51
|
Greening DW, Ji H, Chen M, Robinson BWS, Dick IM, Creaney J, Simpson RJ. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo. Sci Rep 2016; 6:32643. [PMID: 27605433 PMCID: PMC5015102 DOI: 10.1038/srep32643] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.
Collapse
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Bruce W. S. Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Ian M. Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, 6009, Australia
- Australian Mesothelioma Tissue Bank, Sir Charles Gairdner Hospital, Perth, Western Australia, 6009, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
52
|
Nohara K, Takada K, Kojima E, Ninomiya K, Miyamatsu S, Shimizu T, Sakurai T, Mizuno T, Yamashita Y. A propensity score-matched comparison of the efficacies of OK-432 and talc slurry for pleurodesis for malignant pleural effusion induced by lung adenocarcinoma. Respir Investig 2016; 54:341-346. [PMID: 27566382 DOI: 10.1016/j.resinv.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The choice of an optimal sclerosant for pleurodesis for malignant pleural effusion remains controversial. This retrospective clinical study compared the efficacy and safety of two sclerosants; talc slurry (talc-s) and OK-432. METHODS We compared the characteristics, 30/90-day success rates, and adverse events in patients with lung adenocarcinoma who underwent pleurodesis by using either OK-432 or talc-s. Propensity score matching was used to compare the two scelrosants. RESULTS Ninety-four patients (mean age=71.6±9.6 years) were included in this retrospective study, of whom 64 received OK-432 and 30 received talc-s. Seventy-three patients (77.6%) were initially diagnosed with clinical stage IV lung cancer, with a 28.7% epidermal growth factor receptor mutation frequency. The propensity score-matched cohort included 26 patients from each group. The 30-day success rates for OK-432 and talc-s were 80.7% and 76.9%, respectively (odds ratio: 1.26, 95% confidence interval: 0.33-4.77, p=0.73). Neither the overall incidence of adverse events nor the 90-day success rates differed significantly. Multivariate logistic regression revealed that the predictors of 30-day success were lower drainage volume on the previous day, particularly <250mL/day, the presence of full lung expansion, and pre-therapy with an epidermal growth factor receptor-tyrosine kinase inhibitor. The median post-pleurodesis survival time was 6.9 months, which was not significantly different between the study groups. CONCLUSIONS Propensity score-matched analyses showed that pleurodesis using OK-432 and talc-s demonstrated comparable efficacy and safety profiles in patients with lung adenocarcinoma. This indicated that OK-432 could be a viable alternative to talc-s in this procedure.
Collapse
Affiliation(s)
- Kango Nohara
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Kazuto Takada
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Eiji Kojima
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Kiyoko Ninomiya
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Shoko Miyamatsu
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Takahiro Shimizu
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Tsutomu Sakurai
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Takaaki Mizuno
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| | - Yuuki Yamashita
- Division of Respiratory Medicine, Komaki City Hospital, 1-20 Johbuji, Komaki 485-8520, Japan.
| |
Collapse
|
53
|
Boere J, van de Lest CHA, Libregts SFWM, Arkesteijn GJA, Geerts WJC, Nolte-'t Hoen ENM, Malda J, van Weeren PR, Wauben MHM. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles. J Extracell Vesicles 2016; 5:31751. [PMID: 27511891 PMCID: PMC4980521 DOI: 10.3402/jev.v5.31751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/07/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) in synovial fluid (SF) are gaining increased recognition as important factors in joint homeostasis, joint regeneration, and as biomarkers of joint disease. A limited number of studies have investigated EVs in SF samples of patients with joint disease, but knowledge on the role of EVs in healthy joints is lacking. In addition, no standardized protocol is available for isolation of EVs from SF. Based on the high viscosity of SF caused by high concentrations of hyaluronic acid (HA) - a prominent extracellular matrix component - it was hypothesized that EV recovery could be optimized by pretreatment with hyaluronidase (HYase). Therefore, the efficiency of EV isolation from healthy equine SF samples was tested by performing sequential ultracentrifugation steps (10,000g, 100,000g and 200,000g) in the presence or absence of HYase. Quantitative EV analysis using high-resolution flow cytometry showed an efficient recovery of EVs after 100,000g ultracentrifugation, with an increased yield of CD44+ EVs when SF samples were pretreated with HYase. Morphological analysis of SF-derived EVs with cryo-transmission-electron microscopy did not indicate damage by high-speed ultracentrifugation and revealed that most EVs are spherical with a diameter of 20-200 nm. Further protein characterization by Western blotting revealed that healthy SF-derived EVs contain CD9, Annexin-1, and CD90/Thy1.1. Taken together, these data suggest that EV isolation protocols for body fluids that contain relatively high amounts of HA, such as SF, could benefit from treatment of the fluid with HYase prior to ultracentrifugation. This method facilitates recovery and detection of CD44+ EVs within the HA-rich extracellular matrix. Furthermore, based on the findings presented here, it is recommended to sediment SF-derived EVs with at least 100,000g for optimal EV recovery.
