitumor and antineurodegenerative bioactivities. Certain food items have been identified with high prebiotic profiles suggesting that neutraceutical supplementation may be beneficially employed to preserve a healthy population of bacterial symbiont species and minimize the establishment of harmful pathogenic organisms. Gut health is an important consideration effecting the overall health and wellbeing of linked organ systems. Bioconversion of dietary flavonoid components in the gut generates therapeutic metabolites that can also be transported by the vagus nerve and systemic circulation to brain cell populations to exert a beneficial effect. This is particularly important in a number of neurological disorders (autism, bipolar disorder, AD, PD) characterized by effects on moods, resulting in depression and anxiety, impaired motor function, and long-term cognitive decline. Native flavonoids have many beneficial properties in the alleviation of inflammation in tissues, however, concerns have been raised that therapeutic levels of flavonoids may not be achieved, thus allowing them to display optimal therapeutic effects. Dietary manipulation and vagal stimulation have both yielded beneficial responses in the treatment of autism spectrum disorders, depression, and anxiety, establishing the vagal nerve as a route of communication in the gut-brain axis with established roles in disease intervention. While a number of native flavonoids are beneficial in the treatment of neurological disorders and are known to penetrate the blood–brain barrier, microbiome-generated flavonoid metabolites (e.g., protocatechuic acid, urolithins, γ-valerolactones), which retain the antioxidant and anti-inflammatory potency of the native flavonoid in addition to bioactive properties that promote mitochondrial health and cerebrovascular microcapillary function, should also be considered as potential biotherapeutic agents. Studies are warranted to experimentally examine the efficacy of flavonoid metabolites directly, as they emerge as novel therapeutic options.
Collapse
|
71
|
Makarov M, Korkotian E. Differential Role of Active Compounds in Mitophagy and Related Neurodegenerative Diseases. Toxins (Basel) 2023; 15:202. [PMID: 36977093 PMCID: PMC10058020 DOI: 10.3390/toxins15030202] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease, significantly reduce the quality of life of patients and eventually result in complete maladjustment. Disruption of the synapses leads to a deterioration in the communication of nerve cells and decreased plasticity, which is associated with a loss of cognitive functions and neurodegeneration. Maintaining proper synaptic activity depends on the qualitative composition of mitochondria, because synaptic processes require sufficient energy supply and fine calcium regulation. The maintenance of the qualitative composition of mitochondria occurs due to mitophagy. The regulation of mitophagy is usually based on several internal mechanisms, as well as on signals and substances coming from outside the cell. These substances may directly or indirectly enhance or weaken mitophagy. In this review, we have considered the role of some compounds in process of mitophagy and neurodegeneration. Some of them have a beneficial effect on the functions of mitochondria and enhance mitophagy, showing promise as novel drugs for the treatment of neurodegenerative pathologies, while others contribute to a decrease in mitophagy.
Collapse
Affiliation(s)
| | - Eduard Korkotian
- Department of Brain Sciences, The Weizmann Institute of Science, Rehovot 7630031, Israel
| |
Collapse
|
72
|
Xia M, Mu S, Fang Y, Zhang X, Yang G, Hou X, He F, Zhao Y, Huang Y, Zhang W, Shen J, Liu S. Genetic and Probiotic Characteristics of Urolithin A Producing Enterococcus faecium FUA027. Foods 2023; 12:1021. [PMID: 36900537 PMCID: PMC10001356 DOI: 10.3390/foods12051021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Enterococcus faecium FUA027 transforms ellagic acid (EA) to urolithin A (UA), which makes it a potential application in the preparation of UA by industrial fermentation. Here, the genetic and probiotic characteristics of E. faecium FUA027 were evaluated through whole-genome sequence analysis and phenotypic assays. The chromosome size of this strain was 2,718,096 bp, with a GC content of 38.27%. The whole-genome analysis revealed that the genome contained 18 antibiotic resistance genes and seven putative virulence factor genes. E. faecium FUA027 does not contain plasmids and mobile genetic elements (MGEs), and so the transmissibility of antibiotic resistance genes or putative virulence factors should not occur. Phenotypic testing further indicated that E. faecium FUA027 is sensitive to clinically relevant antibiotics. In addition, this bacterium exhibited no hemolytic activity, no biogenic amine production, and could significantly inhibit the growth of the quality control strain. In vitro viability was >60% in all simulated gastrointestinal environments, with good antioxidant activity. The study results suggest that E. faecium FUA027 has the potential to be used in industrial fermentation for the production of urolithin A.
Collapse
Affiliation(s)
- Mengjie Xia
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuting Mu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Zhang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fuxiang He
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaling Zhao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yichen Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
73
|
Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl Environ Microbiol 2023; 89:e0188022. [PMID: 36840551 PMCID: PMC10056957 DOI: 10.1128/aem.01880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Collapse
|
74
|
Ares AM, Toribio L, García-Villalba R, Villalgordo JM, Althobaiti Y, Tomás-Barberán FA, Bernal J. Separation of Isomeric Forms of Urolithin Glucuronides Using Supercritical Fluid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3033-3039. [PMID: 36719954 PMCID: PMC9936581 DOI: 10.1021/acs.jafc.2c07145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Urolithins are gut microbiota metabolites produced in humans after consuming foods containing ellagitannins and ellagic acid. Three urolithin metabotypes have been reported for different individuals depending on the final urolithins produced. After absorption, they are conjugated with glucuronic acid (phase II metabolism), and these are the main circulating metabolites in plasma and reach different tissues. Different regioisomeric isomers of urolithin glucuronides have been described. Still, their identification and quantification in humans have not been properly reported due to resolution limitations in their analysis by reversed-phase high-performance liquid chromatography. In the present study, we report a novel method for separating these isomers using supercritical fluid chromatography. With this method, urolithin A 3- and 8-glucuronide, isourolithin A 3- and 9- glucuronide, and urolithin B 3-glucuronide (8-hydroxy urolithin 3-glucuronide; 3-hydroxy urolithin 8-glucuronide; 3-hydroxyurolithin 9-glucuronide; 9-hydroxyurolithin 3-glucuronide; and urolithin 3-glucuronide) were separated in less than 15 min. The proposed method was applied to successfully analyze these metabolites in urine samples from different volunteers belonging to different metabotypes.
