51
|
Löhr F, Tumulka F, Bock C, Abele R, Dötsch V. An extended combinatorial 15N, 13Cα, and 13C' labeling approach to protein backbone resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2015; 62:263-79. [PMID: 25953311 DOI: 10.1007/s10858-015-9941-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/28/2015] [Indexed: 05/07/2023]
Abstract
Solution NMR studies of α-helical membrane proteins are often complicated by severe spectral crowding. In addition, hydrophobic environments like detergent micelles, isotropic bicelles or nanodiscs lead to considerably reduced molecular tumbling rates which translates into line-broadening and low sensitivity. Both difficulties can be addressed by selective isotope labeling methods. In this publication, we propose a combinatorial protocol that utilizes four different classes of labeled amino acids, in which the three backbone heteronuclei (amide nitrogen, α-carbon and carbonyl carbon) are enriched in (15)N or (13)C isotopes individually as well as simultaneously. This results in eight different combinations of dipeptides giving rise to cross peaks in (1)H-(15)N correlated spectra. Their differentiation is achieved by recording a series of HN-detected 2D triple-resonance spectra. The utility of this new scheme is demonstrated with a homodimeric 142-residue membrane protein in DHPC micelles. Restricting the number of selectively labeled samples to three allowed the identification of the amino-acid type for 77 % and provided sequential information for 47 % of its residues. This enabled us to complete the backbone resonance assignment of the uniformly labeled protein merely with the help of a 3D HNCA spectrum, which can be collected with reasonable sensitivity even for relatively large, non-deuterated proteins.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
52
|
Zamora-Carreras H, Maestro B, Strandberg E, Ulrich AS, Sanz JM, Jiménez MÁ. Micelle-Triggered β-Hairpin to α-Helix Transition in a 14-Residue Peptide from a Choline-Binding Repeat of the Pneumococcal Autolysin LytA. Chemistry 2015; 21:8076-89. [PMID: 25917218 PMCID: PMC4471590 DOI: 10.1002/chem.201500447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 11/08/2022]
Abstract
Choline-binding modules (CBMs) have a ββ-solenoid structure composed of choline-binding repeats (CBR), which consist of a β-hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline-binding ability, we have analysed the third β-hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native-like β-hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α-helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β-hairpin to α-helix conversion is reversible. Given that the β-hairpin and α-helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this "chameleonic" behaviour is the only described case of a micelle-induced structural transition between two ordered peptide structures.
Collapse
Affiliation(s)
- Héctor Zamora-Carreras
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006-Madrid (Spain)
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202-Alicante (Spain)
| | - Erik Strandberg
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, 76021 Karlsruhe (Germany)
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, 76021 Karlsruhe (Germany)
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany)
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202-Alicante (Spain)
| | - M Ángeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006-Madrid (Spain).
| |
Collapse
|
53
|
Setzler J, Seith C, Brieg M, Wenzel W. SLIM: an improved generalized Born implicit membrane model. J Comput Chem 2015; 35:2027-39. [PMID: 25243932 DOI: 10.1002/jcc.23717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
In most implicit continuum models, membranes are represented as heterogeneous dielectric environments, but their treatment within computationally efficient generalized Born (GB) models is challenging. Despite several previous attempts, an adequate description of multiple dielectric regions in implicit GB-based membrane models that reproduce the qualitative and quantitative features of Poisson-Boltzmann (PB) electrostatics remains an unmet prerequisite of qualitatively correct implicit membrane models. A novel scheme (SLIM) to decompose one environment consisting of multiple dielectric regions into a sum of multiple environments consisting only of two dielectric regions each is proposed to solve this issue. These simpler environments can be treated with established GB methods. This approach captures qualitative features of PB electrostatic that are not present in previous models. Simulations of three membrane proteins demonstrate that this model correctly reproduces known properties of these proteins in agreement with experimental or other computational studies.
Collapse
Affiliation(s)
- Julia Setzler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
54
|
Ding Y, Fujimoto LM, Yao Y, Marassi FM. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. JOURNAL OF BIOMOLECULAR NMR 2015; 61:275-86. [PMID: 25578899 PMCID: PMC4398618 DOI: 10.1007/s10858-014-9893-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/20/2014] [Indexed: 05/22/2023]
Abstract
Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - L. Miya Fujimoto
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA. [Tel: 858-795-5282; Mail: ]
| |
Collapse
|
55
|
Abraham SJ, Cheng RC, Chew TA, Khantwal CM, Liu CW, Gong S, Nakamoto RK, Maduke M. 13C NMR detects conformational change in the 100-kD membrane transporter ClC-ec1. JOURNAL OF BIOMOLECULAR NMR 2015; 61:209-26. [PMID: 25631353 PMCID: PMC4398623 DOI: 10.1007/s10858-015-9898-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 05/03/2023]
Abstract
CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).
Collapse
Affiliation(s)
- Sherwin J. Abraham
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Ricky C. Cheng
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Thomas A. Chew
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Chandra M. Khantwal
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, 299 Campus Drive West, D105 Fairchild Science Building, Stanford, CA 94305
| | - Shimei Gong
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 10011, Charlottesville, VA 22906-0011
| | - Merritt Maduke
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive West, Stanford, CA 94035
- corresponding author, , tel (650)-723-9075, fax (650)-725-8021
| |
Collapse
|
56
|
Leman JK, Ulmschneider MB, Gray JJ. Computational modeling of membrane proteins. Proteins 2015; 83:1-24. [PMID: 25355688 PMCID: PMC4270820 DOI: 10.1002/prot.24703] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefited from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Martin B. Ulmschneider
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
57
|
Prasanna C, Dubey A, Atreya HS. Amino Acid Selective Unlabeling in Protein NMR Spectroscopy. Methods Enzymol 2015; 565:167-89. [DOI: 10.1016/bs.mie.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
58
|
Hiruma-Shimizu K, Kalverda AP, Henderson PJF, Homans SW, Patching SG. Synthesis of uniformly deuteratedn-dodecyl-β-d-maltoside (d39-DDM) for solubilization of membrane proteins in TROSY NMR experiments. J Labelled Comp Radiopharm 2014; 57:737-43. [DOI: 10.1002/jlcr.3249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Kazumi Hiruma-Shimizu
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- Waseda University; Tokyo Japan
| | - Arnout P. Kalverda
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
| | - Peter J. F. Henderson
- School of Biomedical Sciences; University of Leeds; Leeds UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
| | - Steve W. Homans
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- Newcastle University; Newcastle UK
| | | |
Collapse
|
59
|
Eichmann C, Orts J, Tzitzilonis C, Vögeli B, Smrt S, Lorieau J, Riek R. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes. J Phys Chem B 2014; 118:14288-301. [PMID: 25419869 DOI: 10.1021/jp509137q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.