Collapse
Affiliation(s)
- Janneke Boere
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chris H A van de Lest
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Sten F W M Libregts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ger J A Arkesteijn
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Willie J C Geerts
- Department of Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht, Netherlands
| | - Esther N M Nolte-'t Hoen
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jos Malda
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - P René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marca H M Wauben
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands;
| |
Collapse
|
54
|
Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacártegui J, Araujo A, Alessandro R, Pauwels P, Peeters M, Rolfo C. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: critical analysis of evidence and potential role in clinical practice. Oncotarget 2016; 7:28748-60. [PMID: 26919248 PMCID: PMC5053760 DOI: 10.18632/oncotarget.7638] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nano-sized vesicles of endolysosomal origin, released by several cytotypes in physiological and pathological conditions. Tumor derived exosomes, interacting with other cells of the tumor microenvironment, modulate tumor progression, angiogenic switch, metastasis, and immune escape. Recently, extracellular vesicles were proposed as excellent biomarkers for disease monitoring and prognosis in cancer patients. Non-small cell lung cancer (NSCLC) has a poor 5-year survival rate due to the delay in the detection of the disease. The majority of patients are diagnosed in an advanced disease stage. Exosomes might be promising beneficial tools as biomarker candidates in the scenario of NSCLC, since they contain both, proteins and miRNAs. The clinical case reported in this manuscript is a proof of concept revealing that NSCLC exosomes and sorted miRNAs might constitute, in a near future, novel biomarkers. This review summarizes the role of exosomes in NSCLC, focusing on the importance of exosomal microRNAs in lung cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Simona Taverna
- Department of Biopathology and Medical Biotechnology, Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Marco Giallombardo
- Department of Biopathology and Medical Biotechnology, Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Anna Paola Carreca
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Marta Castiglia
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Jorge Chacártegui
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Antonio Araujo
- Service of Medical Oncology, Centro Hospitalar do Porto, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnology, Section of Biology and Genetics, University of Palermo, Palermo, Italy
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Patrick Pauwels
- Molecular Pathology, Pathology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Marc Peeters
- Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Wilrijkstraat, Edegem, Antwerp, Belgium
| |
Collapse
|
55
|
Li H, Tang Z, Zhu H, Ge H, Cui S, Jiang W. Proteomic study of benign and malignant pleural effusion. J Cancer Res Clin Oncol 2016; 142:1191-200. [PMID: 26945985 DOI: 10.1007/s00432-016-2130-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Lung adenocarcinoma can easily cause malignant pleural effusion which was difficult to discriminate from benign pleural effusion. Now there was no biomarker with high sensitivity and specificity for the malignant pleural effusion. PURPOSE This study used proteomics technology to acquire and analyze the protein profiles of the benign and malignant pleural effusion, to seek useful protein biomarkers with diagnostic value and to establish the diagnostic model. METHODS We chose the weak cationic-exchanger magnetic bead (WCX-MB) to purify peptides in the pleural effusion, used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to obtain peptide expression profiles from the benign and malignant pleural effusion samples, established and validated the diagnostic model through a genetic algorithm (GA) and finally identified the most promising protein biomarker. RESULTS A GA diagnostic model was established with spectra of 3930.9 and 2942.8 m/z in the training set including 25 malignant pleural effusion and 26 benign pleural effusion samples, yielding both 100 % sensitivity and 100 % specificity. The accuracy of diagnostic prediction was validated in the independent testing set with 58 malignant pleural effusion and 34 benign pleural effusion samples. Blind evaluation was as follows: the sensitivity was 89.6 %, specificity 88.2 %, PPV 92.8 %, NPV 83.3 % and accuracy 89.1 % in the independent testing set. The most promising peptide biomarker was identified successfully: Isoform 1 of caspase recruitment domain-containing protein 9 (CARD9), with 3930.9 m/z, was decreased in the malignant pleural effusion. CONCLUSIONS This model is suitable to discriminate benign and malignant pleural effusion and CARD9 can be used as a new peptide biomarker.
