51
|
Moheet A, Emir UE, Terpstra M, Kumar A, Eberly LE, Seaquist ER, Öz G. Initial experience with seven tesla magnetic resonance spectroscopy of hypothalamic GABA during hyperinsulinemic euglycemia and hypoglycemia in healthy humans. Magn Reson Med 2013; 71:12-8. [PMID: 23423963 DOI: 10.1002/mrm.24663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/30/2022]
Abstract
PURPOSE Hypothalamic GABA signaling has been shown to regulate the hormonal response to hypoglycemia in animals. The hypothalamus is a challenging brain region for magnetic resonance spectroscopy (MRS) due to its small size and central location. To investigate the feasibility of measuring GABA in the hypothalamus in humans, ultra-high field MRS was used. METHODS GABA levels in the hypothalamus and occipital cortex (control region) were measured in healthy volunteers during euglycemia and hypoglycemia at 7 tesla using short-echo STEAM (TE = 8 ms, TR = 5 s). RESULTS Hypothalamic GABA levels were quantified with a mean within-session test-retest coefficient of variance of 9%. Relatively high GABA levels were observed in the hypothalamus compared with other brain regions. Hypothalamic GABA levels were 3.5 ± 0.3 µmol/g during euglycemia (glucose 89 ± 6 mg/dL) vs. 3.0 ± 0.4 µmol/g during hypoglycemia (glucose 61 ± 3 mg/dL) (P = 0.06, N = 7). In the occipital cortex, GABA levels remained constant at 1.4 ± 0.4 vs.1.4 ± 0.3 µmol/g (P = 0.3, N = 5) as glucose fell from 91 ± 4 to 61 ± 4 mg/dL. CONCLUSION GABA concentration can be quantified in the human hypothalamus and shows a trend toward decrease in response to an acute fall in blood glucose. These methods can be used to further investigate role of GABA signaling in the counterregulatory response to hypoglycemia in humans.
Collapse
Affiliation(s)
- A Moheet
- Department of Medicine, Division of Endocrinology and Diabetes, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Prescot AP, Richards T, Dager SR, Choi C, Renshaw PF. Phase-adjusted echo time (PATE)-averaging 1 H MRS: application for improved glutamine quantification at 2.89 T. NMR IN BIOMEDICINE 2012; 25:1245-52. [PMID: 22407923 PMCID: PMC4657444 DOI: 10.1002/nbm.2795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 01/26/2012] [Accepted: 02/01/2012] [Indexed: 05/22/2023]
Abstract
(1) H MRS investigations have reported altered glutamatergic neurotransmission in a variety of psychiatric disorders. The unraveling of glutamate from glutamine resonances is crucial for the interpretation of these observations, although this remains a challenge at clinical static magnetic field strengths. Glutamate resolution can be improved through an approach known as echo time (TE) averaging, which involves the acquisition and subsequent averaging of multiple TE steps. The process of TE averaging retains the central component of the glutamate methylene multiplet at 2.35 ppm, with the simultaneous attenuation of overlapping phase-modulated coupled resonances of glutamine and N-acetylaspartate. We have developed a novel post-processing approach, termed phase-adjusted echo time (PATE) averaging, for the retrieval of glutamine signals from a TE-averaged (1) H MRS dataset. The method works by the application of an optimal TE-specific phase term, which is derived from spectral simulation, prior to averaging over TE space. The simulation procedures and preliminary in vivo spectra acquired from the human frontal lobe at 2.89 T are presented. Three metabolite normalization schemes were developed to evaluate the frontal lobe test-retest reliability for glutamine measurement in six subjects, and the resulting values were comparable with previous reports for within-subject (9-14%) and inter-subject (14-20%) measures. Using the acquisition parameters and TE range described, glutamine quantification is possible in approximately 10 min. The post-processing methods described can also be applied retrospectively to extract glutamine and glutamate levels from previously acquired TE-averaged (1) H MRS datasets.
Collapse
|
53
|
Zurowski B, Kordon A, Weber-Fahr W, Voderholzer U, Kuelz AK, Freyer T, Wahl K, Büchel C, Hohagen F. Relevance of orbitofrontal neurochemistry for the outcome of cognitive-behavioural therapy in patients with obsessive-compulsive disorder. Eur Arch Psychiatry Clin Neurosci 2012; 262:617-24. [PMID: 22427151 DOI: 10.1007/s00406-012-0304-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Since the advent of non-invasive methods such as proton magnetic resonance spectroscopy ((1)H-MRS), obsessive-compulsive disorder (OCD) has been increasingly associated with an altered composition of neurometabolites and neurotransmitters in several brain areas. Particularly, Inositol has not only been implicated in OCD pathophysiology, but also shown effective in pilot studies in therapy-refractory OCD patients. However, the relevance of regional brain neurochemistry for therapy outcome has not yet been investigated. Whereas numerous neuroimaging findings support a dysfunction of the orbitofrontal cortex (OFC) in OCD, MR-spectroscopic investigations of this region are missing. (1)H-MRS and psychometric measurements were obtained from twenty unmedicated patients with OCD, subsequently enrolled in a 3-month structured inpatient cognitive-behavioural therapy programme, and from eleven matched control subjects. Multiple regression of symptom score changes (Y-BOCS) on (myo-)inositol concentrations in three areas (right orbitofrontal cortex (OFC), right striatum and anterior cingulate cortex) was performed. The concentration of (myo-)inositol in the OFC only predicted the outcome of subsequent CBT regarding Y-BOCS score reduction (Spearman's r(s) = .81, P < 0.003, corrected). The (myo-)inositol concentration did not differ between OCD patients and healthy controls and did not change during therapy. We provide preliminary evidence for a neurochemical marker that may prove informative about a patient's future benefit from behaviour therapy. Inositol, a metabolite involved in cellular signal transduction and a spectroscopic marker of glial activity, predicted the response to CBT selectively in the OFC, adding to the evidence for OFC involvement in OCD and highlighting neurobiological underpinnings of psychotherapy.