Collapse
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg , CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
60
|
Chadwick AC, Jensen DR, Peterson FC, Volkman BF, Sahoo D. Expression, purification and reconstitution of the C-terminal transmembrane domain of scavenger receptor BI into detergent micelles for NMR analysis. Protein Expr Purif 2014; 107:35-42. [PMID: 25461971 DOI: 10.1016/j.pep.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 01/26/2023]
Abstract
Scavenger receptor class B type I (SR-BI), the high density lipoprotein (HDL) receptor, is important for the delivery of HDL-cholesteryl esters to the liver for excretion via bile formation. The focus on therapeutic strategies aimed at reducing cholesterol levels highlights the critical need to understand the structural features of SR-BI that drive cholesterol removal. Yet, in the absence of a high-resolution structure of SR-BI, our understanding of how SR-BI interacts with HDL is limited. In this study, we have optimized the NMR solution conditions for the structural analysis of the C-terminal transmembrane domain of SR-BI that harbors putative domains required for receptor oligomerization. An isotopically-labeled SR-BI peptide encompassing residues 405-475 was bacterially-expressed and purified. [U-(15)N]-SR-BI(405-475) was incorporated into different detergent micelles and assessed by (1)H-(15)N-HSQC in order to determine which detergent micelle best maintained SR-BI(405-475) in a folded, native conformation for subsequent NMR analyses. We also determined the optimal detergent concentration used in micelles, as well as temperature, solution buffer and pH conditions. Based on (1)H-(15)N-HSQC peak dispersion, intensity, and uniformity, we determined that [U-(15)N]-SR-BI(405-475) should be incorporated into 5% detergent micelles consisting of 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-[1'-rac-glycerol] (LPPG) and data collected at 40°C in a non-buffered solution at pH 6.8. Furthermore, we demonstrate the ability of SR-BI(405-475) to form dimers upon chemical crosslinking. These studies represent the first steps in obtaining high-resolution structural information by NMR for the HDL receptor that plays a critical role in regulating whole body cholesterol removal.
Collapse
Affiliation(s)
- Alexandra C Chadwick
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | - Daisy Sahoo
- Department of Medicine, Division of Endocrinology, Metabolism & Clinical Nutrition, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
61
|
Guanylate Cyclase-Activating Protein-2 Undergoes Structural Changes upon Binding to Detergent Micelles and Bicelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2767-77. [DOI: 10.1016/j.bbamem.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022]
|
62
|
Löhr F, Laguerre A, Bock C, Reckel S, Connolly PJ, Abdul-Manan N, Tumulka F, Abele R, Moore JM, Dötsch V. Time-shared experiments for efficient assignment of triple-selectively labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 248:81-95. [PMID: 25442777 PMCID: PMC4254601 DOI: 10.1016/j.jmr.2014.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 05/20/2023]
Abstract
Combinatorial triple-selective labeling facilitates the NMR assignment process for proteins that are subject to signal overlap and insufficient signal-to-noise in standard triple-resonance experiments. Aiming at maximum amino-acid type and sequence-specific information, the method represents a trade-off between the number of selectively labeled samples that have to be prepared and the number of spectra to be recorded per sample. In order to address the demand of long measurement times, we here propose pulse sequences in which individual phase-shifted transients are stored separately and recombined later to produce several 2D HN(CX) type spectra that are usually acquired sequentially. Sign encoding by the phases of (13)C 90° pulses allows to either select or discriminate against (13)C' or (13)C(α) spins coupled to (15)N. As a result, (1)H-(15)N correlation maps of the various isotopomeric species present in triple-selectively labeled proteins are deconvoluted which in turn reduces problems due to spectral overlap. The new methods are demonstrated with four different membrane proteins with rotational correlation times ranging from 18 to 52 ns.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Christoph Bock
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Sina Reckel
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | - Franz Tumulka
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Rupert Abele
- Institute of Biochemistry, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry & Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
63
|
Shalom-Elazari H, Zazrin-Greenspon H, Shaked H, Chill JH. Global fold and backbone dynamics of the hepatitis C virus E2 glycoprotein transmembrane domain determined by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2919-28. [PMID: 25109935 DOI: 10.1016/j.bbamem.2014.07.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/30/2014] [Accepted: 07/22/2014] [Indexed: 01/13/2023]
Abstract
E1 and E2 are two hepatitis C viral envelope glycoproteins that assemble into a heterodimer that is essential for membrane fusion and penetration into the target cell. Both extracellular and transmembrane (TM) glycoprotein domains contribute to this interaction, but study of TM-TM interactions has been limited because synthesis and structural characterization of these highly hydrophobic segments present significant challenges. In this NMR study, by successful expression and purification of the E2 transmembrane domain as a fusion construct we have determined the global fold and characterized backbone motions for this peptide incorporated in phospholipid micelles. Backbone resonance frequencies, relaxation rates and solvent exposure measurements concur in showing this domain to adopt a helical conformation, with two helical segments spanning residues 717-726 and 732-746 connected by an unstructured linker containing the charged residues D728 and R730 involved in E1 binding. Although this linker exhibits increased local motions on the ps timescale, the dominating contribution to its relaxation is the global tumbling motion with an estimated correlation time of 12.3ns. The positioning of the helix-linker-helix architecture within the mixed micelle was established by paramagnetic NMR spectroscopy and phospholipid-peptide cross relaxation measurements. These indicate that while the helices traverse the hydrophobic interior of the micelle, the linker lies closer to the micelle perimeter to accommodate its charged residues. These results lay the groundwork for structure determination of the E1/E2 complex and a molecular understanding of glycoprotein heterodimerization.