Collapse
Affiliation(s)
- Hongqing Li
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Zhonghao Tang
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Haiyan Ge
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Shilei Cui
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Weiping Jiang
- Department of Respiratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| |
Collapse
|
56
|
Clark DJ, Fondrie WE, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics 2016; 133:161-169. [DOI: 10.1016/j.jprot.2015.12.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/07/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023]
|
57
|
Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst 2016; 141:450-460. [PMID: 26378496 PMCID: PMC4881422 DOI: 10.1039/c5an01610j] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last several years, nanoscale vesicles that originate from tumor cells and which can be found circulating in the blood (i.e. exosomes and microvesicles) have been discovered to contain a wealth of proteomic and genetic information to monitor cancer progression, metastasis, and drug efficacy. However, the use of exosomes and microvesicles as biomarkers to improve patient care has been limited by their small size (30 nm-1 μm) and the extensive sample preparation required for their isolation and measurement. In this Critical Review, we explore the emerging use of micro and nano-technology to isolate and detect exosomes and microvesicles in clinical samples and the application of this technology to the monitoring and diagnosis of cancer.
Collapse
Affiliation(s)
- Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
58
|
Green TM, Santos MF, Barsky SH, Rappa G, Lorico A. Analogies Between Cancer-Derived Extracellular Vesicles and Enveloped Viruses with an Emphasis on Human Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2016; 4:169-179. [PMID: 32226654 PMCID: PMC7099913 DOI: 10.1007/s40139-016-0116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Cancer cells utilize extracellular vesicles (EVs) as a means of transferring oncogenic proteins and nucleic acids to other cells to enhance the growth and spread of the tumor. There is an unexpected amount of similarities between these small, membrane-bound particles and enveloped virions, including protein content, physical characteristics (i.e., size and morphology), and mechanisms of entry and exit into target cells. Recent Findings This review describes the attributes shared by both cancer-derived EVs, with an emphasis on breast cancer-derived EVs, and enveloped viral particles and discusses the methods by which virions can utilize the EV pathway as a means of transferring viral material and oncogenes to host cells. Additionally, the possible links between human papilloma virus and its influence on the miRNA content of breast cancer-derived EVs are examined. Summary The rapidly growing field of EVs is allowing investigators from different disciplines to enter uncharted territory. The study of the emerging similarities between cancer-derived EVs and enveloped virions may lead to novel important scientific discoveries.
Collapse
Affiliation(s)
- Toni M Green
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Mark F Santos
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Sanford H Barsky
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Germana Rappa
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Aurelio Lorico
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| |
Collapse
|
59
|
Fujita Y, Kosaka N, Araya J, Kuwano K, Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med 2015; 21:533-42. [PMID: 26231094 DOI: 10.1016/j.molmed.2015.07.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022]
Abstract
Increasing attention is being paid to the role of extracellular vesicles (EVs) in various lung diseases. EVs are released by a variety of cells, including respiratory cells and immune cells, and they encapsulate various molecules, such as proteins and microRNAs, as modulators of intercellular communication. Cancer cell-derived EVs play crucial roles in promoting tumor progression and modifying their microenvironment. By contrast, noncancerous cell-derived EVs demonstrate protective functions against injury, such as tissue recovery and repair, to maintain physiological homeostasis. Airway cells in contact with harmful substances may alter their EV composition and modify the balanced reciprocal interactions with surrounding mesenchymal cells. We summarize the novel findings of EV function in various lung diseases, primarily chronic obstructive pulmonary disease (COPD) and lung cancer.
Collapse
Affiliation(s)
- Yu Fujita
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan; Department of Pathology and Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Jun Araya
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-19-18, Nishi-shinbashi, Minato-ku, Tokyo 105-8471, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
60
|
Khan S, Ferguson Bennit H, Asuncion Valenzuela MM, Turay D, Diaz Osterman CJ, Moyron RB, Esebanmen GE, Ashok A, Wall NR. Localization and upregulation of survivin in cancer health disparities: a clinical perspective. Biologics 2015; 9:57-67. [PMID: 26185415 PMCID: PMC4501680 DOI: 10.2147/btt.s83864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Survivin is one of the most important members of the inhibitors of apoptosis protein family, as it is expressed in most human cancers but is absent in normal, differentiated tissues. Lending to its importance, survivin has proven associations with apoptosis and cell cycle control, and has more recently been shown to modulate the tumor microenvironment and immune evasion as a result of its extracellular localization. Upregulation of survivin has been found in many cancers including breast, prostate, pancreatic, and hematological malignancies, and it may prove to be associated with the advanced presentation, poorer prognosis, and lower survival rates observed in ethnically diverse populations.