Collapse
Affiliation(s)
- Ana M. Ares
- I.
U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, Valladolid 47011, Spain
| | - Laura Toribio
- I.
U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, Valladolid 47011, Spain
| | - Rocío García-Villalba
- CEBAS-CSIC,
Research Group on Quality, Safety, and Bioactivity of Plant-Derived
Foods, P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - Jose M. Villalgordo
- Eurofins-VillaPharma
Research S.L.; Parque Tecnológico de Fuente Álamo, Fuente Álamo, Murcia E-30320, Spain
| | - Yusuf Althobaiti
- Department
of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Francisco A. Tomás-Barberán
- CEBAS-CSIC,
Research Group on Quality, Safety, and Bioactivity of Plant-Derived
Foods, P.O. Box 164, Espinardo, Murcia 30100, Spain
- Department
of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - José Bernal
- I.
U. CINQUIMA, Analytical Chemistry Group (TESEA), Faculty of Sciences, University of Valladolid, Valladolid 47011, Spain
| |
Collapse
|
75
|
Ellagitannins, urolithins, and neuroprotection: Human evidence and the possible link to the gut microbiota. Mol Aspects Med 2023; 89:101109. [PMID: 35940941 DOI: 10.1016/j.mam.2022.101109] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023]
Abstract
Ellagitannins (ETs) and ellagic acid (EA) are dietary polyphenols poorly absorbed but extensively metabolized by the human gut microbiota to produce different urolithins (Uros). Depending on the individuals' microbial signatures, ETs metabolism can yield the Uro metabotypes A, B, or 0, potentially impacting human health after consuming ETs. Human evidence points to improved brain health after consuming ET-rich foods, mainly pomegranate juices and extracts containing punicalagin, punicalin, and different EA-derivatives. Although ETs and (or) EA are necessary to exert the effects, the precise mechanism, actual metabolites, or final drivers responsible for the observed effects have not been unraveled. The cause-and-effect evidence on Uro-A administration and the improvement of animal brain health is consistent but not addressed in humans. The Uro-A's in vivo anti-inflammatory, mitophagy, autophagy, and mitochondrial biogenesis activities suggest it as a possible final driver in neuroprotection. However, the precise Uro metabolic forms reaching the brain are unknown. In addition to the possible participation of direct effectors in brain tissues, the current evidence points out that improving blood flow, gut microbiota ecology, and gut barrier by ET-rich foods and (or) Uro-A could contribute to the neuroprotective effects. We show here the current human evidence on ETs and brain health, the possible link between the gut microbiota metabolism of ETs and their effects, including the preservation of the gut barrier integrity, and the possible role of Uros. Finally, we propose a roadmap to address what is missing on ETs, Uros, and neuroprotection.
Collapse
|
76
|
Banc R, Rusu ME, Filip L, Popa DS. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut-Brain Axis. Foods 2023; 12:foods12020270. [PMID: 36673365 PMCID: PMC9858309 DOI: 10.3390/foods12020270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ellagitannins (ETs) are a large group of bioactive compounds found in plant-source foods, such as pomegranates, berries, and nuts. The consumption of ETs has often been associated with positive effects on many pathologies, including cardiovascular diseases, neurodegenerative syndromes, and cancer. Although multiple biological activities (antioxidant, anti-inflammatory, chemopreventive) have been discussed for ETs, their limited bioavailability prevents reaching significant concentrations in systemic circulation. Instead, urolithins, ET gut microbiota-derived metabolites, are better absorbed and could be the bioactive molecules responsible for the antioxidant and anti-inflammatory activities or anti-tumor cell progression. In this review, we examined the dietary sources, metabolism, and bioavailability of ETs, and analyzed the last recent findings on ETs, ellagic acid, and urolithins, their intestinal and brain activities, the potential mechanisms of action, and the connection between the ET microbiota metabolism and the consequences detected on the gut-brain axis. The current in vitro, in vivo, and clinical studies indicate that ET-rich foods, individual gut microbiomes, or urolithin types could modulate signaling pathways and promote beneficial health effects. A better understanding of the role of these metabolites in disease pathogenesis may assist in the prevention or treatment of pathologies targeting the gut-brain axis.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-450-555
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
77
|
Li J, Huang X, He L, Li C, Jing H, Lin J, Ma C, Li X. Effect of ellagic acid on body weight, nutrient digestibility, fecal microbiota, and urolithin A metabolism in Thoroughbred horses. J Anim Sci 2023; 101:skad232. [PMID: 37422771 PMCID: PMC10612130 DOI: 10.1093/jas/skad232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
This study aimed to investigate the effects of ellagic acid (EA) supplementation on body weight (BW), nutrient digestibility, fecal microbiota, blood biochemical indices, and urolithin A metabolism in 1-yr-old Thoroughbred horses. A group of 18 1-yr-old Thoroughbred horses, with an average weight of 339.00 ± 30.11 kg, were randomly allocated into three groups of six horses each (three males and three females). The control group (n = 6) received only the basal diet, whereas test groups I (n = 6) and II (n = 6) were fed the basal diet supplemented with 15 mg/kg BW/d and 30 mg/kg BW/d of EA, respectively, for 40-d. The results showed that test group I and II horses had a significant increase in total weight gain by 49.47% and 62.74%, respectively, compared to the control group. The digestibility of various components in the diets of the test group horses was improved, including dry matter, organic matter, gross energy, neutral detergent fiber, acid detergent fiber, and calcium. Additionally, the digestibility of crude protein and phosphorus (P) in test group II horses increased significantly by 10.96% and 33.56% (P < 0.05), respectively. Moreover, EA supplementation significantly increased the fecal abundance of Firmicutes, Bacteroidetes (P < 0.05), Fibrobacterota, p-251-o5, Desemzia incerta (P < 0.05), and Fibrobacter sp. (P < 0.05), while reducing the abundance of Proteobacteria, Pseudomonadaceae, Pseudomonas, and Cupriavidus pauculus (P < 0.05 or P < 0.01). Fecal samples from test group II showed 89.47%, 100%, and 86.15% increases in the concentrations of acetic acid, valeric acid, and total volatile fatty acids, respectively. In addition, the plasma levels of total protein, and globulin increased significantly in test groups I (7.88% and 11.35%, respectively) and II (13.44% and 16.07%, respectively) compared to those in the control group (P < 0.05). The concentration of urolithin A in fecal and urine samples was positively correlated with increasing doses of EA. These findings suggest that supplemental feeding of EA improved nutrient digestibility, blood biochemical indices, and fecal microbiota in 1-yr-old Thoroughbred horses, promoting growth and development.
