51
|
Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration. IEEE Trans Biomed Eng 2017; 64:2771-2780. [DOI: 10.1109/tbme.2017.2674663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
52
|
An engineering insight into the relationship of selective cytoskeletal impairment and biomechanics of HeLa cells. Micron 2017; 102:88-96. [DOI: 10.1016/j.micron.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/22/2017] [Accepted: 09/04/2017] [Indexed: 10/24/2022]
|
53
|
Mehrnezhad A, Park K. Multifrequency Optomechanical Stiffness Measurement of Single Adherent Cells on a Solid Substrate with High Throughput. Anal Chem 2017; 89:10841-10849. [PMID: 28895727 DOI: 10.1021/acs.analchem.7b02356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanical properties of a cell reflect its biological and pathological conditions and there have been active research efforts to develop high-throughput platforms to mechanically characterize single cells. Yet, many of these research efforts are focused on suspended cells and use a flow-through configuration. In this paper, the stiffness of single adherent cells are optomechanically characterized using the vibration-induced phase shift (VIPS) without detaching them from the substrate. With the VIPS measurements, the frequency and amplitude dependency of the cell stiffness is investigated and statistically significant difference in the cell stiffness is confirmed after exposure to various drugs affecting cytoskeleton network. Furthermore, a 3-dimensional finite element model of a cell on a vibrating substrate is developed to extract the mechanical property from the measured VIPS. The developed technique can characterize the mechanical properties of single adherent cells at multiple frequencies with high throughput and will provide valuable clues in understanding cell mechanics.
Collapse
Affiliation(s)
- Ali Mehrnezhad
- Division of Electrical and Computer Engineering, Electrical Engineering Building, Louisiana State University , Baton Rouge, Louisiana 70809, United States
| | - Kidong Park
- Division of Electrical and Computer Engineering, Electrical Engineering Building, Louisiana State University , Baton Rouge, Louisiana 70809, United States
| |
Collapse
|
54
|
Shen H, Zhou T, Hu J. A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions. Anal Bioanal Chem 2017; 409:6463-6473. [PMID: 28889243 DOI: 10.1007/s00216-017-0591-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022]
Abstract
In this study, we present a novel design of interference-free, negligible installation-induced stress, suitable for the fabrication of high-throughput quartz crystal microbalance (HQCM) chips. This novel HQCM chip configuration was fabricated using eight independent yet same-batch quartz crystal resonators within a common glass substrate with eight through-holes of diameter slightly larger than that of the quartz resonator. Each quartz resonator's rim was adhered to the inner part of the through-hole via silicone glue to form the rigid (quartz)-soft (silicone)-rigid (glass) structure (RSRS) which effectively eliminates the acoustic couplings among different resonators and largely alleviates the installation-induced stresses. The consistence of the eight resonators was verified by very similar equivalent circuit parameters and very close response slopes to liquid density and viscosity. The HQCM chip was then employed for real-time and continuous monitoring of H9C2 cardiomyoblast adhesions and viscoelastic changes induced by the treatments of two types of drugs: drugs that affect the cytoskeletons, including nocodazole, paclitaxel, and Y-27632, and drugs that affect the contractile properties of the cells: verapamil and different dosages of isoprenaline. Meanwhile, we compared the cytoskeleton affecting drug-induced viscoelastic changes of H9C2 with those of human umbilical vein endothelial cells (HUVECs). The results described here provide the first solution to fabricate HQCM chips that are free from the limitation of resonator number, installation-induced stress, and acoustic interferences among resonators, which should find wide applications in areas of cell phenotype assay, cytotoxicity test, drug evaluation and screening, etc. Graphical abstract Schematic illustration of the principle and configuration of interference-free high-throughput QCM chip to evaluate and screen drugs based on cell viscoelasticity.
Collapse
Affiliation(s)
- Haibo Shen
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Tiean Zhou
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China. .,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Jiajin Hu
- Cell Mechanics and Biosensing Institute, Hunan Agricultural University, 405 Life Sciences Building, Furong District, Changsha, Hunan, 410128, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
55
|
Cai P, Takahashi R, Kuribayashi-Shigetomi K, Subagyo A, Sueoka K, Maloney JM, Van Vliet KJ, Okajima T. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population. Biophys J 2017; 113:671-678. [PMID: 28793221 DOI: 10.1016/j.bpj.2017.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023] Open
Abstract
Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G∗). Although the ensemble variation in G∗ of single cells has been elucidated, the detailed temporal variation of G∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale.
Collapse
Affiliation(s)
- PingGen Cai
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Ryosuke Takahashi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | - Agus Subagyo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Kazuhisa Sueoka
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
56
|
Even C, Abramovici G, Delort F, Rigato AF, Bailleux V, de Sousa Moreira A, Vicart P, Rico F, Batonnet-Pichon S, Briki F. Mutation in the Core Structure of Desmin Intermediate Filaments Affects Myoblast Elasticity. Biophys J 2017; 113:627-636. [PMID: 28793217 DOI: 10.1016/j.bpj.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022] Open
Abstract
Elastic properties of cells are mainly derived from the actin cytoskeleton. However, intermediate filaments are emerging as major contributors to the mechanical properties of cells. Using atomic force microscopy, we studied the elasticity of mouse myoblasts expressing a mutant form of the gene encoding for desmin intermediate filaments, p.D399Y. This variant produces desmin aggregates, the main pathological symptom of myofibrillar myopathies. Here we show that desmin-mutated cells display a 39% increased median elastic modulus compared to wild-type cells. Desmin-mutated cells required higher forces than wild-type cells to reach high indentation depths, where desmin intermediate filaments are typically located. In addition, heat-shock treatment increased the proportion of cells with aggregates and induced a secondary peak in the distribution of Young's moduli. By performing atomic force microscopy mechanical mapping combined with fluorescence microscopy, we show that higher Young's moduli were measured where desmin aggregates were located, indicating that desmin aggregates are rigid. Therefore, we provide evidence that p.D399Y stiffens mouse myoblasts. Based on these results, we suggest that p.D399Y-related myofibrillar myopathy is at least partly due to altered mechanical properties at the single-cell scale, which are propagated to the tissue scale.