Collapse
Affiliation(s)
- Bartosz Zurowski
- Center for Integrative Psychiatry, University of Luebeck, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Gussew A, Erdtel M, Hiepe P, Rzanny R, Reichenbach JR. Absolute quantitation of brain metabolites with respect to heterogeneous tissue compositions in 1H-MR spectroscopic volumes. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:321-33. [DOI: 10.1007/s10334-012-0305-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
|
55
|
Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 2012; 198:162-72. [PMID: 22194493 DOI: 10.2214/ajr.11.6505] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The purposes of this review are to describe the principles and method of MR spectroscopy, summarize current published data on musculoskeletal lesions, and report additional cases that have been analyzed with recently developed quantitative methods. CONCLUSION Proton MR spectroscopy can be used to identify key tissue metabolites and may serve as a useful adjunct to radiographic evaluation of musculoskeletal lesions. A pooled analysis of 122 musculoskeletal tumors revealed that a discrete choline peak has a sensitivity of 88% and specificity of 68% in the detection of malignancy. Modest improvements in diagnostic accuracy in 22 of 122 cases when absolute choline quantification was used encourage the pursuit of development of choline quantification methods.
Collapse
|
56
|
Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS One 2012; 7:e30918. [PMID: 22295119 PMCID: PMC3266292 DOI: 10.1371/journal.pone.0030918] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/24/2011] [Indexed: 11/25/2022] Open
Abstract
Background Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn & Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. γ-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p<0.001 for pons and p<0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of the lower brainstem. This study provides in vivo evidence for an alteration in the GABAergic tone in the lower brainstem and striatum in early-moderate PD, which may underlie disease pathogenesis and may provide a biomarker for disease staging.
Collapse
|
57
|
Emir UE, Auerbach EJ, Van De Moortele PF, Marjańska M, Uğurbil K, Terpstra M, Tkáč I, Oz G. Regional neurochemical profiles in the human brain measured by ¹H MRS at 7 T using local B₁ shimming. NMR IN BIOMEDICINE 2012; 25:152-60. [PMID: 21766380 PMCID: PMC3197892 DOI: 10.1002/nbm.1727] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 02/23/2011] [Accepted: 03/18/2011] [Indexed: 05/04/2023]
Abstract
Increased sensitivity and chemical shift dispersion at ultra-high magnetic fields enable the precise quantification of an extended range of brain metabolites from (1)H MRS. However, all previous neurochemical profiling studies using single-voxel MRS at 7 T have been limited to data acquired from the occipital lobe with half-volume coils. The challenges of (1)H MRS of the human brain at 7 T include short T(2) and complex B(1) distribution that imposes limitations on the maximum achievable B(1) strength. In this study, the feasibility of acquiring and quantifying short-echo (TE =8 ms), single-voxel (1)H MR spectra from multiple brain regions was demonstrated by utilizing a 16-channel transceiver array coil with 16 independent transmit channels, allowing local transmit B(1) (B(1)(+)) shimming. Spectra were acquired from volumes of interest of 1-8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B(1)(+) shimming substantially increased the transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16-channel coil, artifact-free spectra were acquired with a small chemical shift displacement error (<5% /ppm/direction) from all regions. The high signal-to-noise ratio enabled the quantification of neurochemical profiles consisting of at least nine metabolites, including γ-aminobutyric acid, glutamate and glutathione, in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, γ-aminobutyric acid levels were highest in the substantia nigra, total creatine was highest in the cerebellar vermis and total choline was highest in the pons, consistent with the known biochemistry of these regions. These findings demonstrate that single-voxel (1)H MRS at ultra-high field can reliably detect region-specific neurochemical patterns in the human brain, and has the potential to objectively detect alterations in neurochemical profiles associated with neurological diseases.
Collapse
Affiliation(s)
- Uzay E Emir
- Center for Magnetic Resonance Research, Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Boer VO, Klomp DWJ, Juchem C, Luijten PR, de Graaf RA. Multislice ¹H MRSI of the human brain at 7 T using dynamic B₀ and B₁ shimming. Magn Reson Med 2011; 68:662-70. [PMID: 22162089 DOI: 10.1002/mrm.23288] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/26/2011] [Accepted: 10/16/2011] [Indexed: 11/10/2022]
Abstract
Proton MR spectroscopic imaging of the human brain at ultra-high field (≥7 T) is challenging due to increased radio frequency power deposition, increased magnetic field B(0) inhomogeneity, and increased radio frequency magnetic field inhomogeneity. In addition, especially for multislice sequences, these effects directly inhibit the potential gains of higher magnetic field and can even cause a reduction in data quality. However, recent developments in dynamic B(0) magnetic field shimming and dynamic multitransmit radio frequency control allow for new acquisition strategies. Therefore, in this work, slice-by-slice B(0) and B(1) shimming was developed to optimize both B(0) magnetic field homogeneity and nutation angle over a large portion of the brain. Together with a low-power water and lipid suppression sequence and pulse-acquire spectroscopic imaging, a multislice MR spectroscopic imaging sequence is shown to be feasible at 7 T. This now allows for multislice metabolic imaging of the human brain with high sensitivity and high chemical shift resolution at ultra-high field.