Collapse
Affiliation(s)
| | | | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
64
|
Solution structure of the transmembrane domain of the insulin receptor in detergent micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1313-21. [DOI: 10.1016/j.bbamem.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/28/2022]
|
65
|
Mowrey DD, Kinde MN, Xu Y, Tang P. Atomistic insights into human Cys-loop receptors by solution NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:307-14. [PMID: 24680782 DOI: 10.1016/j.bbamem.2014.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/12/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) mediating fast neurotransmission in the central and peripheral nervous systems. They are important targets for many currently used clinical drugs, such as general anesthetics, and for allosteric modulators with potential therapeutic applications. Here, we provide an overview of advances in the use of solution NMR in structural and dynamic characterization of ion channels, particularly human Cys-loop receptors. We present challenges to overcome and realistic solutions for achieving high-resolution structural information for this family of receptors. We discuss how subtle structural differences among homologous channels define unique channel pharmacological properties and advocate the necessity to determine high-resolution structures for individual receptor subtypes. Finally, we describe drug binding to the TMDs of Cys-loop receptors identified by solution NMR and the associated dynamics changes relevant to channel functions.
Collapse
Affiliation(s)
- David D Mowrey
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Structural Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
66
|
Xiao S, Zhao X, Finkielstein CV, Capelluto DGS. A rapid procedure to isolate isotopically labeled peptides for NMR studies: application to the Disabled-2 sulfatide-binding motif. J Pept Sci 2014; 20:216-22. [DOI: 10.1002/psc.2604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Shuyan Xiao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Xiaolin Zhao
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Carla V. Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Virginia Bioinformatics Institute; Virginia Tech; Blacksburg VA 24061 USA
| |
Collapse
|
67
|
Li M, Morales HH, Katsaras J, Kučerka N, Yang Y, Macdonald PM, Nieh MP. Morphological characterization of DMPC/CHAPSO bicellar mixtures: a combined SANS and NMR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15943-15957. [PMID: 24059815 DOI: 10.1021/la402799b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Spontaneously forming structures of a system composed of dimyristoyl phosphatidylcholine (DMPC) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) were studied by small-angle neutron scattering (SANS), (31)P NMR, and stimulated echo (STE) pulsed field gradient (PFG) (1)H NMR diffusion measurements. Charged lipid dimyristoyl phosphatidylglycerol (DMPG) was used to induce different surface charge densities. The structures adopted were investigated as a function of temperature and lipid concentration for samples with a constant molar ratio of long-chain to short-chain lipids (= 3). In the absence of DMPG, zwitterionic bicellar mixtures exhibited a phase transition from discoidal bicelles, or ribbons, to multilamellar vesicles either upon dilution or with increased temperature. CHAPSO-containing mixtures showed a higher thermal stability in morphology than DHPC-containing mixtures at the corresponding lipid concentrations. In the presence of DMPG, discoidal bicelles (or ribbons) were also found at low temperature and lower lipid concentration mixtures. At high temperature, perforated lamellae were observed in high-concentration mixtures (≥7.5 wt %) whereas uniform unilamellar vesicles and bicelles formed in low-concentration mixtures (≤2.5 wt %), respectively, when the mixtures were moderately and highly charged. From the results, spontaneous structural diagrams of the zwitterionic and charged systems were constructed.
Collapse
Affiliation(s)
- Ming Li
- Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | | | | | | | |
Collapse
|
68
|
Rösner HI, Kragelund BB. Structure and dynamic properties of membrane proteins using NMR. Compr Physiol 2013; 2:1491-539. [PMID: 23798308 DOI: 10.1002/cphy.c110036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Integral membrane proteins are one of the most challenging groups of macromolecules despite their apparent conformational simplicity. They manage and drive transport, circulate information, and participate in cellular movements via interactions with other proteins and through intricate conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches, a large variety of developments of well-established techniques are available providing insight into membrane protein flexibility, dynamics, and interactions. Inspired by the speed of development in the application of new strategies, by invention of methods to measure solvent accessibility and describe low-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability.
Collapse
Affiliation(s)
- Heike I Rösner
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
69
|
Zazrin H, Shaked H, Chill JH. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:784-92. [PMID: 24192053 DOI: 10.1016/j.bbamem.2013.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
Oligomerization of hepatitis C viral envelope proteins E1 and E2 is essential to virus fusion and assembly. Although interactions within the transmembrane (TM) domains of these glycoproteins have proven contributions to the E1/E2 heterodimerization process and consequent infectivity, there is little structural information on this entry mechanism. Here, as a first step towards our long-term goal of understanding the interaction between E1 and E2 TM-domains, we have expressed, purified and characterized E1-TM using structural biomolecular NMR methods. An MBP-fusion expression system yielded sufficient quantities of pure E1-TM, which was solubilized in two membrane-mimicking environments, SDS- and LPPG-micelles, affording samples amenable to NMR studies. Triple resonance assignment experiments and relaxation measurements provided information on the secondary structure and global fold of E1-TM in these environments. In SDS micelles E1-TM adopts a helical conformation, with helical stretches at residues 354-363 and 371-379 separated by a more flexible segment of residues 364-370. In LPPG micelles a helical conformation was observed for residues 354-377 with greater flexibility in the 366-367 dyad, suggesting LPPG provides a more native environment for the peptide. Replacement of key positively charged residue K370 with an alanine did not affect the secondary structure of E1-TM but did change the relative positioning within the micelle of the two helices. These results lay the foundation for structure determination of E1-TM and a molecular understanding of how E1-TM flexibility enhances its interaction with E2-TM during heterodimerization and membrane fusion.