Collapse
Affiliation(s)
- Catherine Even
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| | - Gilles Abramovici
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna F Rigato
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Virginie Bailleux
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Abel de Sousa Moreira
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Felix Rico
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fatma Briki
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
57
|
Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. Cytoskeleton (Hoboken) 2017; 74:283-296. [PMID: 28445605 PMCID: PMC5601209 DOI: 10.1002/cm.21369] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/29/2023]
Abstract
The mechanical fingerprint of cells is inherently linked to the structure of the cytoskeleton and can serve as a label‐free marker for cell homeostasis or pathologic states. How cytoskeletal composition affects the physical response of cells to external loads has been intensively studied with a spectrum of techniques, yet quantitative and statistically powerful investigations in the form of titration assays are hampered by the low throughput of most available methods. In this study, we employ real‐time deformability cytometry (RT‐DC), a novel microfluidic tool to examine the effects of biochemically modified F‐actin and microtubule stability and nuclear chromatin structure on cell deformation in a human leukemia cell line (HL60). The high throughput of our method facilitates extensive titration assays that allow for significance assessment of the observed effects and extraction of half‐maximal concentrations for most of the applied reagents. We quantitatively show that integrity of the F‐actin cortex and microtubule network dominate cell deformation on millisecond timescales probed with RT‐DC. Drug‐induced alterations in the nuclear chromatin structure were not found to consistently affect cell deformation. The sensitivity of the high‐throughput cell mechanical measurements to the cytoskeletal modifications we present in this study opens up new possibilities for label‐free dose‐response assays of cytoskeletal modifications.
Collapse
Affiliation(s)
- Stefan Golfier
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Alexander Mietke
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for Physics of Complex Systems, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,ZIK HIKE, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
58
|
Effects of Streptococcus sanguinis Bacteriocin on Deformation, Adhesion Ability, and Young's Modulus of Candida albicans. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5291486. [PMID: 28612025 PMCID: PMC5458367 DOI: 10.1155/2017/5291486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022]
Abstract
In order to study the thallus changes on microscopic morphology and mechanical properties of Candida albicans antagonized by Streptococcus sanguinis bacteriocin, the adhesion ability and Young's modulus of thalli and hypha of Candida albicans were measured by the relative measurement method using atomic force microscope's (AFM) tapping model. The results showed that the average adhesion ability and Young's modulus of thalli were 7.35 ± 0.77 nN and 7.33 ± 1.29 Mpa, respectively; the average adhesion ability and Young's modulus of hypha were 9.82 ± 0.39 nN and 4.04 ± 0.76 Mpa, respectively. After being antagonized by Streptococcus sanguinis bacteriocin, the adhesion ability was decreased along with the increasing of deformation in reaction region and Young's modulus followed the same changes. It could be concluded that the adhesion ability of hypha was greater than thalli, Young's modulus of hypha was less than thalli, and adhesion ability and Young's modulus of Candida albicans were decreased significantly after being antagonized by Streptococcus sanguinis bacteriocin.
Collapse
|
59
|
Khan ZS, Kamyabi N, Hussain F, Vanapalli SA. Passage times and friction due to flow of confined cancer cells, drops, and deformable particles in a microfluidic channel. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5f60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
60
|
Yang THJ, Phipps S, Leung SKW, Reuben RL, Habib FK, McNeill SA, Else RW. Dynamic instrumented palpation (DIP)—a new method for soft tissue quality assessment; application to engineered mechanical phantom materials. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5a75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
61
|
Haase K, Shendruk TN, Pelling AE. Rapid dynamics of cell-shape recovery in response to local deformations. SOFT MATTER 2017; 13:567-577. [PMID: 27942684 DOI: 10.1039/c6sm02560a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is vital that cells respond rapidly to mechanical cues within their microenvironment through changes in cell shape and volume, which rely upon the mechanical properties of cells' highly interconnected cytoskeletal networks and intracellular fluid redistributions. While previous research has largely investigated deformation mechanics, we now focus on the immediate cell-shape recovery response following mechanical perturbation by inducing large, local, and reproducible cellular deformations using AFM. By continuous imaging within the plane of deformation, we characterize the membrane and cortical response of HeLa cells to unloading, and model the recovery via overdamped viscoelastic dynamics. Importantly, the majority (90%) of HeLa cells recover their cell shape in <1 s. Despite actin remodelling on this time scale, we show that cell-shape recovery time is not affected by load duration, nor magnitude for untreated cells. To further explore this rapid recovery response, we expose cells to cytoskeletal destabilizers and osmotic shock conditions, which uncovers the interplay between actin and osmotic pressure. We show that the rapid dynamics of recovery depend crucially on intracellular pressure, and provide strong evidence that cortical actin is the key regulator in the cell-shape recovery processes, in both cancerous and non-cancerous epithelial cells.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada.
