51
|
|
52
|
Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH. Delivery of Flightless I Neutralizing Antibody from Porous Silicon Nanoparticles Improves Wound Healing in Diabetic Mice. Adv Healthc Mater 2017; 6. [PMID: 27869355 DOI: 10.1002/adhm.201600707] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/07/2016] [Indexed: 12/28/2022]
Abstract
Flightless I (Flii) is elevated in human chronic wounds and is a negative regulator of wound repair. Decreasing its activity improves healing responses. Flii neutralizing antibodies (FnAbs) decrease Flii activity in vivo and hold significant promise as healing agents. However, to avoid the need for repeated application in a clinical setting and to protect the therapeutic antibody from the hostile environment of the wound, suitable delivery vehicles are required. In this study, the use of porous silicon nanoparticles (pSi NPs) is demonstrated for the controlled release of FnAb to diabetic wounds. We achieve FnAb loading regimens exceeding 250 µg antibody per mg of vehicle. FnAb-loaded pSi NPs increase keratinocyte proliferation and enhance migration in scratch wound assays. Release studies confirm the functionality of the FnAb in terms of Flii binding. Using a streptozotocin-induced model of diabetic wound healing, a significant improvement in healing is observed for mice treated with FnAb-loaded pSi NPs compared to controls, including FnAb alone. FnAb-loaded pSi NPs treated with proteases show intact and functional antibody for up to 7 d post-treatment, suggesting protection of the antibodies from proteolytic degradation in wound fluid. pSi NPs may therefore enable new therapeutic approaches for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Christopher T. Turner
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Steven J. P. McInnes
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Elizabeth Melville
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Allison J. Cowin
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| | - Nicolas H. Voelcker
- Wound Management Innovation Cooperative Research Centre; Future Industries Institute; University of South Australia; Adelaide South Australia 5001 Australia
| |
Collapse
|
53
|
Dalilottojari A, Delalat B, Harding FJ, Cockshell MP, Bonder CS, Voelcker NH. Porous Silicon-Based Cell Microarrays: Optimizing Human Endothelial Cell-Material Surface Interactions and Bioactive Release. Biomacromolecules 2016; 17:3724-3731. [PMID: 27744681 DOI: 10.1021/acs.biomac.6b01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porous silicon (pSi) substrates are a promising platform for cell expansion, since pore size and chemistry can be tuned to control cell behavior. In addition, a variety of bioactives can be loaded into the pores and subsequently released to act on cells adherent to the substrate. Here, we construct a cell microarray on a plasma polymer coated pSi substrate that enables the simultaneous culture of human endothelial cells on printed immobilized protein factors, while a second soluble growth factor is released from the same substrate. This allows three elements of candidate pSi scaffold materials-topography, surface functionalization, and controlled factor release-to be assessed simultaneously in high throughput. We show that protein conjugation within printed microarray spots is more uniform on the pSi substrate than on flat glass or silicon surfaces. Active growth factors are released from the pSi surface over a period of several days. Using an endothelial progenitor cell line, we investigate changes in cell behavior in response to the microenvironment. This platform facilitates the design of advanced functional biomaterials, including scaffolds, and carriers for regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Adel Dalilottojari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide South Australia 5001, South Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide South Australia 5001, South Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| |
Collapse
|
54
|
Kovalainen M, Mönkäre J, Riikonen J, Pesonen U, Vlasova M, Salonen J, Lehto VP, Järvinen K, Herzig KH. Novel delivery systems for improving the clinical use of peptides. Pharmacol Rev 2016; 67:541-61. [PMID: 26023145 DOI: 10.1124/pr.113.008367] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides have long been recognized as a promising group of therapeutic substances to treat various diseases. Delivery systems for peptides have been under development since the discovery of insulin for the treatment of diabetes. The challenge of using peptides as drugs arises from their poor bioavailability resulting from the low permeability of biological membranes and their instability. Currently, subcutaneous injection is clinically the most common administration route for peptides. This route is cost-effective and suitable for self-administration, and the development of appropriate dosing equipment has made performing the repeated injections relatively easy; however, only few clinical subcutaneous peptide delivery systems provide sustained peptide release. As a result, frequent injections are needed, which may cause discomfort and additional risks resulting from a poor administration technique. Controlled peptide delivery systems, able to provide required therapeutic plasma concentrations over an extended period, are needed to increase peptide safety and patient compliancy. In this review, we summarize the current peptidergic drugs, future developments, and parenteral peptide delivery systems. Special emphasis is given to porous silicon, a novel material in peptide delivery. Biodegradable and biocompatible porous silicon possesses some unique properties, such as the ability to carry exceptional high peptide payloads and to modify peptide release extensively. We have successfully developed porous silicon as a carrier material for improved parenteral peptide delivery. Nanotechnology, with its different delivery systems, will enable better use of peptides in several therapeutic applications in the near future.
Collapse
Affiliation(s)
- Miia Kovalainen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Juha Mönkäre
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Joakim Riikonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Ullamari Pesonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Maria Vlasova
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Jarno Salonen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Vesa-Pekka Lehto
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Kristiina Järvinen
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine (M.K., K.-H.H.) and Medical Research Center Oulu and Oulu University Hospital (K.-H.H.), Oulu, Finland; Department of Applied Physics, Faculty of Science and Forestry (J.R.), Department of Applied Physics, Faculty of Science and Forestry (V.-P.L.), and School of Pharmacy, Faculty of Health Sciences (M.V., K.J.), University of Eastern Finland, Kuopio, Finland; Department of Pharmacology, Drug Development and Therapeutics (U.P.), and Department of Physics and Astronomy, Faculty of Mathematics and Natural Sciences (J.S.), University of Turku, Finland; and Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands (J.M.)
| |
Collapse
|
55
|
Tong WY, Sweetman MJ, Marzouk ER, Fraser C, Kuchel T, Voelcker NH. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon. Biomaterials 2016; 74:217-30. [DOI: 10.1016/j.biomaterials.2015.09.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022]
|
56
|
Jenie SNA, Prieto-Simon B, Voelcker NH. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. Biosens Bioelectron 2015. [PMID: 26201980 DOI: 10.1016/j.bios.2015.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution.