Collapse
Affiliation(s)
- Hadas Zazrin
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
70
|
Kroncke BM, Columbus L. Backbone ¹H, ¹³C and ¹⁵N resonance assignments of the α-helical membrane protein TM0026 from Thermotoga maritima. BIOMOLECULAR NMR ASSIGNMENTS 2013; 7:203-206. [PMID: 23011877 PMCID: PMC3543498 DOI: 10.1007/s12104-012-9410-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Critical to the use of solution NMR to describe the structure and flexibility of membrane proteins is the thorough understanding of the degree of perturbation induced by the detergent or other membrane mimetic. To develop a deeper understanding of the interaction between membrane proteins and micelles or bicelles, we will investigate the differences in structure and flexibility of a model membrane protein TM0026 from Thermotoga maritima using solution NMR. A comparison of the structural differences between TM0026 solubilized in different detergent combinations will provide important insight into the degree of modulation of membrane proteins by detergent physical properties. Here we report the nearly complete backbone and Cβ resonance assignments of the two transmembrane helical model protein TM0026. These assignments are the first step to using TM0026 to elucidate the interaction between membrane proteins and membrane mimetics.
Collapse
Affiliation(s)
| | - Linda Columbus
- To whom correspondence should be addressed. Linda Columbus: University of Virginia, Department of Chemistry, McCormick Rd, Charlottesville, VA, 22904, phone: (434) 243-2123, fax: (434) 924-3710,
| |
Collapse
|
71
|
Lyso-myristoyl phosphatidylcholine micelles sustain the activity of Dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B. Protein Expr Purif 2013; 92:156-62. [PMID: 24084007 DOI: 10.1016/j.pep.2013.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/03/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022]
Abstract
Dengue virus (DENV), a member of the flavivirus genus, affects 50-100 million people in tropical and sub-tropical regions. The DENV protease domain is located at the N-terminus of the NS3 protease and requires for its enzymatic activity a hydrophilic segment of the NS2B that acts as a cofactor. The protease is an important antiviral drug target because it plays a crucial role in virus replication by cleaving the genome-coded polypeptide into mature functional proteins. Currently, there are no drugs to inhibit DENV protease activity. Most structural and functional studies have been conducted using protein constructs containing the NS3 protease domain connected to a soluble segment of the NS2B membrane protein via a nine-residue linker. For in vitro structural and functional studies, it would be useful to produce a natural form of the DENV protease containing the NS3 protease domain and the full-length NS2B protein. Herein, we describe the expression and purification of a natural form of DENV protease (NS2BFL-NS3pro) containing the full-length NS2B protein and the protease domain of NS3 (NS3pro). The protease was expressed and purified in detergent micelles necessary for its folding. Our results show that this purified protein was active in detergent micelles such as lyso-myristoyl phosphatidylcholine (LMPC). These findings should facilitate further structural and functional studies of the protease and will facilitate drug discovery targeting DENV.
Collapse
|
72
|
Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model 2013; 53:2171-80. [PMID: 23865552 DOI: 10.1021/ci4002684] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Micelle Builder in CHARMM-GUI, http://www.charmm-gui.org/input/micelle , is a web-based graphical user interface to build pure/mixed micelle and protein/micelle complex systems for molecular dynamics (MD) simulation. The robustness of Micelle Builder is tested by simulating four detergent-only homogeneous micelles of DHPC (dihexanoylphosphatidylcholine), DPC (dodecylphosphocholine), TPC (tetradecylphosphocholine), and SDS (sodium dodecyl sulfate) and comparing the calculated micelle properties with experiments and previous simulations. As a representative protein/micelle model, Pf1 coat protein is modeled and simulated in DHPC micelles with three different numbers of DHPC molecules. While the number of DHPC molecules in direct contact with Pf1 protein converges during the simulation, distinct behavior and geometry of micelles lead to different protein conformations in comparison to that in bilayers. It is our hope that CHARMM-GUI Micelle Builder can be used for simulation studies of various protein/micelle systems to better understand the protein structure and dynamics in micelles as well as distribution of detergents and their dynamics around proteins.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
73
|
Weiner BE, Woetzel N, Karakas M, Alexander N, Meiler J. BCL::MP-fold: folding membrane proteins through assembly of transmembrane helices. Structure 2013; 21:1107-17. [PMID: 23727232 PMCID: PMC3738745 DOI: 10.1016/j.str.2013.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/10/2013] [Accepted: 04/25/2013] [Indexed: 12/01/2022]
Abstract
Membrane protein structure determination remains a challenging endeavor. Computational methods that predict membrane protein structure from sequence can potentially aid structure determination for such difficult target proteins. The de novo protein structure prediction method BCL::Fold rapidly assembles secondary structure elements into three-dimensional models. Here, we describe modifications to the algorithm, named BCL::MP-Fold, in order to simulate membrane protein folding. Models are built into a static membrane object and are evaluated using a knowledge-based energy potential, which has been modified to account for the membrane environment. Additionally, a symmetry folding mode allows for the prediction of obligate homomultimers, a common property among membrane proteins. In a benchmark test of 40 proteins of known structure, the method sampled the correct topology in 34 cases. This demonstrates that the algorithm can accurately predict protein topology without the need for large multiple sequence alignments, homologous template structures, or experimental restraints.
Collapse
Affiliation(s)
- Brian E. Weiner
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Nils Woetzel
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Mert Karakas
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Nathan Alexander
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville TN, 37232, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville TN, 37232, USA
| |
Collapse
|
74
|
Mäler L. Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 2013; 65:1002-11. [PMID: 23137785 DOI: 10.1016/j.addr.2012.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a class of short, often cationic peptides that have the capability to translocate across cellular membranes, and although the translocation most likely involves several pathways, they interact directly with membranes, as well as with model bilayers. Most CPPs attain a three-dimensional structure when interacting with bilayers, while they are more or less unstructured in aqueous solution. To understand the relationship between structure and the effect that CPPs have on membranes it is of great importance to investigate CPPs at atomic resolution in a suitable membrane model. Moreover, the location in bilayers is likely to be correlated with the translocation mechanism. Solution-state NMR offers a unique possibility to investigate structure, dynamics and location of proteins and peptides in bilayers. This review focuses on solution NMR as a tool for investigating CPP-lipid interactions. Structural propensities and cell-penetrating capabilities can be derived from a combination of CPP solution structures and studies of the effect that the peptides have on bilayers and the localization in a bilayer.