Collapse
Affiliation(s)
- Salma Khan
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Heather Ferguson Bennit
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Malyn May Asuncion Valenzuela
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David Turay
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Department of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos J Diaz Osterman
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ron B Moyron
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Grace E Esebanmen
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Arjun Ashok
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathan R Wall
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA, USA ; Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
61
|
Agalioti T, Giannou AD, Stathopoulos GT. Pleural involvement in lung cancer. J Thorac Dis 2015; 7:1021-30. [PMID: 26150915 DOI: 10.3978/j.issn.2072-1439.2015.04.23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/11/2015] [Indexed: 11/14/2022]
Abstract
The pleural space, a sterile secluded environment in the thoracic cavity, represents an attractive metastatic site for various cancers of lung, breast and gastrointestinal origins. Whereas lung and breast adenocarcinomas could invade the pleural space because of their anatomic proximity, "distant" cancers like ovarian or gastrointestinal tract adenocarcinomas may employ more active mechanisms to the same end. A pleural metastasis is often accompanied by a malignant pleural effusion (MPE), an unfavorable complication that severely restricts the quality of life and expectancy of the cancer patient. MPE is the net "product" of three different processes, namely inflammation, enhanced angiogenesis and vascular leakage. Current efforts are focusing on the identification of cancer cell autocrine (specific mutation spectra and biochemical pathways) and paracrine (cytokine and chemokine signals) characteristics as well as host features (immunological or other) that underlie the MPE phenotype. Herein we examine the pleural histology, cytology and molecular characteristics that make the pleural cavity an attractive metastasis destination for lung adenocarcinoma. Mesothelial and tumor features that may account for the tumor's ability to invade the pleural space are highlighted. Finally, possible therapeutic interventions specifically targeting MPE are discussed.
Collapse
Affiliation(s)
- Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
62
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
63
|
Guo L, Guo N. Exosomes: Potent regulators of tumor malignancy and potential bio-tools in clinical application. Crit Rev Oncol Hematol 2015; 95:346-58. [PMID: 25982702 DOI: 10.1016/j.critrevonc.2015.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 01/08/2023] Open
Abstract
Multiple lines of evidence indicate that exosomes, as efficient messengers in cell-to-cell communication, play pleiotropic roles in regulating tumor malignancy. The cargos (proteins, mRNAs, and miRNAs) carried by exosomes can be functionally delivered between different types of cells and even transferred to distant locations, influencing the biological activities of tumor and non-tumor cells and promoting tumor growth, invasion, metastasis, angiogenesis, and drug resistance. Tumor-associated exosomes have been identified in biological (plasma, urine, saliva) and pathological (malignant effusions, pleural effusions, ascites) fluids from cancer patients. The contents of exosomes may vary depending on tumor types and status. Detection of exosomes in biofluids of cancer patients may represent a promising strategy to gain pathogenic information and to select specific biomarkers for the diagnosis and prognosis of cancer. Utilization of exosomes as delivery vehicles for siRNAs and therapeutic drugs brings out new concepts such as biomimetics in cancer treatment. In this review, we will mainly discuss emerging roles of exosomes in tumor invasion, metastasis, angiogenesis, and drug resistance and potential clinical application of exosomes as biomarkers and therapeutic tools.
Collapse
Affiliation(s)
- Liang Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China
| | - Ning Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850, PR China.
| |
Collapse
|
64
|
Verma M, Lam TK, Hebert E, Divi RL. Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 2015; 15:6. [PMID: 25883534 PMCID: PMC4399158 DOI: 10.1186/s12907-015-0005-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Both normal and diseased cells continuously shed extracellular vesicles (EVs) into extracellular space, and the EVs carry molecular signatures and effectors of both health and disease. EVs reflect dynamic changes that are occurring in cells and tissue microenvironment in health and at a different stage of a disease. EVs are capable of altering the function of the recipient cells. Trafficking and reciprocal exchange of molecular information by EVs among different organs and cell types have been shown to contribute to horizontal cellular transformation, cellular reprogramming, functional alterations, and metastasis. EV contents may include tumor suppressors, phosphoproteins, proteases, growth factors, bioactive lipids, mutant oncoproteins, oncogenic transcripts, microRNAs, and DNA sequences. Therefore, the EVs present in biofluids offer unprecedented, remote, and non-invasive access to crucial molecular information about the health status of cells, including their driver mutations, classifiers, molecular subtypes, therapeutic targets, and biomarkers of drug resistance. In addition, EVs may offer a non-invasive means to assess cancer initiation, progression, risk, survival, and treatment outcomes. The goal of this review is to highlight the current status of information on the role of EVs in cancer, and to explore the utility of EVs for cancer diagnosis, prognosis, and epidemiology.