Collapse
Affiliation(s)
- Jiahao Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xinxin Huang
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Linjiao He
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chao Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Hongxin Jing
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jianwei Lin
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chaoyu Ma
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk Production, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
- College of Animal Science, Xinjiang Key Laboratory of Horse Breeding and Exercise Physiology, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| |
Collapse
|
78
|
Wang C, Wang Z, Xue S, Zhu Y, Jin J, Ren Q, Shi X. Urolithin A alleviates neuropathic pain and activates mitophagy. Mol Pain 2023; 19:17448069231190815. [PMID: 37464536 PMCID: PMC10387767 DOI: 10.1177/17448069231190815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Neuropathic pain (NP) occurs frequently in the general population and has a negative impact on the quality of life. There is no effective therapy available yet owing to the complex pathophysiology of NP. In our previous study, we found that urolithin A (UA), a naturally occurring microflora-derived metabolite, could relieve NP in mice by inhibiting the activation of microglia and release of inflammation factors. Here in this study, we sought to investigate whether mitophagy would be activated when UA alleviated NP in mice. We showed that the autophagy flow was blocked in the spinal dorsal horn of the chronic constriction injury (CCI) mice when the most obvious pain behavior occurs. Intraperitoneal injection of UA markedly activated the mitophagy mediated by PTEN-induced kinase 1/Parkin, promoted mitobiogenesis in both neurons and microglia, and alleviated NP in the CCI mice. In summary, our data suggest that UA alleviates NP in mice and meanwhile induces mitophagy activation, which highlights a therapeutic potential of UA in the treatment of NP.
Collapse
Affiliation(s)
- Chenyi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zizhu Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Shiyu Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yutong Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiahao Jin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Qiuyu Ren
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
79
|
Pelton R. The Microbiome Theory of Aging (MTA). Integr Med (Encinitas) 2023; 21:28-34. [PMID: 36820269 PMCID: PMC9938673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The Microbiome Theory of Aging (MTA) explains how microbial imbalance in the intestinal tract, which is also referred to as dysbiosis, causes health problems that accelerate biological aging. The underlying mechanisms involved include increased inflammation, elevated levels of zonulin, destruction of intestinal tight junctions, and intestinal permeability, which allow lipopolysaccharides (LPS) to leak into systemic circulation. LPS is a powerful endotoxin that causes chronic inflammation throughout the body. Chronic inflammation is associated with chronic diseases and the acceleration of biological aging. Postbiotic metabolites are compounds that are created by probiotic bacteria in the colon. Postbiotic metabolites have been called the new frontier in microbiome science due to their key roles in regulating the structure and function of the gut microbiome and many aspects of human health.
Collapse
|
80
|
Quantitative conversion of free, acid-hydrolyzable, and bound ellagic acid in walnut kernels during baking. Food Chem 2023; 400:134070. [DOI: 10.1016/j.foodchem.2022.134070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
|
81
|
Belcaro G, Cox DM, Cesarone MR, Gizzi G, Pellegrini L, Scipione C, Scipione V, Dugall M, Hu S, Corsi M, Feragalli B, Cotellese R. Effects of Robuvit® on the progression of non-alcoholic fatty liver disease. Minerva Gastroenterol (Torino) 2022; 68:434-441. [PMID: 36507829 DOI: 10.23736/s2724-5985.22.03201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effects of Robuvit® in preventing the progression of chronic hepatitis (CH) in non-alcoholic fatty liver disease (NAFLD) which encompasses the entire spectrum of fatty liver disease, from isolated steatosis to non-alcoholic steatohepatitis (NASH). METHODS One group of patients followed the Standard management (SM) and were assigned as controls while the supplementation group followed the SM and additionally took 2 Robuvit® capsules daily for 3 months (200 mg/day). RESULTS 34 subjects with NAFLD were included in the study. The two groups completing 90 days were comparable at baseline with 18 being supplemented with Robuvit® and 16 in the control group. The tolerability was very good, and no side effects were observed with the supplement. Fasting glucose levels were significantly lower after 3 months with Robuvit® (P<0.05) compared to controls. The increased serum aspartate aminotransferase levels (AST), considered the key metabolic value in these patients, decreased significantly with Robuvit® (P<0.05) compared to controls. Serum alanine aminotransferase levels (ALT) also decreased significantly with the supplement compared to controls (P<0.05). Platelet count and albumin levels improved significantly with Robuvit® (P<0.05) in comparison to standard management. No other significant changes were observed. The APRI score (the AST/platelet ratio index) was also decreased with the supplementation compared to controls (P<0.05). A high APRI score provides an estimate of the possibility of the liver to develop fibrosis and eventually cirrhosis. After Robuvit® supplementation, the ultrasound characterization showed a significant decrease in the size of the liver in association with a lower echogenicity, which represents less fibrotic changes due to collagen accumulation. CONCLUSIONS Robuvit® improved liver function in NAFLD and prevented progression to liver fibrosis by improving hepatic metabolism in a relatively short period of time. Numerous people are affected by NAFLD, many of them with subclinical symptoms. But to date, there are no specific, definite treatment options. Prolonged evaluations of Robuvit® in a larger group of subjects is suggested.