Collapse
Affiliation(s)
- S N Aisyiyah Jenie
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Beatriz Prieto-Simon
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
57
|
Wu CC, Hu Y, Miller M, Aroian RV, Sailor MJ. Protection and Delivery of Anthelmintic Protein Cry5B to Nematodes Using Mesoporous Silicon Particles. ACS NANO 2015; 9:6158-67. [PMID: 25950754 PMCID: PMC5704939 DOI: 10.1021/acsnano.5b01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The ability of nano- and microparticles of partially oxidized mesoporous silicon (pSi) to sequester, protect, and deliver the anthelmintic pore-forming protein Cry5B to nematodes is assessed in vitro and in vivo. Thermally oxidized pSi particles are stable under gastric conditions and show relatively low toxicity to nematodes. Fluorescence images of rhodamine-labeled pSi particles within the nematodes Caenorhabditis elegans and Ancylostoma ceylanicum show that ingestion is dependent on particle size: particles of a 0.4 ± 0.2 μm size are noticeably ingested by both species within 2 h of introduction in vitro, whereas 5 ± 2 μm particles are excluded from C. elegans but enter the pharynx region of A. ceylanicum after 24 h. The anthelmintic protein Cry5B, a pore-forming crystal (Cry) protein derived from Bacillus thuringiensis, is incorporated into the pSi particles by aqueous infiltration. Feeding of Cry5B-loaded pSi particles to C. elegans leads to significant intoxication of the nematode. Protein-loaded particles of size 0.4 μm display the highest level of in vitro toxicity toward C. elegans on a drug-mass basis. The porous nanostructure protects Cry5B from hydrolytic and enzymatic (pepsin) degradation in simulated gastric fluid (pH 1.2) for time periods up to 2 h. In vivo experiments with hookworm-infected hamsters show no significant reduction in worm burden with the Cry5B-loaded particles, which is attributed to slow release of the protein from the particles and/or short residence time of the particles in the duodenum of the animal.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yan Hu
- Section of Cell and Development Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Melanie Miller
- Section of Cell and Development Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Raffi V. Aroian
- Section of Cell and Development Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael J. Sailor
- Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
58
|
Wang M, Hartman PS, Loni A, Canham LT, Bodiford N, Coffer JL. Influence of Surface Chemistry on the Release of an Antibacterial Drug from Nanostructured Porous Silicon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6179-85. [PMID: 25970551 DOI: 10.1021/acs.langmuir.5b01372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nanostructured mesoporous silicon possesses important properties advantageous to drug loading and delivery. For controlled release of the antibacterial drug triclosan, and its associated activity versus Staphylococcus aureus, previous studies investigated the influence of porosity of the silicon matrix. In this work, we focus on the complementary issue of the influence of surface chemistry on such properties, with particular regard to drug loading and release kinetics that can be ideally adjusted by surface modification. Comparison between drug release from as-anodized, hydride-terminated hydrophobic porous silicon and the oxidized hydrophilic counterpart is complicated due to the rapid bioresorption of the former; hence, a hydrophobic interface with long-term biostability is desired, such as can be provided by a relatively long chain octyl moiety. To minimize possible thermal degradation of the surfaces or drug activity during loading of molten drug species, a solution loading method has been investigated. Such studies demonstrate that the ability of porous silicon to act as an effective carrier for sustained delivery of antibacterial agents can be sensitively altered by surface functionalization.
Collapse
Affiliation(s)
| | | | - Armando Loni
- §pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ, U.K
| | - Leigh T Canham
- §pSiMedica Ltd., Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire WR14 3SZ, U.K
| | | | | |
Collapse
|
59
|
Formentín P, Catalán Ú, Fernández-Castillejo S, Alba M, Baranowska M, Solà R, Pallarès J, Marsal LF. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates. J Biomater Appl 2015; 30:398-408. [PMID: 26017716 DOI: 10.1177/0885328215588414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research.
Collapse
Affiliation(s)
- Pilar Formentín
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Úrsula Catalán
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sara Fernández-Castillejo
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Alba
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Malgorzata Baranowska
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Rosa Solà
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Pallarès
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís F Marsal
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
60
|
Chiappini C, Martinez JO, De Rosa E, Almeida CS, Tasciotti E, Stevens MM. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS NANO 2015; 9:5500-5509. [PMID: 25858596 PMCID: PMC4733661 DOI: 10.1021/acsnano.5b01490] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanoneedles display potential in mediating the delivery of drugs and biologicals, as well as intracellular sensing and single-cell stimulation, through direct access to the cell cytoplasm. Nanoneedles enable cytosolic delivery, negotiating the cell membrane and the endolysosomal system, thus overcoming these major obstacles to the efficacy of nanotherapeutics. The low toxicity and minimal invasiveness of nanoneedles have a potential for the sustained nonimmunogenic delivery of payloads in vivo, provided that the development of biocompatible nanoneedles with a simple deployment strategy is achieved. Here we present a mesoporous silicon nanoneedle array that achieves a tight interface with the cell, rapidly negotiating local biological barriers to grant temporary access to the cytosol with minimal impact on cell viability. The tightness of this interfacing enables both delivery of cell-impermeant quantum dots in vivo and live intracellular sensing of pH. Dissecting the biointerface over time elucidated the dynamics of cell association and nanoneedle biodegradation, showing rapid interfacing leading to cytosolic payload delivery within less than 30 minutes in vitro. The rapid and simple application of nanoneedles in vivo to the surface of tissues with different architectures invariably resulted in the localized delivery of quantum dots to the superficial cells and their prolonged retention. This investigation provides an understanding of the dynamics of nanoneedles' biointerface and delivery, outlining a strategy for highly local intracellular delivery of nanoparticles and cell-impermeant payloads within live tissues.