Collapse
Affiliation(s)
- Mukesh Verma
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Tram Kim Lam
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Elizabeth Hebert
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Rao L Divi
- grid.48336.3a0000000419368075Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD 20850 USA
| |
Collapse
|
65
|
Tominaga N, Katsuda T, Ochiya T. Micromanaging of tumor metastasis by extracellular vesicles. Semin Cell Dev Biol 2015; 40:52-9. [PMID: 25746922 DOI: 10.1016/j.semcdb.2015.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field.
Collapse
Affiliation(s)
- Naoomi Tominaga
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.; Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan.; Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-Ku, Tokyo 102-0083, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan..
| |
Collapse
|
66
|
Kumar A, Baycin-Hizal D, Shiloach J, Bowen MA, Betenbaugh MJ. Coupling enrichment methods with proteomics for understanding and treating disease. Proteomics Clin Appl 2015; 9:33-47. [PMID: 25523641 DOI: 10.1002/prca.201400097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/12/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
Owing to recent advances in proteomics analytical methods and bioinformatics capabilities there is a growing trend toward using these capabilities for the development of drugs to treat human disease, including target and drug evaluation, understanding mechanisms of drug action, and biomarker discovery. Currently, the genetic sequences of many major organisms are available, which have helped greatly in characterizing proteomes in model animal systems and humans. Through proteomics, global profiles of different disease states can be characterized (e.g. changes in types and relative levels as well as changes in PTMs such as glycosylation or phosphorylation). Although intracellular proteomics can provide a broad overview of physiology of cells and tissues, it has been difficult to quantify the low abundance proteins which can be important for understanding the diseased states and treatment progression. For this reason, there is increasing interest in coupling comparative proteomics methods with subcellular fractionation and enrichment techniques for membranes, nucleus, phosphoproteome, glycoproteome as well as low abundance serum proteins. In this review, we will provide examples of where the utilization of different proteomics-coupled enrichment techniques has aided target and biomarker discovery, understanding the drug targeting mechanism, and mAb discovery. Taken together, these improvements will help to provide a better understanding of the pathophysiology of various diseases including cancer, autoimmunity, inflammation, cardiovascular disease, and neurological conditions, and in the design and development of better medicines for treating these afflictions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Antibody Discovery and Protein Engineering, MedImmune LLC, One MedImmune Way, Gaithersburg, MD, USA; Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
67
|
Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 2014; 14:412-25. [PMID: 24339442 DOI: 10.1002/pmic.201300389] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022]
Abstract
Recent important progress in cancer biology was the identification of the significant roles played by extracellular vesicles (EVs). EVs are secreted by a variety of mammalian cell types and have been revealed to play important roles in intercellular communications. EVs serve as unique communication vehicles in many ways. First, unlike cytokine signaling, EVs enable transportation not only of proteins, but also of nucleic acids, including mRNAs and microRNAs. Recent reports showing the functionality of these nucleic acids in the recipient cells have opened up a new avenue of cell-to-cell communication research. Second, EVs have been revealed to transport membrane components including receptors, such as epithelial growth factor receptor. These findings have provided significant insights into understanding the molecular mechanisms of cancer development. Third, EVs protect their contents from clearance by degrading enzymes present in the extracellular space, which allows for remote transportation of the contents, even between organs. This concept is highlighted by recent reports that suggest the deep involvement of cancer cell derived EVs in metastasis. From these points of view, we will summarize recent studies on the relevance of EVs in cancer biology. We will also highlight the possibility of novel diagnostic technologies using circulating EVs in body fluid.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | | | | |
Collapse
|
68
|
Rolfo C, Castiglia M, Hong D, Alessandro R, Mertens I, Baggerman G, Zwaenepoel K, Gil-Bazo I, Passiglia F, Carreca AP, Taverna S, Vento R, Santini D, Peeters M, Russo A, Pauwels P. Liquid biopsies in lung cancer: the new ambrosia of researchers. Biochim Biophys Acta Rev Cancer 2014; 1846:539-46. [PMID: 25444714 DOI: 10.1016/j.bbcan.2014.10.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
In the last decades the approach to cancer patient management has been deeply revolutionized. We are moving from a "one-fits-all" strategy to the "personalized medicine" based on the molecular characterization of the tumor. In this new era it is becoming more and more clear that the monitoring of the disease is fundamental for the success of the treatment, thus there is the need of new biomarker discovery. More precisely in the last years the scientific community has started to use the term "liquid biopsy". A liquid biopsy is a liquid biomarker that can be easily isolated from many body fluids (blood, saliva, urine, ascites, pleural effusion, etc.) and, as well as a tissue biopsy, a representative of the tissue from which it is spread. In this review we will focus our attention on circulating tumor cells, circulating tumor DNA, exosomes and secretomes with the aim to underlie their usefulness and potential application in a clinical setting for lung cancer patient management.