Collapse
Affiliation(s)
- Gianni Belcaro
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy -
| | - David M Cox
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - M Rosaria Cesarone
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Giuseppe Gizzi
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Luciano Pellegrini
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Claudia Scipione
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Valeria Scipione
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Mark Dugall
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Shu Hu
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | - Marcello Corsi
- Irvine3 Labs, San Valentino Vascular Screening Project and IA-PSS (International Agency for Pharma-Standard Supplements) Pescara, Italy
| | | | - Roberto Cotellese
- Dept.SMO-Biotec, Chieti University, Italy.,Outpatients Vascular Surgery, School of General Surgery, Ch-Pe University, Pescara, Italy
| |
Collapse
|
82
|
González-Sarrías A, Espín-Aguilar JC, Romero-Reyes S, Puigcerver J, Alajarín M, Berná J, Selma MV, Espín JC. Main Determinants Affecting the Antiproliferative Activity of Stilbenes and Their Gut Microbiota Metabolites in Colon Cancer Cells: A Structure-Activity Relationship Study. Int J Mol Sci 2022; 23:ijms232315102. [PMID: 36499424 PMCID: PMC9739882 DOI: 10.3390/ijms232315102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
trans-Resveratrol can be catabolized by the gut microbiota to dihydroresveratrol, 3,4'-dihydroxy-trans-stilbene, lunularin, and 4-hydroxydibenzyl. These metabolites can reach relevant concentrations in the colon. However, not all individuals metabolize RSV equally, as it depends on their RSV gut microbiota metabotype (i.e., lunularin producers vs. non-producers). However, how this microbial metabolism affects the cancer chemopreventive activity of stilbenes and their microbial metabolites is poorly known. We investigated the structure-antiproliferative activity relationship of dietary stilbenes, their gut microbial metabolites, and various analogs in human cancer (Caco-2 and HT-29) and non-tumorigenic (CCD18-Co) colon cells. The antiproliferative IC50 values of pterostilbene, oxy-resveratrol, piceatannol, resveratrol, dihydroresveratrol, lunularin, 3,4'-dihydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 4-hydroxy-trans-stilbene, 4-hydroxydibenzyl, 3-hydroxydibenzyl, and 4-trans-stilbenemethanol were calculated. IC50 values were correlated with 34 molecular characteristics by bi- and multivariate analysis. Little or no activity on CCD18-Co was observed, while Caco-2 was more sensitive than HT-29, which was explained by their different capacities to metabolize the compounds. Caco-2 IC50 values ranged from 11.4 ± 10.1 μM (4-hydroxy-trans-stilbene) to 73.9 ± 13.8 μM (dihydropinosylvin). In HT-29, the values ranged from 24.4 ± 11.3 μM (4-hydroxy-trans-stilbene) to 96.7 ± 6.7 μM (4-hydroxydibenzyl). At their IC50, most compounds induced apoptosis and arrested the cell cycle at the S phase, pterostilbene at G2/M, while 4-hydroxy-trans-stilbene and 3,4'-dihydroxy-trans-stilbene arrested at both phases. Higher Connolly values (larger size) hindered the antiproliferative activity, while a lower pKa1 enhanced the activity in Caco-2, and higher LogP values (more hydrophobicity) increased the activity in HT-29. Reducing the styrene double bond in stilbenes was the most critical feature in decreasing the antiproliferative activity. These results (i) suggest that gut microbiota metabolism determines the antiproliferative effects of dietary stilbenes. Therefore, RSV consumption might exert different effects in individuals depending on their gut microbiota metabotypes associated with RSV metabolism, and (ii) could help design customized drugs with a stilbenoid and (or) dibenzyl core against colorectal cancer.
Collapse
Affiliation(s)
- Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Juan Carlos Espín-Aguilar
- Laboratory of Food and Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Salvador Romero-Reyes
- Laboratory of Food and Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Julio Puigcerver
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - Mateo Alajarín
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - José Berná
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, 30100 Murcia, Spain
| | - María Victoria Selma
- Laboratory of Food and Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Murcia, Spain
- Correspondence:
| |
Collapse
|
83
|
Exposure to (Poly)phenol Metabolites after a Fruit and Vegetable Supplement Intake: A Double-Blind, Cross-Over, Randomized Trial. Nutrients 2022; 14:nu14224913. [PMID: 36432599 PMCID: PMC9692523 DOI: 10.3390/nu14224913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Dietary (poly)phenol intake derived from the daily consumption of five portions of fruits and vegetables could protect against the development of non-communicable diseases. However, the general population does not meet the recommended intake. Supplementation with (poly)phenol-rich ingredients, within a varied and balanced diet, could help in filling this nutritional gap. This study aimed to validate the proof-of-concept of a (poly)phenolic supplementation developed to enhance the daily consumption of potentially bioactive compounds. Oxxynea® is a (poly)phenol-rich ingredient developed to provide the quantity and the variety corresponding to five-a-day fruit and vegetable consumption. In this double-blind, randomized cross-over study, 10 participants were supplemented with 450 mg of a (poly)phenol-based supplement or a placebo. Pharmacokinetics and urinary excretion profiles were measured for 24 and 48 h, respectively, using UPHLC-MS/MS analysis. The pharmacokinetic profile displayed a triphasic absorption, indicating peaks of circulating metabolites at 1.75 ± 0.25 h, 4.50 ± 0.34 h, 9.50 ± 0.33 h and an average Tmax (time of maximal plasma concentration) of 6.90 ± 0.96 h. Similarly, the urinary profile showed maximum metabolite excretion at 3-6 h, 6-10 h and 14-24 h after supplement consumption. Compared to individual metabolites belonging to different (poly)phenolic subfamilies, the total circulating and excreted metabolites showed a reduced coefficient of variation (CV 38%). The overall bioavailability estimated was 27.4 ± 3.4%. Oxxynea® supplementation may provide a sustained exposure to several (poly)phenolic metabolites and catabolites and reduces the inter-individual variation that could arise from supplementing only one class of (poly)phenol.