Collapse
Affiliation(s)
- Vincent O Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
59
|
Boer VO, van Lier ALHMW, Hoogduin JM, Wijnen JP, Luijten PR, Klomp DWJ. 7-T (1) H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil. NMR IN BIOMEDICINE 2011; 24:1038-1046. [PMID: 21294206 DOI: 10.1002/nbm.1641] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
In vivo MRS of the human brain at ultrahigh field allows for the identification of a large number of metabolites at higher spatial resolutions than currently possible in clinical practice. However, the in vivo localization of single-voxel spectroscopy has been shown to be challenging at ultrahigh field because of the low bandwidth of refocusing radiofrequency (RF) pulses. Thus far, the proposed methods for localized MRS at 7 T suffer from long TE, inherent signal loss and/or a large chemical shift displacement artifact that causes a spatial displacement between resonances, and results in a decreased efficiency in editing sequences. In this work, we show that, by driving a standard volume coil with two RF amplifiers, focusing the B 1+ field in a certain location and using high-bandwidth adiabatic refocusing pulses, a semi-LASER (semi-localized by adiabatic selective refocusing) localization is feasible at short TE in the human brain with full signal acquisition and a low chemical shift displacement artifact at 7 T.
Collapse
Affiliation(s)
- V O Boer
- Department of Radiology, University Medical Center Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
60
|
Steenweg ME, Pouwels PJW, Wolf NI, van Wieringen WN, Barkhof F, van der Knaap MS. Leucoencephalopathy with brainstem and spinal cord involvement and high lactate: quantitative magnetic resonance imaging. ACTA ACUST UNITED AC 2011; 134:3333-41. [PMID: 22006980 DOI: 10.1093/brain/awr254] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is a white matter disorder caused by DARS2 mutations. The pathology is unknown. We observed striking discrepancies between improvement on longitudinal conventional magnetic resonance images and clinical deterioration and between large areas of high signal on diffusion-weighted imaging and small areas with low apparent diffusion coefficient values. These observations prompted a longitudinal and quantitative magnetic resonance imaging study. We investigated eight patients (two males, mean age 27 years). Maps of T(2) relaxation times, fractional anisotropy, apparent diffusion coefficients, signal on diffusion-weighted imaging, and axial and radial diffusivities were generated. Brain metabolites, obtained by chemical shift imaging, were quantified. Data analysis focused on: (i) white matter with low apparent diffusion coefficient; (ii) white matter with high T(2) values; (iii) white matter with intermediate T(2) values; and (iv) normal-appearing white matter. The areas were compared with similarly located areas in eight matched controls. In five patients, T(2)-weighted images, spectroscopy, apparent diffusion coefficient maps and diffusion-weighted imaging maps were compared with those obtained 5-7 years ago. In white matter with low apparent diffusion coefficient, axial and radial diffusivities were decreased and fractional anisotropy was high. T(2) values were intermediate. These areas with truly restricted diffusion were small and often observed at the periphery of areas with high T(2) values. In the white matter with high and intermediate T(2) values, apparent diffusion coefficients and axial and radial diffusivities were increased and fractional anisotropy decreased. The signal on diffusion-weighted imaging was highest in white matter with high T(2) values, an effect of T(2) shinethrough. Chemical shift imaging in both white matter types showed increased lactate, increased myo-inositol and decreased N-acetylaspartate, most pronounced in white matter with high T(2) values. Normal-appearing white matter was comparable with white matter of control subjects. Over time, mild decreases in T(2) signal intensities, signal on diffusion-weighted imaging and in extent of the low apparent diffusion coefficient areas were seen. In conclusion, the disease process in leucoencephalopathy with brainstem and spinal cord involvement and elevated lactate is extremely slow. We hypothesize that diffusion restriction is the first stage of the disease caused by intramyelinic water accumulation, followed by slow shift and then loss of the surplus of water. On conventional T(2) images this leads to improvement. We hypothesize that it is loss of water rather than structural restoration that causes the change in T(2) signal intensity, which would be in better agreement with the slow clinical deterioration.
Collapse
Affiliation(s)
- Marianne E Steenweg
- Department of Child Neurology, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
61
|
Reconstructing very short TE phase rotation spectral data collected with multichannel phased-array coils at 3 T. Magn Reson Imaging 2011; 29:937-42. [PMID: 21550744 DOI: 10.1016/j.mri.2011.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/15/2011] [Accepted: 03/19/2011] [Indexed: 11/22/2022]
Abstract
Phased-array volume coils were used in conjunction with the phase rotation STEAM (PR-STEAM) spectroscopy technique to acquire very short TE data from the anterior cingulate gyrus at 3 T. A method for combining PR-STEAM data from multiple subcoils is presented. The data were acquired from seven healthy participants using PR-STEAM (repetition time/mixing time/echo time=3500/10/6.5 ms, 6 cm(3), NEX=128, spectral width=2000 Hz, 2048 complex points, Δφ(1)=135°, Δφ(2)=22.5°, Δφ(3)=112.5° and Δφ(ADC)=0°). In addition to the primary metabolites, LCModel fit results suggest that glutathione and glutamate can also be identified with Cramér-Rao lower bounds of 10% or less.