Collapse
Affiliation(s)
- Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
75
|
Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L. Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One 2013; 8:e62488. [PMID: 23667481 PMCID: PMC3648574 DOI: 10.1371/journal.pone.0062488] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
Micelle-forming detergents provide an amphipathic environment that can mimic lipid bilayers and are important tools for solubilizing membrane proteins for functional and structural investigations in vitro. However, the formation of a soluble protein-detergent complex (PDC) currently relies on empirical screening of detergents, and a stable and functional PDC is often not obtained. To provide a foundation for systematic comparisons between the properties of the detergent micelle and the resulting PDC, a comprehensive set of detergents commonly used for membrane protein studies are systematically investigated. Using small-angle X-ray scattering (SAXS), micelle shapes and sizes are determined for phosphocholines with 10, 12, and 14 alkyl carbons, glucosides with 8, 9, and 10 alkyl carbons, maltosides with 8, 10, and 12 alkyl carbons, and lysophosphatidyl glycerols with 14 and 16 alkyl carbons. The SAXS profiles are well described by two-component ellipsoid models, with an electron rich outer shell corresponding to the detergent head groups and a less electron dense hydrophobic core composed of the alkyl chains. The minor axis of the elliptical micelle core from these models is constrained by the length of the alkyl chain, and increases by 1.2-1.5 Å per carbon addition to the alkyl chain. The major elliptical axis also increases with chain length; however, the ellipticity remains approximately constant for each detergent series. In addition, the aggregation number of these detergents increases by ∼16 monomers per micelle for each alkyl carbon added. The data provide a comprehensive view of the determinants of micelle shape and size and provide a baseline for correlating micelle properties with protein-detergent interactions.
Collapse
Affiliation(s)
- Ryan C. Oliver
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Daniel A. Fox
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ryan H. Lo
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sebastian Doniach
- Departments of Physics and Applied Physics, Biophysics Program, Stanford, California, United States of America
- Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, California, United States of America
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
76
|
Jaipuria G, Krishnarjuna B, Mondal S, Dubey A, Atreya HS. Amino acid selective labeling and unlabeling for protein resonance assignments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 992:95-118. [PMID: 23076581 DOI: 10.1007/978-94-007-4954-2_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Structural characterization of proteins by NMR spectroscopy begins with the process of sequence specific resonance assignments in which the (1)H, (13)C and (15)N chemical shifts of all backbone and side-chain nuclei in the polypeptide are assigned. This process requires different isotope labeled forms of the protein together with specific experiments for establishing the sequential connectivity between the neighboring amino acid residues. In the case of spectral overlap, it is useful to identify spin systems corresponding to the different amino acid types selectively. With isotope labeling this can be achieved in two ways: (i) amino acid selective labeling or (ii) amino acid selective 'unlabeling'. This chapter describes both these methods with more emphasis on selective unlabeling describing the various practical aspects. The recent developments involving combinatorial selective labeling and unlabeling are also discussed.
Collapse
Affiliation(s)
- Garima Jaipuria
- NMR Research Centre, Indian Institute of Science, Bangalore, India
| | | | | | | | | |
Collapse
|
77
|
Neale C, Ghanei H, Holyoake J, Bishop RE, Privé GG, Pomès R. Detergent-mediated protein aggregation. Chem Phys Lipids 2013; 169:72-84. [PMID: 23466535 PMCID: PMC5007131 DOI: 10.1016/j.chemphyslip.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Hamed Ghanei
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - John Holyoake
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Russell E. Bishop
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gilbert G. Privé
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
78
|
Huang Q, Li Q, Chen AS, Kang C. West Nile virus protease activity in detergent solutions and application for affinity tag removal. Anal Biochem 2013; 435:44-6. [DOI: 10.1016/j.ab.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/19/2012] [Accepted: 12/24/2012] [Indexed: 11/26/2022]
|
79
|
Sommer LAM, Meier MA, Dames SA. A fast and simple method for probing the interaction of peptides and proteins with lipids and membrane-mimetics using GB1 fusion proteins and NMR spectroscopy. Protein Sci 2013; 21:1566-70. [PMID: 22825779 DOI: 10.1002/pro.2127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The expression of peptides and proteins as fusions to the B1 domain of streptococcal protein G (GB1) is very popular since GB1 often improves the solubility of the target protein and because the first purification step using IgG affinity chromatography is simple and efficient. However, the following protease digest is not always complete or can result in a digest of the target protein. In addition, a further purification step such as RP-HPLC has to be used to get rid of the GB1 tag and undigested fusion protein. Because the protease digest and the following purification step are not only time-consuming but generally also expensive, we tested if GB1 fusion proteins can directly be used for NMR interaction studies using lipids or membrane-mimetics. Based on NMR binding studies using only the GB1 part, this fusion tag does not significantly interact with different membrane-mimetics such as micelles, bicelles, or liposomes. Thus spectral changes observed using GB1-fusion proteins indicate lipid- and membrane interactions of the target protein. The method was initially established to probe membrane interactions of a large number of mutants of the FATC domain of the ser/thr kinase TOR. To demonstrate the usefulness of the approach, we show NMR binding data for the wild type protein and a leucine to alanine mutant.
Collapse
Affiliation(s)
- Lisa A M Sommer
- Department of Chemistry, Biomolecular NMR Spectroscopy, Technische Universität München, Munich, Germany
| | | | | |
Collapse
|
80
|
Barhoum S, Booth V, Yethiraj A. Diffusion NMR study of complex formation in membrane-associated peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:405-14. [DOI: 10.1007/s00249-013-0890-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/17/2013] [Indexed: 01/12/2023]
|
81
|
Kim SJ, Kim JS, Lee YS, Sim DW, Lee SH, Bahk YY, Lee KH, Kim EH, Park SJ, Lee BJ, Won HS. Structural characterization of de novo designed L5K5W model peptide isomers with potent antimicrobial and varied hemolytic activities. Molecules 2013; 18:859-76. [PMID: 23344198 PMCID: PMC6270530 DOI: 10.3390/molecules18010859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
In an effort to develop short antimicrobial peptides with simple amino acid compositions, we generated a series of undecapeptide isomers having the L5K5W formula. Amino acid sequences were designed to be perfectly amphipathic when folded into a helical conformation by converging leucines onto one side and lysines onto the other side of the helical axis. The single tryptophans, whose positions were varied in the primary structures, were located commonly at the critical amphipathic interface in the helical wheel projection. Helical conformations and the tryptophanyl environments of the 11 L5K5W peptides were confirmed and characterized by circular dichroism, fluorescence and nuclear magnetic resonance spectroscopy. All of the isomers exhibited a potent, broad-spectrum of antibacterial activity with just a slight variance in individual potency, whereas their hemolytic activities against human erythrocytes were significantly diversified. Interestingly, helical dispositions and fluorescence blue shifts of the peptides in aqueous trifluoroethanol solutions, rather than in detergent micelles, showed a marked linear correlation with their hemolytic potency. These results demonstrate that our de novo design strategy for amphipathic helical model peptides is effective for developing novel antimicrobial peptides and their hemolytic activities can be estimated in correlation with structural parameters.