Collapse
Affiliation(s)
- Christian Rolfo
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium.
| | - Marta Castiglia
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium; Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via Liborio Giuffrè 5, Palermo 90127, Italy
| | - David Hong
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Holcombe Blvd 1400, Unit 455, Houston 77030, USA
| | - Riccardo Alessandro
- Department of Biopathology and Medical and Forensic Biotechnologies, Section of Biology and Genetics, University of Palermo, Via Divisi 81-85, 90133 Palermo, Italy
| | - Inge Mertens
- Center for Proteomics, VITO, Boeretang 200, Mol, BE-2400, Belgium, Antwerp University, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Geert Baggerman
- Center for Proteomics, VITO, Boeretang 200, Mol, BE-2400, Belgium, Antwerp University, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Karen Zwaenepoel
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Ignacio Gil-Bazo
- Lung Cancer Unit, Department of Oncology, Clínica Universidad de Navarra, Avenida Pío XII 36, Pamplona 31008, Spain
| | - Francesco Passiglia
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium; Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via Liborio Giuffrè 5, Palermo 90127, Italy
| | - Anna P Carreca
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium; Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Simona Taverna
- Department of Biopathology and Medical and Forensic Biotechnologies, Section of Biology and Genetics, University of Palermo, Via Divisi 81-85, 90133 Palermo, Italy
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Polyclinic, University of Palermo, Viale delle Scienze, Ed. 13, 90128 Palermo, Italy
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome, Italy
| | - Marc Peeters
- Oncology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via Liborio Giuffrè 5, Palermo 90127, Italy
| | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Wilrijkstraat 10, Edegem 2650, Belgium
| |
Collapse
|
69
|
Van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, Vandesompele J, Bracke M, De Wever O, Hendrix A. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles 2014; 3:24858. [PMID: 25317274 PMCID: PMC4169610 DOI: 10.3402/jev.v3.24858] [Citation(s) in RCA: 655] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/15/2022] Open
Abstract
Despite an enormous interest in the role of extracellular vesicles, including exosomes, in cancer and their use as biomarkers for diagnosis, prognosis, drug response and recurrence, there is no consensus on dependable isolation protocols. We provide a comparative evaluation of 4 exosome isolation protocols for their usability, yield and purity, and their impact on downstream omics approaches for biomarker discovery. OptiPrep density gradient centrifugation outperforms ultracentrifugation and ExoQuick and Total Exosome Isolation precipitation in terms of purity, as illustrated by the highest number of CD63-positive nanovesicles, the highest enrichment in exosomal marker proteins and a lack of contaminating proteins such as extracellular Argonaute-2 complexes. The purest exosome fractions reveal a unique mRNA profile enriched for translation, ribosome, mitochondrion and nuclear lumen function. Our results demonstrate that implementation of high purification techniques is a prerequisite to obtain reliable omics data and identify exosome-specific functions and biomarkers.