Collapse
|
62
|
Mohamed MA, Barker PB, Skolasky RL, Selnes OA, Moxley RT, Pomper MG, Sacktor NC. Brain metabolism and cognitive impairment in HIV infection: a 3-T magnetic resonance spectroscopy study. Magn Reson Imaging 2010; 28:1251-7. [PMID: 20688449 DOI: 10.1016/j.mri.2010.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/11/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Human immunodeficiency virus (HIV)-associated dementia (HAD) has been extensively studied using magnetic resonance spectroscopy (MRS) at field strengths of 1.5 T. Higher magnetic field strengths (such as 3 T) allow for more reliable determination of certain compounds, such as glutamate (Glu) and glutamine (Gln). The current study was undertaken to investigate the utility of 3-T MRS for evaluating HIV+ patients with different levels of cognitive impairment with emphasis on the measurement of Glu and Glx (the sum of Glu and Gln). METHODS Eighty-six HIV+ subjects were evaluated at 3 T using quantitative short echo time single-voxel MRS of frontal white matter (FWM) and basal ganglia (BG). Subjects were divided into three groups according to the Memorial Sloan Kettering (MSK) HIV dementia stage: 21 had normal cognition (NC) (MSK 0), 31 had mild cognitive impairment (MCI) without dementia (clinical MSK stage=0.5), and 34 had dementia (HAD) (MSK≥1). HIV+ subjects had also undergone standardized cognitive testing covering the domains of executive function, verbal memory, attention, information processing speed and motor and psychomotor speed. Between-group differences in metabolite levels in FWM and BG were evaluated using ANOVA. Pearson correlation coefficients were used to explore the associations between the Glu and Glx metabolites and neurocognitive results. RESULTS FWM Glx was lower in HAD (8.1 ± 2.1 mM) compared to both the MCI (9.17 ± 2.1 mM) and NC groups (10.0 ± 1.6 mM) (P=.006). FWM myo-inositol (mI) was higher in HAD (4.15 ± 0.75 mM) compared to both MCI (3.86 ± 0.85 mM) and NC status (3.4 ± 0.67 mM) (P=.006). FWM Glx/creatine (Cr) was lower and FWM mI/Cr was significantly higher in the HAD compared to the MCI and NC groups (P=.01 and P=.004, respectively). BG N-acetyl aspartate (NAA) was lower in the HAD group (6.79 ± 1.53 mM), compared to the MCI (7.5 ± 1.06 mM) and NC (7.6 ± 1.01 mM) groups (P=.036). Significant negative correlations were observed between Glu, Glx and NAA concentrations with Trail-Making Test B (P=.006, P=.0001 and P=.007, respectively), and significant positive correlation was found with the Digit symbol test (P=.02, P=.002 and P=.008, respectively). FWM Glx and NAA concentrations showed negative correlation with Grooved Pegboard nondominant hand (P=.02 and P=.04, respectively). CONCLUSION Patients with HAD have lower levels of Glx concentrations and Glx/Cr ratio in FWM, which was associated with impaired performance in specific cognitive domains, including executive functioning, fine motor, attention and working memory performance. Three-Tesla MRS measurements of Glx may be a useful indicator of neuronal loss/dysfunction in patients with HIV infection.
Collapse
Affiliation(s)
- Mona A Mohamed
- Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Rodgers CT, Robson MD. Receive array magnetic resonance spectroscopy: Whitened singular value decomposition (WSVD) gives optimal Bayesian solution. Magn Reson Med 2010; 63:881-91. [PMID: 20373389 DOI: 10.1002/mrm.22230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Receive array coils play a pivotal role in modern MRI. MR spectroscopy can also benefit from the enhanced signal-to-noise ratio and field of view provided by a receive array. In any experiment using an n-element array, n different complex spectra will be recorded and each spectrum unavoidably contains an undesired noise contribution. Previous algorithms for combining spectra have ignored the fact that the noise detected by different array elements is correlated. We introduce here an algorithm for efficiently, robustly, and automatically combining these n spectra using noise whitening and the singular value decomposition to provide the single combined spectrum that has maximum likelihood in the presence of this correlated noise. Simulations are performed that demonstrate the superiority of this approach to previous methods. Experiments in phantoms and in vivo on the brain, heart, and liver of normal volunteers, at 1.5 T and 3 T, using array coils from eight to 32 elements and with (1)H and (31)P nuclei, validate our approach, which provides signal-to-noise ratio improvements of up to 60% in our tests. The whitening and the singular value decomposition algorithm become most advantageous for large arrays, when the noise is markedly correlated, and when the signal-to-noise ratio is low.
Collapse
Affiliation(s)
- Christopher T Rodgers
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
64
|
Henneke M, Dreha-Kulaczewski S, Brockmann K, van der Graaf M, Willemsen MAAP, Engelke U, Dechent P, Heerschap A, Helms G, Wevers RA, Gärtner J. In vivo proton MR spectroscopy findings specific for adenylosuccinate lyase deficiency. NMR IN BIOMEDICINE 2010; 23:441-445. [PMID: 20175147 DOI: 10.1002/nbm.1480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adenylosuccinate lyase (ADSL) deficiency is an inherited metabolic disorder affecting predominantly the central nervous system. The disease is characterized by the accumulation of succinylaminoimidazolecarboxamide riboside and succinyladenosine (S-Ado) in tissue and body fluids. Three children presented with muscular hypotonia, psychomotor delay, behavioral abnormalities, and white matter changes on brain MRI. Two of them were affected by seizures. Screening for inborn errors of metabolism including in vitro high resolution proton MRS revealed an ADSL deficiency that was confirmed genetically in all cases. All patients were studied by in vivo proton MRS. In vitro high resolution proton MRS of patient cerebrospinal fluid showed singlet resonances at 8.27 and 8.29 ppm that correspond to accumulated S-Ado. In vivo proton MRS measurements also revealed a prominent signal at 8.3 ppm in gray and white matter brain regions of all patients. The resonance was undetectable in healthy human brain. In vivo proton MRS provides a conclusive finding in ADSL deficiency and represents a reliable noninvasive diagnostic tool for this neurometabolic disorder.