Collapse
|
84
|
Zhang X, Fang Y, Yang G, Hou X, Hai Y, Xia M, He F, Zhao Y, Liu S. Isolation and characterization of a novel human intestinal Enterococcus faecium FUA027 capable of producing urolithin A from ellagic acid. Front Nutr 2022; 9:1039697. [PMID: 36438752 PMCID: PMC9682137 DOI: 10.3389/fnut.2022.1039697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Urolithin A (UA) has received considerable research attention because of its health benefits. However, only a few strains have been reported to produce UA from ellagic acid (EA), and the molecular mechanisms underlying the gut microbiota-mediated transformation of ellagic acid into urolithin A is limited. In the present study, a single strain FUA027 capable of converting ellagic acid into UA in vitro was isolated from the fecal samples. The strain was identified as Enterococcus faecium through the morphological, physiological, biochemical and genetic tests. UA was produced at the beginning of the stationary phase and its levels peaked at 50 h, with the highest concentration being 10.80 μM. The strain Enterococcus faecium FUA027 is the first isolated strain of Enterococcus sp. producing urolithin A from ellagic acid, which may be developed as probiotics and used to explore molecular mechanisms underlying the biotransformation of ellagic acid into UA.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, China
| | - Mengjie Xia
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Fuxiang He
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaling Zhao
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
85
|
Mena P, Crozier A. Do (Poly)phenols Matter for Nutrition Research? News from the Front. Mol Nutr Food Res 2022; 66:e2200617. [DOI: 10.1002/mnfr.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit Department of Food and Drug University of Parma Parma 43124 Italy
- Microbiome Research Hub University of Parma Parma 43124 Italy
| | - Alan Crozier
- Department of Chemistry King Saud University Riyadh 12372 Saudi Arabia
- School of Medicine, Dentistry and Nursing University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
86
|
Eidizade F, Soukhtanloo M, Zhiani R, Mehrzad J, Mirzavi F. Inhibition of glioblastoma proliferation, invasion, and migration by Urolithin B through inducing G0/G1 arrest and targeting MMP-2/-9 expression and activity. Biofactors 2022; 49:379-389. [PMID: 36310375 DOI: 10.1002/biof.1915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
One kind of brain cancer with a dismal prognosis is called glioblastoma multiforme (GBM) due to its high growth rate and widespread tumor cell invasion into various areas of the brain. To improve therapeutic approaches, the objective of this research investigates the cytotoxic, anti-metastatic, and apoptotic effect of urolithin-B (UB) as a bioactive metabolite of ellagitannins (ETs) on GBM U87 cells. The malignant GBM cell line (U87) was examined for apoptosis rate, cell cycle analysis, cell viability, mRNA expressions of several apoptotic and metastasis-associated genes, production of reactive oxygen species (ROS), MMP-2, and MMP-9 activity and protein expression, and migration ability. The findings revealed that UB decreased U87 GBM viability in a dose-dependent manner and NIH/3T3 normal cells with the IC50 value of 30 and 55 μM after 24 h, respectively. UB also induces necrosis and G0/G1 cell cycle arrest in U87 cells. UB also increases ROS production and caused down-regulation of Bcl2 and up-regulation of Bax apoptotic genes. Additionally, treatment of UB reduced the migration of U87 cells. The protein levels, mRNA expression, and the MMP-2 and MMP-9 enzyme activities also decreased concentration-dependently. So, due to the non-toxic nature of UB and its ability to induce apoptosis and reduce the U87 GBM cell invasion and migration, after more research, it can be regarded as a promising new anti-GBM compound.
Collapse
Affiliation(s)
- Fateme Eidizade
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
87
|
Dou Y, Zhao D. Targeting Emerging Pathogenic Mechanisms by Natural Molecules as Potential Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2022; 14:2287. [PMID: 36365106 PMCID: PMC9695024 DOI: 10.3390/pharmaceutics14112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 10/07/2024] Open
Abstract
Natural molecules with favorable safety profile and broad pharmacological activities have shown great promise in the treatment of various neurodegenerative diseases (NDDs). Current studies applying natural molecules against NDDs mainly focus on well-recognized conventional pathogenesis, such as toxic protein aggregation, oxidative stress, and neuroinflammation. However, accumulating evidence reveals that some underlying pathogenic mechanisms are involved earlier and more deeply in the occurrence and development of NDDs, such as ferroptosis, energy metabolism disorders, autophagy-lysosomal dysfunction, endoplasmic reticulum stress, and gut dysbiosis. Therefore, determining whether natural molecules can play therapeutic roles in these emerging pathogenic mechanisms will help clarify the actual targets of natural molecules and their future clinical translation. Furthermore, how to overcome the inability of most poorly water-soluble natural molecules to cross the blood-brain barrier is also critical for effective NDD treatment. This review summarizes emerging pathogenic mechanisms targeted by natural molecules for NDD treatment, proposes nanocarrier-based drug delivery and intranasal administration to enhance the intracerebral bioavailability of natural molecules, and summarizes the current state of clinical research on natural product-based therapeutics.
Collapse
Affiliation(s)
- Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dongju Zhao
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
88
|
Yu ZH, Cao M, Wang YX, Yan SY, Qing LT, Wu CM, Li S, Li TY, Chen Q, Zhao J. Urolithin A Attenuates Helicobacter pylori-Induced Damage In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11981-11993. [PMID: 36106620 DOI: 10.1021/acs.jafc.2c03711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Urolithin A (UA) is a metabolite produced in the gut following the consumption of ellagic acid (EA) rich foods. EA has shown anti-inflammatory, antioxidant, and anticancer properties. Because EA is poorly absorbed in the gastrointestinal tract, urolithins are considered to play a major role in bioactivity. Helicobacter pylori (H. pylori) infection is the most common chronic bacterial infection all over the world. It is potentially hazardous to humans because of its relationship to various gastrointestinal diseases. In this study, we investigated the effect of UA on inflammation by H. pylori. The results indicated that UA attenuated H. pylori-induced inflammation in vitro and in vivo. UA also reduced the secretion of H. pylori virulence factors and tissue injuries in mice. Furthermore, UA decreased the relative abundance of Helicobacteraceae in feces of H. pylori-infected mice. In summary, taking UA effectively inhibited the injury caused by H. pylori.