Collapse
Affiliation(s)
- Ciro Chiappini
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan O. Martinez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Enrica De Rosa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Carina S. Almeida
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
61
|
Tan Y, Richards D, Xu R, Stewart-Clark S, Mani SK, Borg TK, Menick DR, Tian B, Mei Y. Silicon nanowire-induced maturation of cardiomyocytes derived from human induced pluripotent stem cells. NANO LETTERS 2015; 15:2765-72. [PMID: 25826336 PMCID: PMC4431939 DOI: 10.1021/nl502227a] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The current inability to derive mature cardiomyocytes from human pluripotent stem cells has been the limiting step for transitioning this powerful technology into clinical therapies. To address this, scaffold-based tissue engineering approaches have been utilized to mimic heart development in vitro and promote maturation of cardiomyocytes derived from human pluripotent stem cells. While scaffolds can provide 3D microenvironments, current scaffolds lack the matched physical/chemical/biological properties of native extracellular environments. On the other hand, scaffold-free, 3D cardiac spheroids (i.e., spherical-shaped microtissues) prepared by seeding cardiomyocytes into agarose microwells were shown to improve cardiac functions. However, cardiomyocytes within the spheroids could not assemble in a controlled manner and led to compromised, unsynchronized contractions. Here, we show, for the first time, that incorporation of a trace amount (i.e., ∼0.004% w/v) of electrically conductive silicon nanowires (e-SiNWs) in otherwise scaffold-free cardiac spheroids can form an electrically conductive network, leading to synchronized and significantly enhanced contraction (i.e., >55% increase in average contraction amplitude), resulting in significantly more advanced cellular structural and contractile maturation.
Collapse
Affiliation(s)
- Yu Tan
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Dylan Richards
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
| | - Ruoyu Xu
- Department of Chemistry, the James Franck Institute and the Institute for Biophysical Dynamics, the University of Chicago, Chicago, IL 60637, USA
| | | | - Santhosh Kumar Mani
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston SC 29425, USA
| | - Thomas Keith Borg
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston SC 29425, USA
| | - Bozhi Tian
- Department of Chemistry, the James Franck Institute and the Institute for Biophysical Dynamics, the University of Chicago, Chicago, IL 60637, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
62
|
Chiappini C, De Rosa E, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. NATURE MATERIALS 2015; 14:532-9. [PMID: 25822693 PMCID: PMC4538992 DOI: 10.1038/nmat4249] [Citation(s) in RCA: 270] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/11/2015] [Indexed: 04/14/2023]
Abstract
The controlled delivery of nucleic acids to selected tissues remains an inefficient process mired by low transfection efficacy, poor scalability because of varying efficiency with cell type and location, and questionable safety as a result of toxicity issues arising from the typical materials and procedures employed. High efficiency and minimal toxicity in vitro has been shown for intracellular delivery of nuclei acids by using nanoneedles, yet extending these characteristics to in vivo delivery has been difficult, as current interfacing strategies rely on complex equipment or active cell internalization through prolonged interfacing. Here, we show that a tunable array of biodegradable nanoneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle.
Collapse
Affiliation(s)
- C. Chiappini
- Department of Materials, Imperial College London, London SW6 7PB, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW6 7PB, UK
| | - E. De Rosa
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - J. O. Martinez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - X. Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - J. Steele
- Department of Materials, Imperial College London, London SW6 7PB, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW6 7PB, UK
| | - M. M. Stevens
- Department of Materials, Imperial College London, London SW6 7PB, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW6 7PB, UK
| | - E. Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| |
Collapse
|
63
|
Yin L, Farimani AB, Min K, Vishal N, Lam J, Lee YK, Aluru NR, Rogers JA. Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1857-64. [PMID: 25626856 DOI: 10.1002/adma.201404579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/03/2015] [Indexed: 05/27/2023]
Affiliation(s)
- Lan Yin
- Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Tzur-Balter A, Shatsberg Z, Beckerman M, Segal E, Artzi N. Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat Commun 2015; 6:6208. [PMID: 25670235 PMCID: PMC4339882 DOI: 10.1038/ncomms7208] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/06/2015] [Indexed: 01/28/2023] Open
Abstract
Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance. The degradation of materials used in biological applications has an important bearing on their long term performance. Here, the authors show how porous silicon nanoparticle degradation can be accelerated in vivo through the influence of local tissue pathology, likely influencing drug delivery performance.
Collapse
Affiliation(s)
- Adi Tzur-Balter
- The Inter-Departmental Program of Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zohar Shatsberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Margarita Beckerman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ester Segal
- 1] Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel [2] Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Natalie Artzi
- 1] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| |
Collapse
|
65
|
Näkki S, Rytkönen J, Nissinen T, Florea C, Riikonen J, Ek P, Zhang H, Santos HA, Närvänen A, Xu W, Lehto VP. Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomater 2015; 13:207-15. [PMID: 25463492 DOI: 10.1016/j.actbio.2014.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/04/2014] [Accepted: 11/12/2014] [Indexed: 12/13/2022]
Abstract
Nanotechnology has attracted considerable interest in the field of biomedicine, where various nanoparticles (NPs) have been introduced as efficient drug carrier systems. Mesoporous silicon (PSi) is one of the most promising materials in this field due to its low toxicity, good biodegradability, high surface area, tunable pore size and controllable surface functionality. However, recognition by the reticuloendothelial system and particle agglomeration hinder the use of PSi for intravenous applications. The present paper describes a dual-PEGylation method, where two PEG molecules with different sizes (0.5 and 2 kDa) were grafted simultaneously in a single process onto thermally oxidized PSi NPs to form a high-density PEG coating with both brush-like and mushroom-like conformation. The material was characterized in detail and the effects of the dual-PEGylation on cell viability, protein adsorption and macrophage uptakes were evaluated. The results show that dual-PEGylation improves the colloidal stability of the NPs in salt solutions, prolongs their half-lives, and minimizes both protein adsorption and macrophage uptake. Therefore, these new dual-PEGylated PSi NPs are potential candidates for intravenous applications.