Collapse
Affiliation(s)
- M Henneke
- Department of Pediatrics and Pediatric Neurology, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bonekamp D, Smith MA, Zhu H, Barker PB. Quantitative SENSE-MRSI of the human brain. Magn Reson Imaging 2010; 28:305-13. [PMID: 20045600 DOI: 10.1016/j.mri.2009.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 07/27/2009] [Accepted: 11/26/2009] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop a method for estimating metabolite concentrations using phased-array coils and sensitivity-encoded (SENSE) magnetic resonance spectroscopic images (MRSI) of the human brain. MATERIALS AND METHODS The method is based on the phantom replacement technique and uses receive coil sensitivity maps and body-coil loading factors to account for receive B(1) inhomogeneity and variable coil loading, respectively. Corrections for cerebrospinal fluid content from the MRSI voxel were also applied, and the total protocol scan time was less than 15 min. The method was applied to 10 normal human volunteers using a multislice 2D-MRSI sequence at 3 T, and seven different brain regions were quantified. RESULTS N-Acetyl aspartate (NAA) concentrations varied from 9.7 to 14.7 mM, creatine (Cr) varied from 6.6 to 10.6 mM and choline (Cho) varied from 1.6 to 3.0 mM, in good general agreement with prior literature values. CONCLUSIONS Quantitative SENSE-MRSI of the human brain is routinely possible using an adapted phantom-replacement technique. The method may also be applied to other MRSI techniques, including conventional phase encoding, with phased-array receiver coils, provided that coil sensitivity profiles can be measured.
Collapse
Affiliation(s)
- David Bonekamp
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
66
|
Martini N, Santarelli MF, Giovannetti G, Milanesi M, De Marchi D, Positano V, Landini L. Noise correlations and SNR in phased-array MRS. NMR IN BIOMEDICINE 2010; 23:66-73. [PMID: 19708042 DOI: 10.1002/nbm.1429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The acquisition of magnetic resonance spectroscopy (MRS) signals by multiple receiver coils can improve the signal-to-noise ratio (SNR) or alternatively can reduce the scan time maintaining a reliable SNR. However, using phased array coils in MRS studies requires efficient data processing and data combination techniques in order to exploit the sensitivity improvement of the phased array coil acquisition method. This paper describes a novel method for the combination of MRS signals acquired by phased array coils, even in presence of correlated noise between the acquisition channels. In fact, although it has been shown that electric and magnetic coupling mechanisms produce correlated noise in the coils, previous algorithms developed for MRS data combination have ignored this effect. The proposed approach takes advantage of a noise decorrelation stage to maximize the SNR of the combined spectra. In particular Principal Component Analysis (PCA) was exploited to project the acquired spectra in a subspace where the noise vectors are orthogonal. In this subspace the SNR weighting method will provide the optimal overall SNR. Performance evaluation of the proposed method is carried out on simulated (1)H-MRS signals and experimental results are obtained on phantom (1)H-MR spectra using a commercially available 8-element phased array coil. Noise correlations between elements were generally low due to the optimal coil design, leading to a fair SNR gain (about 0.5%) in the center of the field of view (FOV). A greater SNR improvement was found in the peripheral FOV regions.
Collapse
Affiliation(s)
- N Martini
- Interdepartmental Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
67
|
Doelken MT, Mennecke A, Stadlbauer A, Kloska S, Struffert T, Engelhorn T, Thuerauf N, Doerfler A, Stefan H, Hammen T. Multi-voxel magnetic resonance spectroscopy of cerebral metabolites in healthy adults at 3 Tesla. Acad Radiol 2009; 16:1493-501. [PMID: 19781961 DOI: 10.1016/j.acra.2009.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/08/2009] [Accepted: 07/23/2009] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to determine how metabolite values (total N-acetyl aspartate [tNAA], glutamate plus glutamine [Glx], total choline [tCho], myoinositol [mI], and total creatine [tCr]) vary across brain regions in healthy subjects. This study was implemented to create an internal reference database for patients with psychiatric disorders and epilepsy. MATERIALS AND METHODS Using the multivoxel technique with a voxelwise phantom calibration on a 3-T magnetic resonance imaging scanner, metabolite levels of 29 healthy controls (13 men, 16 women; average age, 29 years) were obtained from the hippocampi, basal ganglia, insula cortex, cingulum, and precuneus. Additionally, gray and white matter metabolite values were obtained from the frontal and parietal lobes. RESULTS No significant effect of gender was noticed. The total magnitude of variation was greatest for Glx, followed by tNAA, mI, tCho, and tCr. Glx/tCr, Glx, and tCr were increased in gray matter, while tNAA/tCr, tCho/tCr, respectively tNAA and tCho, were elevated in white matter. These findings indicate (1) anterior-to-posterior increases of tNAA/tCr and Glx/tCr, respectively tNAA and Glx, along the midline in gray matter (cingulum); (2) increased tNAA/tCr, respectively tNAA, in white matter in the fiber tracts of the precentral region; (3) an accentuated anterior-to-posterior increase of tCr in the insula cortex; and (4) an anterior-to-posterior decrease of tCho/tCr and tCho in white matter. CONCLUSIONS There are significant metabolic differences within tissue types and within tissue types at different locations; therefore, the spectra and metabolite values presented should provide a useful internal reference for both clinical and research studies.