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK
| | - Andrew E Pelling
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Canada. and Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Canada and Institute for Science, Society and Policy, University of Ottawa, Simard Hall, 60 University, Ottawa, ON K1N 6N5, Canada and SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
62
|
Wang H, Wilksch JJ, Chen L, Tan JWH, Strugnell RA, Gee ML. Influence of Fimbriae on Bacterial Adhesion and Viscoelasticity and Correlations of the Two Properties with Biofilm Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:100-106. [PMID: 27959542 DOI: 10.1021/acs.langmuir.6b03764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The surface polymers of bacteria determine the ability of bacteria to adhere to a substrate for colonization, which is an essential step for a variety of microbial processes, such as biofilm formation and biofouling. Capsular polysaccharides and fimbriae are two major components on a bacterial surface, which are critical for mediating cell-surface interactions. Adhesion and viscoelasticity of bacteria are two major physical properties related to bacteria-surface interactions. In this study, we employed atomic force microscopy (AFM) to interrogate how the adhesion work and the viscoelasticity of a bacterial pathogen, Klebsiella pneumoniae, influence biofilm formation. To do this, the wild-type, type 3 fimbriae-deficient, and type 3 fimbriae-overexpressed K. pneumoniae strains have been investigated in an aqueous environment. The results show that the measured adhesion work is positively correlated to biofilm formation; however, the viscoelasticity is not correlated to biofilm formation. This study indicates that AFM-based adhesion measurements of bacteria can be used to evaluate the function of bacterial surface polymers in biofilm formation and to predict the ability of bacterial biofilm formation.
Collapse
Affiliation(s)
- Huabin Wang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences , Shanghai 201800, China
| | | | - Ligang Chen
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing 400714, China
| | | | | | | |
Collapse
|
63
|
Kim SO, Kim J, Okajima T, Cho NJ. Mechanical properties of paraformaldehyde-treated individual cells investigated by atomic force microscopy and scanning ion conductance microscopy. NANO CONVERGENCE 2017; 4:5. [PMID: 28386525 PMCID: PMC5359366 DOI: 10.1186/s40580-017-0099-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cell fixation is an essential step to preserve cell samples for a wide range of biological assays involving histochemical and cytochemical analysis. Paraformaldehyde (PFA) has been widely used as a cross-linking fixation agent. It has been empirically recognized in a gold standard protocol that the PFA concentration for cell fixation, CPFA, is 4%. However, it is still not quantitatively clear how the conventional protocol of CPFA is optimized. METHODS Here, we investigated the mechanical properties of cell fixation as a function of CPFA by using atomic force microscopy and scanning ion conductance microscopy. The goal of this study is to investigate the effect of CPFA (0-10 wt%) on the morphological and mechanical properties of live and fixed mouse fibroblast cells. RESULTS We found that both Young's modulus, E, and the fluctuation amplitude of apical cell membrane, am, were almost constant in a lower CPFA (<10-4%). Interestingly, in an intermediate CPFA between 10-1 and 4%, E dramatically increased whereas am abruptly decreased, indicating that entire cells begin to fix at CPFA = ca. 10-1%. Moreover, these quantities were unchanged in a higher CPFA (>4%), indicating that the cell fixation is stabilized at CPFA = ca. 4%, which is consistent with the empirical concentration of cell fixation optimized in biological protocols. CONCLUSIONS Taken together, these findings offer a deeper understanding of how varying PFA concentrations influence the mechanical properties of cells and suggest new avenues for establishing refined cell fixation protocols.
Collapse
Affiliation(s)
- Seong-Oh Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Joonhui Kim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814 Japan
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
64
|
Sadoun A, Puech PH. Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements. Methods Mol Biol 2017; 1557:139-151. [PMID: 28078590 DOI: 10.1007/978-1-4939-6780-3_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Atomic force microscopy (AFM) is an invaluable tool to investigate the structure of biological material surfaces by imaging them at nanometer scale in physiological conditions. It can also be used to measure the forces and mechanics from single molecule interaction to cell-cell adhesion. Here, we present a methodology that allows to quantify cell elastic properties (using the Young modulus) and cell membrane tension modulated by CD95/cl-CD95L interactions by coupling nanoindentation and membrane tube pulling using suitably decorated AFM levers.