Collapse
Affiliation(s)
- Simo Näkki
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jussi Rytkönen
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Tuomo Nissinen
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Cristina Florea
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Joakim Riikonen
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Paul Ek
- Laboratory of Analytical Chemistry, Åbo Akademi University, FI-20500 Turku, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ale Närvänen
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Wujun Xu
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
66
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
67
|
Hernandez-Montelongo J, Naveas N, Degoutin S, Tabary N, Chai F, Spampinato V, Ceccone G, Rossi F, Torres-Costa V, Manso-Silvan M, Martel B. Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr Polym 2014; 110:238-52. [DOI: 10.1016/j.carbpol.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
68
|
Formentín P, Alba M, Catalán Ú, Fernández-Castillejo S, Pallarès J, Solà R, Marsal LF. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior. NANOSCALE RESEARCH LETTERS 2014; 9:421. [PMID: 25246859 PMCID: PMC4158340 DOI: 10.1186/1556-276x-9-421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 05/28/2023]
Abstract
Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Pilar Formentín
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - María Alba
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - Úrsula Catalán
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Sara Fernández-Castillejo
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Josep Pallarès
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - Rosà Solà
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Lluís F Marsal
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| |
Collapse
|
69
|
Nan K, Ma F, Hou H, Freeman WR, Sailor MJ, Cheng L. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 2014; 10:3505-12. [PMID: 24793657 DOI: 10.1016/j.actbio.2014.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/23/2014] [Accepted: 04/22/2014] [Indexed: 01/09/2023]
Abstract
A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water emulsion method have mean diameters of 52.33±16.37μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8μm, of PLGA-DNR was significantly smaller, compared with the other two (P<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microspheres contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14days, while the PLGA-pSiO2-DNR microspheres released DNR for 74days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with antiproliferation compounds such as DNR.
Collapse
|
70
|
Martín-Palma RJ, Hernández-Montelongo J, Torres-Costa V, Manso-Silván M, Muñoz-Noval Á. Nanostructured porous silicon-mediated drug delivery. Expert Opin Drug Deliv 2014; 11:1273-83. [PMID: 24941438 DOI: 10.1517/17425247.2014.919254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The particular properties of nanostructured porous silicon (nanoPS) make it an attractive material for controlled and localized release of therapeutics within the body, aiming at increased efficacy and reduced risks of potential side effects. Since this is a rapidly evolving field as a consequence of the number of research groups involved, a critical review of the state of the art is necessary. AREAS COVERED In this work, the most promising and successful applications of nanoPS in the field of drug delivery are reviewed and discussed. Two key issues such as drug loading and release are also analyzed in detail. The development of multifunctional (hybrid) systems, aiming at imparting additional functionalities to the nanoPS particles such as luminescence, magnetic response and/or plasmonic effects (allowing simultaneous tracking and guiding), is also examined. EXPERT OPINION Nanostructured materials based on silicon are promising platforms for pharmaceutical applications given their ability to degrade and low toxicity. However, a very limited number of clinical applications have been demonstrated so far.
Collapse
Affiliation(s)
- Raúl J Martín-Palma
- Universidad Autónoma de Madrid, Departamento de Física Aplicada, Campus de Cantoblanco , 28049 Madrid , Spain
| | | | | | | | | |
Collapse
|
71
|
Fry N, Boss GR, Sailor MJ. Oxidation-Induced Trapping of Drugs in Porous Silicon Microparticles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2014; 26:2758-2764. [PMID: 25678746 PMCID: PMC4311935 DOI: 10.1021/cm500797b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 05/02/2023]
Abstract
An approach for the preparation of an oxidized porous silicon microparticle drug delivery system that can provide efficient trapping and sustained release of various drugs is reported. The method uses the contraction of porous silicon's mesopores, which occurs during oxidation of the silicon matrix, to increase the loading and retention of drugs within the particles. First, a porous Si (pSi) film is prepared by electrochemical etching of p-type silicon with a resistivity of >0.65 Ω cm in a 1:1 (v/v) HF/ethanol electrolyte solution. Under these conditions, the pore walls are sufficiently thin to allow for complete oxidation of the silicon skeleton under mild conditions. The pSi film is then soaked in an aqueous solution containing the drug (cobinamide or rhodamine B test molecules were used in this study) and sodium nitrite. Oxidation of the porous host by nitrite results in a shrinking of the pore openings, which physically traps the drug in the porous matrix. The film is subsequently fractured by ultrasonication into microparticles. Upon comparison with commonly used oxidizing agents for pSi such as water, peroxide, and dimethyl sulfoxide, nitrite is kinetically and thermodynamically sufficient to oxidize the pore walls of the pSi matrix, precluding reductive (by Si) or oxidative (by nitrite) degradation of the drug payload. The drug loading efficiency is significantly increased (by up to 10-fold), and the release rate is significantly prolonged (by 20-fold) relative to control samples in which the drug is loaded by infiltration of pSi particles postoxidation. We find that it is important that the silicon skeleton be completely oxidized to ensure the drug is not reduced or degraded by contact with elemental silicon during the particle dissolution-drug release phase.
Collapse
Affiliation(s)
- Nicole
L. Fry
- Department of Chemistry and Biochemistry and Department of Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Gerry R. Boss
- Department of Chemistry and Biochemistry and Department of Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Michael J. Sailor
- Department of Chemistry and Biochemistry and Department of Medicine, University of California at San Diego, La Jolla, California 92093, United States
- E-mail:
| |
Collapse
|
72
|
In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 2014; 4:2326. [PMID: 23933660 PMCID: PMC4154512 DOI: 10.1038/ncomms3326] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/19/2013] [Indexed: 01/28/2023] Open
Abstract
Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (< 10 ns) emission signals from organic chromophores or tissue autofluorescence.Here, using a conventional animal imaging system not optimized for such long-lived excited states, we demonstrate improvement of signal to background contrast ratio by > 50-fold in vitro and by > 20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.
Collapse
|
73
|
Hwang SW, Park G, Cheng H, Song JK, Kang SK, Yin L, Kim JH, Omenetto FG, Huang Y, Lee KM, Rogers JA. 25th anniversary article: materials for high-performance biodegradable semiconductor devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:1992-2000. [PMID: 24677058 DOI: 10.1002/adma.201304821] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/13/2013] [Indexed: 05/06/2023]
Abstract
We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.