Collapse
Affiliation(s)
- Marc Thorsten Doelken
- Department of Neuroradiology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kallenberg K, Bock HC, Helms G, Jung K, Wrede A, Buhk JH, Giese A, Frahm J, Strik H, Dechent P, Knauth M. Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. Radiology 2009; 253:805-12. [PMID: 19789222 DOI: 10.1148/radiol.2533071654] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To use localized in vivo proton magnetic resonance (MR) spectroscopy of the contralateral hemisphere in patients with glioblastoma multiforme (GBM) to detect alterations in cerebral metabolites as potential markers of infiltrating GBM cells. MATERIALS AND METHODS The study was approved by the ethics committee, and written informed consent was obtained. Twenty-two patients with newly diagnosed and untreated GBM underwent in vivo single-voxel short echo time proton MR spectroscopy with a 3-T MR imaging system. Absolute metabolite concentrations in the hemisphere contralateral to the tumor were compared with data from five patients with low-grade gliomas (LGGs) and from a group of 14 age-matched control subjects by using analysis of variance and subsequent t tests or corresponding nonparametric tests. RESULTS In the contralateral hemisphere, MR spectroscopy revealed increased concentrations of myo-inositol and glutamine. Mean myo-inositol levels were significantly increased in patients with GBM (3.6 mmol/L +/- 0.8 [standard deviation]) relative to levels in control subjects (3.1 mmol/L +/- 0.6; P = .03) and tended to be higher relative to levels in patients with LGG (2.7 mmol/L +/- 0.8; P = .09). Mean glutamine concentrations in patients with GBM (3.4 mmol/L +/- 0.9) differed significantly from those in control subjects (2.7 mmol/L +/- 0.7; P = .01); mean concentrations in patients with GBM differed from those in patients with LGG (2.4 mmol/L +/- 0.5; P = .01). There were no significant differences between data in patients with LGG and in control subjects. CONCLUSION Increased concentrations of myo-inositol and glutamine in the contralateral normal-appearing white matter of GBM patients are consistent with mild astrocytosis and suggest the detectability of early neoplastic infiltration by using proton MR spectroscopy in vivo.
Collapse
Affiliation(s)
- Kai Kallenberg
- MR-Research in Neurology and Psychiatry, Department of Neuroradiology, Universitymedicine, Georg-August-Universität Göttingen, Robert-Koch-Strasse 40, 37099 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dong Z, Dreher W, Leibfritz D, Peterson BS. Challenges of using MR spectroscopy to detect neural progenitor cells in vivo. AJNR Am J Neuroradiol 2009; 30:1096-101. [PMID: 19357383 DOI: 10.3174/ajnr.a1557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recent report of detection of neural progenitor cells (NPCs) in living human brain by using in vivo proton MR spectroscopy ((1)H-MR spectroscopy) has sparked great excitement in the field of biomedicine because of its potential influence and utility in clinical neuroscience research. On the other hand, the method used and the findings described in the report also caused heated debate and controversy. In this article, we will briefly detail the reasons for the debate and controversy from the point of view of the in vivo (1)H-MR spectroscopy methodology and will propose some technical strategies in both data acquisition and data processing to improve the feasibility of detecting NPCs in future studies by using in vivo (1)H-MR spectroscopy.
Collapse
Affiliation(s)
- Z Dong
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
70
|
Brief EE, Moll R, Li DKB, Mackay AL. Absolute metabolite concentrations calibrated using the total water signal in brain (1)H MRS. NMR IN BIOMEDICINE 2009; 22:349-354. [PMID: 19107764 DOI: 10.1002/nbm.1349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Magnetic resonance spectroscopy (MRS) has been coupled with a multi-echo imaging sequence to determine the relaxation corrected signal areas of the metabolites and the tissue water. Stimulated echo acquisition mode (STEAM) spectra (TE/TM/TR 30/13.7/5000 ms) acquired from gray and white matter voxels in 43 healthy volunteers were fit using LCModel. Corresponding water signals, measured using a multi-echo T(2) imaging sequence, were fit with a Non-Negative Least Squares algorithm. Using this approach the water area could be T(1) and T(2) corrected for all three water compartments: cerebrospinal fluid (CSF), intra- and extra-cellular water, and myelin water. The image-based water measurement is an improvement over spectroscopy methods because it can be more sensitive to water changes in diseased tissue. Metabolite areas were also corrected for relaxation losses. In occipital gray matter, the concentrations of Cho, Cr, and N-acetyl aspartate (NAA) were 1.27 (0.06), 8.9 (0.3), and 9.3 (0.3) mmol/L tissue, respectively and in parietal white matter they were 1.90 (0.05), 7.9 (0.2), and 9.8 (0.2) mmol/L tissue. The Cho and Cr concentrations were different in occipital gray compared to parietal white matter (p < 0.0001 and <0.005, respectively).