Collapse
Affiliation(s)
- Zhi-Hao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan-Xiao Wang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shi-Ying Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li-Ting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Cheng-Meng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shu Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tian-Yi Li
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
89
|
Sahashi H, Kato A, Yoshida M, Hayashi K, Naitoh I, Hori Y, Natsume M, Jinno N, Kachi K, Asano G, Toyohara T, Kito Y, Ammanamanchi S, Kataoka H. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front Oncol 2022; 12:963314. [PMID: 36212467 PMCID: PMC9539031 DOI: 10.3389/fonc.2022.963314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), a metabolite generated by intestinal bacteria during the biotransformation of ellagitannins, has gained considerable attention in treating several cancers. Cholangiocarcinoma (CCA) remains one of the most lethal cancers; it grows in a special environment constantly exposed to both blood and bile. Since UA is known to undergo enterohepatic recirculation, we hypothesized that UA might have significant antitumor effects in CCA. Here, we investigated the therapeutic potential of UA in CCA and aimed to elucidate its mechanisms, including autophagy. UA treatment inhibited cell proliferation and induced G2/M phase cell cycle arrest in CCA cells. UA also suppressed cell migration and invasion, but did not cause apoptosis. Furthermore, Western blotting and immunocytochemistry demonstrated increased LC3-II accumulation, while electron microscopy demonstrated induced autophagosomes after UA treatment, suggesting that UA upregulated autophagy in CCA cells. In xenograft mice treated with UA, tumor growth was inhibited with increased LC3-II levels. On the other hand, phospho-kinase array demonstrated downregulation of the AKT/WNK1 pathway. LC3-II expression was elevated in WNK1 knocked down cells, indicating that WNK1 is the key signal for regulating autophagy. Thus, UA exerted antitumor effects by suppressing the AKT/WNK1 signaling pathway and inducing autophagy. In conclusion, UA, a natural, well-tolerated compound, may be a promising therapeutic candidate for advanced CCA.
Collapse
Affiliation(s)
- Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Akihisa Kato,
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naruomi Jinno
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Go Asano
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadashi Toyohara
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yusuke Kito
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
90
|
Zhang B, Zhang Y, Xing X, Wang S. Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
91
|
Iglesias-Aguirre C, Vallejo F, Beltrán D, Aguilar-Aguilar E, Puigcerver J, Alajarín M, Berná J, Selma MV, Espín JC. Lunularin Producers versus Non-producers: Novel Human Metabotypes Associated with the Metabolism of Resveratrol by the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10521-10531. [PMID: 35981285 PMCID: PMC9449969 DOI: 10.1021/acs.jafc.2c04518] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe here for the first time the consistent observation of two metabotypes associated with resveratrol metabolism by the human gut microbiota, that is, lunularin (LUNU)-producers and LUNU non-producers. In healthy volunteers (n = 195), resveratrol was reduced to dihydroresveratrol, which only in the LUNU-producer metabotype was sequentially dehydroxylated at the 5-position to yield LUNU and the 3-position to produce 4-hydroxydibenzyl. These metabolites (also 3,4'-dihydroxy-trans-stilbene in some LUNU-producers) were detected in the urine and (or) feces of 74% of volunteers after consuming resveratrol, while 26% lacked these dehydroxylase activities. The LUNU non-producer metabotype was more prevalent in females (P < 0.05) but independent of individuals' BMI and age. A 4-styrylphenol reductase in both metabotypes converted stilbenes to their corresponding dibenzyls, while no 4-dehydroxylation in stilbenes or dibenzyls was observed. 4-Hydroxy-trans-stilbene, pinosylvin, dihydropinosylvin, 3-hydroxydibenzyl, and 3-hydroxy-trans-stilbene were not detected in vivo or in vitro. Further research on LUNU metabotypes, their associated gut microbiota, and their impact on health is worthwhile.
Collapse
Affiliation(s)
- Carlos
E. Iglesias-Aguirre
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Fernando Vallejo
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - David Beltrán
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Elena Aguilar-Aguilar
- Nutrition
and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid 28049, Spain
| | - Julio Puigcerver
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - Mateo Alajarín
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - José Berná
- Department
of Organic Chemistry, Faculty of Chemistry, University of Murcia, Murcia 30100, Spain
| | - María V. Selma
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| | - Juan Carlos Espín
- Laboratory
of Food & Health, Research Group on Quality, Safety, and Bioactivity
of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia 30100, Spain
| |
Collapse
|
92
|
Mi H, Liu S, Hai Y, Yang G, Lu J, He F, Zhao Y, Xia M, Hou X, Fang Y. Lactococcus garvieae FUA009, a Novel Intestinal Bacterium Capable of Producing the Bioactive Metabolite Urolithin A from Ellagic Acid. Foods 2022; 11:2621. [PMID: 36076807 PMCID: PMC9455165 DOI: 10.3390/foods11172621] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary polyphenol ellagic acid has anti-cancer and anti-inflammatory activities, and these biological activities require the conversion of ellagic acid to urolithins by intestinal microbes. However, few gut microbes are capable of metabolizing ellagic acid to produce urolithins, limiting the beneficial effects of ellagic acid on health. Here, we describe an intestinal bacterium Lactococcus garvieae FUA009 isolated from the feces of a healthy volunteer. It was demonstrated via HPLC and UPLC-MS analysis that the end product of ellagic acid metabolism of FUA009 was urolithin A. In addition, we also examined the whole genome sequence of FUA009 and then assessed the safety and probiotic properties of FUA009 based on a complete genome and phenotype analysis. We indicated that FUA009 was safe, which was confirmed by FUA009 being sensitive to multiple antibiotics, having no hemolytic activity, and being free of aggressive putative virulence factors. Moreover, 19 stress-responsive protein genes and 8 adhesion-related genes were predicted in the FUA009 genome. Furthermore, we demonstrated that FUA009 was tolerant to acid and bile salt by determining the cell viability in a stress environment. In summary, Lactococcus garvieae FUA009, as a novel UA-producing bacterium, not only contributes to the study of the metabolic pathway of ellagic acid but is also expected to be a novel probiotic candidate.