Collapse
Affiliation(s)
- Suk-Won Hwang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Santos HA, Mäkilä E, Airaksinen A, Bimbo L, Hirvonen J. Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine (Lond) 2014; 9:535-54. [DOI: 10.2217/nnm.13.223] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The research on porous silicon (PSi) materials for biomedical applications has expanded greatly since the early studies of Leigh Canham more than 25 years ago. Currently, PSi nanoparticles are receiving growing attention from the scientific biomedical community. These nanostructured materials have emerged as promising multifunctional and versatile platforms for nanomedicine in drug delivery, diagnostics and therapy. The outstanding properties of PSi, including excellent in vivo biocompatibility and biodegradability, have led to many applications of PSi for delivery of therapeutic agents. In this review, we highlight current advances and recent efforts on PSi nanoparticles regarding the production properties, efficient drug delivery, multidrug delivery, permeation across biological barriers, biosafety and in vivo tracking for biomedical applications. The constant boost on successful preclinical in vivo data reported so far makes this the ‘golden age’ for PSi, which is expected to finally be translated into the clinic in the near future.
Collapse
Affiliation(s)
- Hélder A Santos
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Anu J Airaksinen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Luis M Bimbo
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
75
|
Hou H, Nieto A, Ma F, Freeman WR, Sailor MJ, Cheng L. Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J Control Release 2014; 178:46-54. [PMID: 24424270 DOI: 10.1016/j.jconrel.2014.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/20/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15nm to 95nm. In vitro studies showed that degradation of pSiO2 increased with increasing pore size and the degradation of pSiO2 was approximately constant for a given particle type. The degradation of pSiO2 with 43nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2μg/mL, p<0.0001). In vitro dynamic DNR release revealed that pSiO2-CO2H:DNR (porous silicon dioxide with covalent loading of daunorubicin) with large pores (43nm) yielded a significantly higher DNR level than particles with 15 or 26nm pores (13.5±6.9ng/mL vs. 2.3±1.6ng/mL and 1.1±0.9ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in the vitreous at post-injection day 14 was 66.52ng/mL for 95nm pore size pSiO2-CO2H:DNR, 10.76ng/mL for 43nm pSiO2-CO2H:DNR, and only 1.05ng/mL for 15nm pSiO2-CO2H:DNR. Pore expansion from 15nm to 95nm led to a 63 fold increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSiO2 covalently loaded with DNR by engineering the nano-pore size of pSi.
Collapse
Affiliation(s)
- Huiyuan Hou
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Alejandra Nieto
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Feiyan Ma
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, USA
| | - William R Freeman
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, USA
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Lingyun Cheng
- Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, USA.
| |
Collapse
|
76
|
Hernandez-Montelongo J, Gallach D, Naveas N, Torres-Costa V, Climent-Font A, García-Ruiz JP, Manso-Silvan M. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: spin coating vs electrochemical activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 34:245-51. [PMID: 24268256 DOI: 10.1016/j.msec.2013.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 01/31/2023]
Abstract
Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering.
Collapse
|
77
|
Tzur-Balter A, Young JM, Bonanno-Young LM, Segal E. Mathematical modeling of drug release from nanostructured porous Si: combining carrier erosion and hindered drug diffusion for predicting release kinetics. Acta Biomater 2013; 9:8346-53. [PMID: 23770226 DOI: 10.1016/j.actbio.2013.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
Abstract
A novel, empirical, macroscopic model is developed to describe the release of a model anticancer drug, Mitoxantrone, from native and chemically modified porous Si (PSi) thin films. Drug release from these carriers results from a combination of two mechanisms, i.e. out-diffusion of the drug molecules and erosion of the Si scaffold. Thus, the proposed mathematical model adapts the Crank model to lump the effects of temporal changes in molecular interactions and carrier scaffold erosion into a comprehensive model of hindered drug diffusion from nanoscale porous systems. Careful characterization of pore size, porosity, surface area, drug loading, as well as Si scaffold degradation profiles, measured over the same time-scale as drug release, are incorporated into the model parameter estimation. A comparison of the experimental and model results shows accurate representation of the data, emphasizing the reliability of the model. The proposed model shows that drug diffusivity values significantly vary with time for the two studied carriers, which are ascribed to the distinctive role of the prevailing physical mechanisms in each system. Finally, secondary validation of the proposed model is demonstrated by showing adequate fit to published data of the release of dexamethasone from similar mesoporous Si carriers.
Collapse
Affiliation(s)
- Adi Tzur-Balter
- The Interdepartmental Program of Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
78
|
Bimbo LM, Denisova OV, Mäkilä E, Kaasalainen M, De Brabander JK, Hirvonen J, Salonen J, Kakkola L, Kainov D, Santos HA. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles. ACS NANO 2013; 7:6884-6893. [PMID: 23889734 DOI: 10.1021/nn402062f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.
Collapse
Affiliation(s)
- Luis M Bimbo
- Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Martinez JO, Chiappini C, Ziemys A, Faust AM, Kojic M, Liu X, Ferrari M, Tasciotti E. Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics. Biomaterials 2013; 34:8469-77. [PMID: 23911070 DOI: 10.1016/j.biomaterials.2013.07.049] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/15/2013] [Indexed: 11/24/2022]
Abstract
Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size.
Collapse
Affiliation(s)
- Jonathan O Martinez
- Department of Nanomedicine, The Methodist Hospital Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Porous silicon (pSi) is a nanostructured carrier system that has received considerable attention over the past 10 years, for use in a wide variety of biomedical applications, including biosensing, biomedical imaging, tissue scaffolds and drug delivery. This interest is due to several key features of pSi, including excellent in vivo biocompatibility, the ease of surface chemistry modification and the control over its 3D porous network structure. With control of these physical parameters pSi has successfully been used for the delivery of a variety of therapeutics, ranging from small-molecule drugs to larger peptide/protein-type therapeutics. In this review, the authors provide a brief overview of pSi fabrication methods, particularly with regard to the need to passivate the highly reactive Si-Hx surface species of native pSi, typically via thermal oxidation, hydrocarbonization or hydrosilylation. This surface modification, in turn, controls both the loading and release of therapeutics. The authors will then report on specific case studies of leading examples on the use of pSi as a therapeutic-delivery system. Specifically, the first reported in vivo study that demonstrated the use of pSi to improve the delivery of a Biopharmaceutical Classification System Class 2 poorly soluble drug (indomethacin), by using thermally oxidized pSi, is discussed, as well as highlighting a study that determined the biodistribution of 18F-radiolabeled thermally hydrocarbonized pSi after oral dosing. The authors also report on the development of composite pSi–poly(D,L-lactide-co-glycolide) microparticles for the controlled delivery of protein therapeutics. Finally, the use of pSi in the delivery of bioactives, such as the successful use of thermally carbonized pSi to deliver Melanotan II, an unspecific agonist for the melanocortin receptors that are involved in controlling fluid uptake is discussed. With a growing body of literature reporting the successful use of pSi to deliver a range of therapeutics, we are entering what may be a golden age for this drug-delivery system, which may finally see the long-held promises finally achieved.