Collapse
Affiliation(s)
- Anaïs Sadoun
- Aix Marseille Université, LAI UM 61, Marseille, 13288, France.,Inserm, UMR_S 1067, Marseille, 13288, France.,CNRS, UMR 7333, Marseille, 13288, France.,Laboratoire Adhésion et Inflammation (LAI), Case 937 - 163, avenue de Luminyy, 13288, Marseille Cedex 09, France
| | - Pierre-Henri Puech
- Aix Marseille Université, LAI UM 61, Marseille, 13288, France. .,Inserm, UMR_S 1067, Marseille, 13288, France. .,CNRS, UMR 7333, Marseille, 13288, France. .,Laboratoire Adhésion et Inflammation (LAI), Case 937 - 163, avenue de Luminyy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
65
|
Pecorari I, Puzzi L, Sbaizero O. Atomic force microscopy and lamins: A review study towards future, combined investigations. Microsc Res Tech 2016; 80:97-108. [PMID: 27859883 DOI: 10.1002/jemt.22801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
In the last decades, atomic force microscopy (AFM) underwent a rapid and stunning development, especially for studying mechanical properties of biological samples. The numerous discoveries relying to this approach, have increased the credit of AFM as a versatile tool, and potentially eligible as a diagnostic equipment. Meanwhile, it has become strikingly evident that lamins are involved on the onset and development of certain diseases, including cancer, Hutchinson-Gilford progeria syndrome, cardiovascular pathologies, and muscular dystrophy. A new category of pathologies has been defined, the laminopathies, which are caused by mutations in the gene encoding for A-type lamins. As the majority of medical issues, lamins, and all their related aspects can be considered as a quite complex problem. Indeed, there are many facets to explore, and this definitely requires a multidisciplinary approach. One of the most intriguing aspects concerning lamins is their remarkable contribute to cells mechanics. Over the years, this has led to the speculation of the so-called "structural hypothesis", which attempts to elucidate the etiology and some features of the laminopathies. Among the various techniques tried to figure out the role of lamins in the cells mechanics, the AFM has been already successfully applied, proving its versatility. Therefore, the present work aims both to highlight the qualities of AFM and to review the most relevant knowledge about lamins, in order to promote the study of the latter, taking advantage from the former. Microsc. Res. Tech. 80:97-108, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6-34127, Trieste, Italy
| |
Collapse
|
66
|
Lin CH, Wang CK, Chen YA, Peng CC, Liao WH, Tung YC. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device. Sci Rep 2016; 6:36425. [PMID: 27812019 PMCID: PMC5095558 DOI: 10.1038/srep36425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023] Open
Abstract
In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.
Collapse
Affiliation(s)
- Chien-Han Lin
- Academia Sinica, Research Center for Applied Sciences, Taipei, 11529, Taiwan
| | - Chien-Kai Wang
- Tamkang University, Department of Civil Engineering, New Taipei City, 25137, Taiwan
| | - Yu-An Chen
- National Taiwan University, Department of Mechanical Engineering, Taipei, 10617, Taiwan
| | - Chien-Chung Peng
- Academia Sinica, Research Center for Applied Sciences, Taipei, 11529, Taiwan
| | - Wei-Hao Liao
- Academia Sinica, Research Center for Applied Sciences, Taipei, 11529, Taiwan
| | - Yi-Chung Tung
- Academia Sinica, Research Center for Applied Sciences, Taipei, 11529, Taiwan
| |
Collapse
|
67
|
Yango A, Schäpe J, Rianna C, Doschke H, Radmacher M. Measuring the viscoelastic creep of soft samples by step response AFM. SOFT MATTER 2016; 12:8297-8306. [PMID: 27714302 DOI: 10.1039/c6sm00801a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have measured the creep response of soft gels and cells after applying a step in loading force with atomic force microscopy (AFM). By analysing the creep response data using the standard linear solid model, we can quantify the viscous and elastic properties of these soft samples independently. Cells, in comparison with gels of similar softness, are much more viscous, as has been qualitatively observed in conventional force curve data before. Here, we quantify the spring constant and the viscous damping coefficient from the creep response data. We propose two different modes for applying a force step: (1) indirectly by increasing the sample height or (2) directly by employing magnetic cantilevers. Both lead to similar results, whereas the latter seems to be better defined since it resembles closely a constant strain mode. The former is easier to implement in most instruments, and thus may be preferable from a practical point of view. Creep analysis by step response is much more appropriate to analyse the viscoelastic response of soft samples like cells than the usually used force curve analysis.
Collapse
Affiliation(s)
- Achu Yango
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Jens Schäpe
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Holger Doschke
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany.
| |
Collapse
|
68
|
Park S. Nano-mechanical Phenotype as a Promising Biomarker to Evaluate Cancer Development, Progression, and Anti-cancer Drug Efficacy. J Cancer Prev 2016; 21:73-80. [PMID: 27390735 PMCID: PMC4933430 DOI: 10.15430/jcp.2016.21.2.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 12/03/2022] Open
Abstract
Since various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker. Although it is yet to be conclusive about its clinical application due to the complexity in the tissue integrity, the nano-mechanical compliance of human cell samples has been evaluated by several groups as a promising marker in diagnosing cancer development and anticipating its progression. In this review, we address the mechanical properties of diverse cancer cells obtained by atomic force microscopy-based indentation experiments and reiterate prognostic relations between the nano-mechanical compliance and cancer progression. We also review the nano-mechanical responses of cancer cells to the anti-cancer drug treatment in order to interrogate a possible use of nano-mechanical compliance as a means to evaluate the effectiveness of anti-cancer drugs.
Collapse
Affiliation(s)
- Soyeun Park
- College of Pharmacy, Keimyung University, Daegu,
Korea
| |
Collapse
|
69
|
Fabrication of Elasticity-Tunable Gelatinous Gel for Mesenchymal Stem Cell Culture. Methods Mol Biol 2016. [PMID: 27236687 DOI: 10.1007/978-1-4939-3584-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Surface elasticity or stiffness of an underlying substrate may regulate cellular functions such as adhesion, proliferation, signaling, differentiation, and migration. Recent studies have reported on the development of biomaterials to control stem cell fate determination via the stiffness of the culture substrates. In this chapter, we provide a detailed protocol for fabricating elasticity-tunable gelatinous hydrogels for stem cell culture with photo-induced or thermo-induced crosslinking of well-developed styrenated gelatin (StG). We also include the detailed application of gelatinous gel for mesenchymal stem cell (MSC) culture and sample collection for transcriptional and proteomic analysis.