Collapse
Affiliation(s)
- Haoyu Mi
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fuxiang He
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaling Zhao
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengjie Xia
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
93
|
Marcos Pasero H, García Tejedor A, Giménez-Bastida JA, Laparra Llopis JM. Modifiable Innate Biology within the Gut–Brain Axis for Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10092098. [PMID: 36140198 PMCID: PMC9495985 DOI: 10.3390/biomedicines10092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a prototypical inflammation-associated loss of cognitive function, with approximately 90% of the AD burden associated with invading myeloid cells controlling the function of the resident microglia. This indicates that the immune microenvironment has a pivotal role in the pathogenesis of the disease. Multiple peripheral stimuli, conditioned by complex and varied interactions between signals that stem at the intestinal level and neuroimmune processes, are involved in the progression and severity of AD. Conceivably, the targeting of critical innate immune signals and cells is achievable, influencing immune and metabolic health within the gut–brain axis. Considerable progress has been made, modulating many different metabolic and immune alterations that can drive AD development. However, non-pharmacological strategies targeting immunometabolic processes affecting neuroinflammation in AD treatment remain general and, at this point, are applied to all patients regardless of disease features. Despite these possibilities, improved knowledge of the relative contribution of the different innate immune cells and molecules comprising the chronically inflamed brain network to AD pathogenesis, and elucidation of the network hierarchy, are needed for planning potent preventive and/or therapeutic interventions. Moreover, an integrative perspective addressing transdisciplinary fields can significantly contribute to molecular pathological epidemiology, improving the health and quality of life of AD patients. This review is intended to gather modifiable immunometabolic processes based on their importance in the prevention and management of AD.
Collapse
Affiliation(s)
- Helena Marcos Pasero
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Aurora García Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia—VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA Food), Ctra Cantoblanco 8, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-(0)-9-1787-8100
| |
Collapse
|
94
|
Li HL, Zhang SY, Ren YS, Zhou JC, Zhou YX, Huang WZ, Piao XH, Yang ZY, Wang SM, Ge YW. Identification of ellagic acid and urolithins as natural inhibitors of Aβ 25-35-induced neurotoxicity and the mechanism predication using network pharmacology analysis and molecular docking. Front Nutr 2022; 9:966276. [PMID: 35983489 PMCID: PMC9378864 DOI: 10.3389/fnut.2022.966276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol that widely exists in grapes, strawberries, and walnuts. It usually exerts multiple biological activities together with its in vivo metabolites called urolithins. EA and urolithins had been proposed as natural agents for applying on the early intervention of Alzheimer’s disease (AD). However, the neuroprotective effects of those small molecules have not been confirmed, and the action mechanism is not clear. Deposition of beta-amyloid (Aβ) protein is well documented as being involved in the initiation and pathological process of AD. In the present study, we investigated the attenuating effects of EA and several urolithins on Aβ25–35-induced neuronal injury and its underlying molecular mechanism by constructing the in vitro AD cell model of PC12 cells and primary neurons. The results revealed that EA and urolithins especially the UM5 and UM6 exerted promising neuroprotective effects in improving the Aβ25–35-induced cell damage and lactate dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) production, inhibiting neuronal apoptosis, and promoting neurite outgrowth. These results provide new insights into the development of UM5 and UM6 as anti-AD candidates. A network pharmacology analysis combining molecular docking strategy was further adopted to predict the signaling pathway involved in the anti-AD action of EA and urolithins, and the activation of PI3K-Akt, as well as the inhibition of MAPK was found to be involved.
Collapse
Affiliation(s)
- Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China.,Macau University of Science and Technology, Macau, Macau SAR, China
| | - Shi-Ying Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Shan Ren
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying-Xin Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Xiu-Hong Piao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shu-Mei Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, China.,Engineering and Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
95
|
Kotewicz M, Krauze-Baranowska M, Daca A, Płoska A, Godlewska S, Kalinowski L, Lewko B. Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose. Cells 2022; 11:cells11162471. [PMID: 36010548 PMCID: PMC9406555 DOI: 10.3390/cells11162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglycative properties, urolithins are potential novel therapeutic agents. In this study, while considering the future possibility of using urolithins to improve podocyte function in diabetes, we assessed the results of exposing mouse podocytes cultured in normal (NG, 5.5 mM) and high (HG, 25 mM) glucose concentrations to urolithin A (UA) and urolithin B (UB). Podocytes metabolized UA to form glucuronides in a time-dependent manner; however, in HG conditions, the metabolism was lower than in NG conditions. In HG milieu, UA improved podocyte viability more efficiently than UB and reduced the reactive oxygen species level. Both types of urolithins showed cytotoxic activity at high (100 µM) concentration. The UA upregulated total and surface nephrin expression, which was paralleled by enhanced nephrin internalization. Regulation of nephrin turnover was independent of ambient glucose concentration. We conclude that UA affects podocytes in different metabolic and functional aspects. With respect to its pro-survival effects in HG-induced toxicity, UA could be considered as a potent therapeutic candidate against diabetic podocytopathy.
Collapse
Affiliation(s)
- Milena Kotewicz
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Sylwia Godlewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Barbara Lewko
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
96
|
Xian W, Yang S, Deng Y, Yang Y, Tan Z, Li W, Yang R. Potential of Establishing the Corresponding Human Microbial Community in Pseudo Germ-Free Mice through Fecal Microbe Transfer from Three Urolithin Metabotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9388-9398. [PMID: 35877603 DOI: 10.1021/acs.jafc.2c02796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Three urolithin metabotypes (UMs) have been defined in the population according to final urolithins converted by gut microbiota. Currently, it is difficult to establish the cause-and-effect relationship between urolithins and microbiota in human studies. Studies on the health effects of ellagic acid (EA) in animal models rarely consider the differences in the urolithin production. Therefore, the objective of this study is to establish human microbiota-associated (HMA) mice, imitating the microbiota composition of the three UMs. Antibiotic-induced pseudo germ-free mice were gavaged with fecal bacteria of the three UM donors for four weeks. The results showed that the ability to produce corresponding urolithins was successfully transferred from the donor of the three UMs to HMA mice. The three UM HMA mice adopted a humanized microbiota profile similar to their corresponding donor. The family Eggerthellaceae and genera Eggerthella and Gordonibacter were successfully transferred and colonized from UM-A/B donors to HMA mice. Overall, the three UM HMA mouse models were successfully established, which provide a basis for exploring the health effects of EA.