Collapse
|
81
|
Fine D, Grattoni A, Goodall R, Bansal SS, Chiappini C, Hosali S, van de Ven AL, Srinivasan S, Liu X, Godin B, Brousseau L, Yazdi IK, Fernandez-Moure J, Tasciotti E, Wu HJ, Hu Y, Klemm S, Ferrari M. Silicon micro- and nanofabrication for medicine. Adv Healthc Mater 2013; 2:632-66. [PMID: 23584841 PMCID: PMC3777663 DOI: 10.1002/adhm.201200214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/31/2012] [Indexed: 12/13/2022]
Abstract
This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.
Collapse
Affiliation(s)
- Daniel Fine
- Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
In vitro cell tests of pancreatic malignant tumor cells by photothermotherapy based on DMSO porous silicon colloids. Lasers Med Sci 2013; 29:221-3. [DOI: 10.1007/s10103-013-1316-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
|
83
|
Porous silicon biosensor: Current status. Biosens Bioelectron 2013; 41:54-64. [DOI: 10.1016/j.bios.2012.09.045] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/13/2012] [Accepted: 09/22/2012] [Indexed: 01/10/2023]
|
84
|
Gupta B, Zhu Y, Guan B, Reece PJ, Gooding JJ. Functionalised porous silicon as a biosensor: emphasis on monitoring cells in vivo and in vitro. Analyst 2013; 138:3593-615. [DOI: 10.1039/c3an00081h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
85
|
Xu W, Riikonen J, Lehto VP. Mesoporous systems for poorly soluble drugs. Int J Pharm 2012; 453:181-97. [PMID: 22990124 DOI: 10.1016/j.ijpharm.2012.09.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/13/2023]
Abstract
Utilization of inorganic mesoporous materials in formulations of poorly water-soluble drugs to enhance their dissolution and permeation behavior is a rapidly growing area in pharmaceutical materials research. The benefits of mesoporous materials in drug delivery applications stem from their large surface area and pore volume. These properties enable the materials to accommodate large amounts of payload molecules, protect them from premature degradation, and promote controlled and fast release. As carriers with various morphologies and chemical surface properties can be produced, these materials may even promote adsorption from the gastrointestinal tract to the systemic circulation. The main concern regarding their clinical applications is still the safety aspect even though most of them have been reported to be safely excreted, and a rather extensive toxicity screening has already been conducted with the most frequently studied mesoporous materials. In addition, the production of the materials on a large scale and at a reasonable cost may be a challenge when considering the utilization of the materials in industrial processes. However, if mesoporous materials could be employed in the industrial crystallization processes to produce hybrid materials with poorly soluble compounds, and hence to enhance their oral bioavailability, this might open new avenues for the pharmaceutical industry to employ nanotechnology in their processes.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | | | | |
Collapse
|
86
|
Gu L, Ruff LE, Qin Z, Corr MP, Hedrick SM, Sailor MJ. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3981-7. [PMID: 22689074 PMCID: PMC3517000 DOI: 10.1002/adma.201200776] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/05/2012] [Indexed: 05/18/2023]
Abstract
One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as self-malignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30-40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs.
Collapse
Affiliation(s)
- Luo Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Laura E. Ruff
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, USA
| | - Zhengtao Qin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Maripat P. Corr
- School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Stephen M. Hedrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael J. Sailor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
87
|
Naveas N, Costa VT, Gallach D, Hernandez-Montelongo J, Palma RJM, Garcia-Ruiz JP, Manso-Silván M. Chemical stabilization of porous silicon for enhanced biofunctionalization with immunoglobulin. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:045009. [PMID: 27877509 PMCID: PMC5090565 DOI: 10.1088/1468-6996/13/4/045009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/19/2012] [Indexed: 06/06/2023]
Abstract
Porous silicon (PSi) is widely used in biological experiments, owing to its biocompatibility and well-established fabrication methods that allow tailoring its surface. Nevertheless, there are some unresolved issues such as deciding whether the stabilization of PSi is necessary for its biological applications and evaluating the effects of PSi stabilization on the surface biofunctionalization with proteins. In this work we demonstrate that non-stabilized PSi is prone to detachment owing to the stress induced upon biomolecular adsorption. Biofunctionalized non-stabilized PSi loses the interference properties characteristic of a thin film, and groove-like structures resulting from a final layer collapse were observed by scanning electron microscopy. Likewise, direct PSi derivatization with 3-aminopropyl-triethoxysilane (APTS) does not stabilize PSi against immunoglobulin biofunctionalization. To overcome this problem, we developed a simple chemical process of stabilizing PSi (CoxPSi) for biological applications, which has several advantages over thermal stabilization (ToxPSi). The process consists of chemical oxidation in H2O2, surface derivatization with APTS and a curing step at 120 °C. This process offers integral homogeneous PSi morphology, hydrophilic surface termination (contact angle θ = 26°) and highly efficient derivatized and biofunctionalized PSi surfaces (six times more efficient than ToxPSi). All these features are highly desirable for biological applications, such as biosensing, where our results can be used for the design and optimization of the biomolecular immobilization cascade on PSi surfaces.