Collapse
|
70
|
Fallqvist B. Implementing cell contractility in filament-based cytoskeletal models. Cytoskeleton (Hoboken) 2016; 73:93-106. [PMID: 26899417 DOI: 10.1002/cm.21279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/11/2022]
Abstract
Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well.
Collapse
Affiliation(s)
- B Fallqvist
- Department of Solid Mechanics, Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden
| |
Collapse
|
71
|
Gavara N. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci Rep 2016; 6:21267. [PMID: 26891762 PMCID: PMC4759531 DOI: 10.1038/srep21267] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 01/20/2016] [Indexed: 11/13/2022] Open
Abstract
Atomic Force Microscopy (AFM) is a widely used tool to study cell mechanics. Current AFM setups perform high-throughput probing of living cells, generating large amounts of force-indentations curves that are subsequently analysed using a contact-mechanics model. Here we present several algorithms to detect the contact point in force-indentation curves, a crucial step to achieve fully-automated analysis of AFM-generated data. We quantify and rank the performance of our algorithms by analysing a thousand force-indentation curves obtained on thin soft homogeneous hydrogels, which mimic the stiffness and topographical profile of adherent cells. We take advantage of the fact that all the proposed algorithms are based on sequential search strategies, and show that a combination of them yields the most accurate and unbiased results. Finally, we also observe improved performance when force-indentation curves obtained on adherent cells are analysed using our combined strategy, as compared to the classical algorithm used in the majority of previous cell mechanics studies.
Collapse
Affiliation(s)
- Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 3NS, London, UK
| |
Collapse
|
72
|
Guillou L, Babataheri A, Puech PH, Barakat AI, Husson J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 2016; 6:21529. [PMID: 26857265 PMCID: PMC4746699 DOI: 10.1038/srep21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells' actin is depolymerized using cytochalasin-D.
Collapse
Affiliation(s)
- L Guillou
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - A Babataheri
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - P-H Puech
- Aix Marseille University, LAI UM 61, Marseille, F-13288, France.,Inserm, UMR_S 1067, Marseille, F-13288, France.,CNRS, UMR 7333, Marseille, F-13288, France
| | - A I Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - J Husson
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
73
|
Grady ME, Composto RJ, Eckmann DM. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J Mech Behav Biomed Mater 2016; 61:197-207. [PMID: 26874250 DOI: 10.1016/j.jmbbm.2016.01.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022]
Abstract
The cytoskeleton is primarily responsible for providing structural support, localization and transport of organelles, and intracellular trafficking. The structural support is supplied by actin filaments, microtubules, and intermediate filaments, which contribute to overall cell elasticity to varying degrees. We evaluate cell elasticity in five different cell types with drug-induced cytoskeletal derangements to probe how actin filaments and microtubules contribute to cell elasticity and whether it is conserved across cell type. Specifically, we measure elastic stiffness in primary chondrocytes, fibroblasts, endothelial cells (HUVEC), hepatocellular carcinoma cells (HUH-7), and fibrosarcoma cells (HT 1080) subjected to two cytoskeletal destabilizers: cytochalasin D and nocodazole, which disrupt actin and microtubule polymerization, respectively. Elastic stiffness is measured by atomic force microscopy (AFM) and the disruption of the cytoskeleton is confirmed using fluorescence microscopy. The two cancer cell lines showed significantly reduced elastic moduli values (~0.5kPa) when compared to the three healthy cell lines (~2kPa). Non-cancer cells whose actin filaments were disrupted using cytochalasin D showed a decrease of 60-80% in moduli values compared to untreated cells of the same origin, whereas the nocodazole-treated cells showed no change in elasticity. Overall, we demonstrate actin filaments contribute more to elastic stiffness than microtubules but this result is cell type dependent. Cancer cells behaved differently, exhibiting increased stiffness as well as stiffness variability when subjected to nocodazole. We show that disruption of microtubule dynamics affects cancer cell elasticity, suggesting therapeutic drugs targeting microtubules be monitored for significant elastic changes.
Collapse
Affiliation(s)
- Martha E Grady
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, United States
| | - Russell J Composto
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104, United States
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104, United States.
| |
Collapse
|
74
|
Fallqvist B, Fielden ML, Pettersson T, Nordgren N, Kroon M, Gad AKB. Experimental and computational assessment of F-actin influence in regulating cellular stiffness and relaxation behaviour of fibroblasts. J Mech Behav Biomed Mater 2015; 59:168-184. [PMID: 26766328 DOI: 10.1016/j.jmbbm.2015.11.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022]
Abstract
In biomechanics, a complete understanding of the structures and mechanisms that regulate cellular stiffness at a molecular level remain elusive. In this paper, we have elucidated the role of filamentous actin (F-actin) in regulating elastic and viscous properties of the cytoplasm and the nucleus. Specifically, we performed colloidal-probe atomic force microscopy (AFM) on BjhTERT fibroblast cells incubated with Latrunculin B (LatB), which results in depolymerisation of F-actin, or DMSO control. We found that the treatment with LatB not only reduced cellular stiffness, but also greatly increased the relaxation rate for the cytoplasm in the peripheral region and in the vicinity of the nucleus. We thus conclude that F-actin is a major determinant in not only providing elastic stiffness to the cell, but also in regulating its viscous behaviour. To further investigate the interdependence of different cytoskeletal networks and cell shape, we provided a computational model in a finite element framework. The computational model is based on a split strain energy function of separate cellular constituents, here assumed to be cytoskeletal components, for which a composite strain energy function was defined. We found a significant influence of cell geometry on the predicted mechanical response. Importantly, the relaxation behaviour of the cell can be characterised by a material model with two time constants that have previously been found to predict mechanical behaviour of actin and intermediate filament networks. By merely tuning two effective stiffness parameters, the model predicts experimental results in cells with a partly depolymerised actin cytoskeleton as well as in untreated control. This indicates that actin and intermediate filament networks are instrumental in providing elastic stiffness in response to applied forces, as well as governing the relaxation behaviour over shorter and longer time-scales, respectively.