Collapse
Affiliation(s)
- Seo-Jin Kim
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Jae-Seok Kim
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Yoo-Sup Lee
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Dae-Won Sim
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Sung-Hee Lee
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Young-Yil Bahk
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Kwang-Ho Lee
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea
| | - Sung-Jean Park
- College of Pharmacy, Gachon University, 534-2 Yeonsu 3-dong, Yeonsu-gu, Incheon 406-799, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute for Biomedical and Health Science, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-43-840-3589; Fax: +82-43-852-3616
| |
Collapse
|
82
|
Quantitative analysis of the effect of zidovudine, efavirenz, and ritonavir on insulin aggregation by multivariate curve resolution alternating least squares of infrared spectra. Anal Chim Acta 2013; 760:16-24. [DOI: 10.1016/j.aca.2012.10.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/22/2012] [Accepted: 10/29/2012] [Indexed: 11/23/2022]
|
83
|
Opella SJ. Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:305-28. [PMID: 23577669 PMCID: PMC3980955 DOI: 10.1146/annurev-anchem-062012-092631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego 92093, USA.
| |
Collapse
|
84
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
85
|
NMR methods for measuring lateral diffusion in membranes. Chem Phys Lipids 2013; 166:31-44. [DOI: 10.1016/j.chemphyslip.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
|
86
|
Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W. A CC-SAM, for coiled coil-sterile α motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Sci Signal 2012; 5:ra94. [PMID: 23250398 DOI: 10.1126/scisignal.2003289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinase suppressor of Ras-1 (KSR-1) is an essential scaffolding protein that coordinates the assembly of the mitogen-activated protein kinase (MAPK) module, consisting of the MAPK kinase kinase Raf, the MAPK kinase MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), and the MAPK ERK (extracellular signal-regulated kinase) to facilitate activation of MEK and thus ERK. Although KSR-1 is targeted to the cell membrane in part by its atypical C1 domain, which binds to phospholipids, other domains may be involved. We identified another domain in KSR-1 that we termed CC-SAM, which is composed of a coiled coil (CC) and a sterile α motif (SAM). The CC-SAM domain targeted KSR-1 to specific signaling sites at the plasma membrane in growth factor-treated cells, and it bound directly to various micelles and bicelles in vitro, indicating that the CC-SAM functioned as a membrane-binding module. By combining nuclear magnetic resonance spectroscopy and experiments in cultured cells, we found that membrane binding was mediated by helix α3 of the CC motif and that mutating residues in α3 abolished targeting of KSR-1 to the plasma membrane. Thus, in addition to the atypical C1 domain, the CC-SAM domain is required to target KSR-1 to the plasma membrane.
Collapse
Affiliation(s)
- Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
87
|
Tulumello DV, Johnson RM, Isupov I, Deber CM. Design, expression, and purification of de novo transmembrane “hairpin” peptides. Biopolymers 2012. [DOI: 10.1002/bip.22149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
88
|
Ng HQ, Kim YM, Huang Q, Gayen S, Yildiz AA, Yoon HS, Sinner EK, Kang C. Purification and structural characterization of the voltage-sensor domain of the hERG potassium channel. Protein Expr Purif 2012; 86:98-104. [PMID: 23041462 DOI: 10.1016/j.pep.2012.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/15/2022]
Abstract
The hERG (human ether à go-go related gene) potassium channel is a voltage-gated potassium channel playing important roles in the heart by controlling the rapid delayed rectifier potassium current. The hERG protein contains a voltage-sensor domain (VSD) that is important for sensing voltage changes across the membrane. Mutations in this domain contribute to serious heart diseases. To study the structure of the VSD, it was over-expressed in Escherichia coli and purified into detergent micelles. Lyso-myristoyl phosphatidylglycerol (LMPG) was shown to be a suitable detergent for VSD purification and folding. Secondary structural analysis using circular dichroism (CD) spectroscopy indicated that the purified VSD in LMPG micelles adopted α-helical structures. Purified VSD in LMPG micelles produced dispersed cross-peaks in a (15)N-HSQC spectrum. Backbone resonance assignments for residues from transmembrane segments S3 and S4 of VSD also confirmed the presence of α-helical structures in this domain. Our results demonstrated that structure of VSD can be investigated using NMR spectroscopy.