Collapse
Affiliation(s)
- Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Raija Sormunen
- Biocenter Oulu, Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Veronique Cocquyt
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Karim Vermaelen
- Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
70
|
Choi DY, You S, Jung JH, Lee JC, Rho JK, Lee KY, Freeman MR, Kim KP, Kim J. Extracellular vesicles shed from gefitinib-resistant nonsmall cell lung cancer regulate the tumor microenvironment. Proteomics 2014; 14:1845-56. [PMID: 24946052 DOI: 10.1002/pmic.201400008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/23/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs), including gefitinib, are the first-line treatment of choice for nonsmall cell lung cancer patients who harbor activating EGFR mutations, however, acquired resistance to EGFR-TKIs is inevitable. The main objective of this study was to identify informative protein signatures of extracellular vesicles (EV) derived from gefitinib-resistant nonsmall cell lung cancer cells using proteomics analysis. Nano-LC-MS/MS analysis identified with high confidence (false discovery rate < 0.05, fold change ≥2) 664 EV proteins enriched in PC9R cells, which are resistant to gefitinib due to EGFR T790M mutation. Computational analyses suggested components of several signal transduction mechanisms including the AKT (also PKB, protein kinase B)/mTOR (mechanistic target of rapamycin) pathway are overrepresented in EV from PC9R cells. Treatment of recipient cells with EV harvested from PC9R cells increased phosphorylation of signaling molecules, and enhanced proliferation, invasion, and drug resistance to gefitinib-induced apoptosis. Dose- and time-dependent pharmaceutical inhibition of AKT/mTOR pathway overcame drug resistance of PC9R cells and those of H1975 exhibiting EGFR T790M mutation. Our findings provide new insight into an oncogenic EV protein signature regulating tumor microenvironment, and will aid in the development of novel diagnostic strategies for prediction and assessment of gefitinib resistance.
Collapse
Affiliation(s)
- Do-Young Choi
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. LAB ON A CHIP 2014; 14:1891-900. [PMID: 24722878 PMCID: PMC4134440 DOI: 10.1039/c4lc00136b] [Citation(s) in RCA: 459] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane bound vesicles, including microvesicles and exosomes, are secreted by both normal and cancerous cells into the extracellular space and in blood circulation. These circulating extracellular vesicles (cirEVs) and exosomes in particular are recognized as a potential source of disease biomarkers. However, to exploit the use of circulatory exosomes as a biomarker, a rapid, high-throughput and reproducible method is required for their isolation and molecular analysis. We have developed a simple, low cost microfluidic-based platform to isolate cirEVs enriched in exosomes directly from blood serum allowing simultaneous capture and quantification of exosomes in a single device. To capture specific exosomes, we employed "ExoChip", a microfluidic device fabricated in polydimethylsiloxane (PDMS) and functionalized with antibodies against CD63, an antigen commonly overexpressed in exosomes. Subsequent staining with a fluorescent carbocyanine dye (DiO) that specifically labels the exosomes, we quantitated exosomes using a standard plate-reader. Ten independent ExoChip experiments performed using serum obtained from five pancreatic cancer patients and five healthy individuals revealed a statistically significant increase (2.34 ± 0.31 fold, p < 0.001) in exosomes captured in cancer patients when compared to healthy individuals. Exosomal origins of ExoChip immobilized vesicles were further confirmed using immuno-electron-microscopy and Western blotting. In addition, we demonstrate the ability of ExoChip to recover exosomes with intact RNA enabling profiling of exosomal-microRNAs through openarray analysis, which has potential applications in biomarker discovery. Based on our findings, ExoChip is a well suited platform to be used as an exosome-based diagnostic and research tool for molecular screening of human cancers.
Collapse
Affiliation(s)
- Shailender Singh Kanwar
- Department of Chemical Engineering, College of Engineering University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan-48109, USA.
| | | | | | | |
Collapse
|
72
|
Tan LN, Wiepz GJ, Miller DS, Shusta EV, Abbott NL. Liquid crystal droplet-based amplification of microvesicles that are shed by mammalian cells. Analyst 2014; 139:2386-96. [PMID: 24667742 PMCID: PMC4212983 DOI: 10.1039/c3an02360e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane-derived microvesicles (MVs) shed by cells are being investigated for their role in intercellular communication and as potential biomarkers of disease, but facile and sensitive methods for their analysis do not exist. Here we demonstrate new principles for analysis of MVs that use micrometer-sized droplets of liquid crystals (LCs) to amplify MVs that are selectively captured via antibody-mediated interactions. The influence of the MVs on the micrometer-sized LC droplets is shown to be readily quantified via use of flow cytometry. The methodology was developed using MVs shed by epidermoid carcinoma A431 cells that contain epidermal growth factor receptor (EGFR) as an important and representative example of MVs containing signaling proteins that play a central role in cancer. The LC droplets were found to be sensitive to 10(6) MVs containing EGFR (relative to controls using isotype control antibody) and to possess a dynamic range of response across several orders of magnitude. Because the 100 nm-sized MVs captured via EGFR generate an optical response in the micrometer-sized LC droplets that can be readily detected by flow cytometry in light scattering mode, the approach possesses significant advantages over direct detection of MVs by flow cytometry. The LC droplets are also substantially more sensitive than techniques such as immunoblotting because the lipid-component of the MVs serves to amplify the antibody-mediated capture of the target proteins in the MVs. Other merits of the approach are defined and discussed in the paper.