Collapse
Affiliation(s)
- Björn Fallqvist
- Department of Solid Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden.
| | - Matthew L Fielden
- NANOLAB, KTH Royal Institute of Technology, Roslagstullsbacken 21, 100 44 Stockholm, Sweden.
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.
| | - Niklas Nordgren
- SP Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, 114 86 Stockholm, Sweden.
| | - Martin Kroon
- Department of Solid Mechanics, KTH Royal Institute of Technology, Teknikringen 8, 100 44 Stockholm, Sweden.
| | - Annica K B Gad
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, 171 77 Stockholm, Sweden.
| |
Collapse
|
75
|
Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2015; 160:168-181. [PMID: 26521163 DOI: 10.1016/j.ultramic.2015.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand.
Collapse
Affiliation(s)
- Séverine Cazaux
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Anaïs Sadoun
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Martine Biarnes-Pelicot
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Manuel Martinez
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Sameh Obeid
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre Bongrand
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France; APHM, Hôpital de la Conception, Laboratoire d'Immunologie, Marseille F-13385, France
| | - Laurent Limozin
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre-Henri Puech
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France.
| |
Collapse
|
76
|
Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels. Biomed Microdevices 2015; 17:104. [DOI: 10.1007/s10544-015-0013-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
Park K, Mehrnezhad A, Corbin EA, Bashir R. Optomechanical measurement of the stiffness of single adherent cells. LAB ON A CHIP 2015; 15:3460-4. [PMID: 26220705 PMCID: PMC5841955 DOI: 10.1039/c5lc00444f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in mechanobiology have accumulated strong evidence showing close correlations between the physiological conditions and mechanical properties of cells. In this paper, a novel optomechanical technique to characterize the stiffness of single adherent cells attached on a substrate is reported. The oscillation in a cell's height on a vertically vibrating reflective substrate is measured with a laser Doppler vibrometer as apparent changes in the phase of the measured velocity. This apparent phase shift and the height oscillation are shown to be affected by the mechanical properties of human colorectal adenocarcinoma cells (HT-29). The reported optomechanical technique can provide high-throughput stiffness measurement of single adherent cells over time with minimal perturbation.
Collapse
Affiliation(s)
- Kidong Park
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | |
Collapse
|
78
|
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 2015; 107:564-575. [PMID: 25099796 DOI: 10.1016/j.bpj.2014.06.033] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022] Open
Abstract
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young's modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions ("brush" models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.
Collapse
Affiliation(s)
- Nataliia Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Maxim Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
| | | | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts; Department of Physics, Tufts University, Medford, Massachusetts.
| |
Collapse
|
79
|
Abstract
Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.
Collapse
Affiliation(s)
- Eric M Darling
- Center for Biomedical Engineering.,Department of Molecular Pharmacology, Physiology, and Biotechnology.,Department of Orthopaedics, and.,School of Engineering, Brown University, Providence, Rhode Island 02912;
| | - Dino Di Carlo
- Department of Bioengineering.,California NanoSystems Institute, and.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095;
| |
Collapse
|
80
|
Studying biological membranes with extended range high-speed atomic force microscopy. Sci Rep 2015; 5:11987. [PMID: 26169348 PMCID: PMC4500952 DOI: 10.1038/srep11987] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/11/2015] [Indexed: 11/28/2022] Open
Abstract
High—speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range. Using a two—actuator design with adapted control systems, a 130 × 130 × 5 μm scanner with nearly 100 kHz open—loop small-signal Z—bandwidth is implemented. This allows for high-speed imaging of biologically relevant samples as well as high-speed measurements of nanomechanical surface properties. We demonstrate the system performance by real-time imaging of the effect of charged polymer nanoparticles on the integrity of lipid membranes at high imaging speeds and peak force tapping measurements at 32 kHz peak force rate.
Collapse
|
81
|
Cartagena-Rivera AX, Wang WH, Geahlen RL, Raman A. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Sci Rep 2015; 5:11692. [PMID: 26118423 PMCID: PMC4484408 DOI: 10.1038/srep11692] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/03/2015] [Indexed: 11/08/2022] Open
Abstract
A longstanding goal in cellular mechanobiology has been to link dynamic biomolecular processes underpinning disease or morphogenesis to spatio-temporal changes in nanoscale mechanical properties such as viscoelasticity, surface tension, and adhesion. This requires the development of quantitative mechanical microscopy methods with high spatio-temporal resolution within a single cell. The Atomic Force Microscope (AFM) can map the heterogeneous mechanical properties of cells with high spatial resolution, however, the image acquisition time is 1-2 orders of magnitude longer than that required to study dynamic cellular processes. We present a technique that allows commercial AFM systems to map quantitatively the dynamically changing viscoelastic properties of live eukaryotic cells at widely separated frequencies over large areas (several 10's of microns) with spatial resolution equal to amplitude-modulation (AM-AFM) and with image acquisition times (tens of seconds) approaching those of speckle fluorescence methods. This represents a ~20 fold improvement in nanomechanical imaging throughput compared to AM-AFM and is fully compatible with emerging high speed AFM systems. This method is used to study the spatio-temporal mechanical response of MDA-MB-231 breast carcinoma cells to the inhibition of Syk protein tyrosine kinase giving insight into the signaling pathways by which Syk negatively regulates motility of highly invasive cancer cells.