Collapse
Affiliation(s)
- Nelson Naveas
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Vicente Torres Costa
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Dario Gallach
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Jacobo Hernandez-Montelongo
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Raul Jose Martín Palma
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | - Miguel Manso-Silván
- Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
88
|
Jarvis KL, Barnes TJ, Prestidge CA. Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interface Sci 2012; 175:25-38. [PMID: 22521238 DOI: 10.1016/j.cis.2012.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/20/2012] [Accepted: 03/23/2012] [Indexed: 01/09/2023]
Abstract
Porous silicon (pSi) has a number of unique properties that appoint it as a potential drug delivery vehicle; high loading capacity, controllable surface chemistry and structure, and controlled release properties. The native Si(y)SiH(x) terminated pSi surface is highly reactive and prone to spontaneous oxidation. Surface modification is used to stabilize the pSi surface but also to produce surfaces with desired drug delivery behavior, typically via oxidation, hydrosilylation or thermal carbonization. A number of advanced characterization techniques have been used to analyze pSi surface chemistry, including X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification not only stabilizes the pSi surface but determines its charge, wettability and dissolution properties. Manipulation of these parameters can impact drug encapsulation by altering drug-pSi interactions. pSi has shown to be a successful vehicle for the delivery of poorly soluble drugs and protein therapeutics. Surface modification influences drug pore penetration, crystallinity, loading level and dissolution rate. Surface modification of pSi shows great potential for drug delivery applications by controlling pSi-drug interactions. Controlling these interactions allows specific drug release behaviors to be engineered to aid in the delivery of previously challenging therapeutics. Within this review, different pSi modification techniques will be outlined followed by a summary of how pSi surface modification has been used to improve drug encapsulation and delivery.
Collapse
Affiliation(s)
- Karyn L Jarvis
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA, Australia
| | | | | |
Collapse
|
89
|
McInnes SJP, Voelcker NH. Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides. NANOSCALE RESEARCH LETTERS 2012; 7:385. [PMID: 22784812 PMCID: PMC3552826 DOI: 10.1186/1556-276x-7-385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
We describe the preparation of several types of porous silicon (pSi) microparticles as supports for the solid-phase synthesis of oligonucleotides. The first of these supports facilitates oligonucleotide release from the nanostructured support during the oligonucleotide deprotection step, while the second type of support is able to withstand the cleavage and deprotection of the oligonucleotides post synthesis and subsequently dissolve at physiological conditions (pH = 7.4, 37°C), slowly releasing the oligonucleotides. Our approach involves the fabrication of pSi microparticles and their functionalisation via hydrosilylation reactions to generate a dimethoxytrityl-protected alcohol on the pSi surface as an initiation point for the synthesis of short oligonucleotides.
Collapse
Affiliation(s)
- Steven J P McInnes
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia, 5095, Australia
| | - Nicolas H Voelcker
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia, 5095, Australia
| |
Collapse
|
90
|
Gentile F, La Rocca R, Marinaro G, Nicastri A, Toma A, Paonessa F, Cojoc G, Liberale C, Benfenati F, di Fabrizio E, Decuzzi P. Differential cell adhesion on mesoporous silicon substrates. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2903-11. [PMID: 22583790 DOI: 10.1021/am300519a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Porous silicon (PSi) is a promising material in several biomedical applications because of its biocompatibility and biodegradability. Despite the plethora of studies focusing on the interaction of cells with micrometer and submicro geometrical features, limited information is available on the response of cells to substrates with a quasi-regular distribution of nanoscopic pores. Here, the behavior of four different cell types is analyzed on two mesoporous (MeP) silicon substrates, with an average pore size of ∼5 (MeP1) and ∼20 nm (MeP2), respectively. On both MeP substrates, cells are observed to spread and adhere in a larger number as compared to flat silicon wafers. At all considered time points, the surface density of the adhering cells nd is larger on the PSi substrate with the smaller average pore size (MeP1). At 60 h, nd is from ∼1.5 to 5 times larger on MeP1 than on MeP2 substrates, depending on the cell type. The higher rates of proliferation are observed for the two neuronal cell types, the mouse neuroblastoma cells (N2A) and the immortalized human cortical neuronal cells (HCN1A). It is speculated that the higher adhesion on MeP1 could be attributed to a preferential matching of the substrate topography with the recently observed multiscale molecular architecture of focal adhesions. These results have implications in the rational development of PSi substrates for supporting cell adhesion and controlling drug release in implants and scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Francesco Gentile
- Laboratory of Proteomics and Mass Spectrometry, Department of Experimental and Clinical Medicine, University of Magna Graecia , Catanzaro 88100, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Instant food products as a source of silicon. Food Chem 2012; 135:1756-61. [PMID: 22953918 DOI: 10.1016/j.foodchem.2012.05.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/23/2022]
Abstract
Silicon is a trace element for humans, and is absorbed from food in the form of orthosilicic acid. Instant food products are part of a constantly growing market of convenience foods, which have not been evaluated yet as sources of silicon. In this study the total and soluble silicon contents in different instant food products were determined by using graphite furnace atomic absorption spectrometry (GF-AAS). A selection of instant products commercially available in Wroclaw were analyzed: soups, main courses, coffee drinks, jellies and puddings. Total silicon contents in soups, main courses and coffee drinks ranged widely and reached the values: 0.10-30.20, 0.63-37.91 and 0.21-13.37mg/serving, respectively. These products contained 0.05-1.26mg of soluble silicon per serving. The total silicon content in jellies and puddings did not exceed 0.36mg and 2.42mg/serving, respectively. Among the analyzed desserts the highest level of soluble silicon was found in chocolate puddings: 0.36-0.41mg/serving. The silicon level in servings of the studied instant products when prepared with the appropriate amount of water was also estimated. The mean content of silicon determined in samples of drinking water from Wrocław and the vicinity, which was used for the estimation, amounted to 7.09mg/l. The total silicon content in ready-to-eat products ranged from 1.32 to 39.21mg/serving. In conclusion, some of the analyzed instant foods contained very high amounts of silicon, however the content of the soluble, and hence available, form of this element was low.