Collapse
Affiliation(s)
| | - Shiying Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Deng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhe Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaolun Tan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
97
|
Urolithins increased anticancer effects of chemical drugs, ionizing radiation and hyperthermia on human esophageal carcinoma cells in vitro. Tissue Cell 2022; 77:101846. [DOI: 10.1016/j.tice.2022.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022]
|
98
|
Korczak M, Roszkowski P, Granica S, Piwowarski JP. Conjugates of urolithin A with NSAIDs, their stability, cytotoxicity, and anti-inflammatory potential. Sci Rep 2022; 12:11676. [PMID: 35804000 PMCID: PMC9270351 DOI: 10.1038/s41598-022-15870-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Urolithin A (UA, 1), a gut microbiota postbiotic metabolite is attributed to express interesting biological activities indicated by in vitro, in vivo and clinical studies. Due to its strong anti-inflammatory properties it is considered as a promising lead molecule for further drug development, however, its strong phase II metabolism, severely limits its oral application. Therefore, monoesterified UA derivatives with selected NSAIDs: ibuprofen (Mix 3a/3b), mefenamic acid (Mix 4a/4b), diclofenac (Mix 5a/5b) and aspirin (Mix 6a/6b) were designed. Performed array of stability assays indicated Mix 4a/4b as a most suitable candidate for further studies due to its exceptional stability in human plasma. Thus, we evaluated effects of Mix 4a/4b on cell viability as well as the impact on cytokines secretion in THP-1 derived macrophages and compared it to UA. At high concentration (50 µM) Mix 4a/4b expressed a cytotoxic effect, however at concentration of 5 µM it significantly suppressed TNF-α secretion, and significantly increased ani-inflammatory IL-10 secretion at 10 µM without affecting cell viability. This work has led to selection of a novel UA derivatives, which are stable in solutions and in human plasma as well as posess anti-inflammatory activity towards THP-1 macrophages at non-cytotoxic concentrations.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland
| | - Piotr Roszkowski
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
99
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
100
|
Castellano-Escuder P, González-Domínguez R, Vaillant MF, Casas-Agustench P, Hidalgo-Liberona N, Estanyol-Torres N, Wilson T, Beckmann M, Lloyd AJ, Oberli M, Moinard C, Pison C, Borel JC, Joyeux-Faure M, Sicard M, Artemova S, Terrisse H, Dancer P, Draper J, Sánchez-Pla A, Andres-Lacueva C. Assessing Adherence to Healthy Dietary Habits Through the Urinary Food Metabolome: Results From a European Two-Center Study. Front Nutr 2022; 9:880770. [PMID: 35757242 PMCID: PMC9219016 DOI: 10.3389/fnut.2022.880770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Diet is one of the most important modifiable lifestyle factors in human health and in chronic disease prevention. Thus, accurate dietary assessment is essential for reliably evaluating adherence to healthy habits. Objectives The aim of this study was to identify urinary metabolites that could serve as robust biomarkers of diet quality, as assessed through the Alternative Healthy Eating Index (AHEI-2010). Design We set up two-center samples of 160 healthy volunteers, aged between 25 and 50, living as a couple or family, with repeated urine sampling and dietary assessment at baseline, and 6 and 12 months over a year. Urine samples were subjected to large-scale metabolomics analysis for comprehensive quantitative characterization of the food-related metabolome. Then, lasso regularized regression analysis and limma univariate analysis were applied to identify those metabolites associated with the AHEI-2010, and to investigate the reproducibility of these associations over time. Results Several polyphenol microbial metabolites were found to be positively associated with the AHEI-2010 score; urinary enterolactone glucuronide showed a reproducible association at the three study time points [false discovery rate (FDR): 0.016, 0.014, 0.016]. Furthermore, other associations were found between the AHEI-2010 and various metabolites related to the intake of coffee, red meat and fish, whereas other polyphenol phase II metabolites were associated with higher AHEI-2010 scores at one of the three time points investigated (FDR < 0.05 or β ≠ 0). Conclusion We have demonstrated that urinary metabolites, and particularly microbiota-derived metabolites, could serve as reliable indicators of adherence to healthy dietary habits. Clinical Trail Registration www.ClinicalTrials.gov, Identifier: NCT03169088.
Collapse
Affiliation(s)
- Pol Castellano-Escuder
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain.,Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Raúl González-Domínguez
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Marie-France Vaillant
- Laboratory of Fundamental and Applied Bioenergetics, Inserm1055, Grenoble, France.,Service Hospitalier Universitaire Pneumologie Physiologie, CHU Grenoble Alpes, Grenoble, France
| | - Patricia Casas-Agustench
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Nicole Hidalgo-Liberona
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Estanyol-Torres
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Amanda J Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Christophe Moinard
- Laboratory of Fundamental and Applied Bioenergetics, Inserm1055, Grenoble, France
| | - Christophe Pison
- Laboratory of Fundamental and Applied Bioenergetics, Inserm1055, Grenoble, France.,Service Hospitalier Universitaire Pneumologie Physiologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Jean-Christian Borel
- Laboratory of Fundamental and Applied Bioenergetics, Inserm1055, Grenoble, France
| | | | | | | | - Hugo Terrisse
- Laboratory of Fundamental and Applied Bioenergetics, Inserm1055, Grenoble, France.,TIMC-MESP Laboratory, University of Grenoble Alpes, Grenoble, France
| | | | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alex Sánchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain.,Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|