Collapse
Affiliation(s)
- Hui Qi Ng
- Experimental Therapeutics Centre, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Liu J, Srinivasan P, Pham DN, Rozovsky S. Expression and purification of the membrane enzyme selenoprotein K. Protein Expr Purif 2012; 86:27-34. [PMID: 22963794 DOI: 10.1016/j.pep.2012.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 12/18/2022]
Abstract
Selenoprotein K (SelK) is a membrane protein residing in the endoplasmic reticulum. The function of SelK is mostly unknown; however, it has been shown to participate in anti-oxidant defense, calcium regulation and in the endoplasmic reticulum associated protein degradation (ERAD) pathway. In order to study the function of SelK and the role of selenocysteine in catalysis, we have tested heterologous expression of human SelK in E. coli. Consequently, we have developed an over-expression strategy that exploits the maltose binding protein as a fusion partner to stabilize and solubilize SelK. The fusion partner can be cleaved from SelK in the presence of a variety of detergents compatible with structural characterization and the protein purified to homogeneity. SelK acquires a helical secondary structure in detergent micelles, even though it was predicted to be an intrinsically disordered protein due to its high percentage of polar residues. The same strategy was successfully applied to preparation of SelK binding partner - selenoprotein S (SelS). Hence, this heterologous expression and purification strategy can be applied to other members of the membrane enzyme family to which SelK belongs.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
90
|
Novotná P, Urbanová M. Vibrational circular dichroism study of polypeptide model–membrane systems. Anal Biochem 2012; 427:211-8. [DOI: 10.1016/j.ab.2012.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 12/01/2022]
|
91
|
Deatherage CL, Hadziselimovic A, Sanders CR. Purification and characterization of the human γ-secretase activating protein. Biochemistry 2012; 51:5153-9. [PMID: 22681044 DOI: 10.1021/bi300605u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease is a fatal neurological disorder that is a leading cause of death, with its prevalence increasing as the average life expectancy increases worldwide. There is an urgent need to develop new therapeutics for this disease. A newly described protein, the γ-secretase activating protein (GSAP), has been proposed to promote elevated levels of amyloid-β production, an activity that seems to be inhibited using the well-establish cancer drug, imatinib (Gleevec). Despite much interest in this protein, there has been little biochemical characterization of GSAP. Here we report protocols for the recombinant bacterial expression and purification of this potentially important protein. GSAP is expressed in inclusion bodies, which can be solubilized using harsh detergents or urea; however, traditional methods of refolding were not successful in generating soluble forms of the protein that contained well-ordered and homogeneous tertiary structure. However, GSAP could be solubilized in detergent micelle solutions, where it was seen to be largely α-helical but to adopt only heterogeneous tertiary structure. Under these same conditions, GSAP did not associate with either imatinib or the 99-residue transmembrane C-terminal domain of the amyloid precursor protein. These results highlight the challenges that will be faced in attempts to manipulate and characterize this protein.
Collapse
Affiliation(s)
- Catherine L Deatherage
- Department of Biochemistry, Center for Structural Biology, and Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8725, USA
| | | | | |
Collapse
|
92
|
|
93
|
Li Q, Chen AS, Gayen S, Kang C. Expression and purification of the p75 neurotrophin receptor transmembrane domain using a ketosteroid isomerase tag. Microb Cell Fact 2012; 11:45. [PMID: 22510322 PMCID: PMC3447675 DOI: 10.1186/1475-2859-11-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Background Receptors with a single transmembrane (TM) domain are essential for the signal transduction across the cell membrane. NMR spectroscopy is a powerful tool to study structure of the single TM domain. The expression and purification of a TM domain in Escherichia coli (E.coli) is challenging due to its small molecular weight. Although ketosteroid isomerase (KSI) is a commonly used affinity tag for expression and purification of short peptides, KSI tag needs to be removed with the toxic reagent cyanogen bromide (CNBr). Result The purification of the TM domain of p75 neurotrophin receptor using a KSI tag with the introduction of a thrombin cleavage site is described herein. The recombinant fusion protein was refolded into micelles and was cleaved with thrombin. Studies showed that purified protein could be used for structural study using NMR spectroscopy. Conclusions These results provide another strategy for obtaining a single TM domain for structural studies without using toxic chemical digestion or acid to remove the fusion tag. The purified TM domain of p75 neurotrophin receptor will be useful for structural studies.
Collapse
Affiliation(s)
- Qingxin Li
- Agency for Science, Technology and Research, Nanos, Singapore
| | | | | | | |
Collapse
|
94
|
Toma AC, Pfohl T. Small-Angle X-ray Scattering (SAXS) and Wide-Angle X-ray Scattering (WAXS) of Supramolecular Assemblies. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
95
|
Kroncke BM, Columbus L. Identification and removal of nitroxide spin label contaminant: impact on PRE studies of α-helical membrane proteins in detergent. Protein Sci 2012; 21:589-95. [PMID: 22389096 DOI: 10.1002/pro.2038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/06/2022]
Abstract
NMR paramagnetic relaxation enhancement (PRE) provides long-range distance constraints (~15-25 Å) that can be critical to determining overall protein topology, especially where long-range NOE information is unavailable such as in the case of larger proteins that require deuteration. However, several challenges currently limit the use of NMR PRE for α-helical membrane proteins. One challenge is the nonspecific association of the nitroxide spin label to the protein-detergent complex that can result in spurious PRE derived distance restraints. The effect of the nitroxide spin label contaminant is evaluated and quantified and a robust method for the removal of the contaminant is provided to advance the application of PRE restraints to membrane protein NMR structure determination.
Collapse
Affiliation(s)
- Brett M Kroncke
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
96
|
Löhr F, Reckel S, Karbyshev M, Connolly PJ, Abdul-Manan N, Bernhard F, Moore JM, Dötsch V. Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2012; 52:197-210. [PMID: 22252484 PMCID: PMC3725308 DOI: 10.1007/s10858-012-9601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/28/2011] [Indexed: 05/03/2023]
Abstract
Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with (15)N-(1)H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three different species of amino acids in each sample, (15)N, 1-(13)C, and fully (13)C/(15)N labeled, permits identification of more amino acid types and sequential pairs than would be possible with previously published combinatorial methods. The new protocol involves recording of up to five 2D triple-resonance experiments to distinguish the various isotopomeric dipeptide species. The pattern of backbone NH cross peaks in this series of spectra adds a new dimension to the combinatorial grid, which otherwise mostly relies on comparison of [(15)N, (1)H]-HSQC and possibly 2D HN(CO) spectra of samples with different labeled amino acid compositions. Application to two α-helical membrane proteins shows that using no more than three samples information can be accumulated such that backbone assignments can be completed solely based on 3D HNCA/HN(CO)CA experiments. Alternatively, in the case of severe signal overlap in certain regions of the standard suite of triple-resonance spectra acquired on uniformly labeled protein, or missing signals due to a lack of efficiency of 3D experiments, the remaining gaps can be filled.