Collapse
Affiliation(s)
- Alexander X. Cartagena-Rivera
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| | - Wen-Horng Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
82
|
Nijenhuis N, Zhao X, Carisey A, Ballestrem C, Derby B. Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells. Biophys J 2015; 107:1502-12. [PMID: 25296302 DOI: 10.1016/j.bpj.2014.07.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young's modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell's cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value.
Collapse
Affiliation(s)
- Nadja Nijenhuis
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Xuegen Zhao
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Brian Derby
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
83
|
Jalilian I, Heu C, Cheng H, Freittag H, Desouza M, Stehn JR, Bryce NS, Whan RM, Hardeman EC, Fath T, Schevzov G, Gunning PW. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton. PLoS One 2015; 10:e0126214. [PMID: 25978408 PMCID: PMC4433179 DOI: 10.1371/journal.pone.0126214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.
Collapse
Affiliation(s)
- Iman Jalilian
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Celine Heu
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Hong Cheng
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Hannah Freittag
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Melissa Desouza
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Justine R. Stehn
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nicole S. Bryce
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Renee M. Whan
- Biomedical Imaging facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - Edna C. Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter W. Gunning
- Oncology Research Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
84
|
Distinct impact of targeted actin cytoskeleton reorganization on mechanical properties of normal and malignant cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3117-25. [PMID: 25970206 DOI: 10.1016/j.bbamcr.2015.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
The actin cytoskeleton is substantially modified in cancer cells because of changes in actin-binding protein abundance and functional activity. As a consequence, cancer cells have distinctive motility and mechanical properties, which are important for many processes, including invasion and metastasis. Here, we studied the effects of actin cytoskeleton alterations induced by specific nucleation inhibitors (SMIFH2, CK-666), cytochalasin D, Y-27632 and detachment from the surface by trypsinization on the mechanical properties of normal Vero and prostate cancer cell line DU145. The Young's modulus of Vero cells was 1300±900 Pa, while the prostate cancer cell line DU145 exhibited significantly lower Young's moduli (600±400 Pa). The Young's moduli exhibited a log-normal distribution for both cell lines. Unlike normal cells, cancer cells demonstrated diverse viscoelastic behavior and different responses to actin cytoskeleton reorganization. They were more resistant to specific formin-dependent nucleation inhibition, and reinforced their cortical actin after detachment from the substrate. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
|
85
|
Park CY, Kim MW. Dynamic mechanical properties of a polyelectrolyte adsorbed insoluble lipid monolayer at the air-water interface. J Phys Chem B 2015; 119:5315-20. [PMID: 25826703 DOI: 10.1021/jp5123773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymers have been used to stabilize interfaces or to tune the mechanical properties of interfaces in various contexts, such as in oil emulsions or biological membranes. Although the structural properties of these systems are relatively well-studied, instrumental limitations continue to make it difficult to understand how the addition of polymer affects the dynamic mechanical properties of thin and soft films. We have solved this challenge by developing a new instrument, an optical-tweezer-based interface shear microrheometer (ISMR). With this technique, we observed that the interface shear modulus, G*, of a dioctadecyldimethylammonium chloride (DODAC) monolayer at the air-water interface significantly increased with adsorption of polystyrenesulfonate (PSS). In addition, the viscous film (DODAC monolayer) became a viscoelastic film with PSS adsorption. At a low salt concentration, 10 mM of NaCl in the subphase, the viscoelasticity of the DODAC/PSS composite was predominantly determined by a particular property of PSS, that is, it behaves as a Gaussian chain in a θ-solvent. At a high salt concentration, 316 mM of NaCl, the thin film behaved as a polymer melt excluding water molecules.
Collapse
Affiliation(s)
- Chang Young Park
- †Department of Physics, KAIST, Daejeon 305-701, South Korea.,‡Material Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Mahn Won Kim
- †Department of Physics, KAIST, Daejeon 305-701, South Korea.,‡Material Research Laboratory, University of California Santa Barbara, Santa Barbara, California 93106, United States.,¶Gwangju College, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
86
|
Ueki A, Kidoaki S. Manipulation of cell mechanotaxis by designing curvature of the elasticity boundary on hydrogel matrix. Biomaterials 2015; 41:45-52. [DOI: 10.1016/j.biomaterials.2014.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/29/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
|
87
|
Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:573-9. [PMID: 25326725 DOI: 10.1007/s00249-014-0988-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/31/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50%) in the Young's modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young's modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.