Collapse
Affiliation(s)
- E E Brief
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
71
|
The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 2008; 67:218-229. [DOI: 10.1016/j.ejrad.2008.02.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 11/24/2022]
|
72
|
Bajzik G, Auer T, Bogner P, Aradi M, Kotek G, Repa I, Doczi T, Schwarcz A. Quantitative brain proton MR spectroscopy based on measurement of the relaxation time T1of water. J Magn Reson Imaging 2008; 28:34-8. [DOI: 10.1002/jmri.21192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
73
|
Brockmann K, Dreha-Kulaczewski S, Dechent P, Bönnemann C, Helms G, Kyllerman M, Brück W, Frahm J, Huehne K, Gärtner J, Rautenstrauss B. Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations. J Neurol 2008; 255:1049-58. [PMID: 18425620 DOI: 10.1007/s00415-008-0847-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 11/25/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022]
Abstract
Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.
Collapse
Affiliation(s)
- Knut Brockmann
- Dept. of Pediatrics and Pediatric Neurology, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
With increased availability of magnetic resonance (MR) systems at ultra-high field strength for clinical studies, other organs besides the brain have received renewed consideration for MR spectroscopy (MRS). Because signal-to-noise ratio and chemical shift increase proportional to the static magnetic field, a concomitant increase in signal intensity and spectral resolution of metabolite resonances can be exploited. Improved resolution of adjacent metabolite peaks would not only provide for more accuracy of metabolite identification but also metabolite quantification. While the superiority of high-field imaging and spectroscopy has already been demonstrated clearly in the brain, this article reviewed issues around 1H MRS of the liver. These include optimization strategies such as coil technology, minimizing of motion artefacts using breath-holding and postprocessing of the spectra. Moreover, we reviewed the pertinent experience hitherto reported in the literature on potential clinical issues where liver MRS may be useful. These included determination and characterization of liver fat content, liver tumours and focal lesions. While these applications have been used experimentally, liver MRS does not yet have a clearly defined role in the clinical management of any disease state. Accordingly, it remains primarily a research modality to date.
Collapse
Affiliation(s)
- Frank Fischbach
- Department of Radiology and Nuclear Medicine, Medical School, Otto von Guenicke University, Magdeburg, Germany.
| | | |
Collapse
|
75
|
Dong Z, Peterson B. The rapid and automatic combination of proton MRSI data using multi-channel coils without water suppression. Magn Reson Imaging 2007; 25:1148-54. [PMID: 17905247 PMCID: PMC2367158 DOI: 10.1016/j.mri.2007.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/01/2007] [Accepted: 01/05/2007] [Indexed: 11/26/2022]
Abstract
The use of multi-channel coils can efficiently increase the signal-to-noise ratio (SNR) of magnetic resonance spectroscopy data if the signals from multiple channels are optimally combined. Combining multi-channel signals requires proper alignment of the phases of the signals from each of the elements of the coil and then accurately weighting the summation of those signals. We present a procedure for acquiring proton magnetic resonance spectroscopic imaging (MRSI) data using an eight-channel coil without water suppression and a rapid and robust method that uses unsuppressed water signal as a reference both for aligning the phases and for weighting the summation of signals that originate in the multiple coil elements. We use both computer simulation and in vivo proton MRSI data to demonstrate the advantages of our method for optimizing the SNR of the combined signal compared with the SNRs of signals that were acquired either using a standard volume head coil or using an eight-channel coil with a metabolite signal as the reference for combination.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
76
|
Girard N, Gouny SC, Viola A, Le Fur Y, Viout P, Chaumoitre K, D'Ercole C, Gire C, Figarella-Branger D, Cozzone PJ. Assessment of normal fetal brain maturation in utero by proton magnetic resonance spectroscopy. Magn Reson Med 2007; 56:768-75. [PMID: 16964617 DOI: 10.1002/mrm.21017] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebral maturation in the normal human fetal brain was investigated by in utero localized proton MR spectroscopy ((1)H MRS). Fifty-eight subjects at 22-39 weeks of gestational age (GA) were explored. A combination of anterior body phased-array coils (four elements) and posterior spinal coils (two to three elements) was used. Four sequences were performed (point-resolved spectroscopy (PRESS) sequence with short and long TEs (30 and 135 ms), with and without water saturation). A significant reduction in myo-inositol (myo-Ins) and choline (Cho) levels, and an increase in N-acetylaspartate (NAA) and creatine (Cr) content were observed with progressing age. A new finding is the detection of NAA as early as 22 weeks of GA. This result is probably related to the fact that oligodendrocytes (whether mature or not) express NAA, as demonstrated by in vitro studies. Cho and myo-inositol were the predominant resonances from 22 to 30 weeks and decreased gradually, probably reflecting the variations in substrate needed for membrane synthesis and myelination. The normal MRS data for the second trimester of gestation (when fetal MRI is usually performed) reported here can help determine whether brain metabolism is altered or not, especially when subtle anatomic changes are observed on conventional images.