Collapse
Affiliation(s)
- Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sina Reckel
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Mikhail Karbyshev
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | | - Frank Bernhard
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
97
|
Scott JL, Musselman CA, Adu-Gyamfi E, Kutateladze TG, Stahelin RV. Emerging methodologies to investigate lipid-protein interactions. Integr Biol (Camb) 2012; 4:247-58. [PMID: 22327461 DOI: 10.1039/c2ib00143h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular membranes are composed of hundreds of different lipids, ion channels, receptors and scaffolding complexes that act as signalling and trafficking platforms for processes fundamental to life. Cellular signalling and membrane trafficking are often regulated by peripheral proteins, which reversibly interact with lipid molecules in highly regulated spatial and temporal fashions. In most cases, one or more modular lipid-binding domain(s) mediate recruitment of peripheral proteins to specific cellular membranes. These domains, of which more than 10 have been identified since 1989, harbour structurally selective lipid-binding sites. Traditional in vitro and in vivo studies have elucidated how these domains coordinate their cognate lipids and thus how the parent proteins associate with membranes. Cellular activities of peripheral proteins and subsequent physiological processes depend upon lipid binding affinities and selectivity. Thus, the development of novel sensitive and quantitative tools is essential in furthering our understanding of the function and regulation of these proteins. As this field expands into new areas such as computational biology, cellular lipid mapping, single molecule imaging, and lipidomics, there is an urgent need to integrate technologies to detail the molecular architecture and mechanisms of lipid signalling. This review surveys emerging cellular and in vitro approaches for studying protein-lipid interactions and provides perspective on how integration of methodologies directs the future development of the field.
Collapse
Affiliation(s)
- Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
98
|
Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Banères JL, Durand G, Zito F, Pucci B, Popot JL. Nonionic Homopolymeric Amphipols: Application to Membrane Protein Folding, Cell-Free Synthesis, and Solution Nuclear Magnetic Resonance. Biochemistry 2012; 51:1416-30. [DOI: 10.1021/bi201862v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Paola Bazzacco
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Emmanuelle Billon-Denis
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - K. Shivaji Sharma
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
| | - Laurent J. Catoire
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Sophie Mary
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Christel Le Bon
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Elodie Point
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Jean-Louis Banères
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Grégory Durand
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Francesca Zito
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| | - Bernard Pucci
- Université d′Avignon et des Pays de Vaucluse, Equipe Chimie
Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur,
F-84000 Avignon, France
- Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1 & 2, Faculté de Pharmacie, Institut des Biomolécules Max Mousseron, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France
| | - Jean-Luc Popot
- Unité Mixte de Recherche
7099, Centre National de la Recherche Scientifique and Université Paris 7, Institut de Biologie Physico-Chimique,
13 rue Pierre-et-Marie Curie, F-75005 Paris, France
| |
Collapse
|
99
|
O'Malley MA, Helgeson ME, Wagner NJ, Robinson AS. Toward rational design of protein detergent complexes: determinants of mixed micelles that are critical for the in vitro stabilization of a G-protein coupled receptor. Biophys J 2012; 101:1938-48. [PMID: 22004748 DOI: 10.1016/j.bpj.2011.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/06/2011] [Accepted: 09/12/2011] [Indexed: 01/02/2023] Open
Abstract
Although reconstitution of membrane proteins within protein detergent complexes is often used to enable their structural or biophysical characterization, it is unclear how one should rationally choose the appropriate micellar environment to preserve native protein folding. Here, we investigated model mixed micelles consisting of a nonionic glucosylated alkane surfactant from the maltoside and thiomaltoside families, bile salt surfactant, and the steryl derivative cholesteryl hemisuccinate. We correlated several key attributes of these micelles with the in vitro ligand-binding activity of hA(2)aR in these systems. Through small-angle neutron scattering and radioligand-binding analysis, we found several key aspects of mixed micellar systems that preserve the activity of hA(2)aR, including a critical amount of cholesteryl hemisuccinate per micelle, and an optimal hydrophobic thickness of the micelle that is analogous to the thickness of native mammalian bilayers. These features are closely linked to the headgroup chemistry of the surfactant and the hydrocarbon chain length, which influence both the morphology and composition of resulting micelles. This study should serve as a general guide for selecting the appropriate mixed surfactant systems to stabilize membrane proteins for biophysical analysis.
Collapse
Affiliation(s)
- Michelle A O'Malley
- Department of Chemical Engineering, University of Delaware, Newark, Delaware, USA
| | | | | | | |
Collapse
|
100
|
Tulumello DV, Deber CM. Efficiency of detergents at maintaining membrane protein structures in their biologically relevant forms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1351-8. [PMID: 22285740 DOI: 10.1016/j.bbamem.2012.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
Abstract
High-resolution structural analysis of membrane proteins by X-ray crystallography or solution NMR spectroscopy often requires their solubilization in the membrane-mimetic environments of detergents. Yet the choice of a detergent suitable for a given study remains largely empirical. In the present work, we considered the micelle-crystallized structures of lactose permease (LacY), the sodium/galactose symporter (vSGLT), the vitamin B(12) transporter (BtuCD), and the arginine/agmatine antiporter (AdiC). Representative transmembrane (TM) segments were selected from these proteins based on their relative contact(s) with water, lipid, and/or within the protein, and were synthesized as Lys-tagged peptides. Each peptide was studied by circular dichroism and fluorescence spectroscopy in water, and in the presence of the detergents sodium dodecylsulfate (SDS, anionic); n-dodecyl phosphatidylcholine (DPC, zwitterionic); n-dodecyl-β-d-maltoside (DDM, neutral); and n-octyl-β-d-glucoside (OG, neutral, varying acyl tail length). We found that (i) the secondary structures of the TM segments were statistically indistinguishable in the four detergents studied; and (ii) a strong correlation exists between the extent of helical structure of each individual TM segment in detergents with its helicity level as it exists in the full-length protein, indicating that helix adoption is fundamentally the same in both environments. The denaturing properties of so-called 'harsh' detergents may thus largely be due to their interactions with non-membranous regions of proteins. Given the consistency of structural features observed for each TM segment in a variety of micellar media, the overall results suggest that the structure likely corresponds to its relevant biological form in the intact protein in its native lipid bilayer environment.
Collapse
Affiliation(s)
- David V Tulumello
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | |
Collapse
|