Collapse
|
92
|
Bonanno LM, Segal E. Nanostructured porous silicon–polymer-based hybrids: from biosensing to drug delivery. Nanomedicine (Lond) 2011; 6:1755-70. [DOI: 10.2217/nnm.11.153] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Organic–inorganic hybrids with controlled morphology at the nanometer scale represent an exciting class of materials that can display unique properties that are culminated by the characteristics of each building block. Recent research highlights their potential as biomimetic composites and application in biosensing, lab-on-chip devices, drug delivery and tissue engineering. Here we focus on the emerging class of biomaterials that integrate polymers with nanostructured porous silicon and emphasize the design of advanced ‘smart’ functions. Porous silicon is an appealing biomaterial due to the ease of tuning its many attractive properties, including pore morphology, photonic properties, biocompatibility, biodegradation and surface chemistry. An overview is presented of the principle concepts of design and fabrication of porous silicon–polymer hybrids. Current achievements in biomedical applications are reviewed and future prospects and challenges for healthcare technologies are discussed.
Collapse
Affiliation(s)
- Lisa M Bonanno
- Department of Biotechnology & Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
93
|
Surface chemical modification to control molecular interactions with porous silicon. J Colloid Interface Sci 2011; 363:327-33. [DOI: 10.1016/j.jcis.2011.07.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/24/2011] [Accepted: 07/20/2011] [Indexed: 12/31/2022]
|
94
|
Hajj-Hassan M, Khayyat-Kholghi M, Wang H, Chodavarapu V, Henderson JE. Response of murine bone marrow-derived mesenchymal stromal cells to dry-etched porous silicon scaffolds. J Biomed Mater Res A 2011; 99:269-74. [DOI: 10.1002/jbm.a.33103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 12/10/2010] [Accepted: 02/09/2011] [Indexed: 02/01/2023]
|
95
|
Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ. Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2061-9. [PMID: 21630444 PMCID: PMC3377373 DOI: 10.1002/smll.201100438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/29/2011] [Indexed: 05/18/2023]
Abstract
The loading and release of the anti-cancer drug platinum cis-dichlorodiamine (cisplatin) from mesoporous silicon (pSi) microparticles is studied. The pSi microparticles are modified with 1-dodecene or with 1,12-undecylenic acid by hydrosilylation, and each modified pSi material acts as a reducing agent, forming a deposit of Pt on its surface that nucleates further deposition, capping the mesoporous structure and trapping free (unreduced) cisplatin within. Slow oxidation and hydrolytic dissolution of the Si/SiO(2) matrix in buffer solution or in culture medium leads to the release of drugs from the microparticles. The drug-loaded particles show significantly greater toxicity toward human ovarian cancer cells (in vitro), relative to an equivalent quantity of free cisplatin. This result is consistent with the mechanism of drug release, which generates locally high concentrations of the drug in the vicinity of the degrading particles. Control assays with pSi particles loaded in a similar manner with the therapeutically inactive trans isomer of the platinum drug, and with pSi particles containing no drug, result in low cellular toxicity. A hydrophobic pro-drug, cis,trans,cis-[Pt(NH(3))(2)(O(2)C(CH(2))(8)CH(3))(2)Cl(2)], is loaded into the pSi films from chloroform without concomitant reduction of the pSi carrier.
Collapse
Affiliation(s)
- Jennifer S Park
- Department of Bioengineering, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | | | | | |
Collapse
|
96
|
Vasani RB, McInnes SJP, Cole MA, Jani AMM, Ellis AV, Voelcker NH. Stimulus-responsiveness and drug release from porous silicon films ATRP-grafted with poly(N-isopropylacrylamide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7843-7853. [PMID: 21604788 DOI: 10.1021/la200551g] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this report, we employ surface-initiated atom transfer radical polymerization (SI-ATRP) to graft a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM), of controlled thickness from porous silicon (pSi) films to produce a stimulus-responsive inorganic-organic composite material. The optical properties of this material are studied using interferometric reflectance spectroscopy (IRS) above and below the lower critical solution temperature (LCST) of the PNIPAM graft polymer with regard to variation of pore sizes and thickness of the pSi layer (using discrete samples and pSi gradients) and also the thickness of the PNIPAM coatings. Our investigations of the composite's thermal switching properties show that pore size, pSi layer thickness, and PNIPAM coating thickness critically influence the material's thermoresponsiveness. This composite material has considerable potential for a range of applications including temperature sensors and feedback controlled drug release. Indeed, we demonstrate that modulation of the temperature around the LCST significantly alters the rate of release of the fluorescent anticancer drug camptothecin from the pSi-PNIPAM composite films.
Collapse
Affiliation(s)
- Roshan B Vasani
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | | | | | | |
Collapse
|
97
|
Osminkina LA, Luckyanova EN, Gongalsky MB, Kudryavtsev AA, Gaydarova AK, Poltavtseva RA, Kashkarov PK, Timoshenko VY, Sukhikh GT. Effects of Nanostructurized Silicon on Proliferation of Stem and Cancer Cell. Bull Exp Biol Med 2011; 151:79-83. [DOI: 10.1007/s10517-011-1264-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M. Near-Infrared Imaging Method for the In Vivo Assessment of the Biodistribution of Nanoporous Silicon Particles. Mol Imaging 2011. [DOI: 10.2310/7290.2011.00011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ennio Tasciotti
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Biana Godin
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Jonathan O. Martinez
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Ciro Chiappini
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Rohan Bhavane
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Xuewu Liu
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| | - Mauro Ferrari
- From the Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX; Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX; School of Health Information Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX; and Department of
| |
Collapse
|
99
|
Wu EC, Andrew JS, Cheng L, Freeman WR, Pearson L, Sailor MJ. Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 2010; 32:1957-66. [PMID: 21122914 DOI: 10.1016/j.biomaterials.2010.11.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 μm thick and 35 μm across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change.
Collapse
Affiliation(s)
- Elizabeth C Wu
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | | | | | | | | | |
Collapse
|
100
|
Sciacca B, Alvarez SD, Geobaldo F, Sailor MJ. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction. Dalton Trans 2010; 39:10847-53. [PMID: 20967329 DOI: 10.1039/c0dt00936a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high stability of Salonen's thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge--many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces.
Collapse
Affiliation(s)
- Beniamino Sciacca
- Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | | | | | | |
Collapse
|