Collapse
Affiliation(s)
- Nadine Girard
- Service de Neuroradiologie, Assistance Publique-Hôpitaux de Marseille, Hôpital la Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Li Y, Osorio JA, Ozturk-Isik E, Chen AP, Xu D, Crane JC, Cha S, Chang S, Berger MS, Vigneron DB, Nelson SJ. Considerations in applying 3D PRESS H-1 brain MRSI with an eight-channel phased-array coil at 3 T. Magn Reson Imaging 2006; 24:1295-302. [PMID: 17145400 DOI: 10.1016/j.mri.2006.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/20/2006] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to assess the benefits of a 3 T scanner and an eight-channel phased-array head coil for acquiring three-dimensional PRESS (Point REsolved Spectral Selection) proton (H-1) magnetic resonance spectroscopic imaging (MRSI) data from the brains of volunteers and patients with brain tumors relative to previous studies that used a 1.5 T scanner and a quadrature head coil. Issues that were of concern included differences in chemical shift artifacts, line broadening due to increased susceptibility at higher field strengths, changes in relaxation times and the increased complexity of the postprocessing software due to the need for combining signals from the multichannel data. Simulated and phantom spectra showed that very selective suppression pulses with a thickness of 40 mm and an overpress factor of at least 1.2 are needed to reduce chemical shift artifact and lipid contamination at higher field strengths. Spectral data from a phantom and those from six volunteers demonstrated that the signal-to-noise ratio (SNR) in the eight-channel coil was more than 50% higher than that in the quadrature head coil. For healthy volunteers and eight patients with brain tumors, the SNR at 3 T with the eight-channel coil was on average 1.5 times higher relative to the eight-channel coil at 1.5 T in voxels from normal-appearing brains. In combination with the effect of a higher field strength, the use of the eight-channel coil was able to provide an increase in the SNR of more than 2.33 times the corresponding acquisition at 1.5 T with a quadrature head coil. This is expected to be critical for clinical applications of MRSI in patients with brain tumors because it can be used to either decrease acquisition time or improve spatial resolution.
Collapse
Affiliation(s)
- Yan Li
- UCSF/UCB Joint Graduate Group in Bioengineering, San Francisco, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dreha-Kulaczewski S, Dechent P, Helms G, Frahm J, Gärtner J, Brockmann K. Cerebral metabolic and structural alterations in hereditary spastic paraplegia with thin corpus callosum assessed by MRS and DTI. Neuroradiology 2006; 48:893-8. [PMID: 17013586 DOI: 10.1007/s00234-006-0148-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 07/31/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) is a complicated form of autosomal-recessive hereditary spastic paraplegia. Characteristic clinical features comprise progressive spastic gait, cognitive impairment, and ataxia. Diagnostic MRI findings include thinning of the corpus callosum and non-progressive white matter (WM) alterations. METHODS To study the extent of axonal involvement, we performed localized proton magnetic resonance spectroscopy (MRS) of the cerebral WM and cortical grey matter (GM) in a patient with HSP-TCC at 20 and 25 years of age. The second investigation included diffusion tensor imaging (DTI). RESULTS While MRS of the GM was normal, affected WM was characterized by major metabolic alterations such as reduced concentrations of N-acetylaspartate and N-acetylaspartyl-glutamate, creatine and phosphocreatine, and choline-containing compounds as well as elevated levels of myo-inositol. These abnormalities showed progression over a period of 5 years. DTI revealed increased mean diffusivity as well as reduced fractional anisotropy in periventricular WM. The metabolic and structural findings are consistent with progressive neuroaxonal loss in the WM accompanied by astrocytic proliferation-histopathological changes known to occur in HSP-TCC. CONCLUSION Our results are in agreement with the hypothesis that the primary pathological process in HSP-TCC affects the axon, possibly due to impaired axonal trafficking.
Collapse
Affiliation(s)
- Steffi Dreha-Kulaczewski
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Georg August University, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Jansen JFA, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology 2006; 240:318-32. [PMID: 16864664 DOI: 10.1148/radiol.2402050314] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hydrogen 1 (1H) magnetic resonance (MR) spectroscopy enables noninvasive in vivo quantification of metabolite concentrations in the brain. Currently, metabolite concentrations are most often presented as ratios (eg, relative to creatine) rather than as absolute concentrations. Despite the success of this approach, it has recently been suggested that relative quantification may introduce substantial errors and can lead to misinterpretation of spectral data and to erroneous metabolite values. The present review discusses relevant methods to obtain absolute metabolite concentrations with a clinical MR system by using single-voxel spectroscopy or chemical shift imaging. Important methodological aspects in an absolute quantification strategy are addressed, including radiofrequency coil properties, calibration procedures, spectral fitting methods, cerebrospinal fluid content correction, macromolecule suppression, and spectral editing. Techniques to obtain absolute concentrations are now available and can be successfully applied in clinical practice. Although the present review is focused on 1H MR spectroscopy of the brain, a large part of the methodology described can be applied to other tissues as well.
Collapse
Affiliation(s)
- Jacobus F A Jansen
- Department of Radiology, Maastricht University Hospital, P. Debyelaan 25, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
80
|
Choi C, Coupland NJ, Bhardwaj PP, Malykhin N, Gheorghiu D, Allen PS. Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magn Reson Med 2006; 55:997-1005. [PMID: 16598736 DOI: 10.1002/mrm.20875] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new single-voxel proton NMR spectrally-selective refocusing method for measuring glutamate (Glu) and glutamine (Gln) in the human brain in vivo at 3T is reported. Triple-resonance selective 180 degrees RF pulses with a bandwidth of 12 Hz were implemented within point-resolved spectroscopy (PRESS) for selective detection of Glu or Gln, and simultaneous acquisition of creatine singlets for use as a reference in phase correction. The carriers of the spectrally-selective 180 degrees pulses and the echo times (TEs) were optimized with both numerical and experimental analyses of the filtering performance, which enabled measurements of the target metabolites with negligible contamination from N-acetylaspartate and glutathione. The concentrations of Glu and Gln in the prefrontal cortex were estimated to be 9.7+/-0.5 and 3.0+/-0.7 mM (mean+/-SD, N=7), with reference to Cr at 8 mM.
Collapse
Affiliation(s)
- Changho Choi
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|