Collapse
Affiliation(s)
- Lie Na Tan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
73
|
Pathak RR, Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 2014; 33:1239-60. [PMID: 24802001 PMCID: PMC4396816 DOI: 10.1159/000358693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
74
|
Pasquier J, Thawadi HA, Ghiabi P, Abu-Kaoud N, Maleki M, Guerrouahen BS, Vidal F, Courderc B, Ferron G, Martinez A, Al Sulaiti H, Gupta R, Rafii S, Rafii A. Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation. CANCER MICROENVIRONMENT 2014; 7:41-59. [PMID: 24424657 PMCID: PMC4150875 DOI: 10.1007/s12307-013-0142-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 11/15/2013] [Indexed: 12/14/2022]
Abstract
The tumor stroma plays an essential role in tumor growth, resistance to therapy and occurrence of metastatic phenotype. Tumor vessels have been considered as passive conducts for nutrients but several studies have demonstrated secretion of pro-tumoral factors by endothelial cells. The failure of anti-angiogenic therapies to meet expectations raised by pre-clinical studies prompt us to better study the cross-talk between endothelial and cancer cells. Here, we hypothesized that tumor cells and the endothelium secrete bio-active microparticles (MPs) participating to a functional cross-talk. We characterized the cancer cells MPs, using breast and ovarian cancer cell lines (MCF7, MDA-MB231, SKOV3, OVCAR3 and a primary cell lines, APOCC). Our data show that MPs from mesenchymal-like cell lines (MDA-MB231, SKOV3 and APOCC) were able to promote an activation of endothelial cells through Akt phosphorylation, compared to MPs from epithelial-like cell lines (OVCAR3 and MCF7). The MPs from mesenchymal-like cells contained increased angiogenic molecules including PDGF, IL8 and angiogenin. The endothelial activation was associated to increased Arf6 expression and MPs secretion. Endothelial activation functionalized an MP dependent pro-tumoral vascular niche promoting cancer cells proliferation, invasiveness, stem cell phenotype and chemoresistance. MPs from cancer and endothelial cells displayed phenotypic heterogeneity, and participated to a functional cross-talk where endothelial activation by cancer MPs resulted in increased secretion of EC-MPs sustaining tumor cells. Such cross-talk may play a role in perfusion independent role of the endothelium.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Serum markers in small cell lung cancer: opportunities for improvement. Biochim Biophys Acta Rev Cancer 2013; 1836:255-72. [PMID: 23796706 DOI: 10.1016/j.bbcan.2013.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Lung cancer is one of the leading causes of death from malignancy worldwide. In particular small cell lung cancers, which comprise about 15-20% of all lung cancers, are extremely aggressive and cure rates are extremely low. Therefore, new treatment modalities are needed and detection at an early stage of disease, as well as adequate monitoring of treatment response is essential in order to improve outcome. In this respect, the use of non-invasive tools for screening and monitoring has gained increasing interest and the clinical applicability of reliable, tumor-related substances that can be detected as tumor markers in easily accessible body fluids is subject of intense investigation. Some of these indicators, such as high LDH levels in serum as a reflection of the disease, have been in use for a long time as a general tumor marker. To allow for improved monitoring of the efficacy of new therapeutic modalities and for accurate subtyping, there is a strong need for specific and sensitive markers that are more directly related to the biology and behavior of small cell lung cancer. In this review the current status of these potential markers, like CEA, NSE, ProGRP, CK-BB, SCC, CgA, NCAM and several cytokeratins will be critically analyzed with respect to their performance in blood based assays. Based on known cleavage sites for cytoplasmic and extracellular proteases, a prediction of stable fragments can be obtained and used for optimal test design. Furthermore, insight into the synthesis of specific splice variants and neo-epitopes resulting from protein modification and cleavage, offers further opportunities for improvement of tumor assays. Finally, we discuss the possibility that detection of SCLC related autoantibodies in paraneoplastic disease can be used as a very early indicator of SCLC.
Collapse
|