Collapse
|
88
|
Tang F, Lei X, Xiong Y, Wang R, Mao J, Wang X. Alteration Young’s moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes. J Biomech 2014; 47:3400-7. [DOI: 10.1016/j.jbiomech.2014.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
|
89
|
Kobayashi K, Yoshida S, Saijo Y, Hozumi N. Acoustic impedance microscopy for biological tissue characterization. ULTRASONICS 2014; 54:1922-8. [PMID: 24852259 DOI: 10.1016/j.ultras.2014.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 05/16/2023]
Abstract
A new method for two-dimensional acoustic impedance imaging for biological tissue characterization with micro-scale resolution was proposed. A biological tissue was placed on a plastic substrate with a thickness of 0.5mm. A focused acoustic pulse with a wide frequency band was irradiated from the "rear side" of the substrate. In order to generate the acoustic wave, an electric pulse with two nanoseconds in width was applied to a PVDF-TrFE type transducer. The component of echo intensity at an appropriate frequency was extracted from the signal received at the same transducer, by performing a time-frequency domain analysis. The spectrum intensity was interpreted into local acoustic impedance of the target tissue. The acoustic impedance of the substrate was carefully assessed prior to the measurement, since it strongly affects the echo intensity. In addition, a calibration was performed using a reference material of which acoustic impedance was known. The reference material was attached on the same substrate at different position in the field of view. An acoustic impedance microscopy with 200×200 pixels, its typical field of view being 2×2 mm, was obtained by scanning the transducer. The development of parallel fiber in cerebella cultures was clearly observed as the contrast in acoustic impedance, without staining the specimen. The technique is believed to be a powerful tool for biological tissue characterization, as no staining nor slicing is required.
Collapse
Affiliation(s)
- Kazuto Kobayashi
- Honda Electronics Co., Ltd., 20 Koyamazuka, Oiwa-cho, Toyohashi 441-3193, Japan.
| | - Sachiko Yoshida
- Toyohashi University of Technology, 1-1 Tempaku, Toyohashi 441-8580, Japan
| | - Yoshifumi Saijo
- Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Naohiro Hozumi
- Aichi Institute of Technology, 1247 Yachigusa, Yakusa, Toyota 470-0392, Japan
| |
Collapse
|
90
|
Kuboki T, Chen W, Kidoaki S. Time-dependent migratory behaviors in the long-term studies of fibroblast durotaxis on a hydrogel substrate fabricated with a soft band. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6187-96. [PMID: 24851722 PMCID: PMC4051246 DOI: 10.1021/la501058j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Durotaxis, biased cell movement up a stiffness gradient on culture substrates, is one of the useful taxis behaviors for manipulating cell migration on engineered biomaterial surfaces. In this study, long-term durotaxis was investigated on gelatinous substrates containing a soft band of 20, 50, and 150 μm in width fabricated using photolithographic elasticity patterning; sharp elasticity boundaries with a gradient strength of 300 kPa/50 μm were achieved. Time-dependent migratory behaviors of 3T3 fibroblast cells were observed during a time period of 3 days. During the first day, most of the cells were strongly repelled by the soft band independent of bandwidth, exhibiting the typical durotaxis behavior. However, the repellency by the soft band diminished, and more cells crossed the soft band or exhibited other mixed migratory behaviors during the course of the observation. It was found that durotaxis strength is weakened on the substrate with the narrowest soft band and that adherent affinity-induced entrapment becomes apparent on the widest soft band with time. Factors, such as changes in surface topography, elasticity, and/or chemistry, likely contributing to the apparent diminishing durotaxis during the extended culture were examined. Immunofluorescence analysis indicated preferential collagen deposition onto the soft band, which is derived from secretion by fibroblast cells, resulting in the increasing contribution of haptotaxis toward the soft band over time. The deposited collagen did not affect surface topography or surface elasticity but did change surface chemistry, especially on the soft band. The observed time-dependent durotaxis behaviors are the result of the mixed mechanical and chemical cues. In the studies and applications of cell migratory behavior under a controlled stimulus, it is important to thoroughly examine other (hidden) compounding stimuli in order to be able to accurately interpret data and to design suitable biomaterials to manipulate cell migration.
Collapse
Affiliation(s)
- Thasaneeya Kuboki
- Laboratory
of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry
and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Wei Chen
- Chemistry
Department, Mount Holyoke College, South Hadley, Massachusetts 01075, United States
- E-mail ; tel 413-538-2224; fax 413-538-2327 (W.C.)
| | - Satoru Kidoaki
- Laboratory
of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry
and Engineering, Kyushu University, Fukuoka 819-0395, Japan
- E-mail ; tel 81-92-802-2507; fax 81-92-802-2509 (S.K.)
| |
Collapse
|
91
|
Grimm KB, Oberleithner H, Fels J. Fixed endothelial cells exhibit physiologically relevant nanomechanics of the cortical actin web. NANOTECHNOLOGY 2014; 25:215101. [PMID: 24786855 DOI: 10.1088/0957-4484/25/21/215101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It has been unknown whether cells retain their mechanical properties after fixation. Therefore, this study was designed to compare the stiffness properties of the cell cortex (the 50-100 nm thick zone below the plasma membrane) before and after fixation. Atomic force microscopy was used to acquire force indentation curves from which the nanomechanical cell properties were derived. Cells were pretreated with different concentrations of actin destabilizing agent cytochalasin D, which results in a gradual softening of the cell cortex. Then cells were studied 'alive' or 'fixed'. We show that the cortical stiffness of fixed endothelial cells still reports functional properties of the actin web qualitatively comparable to those of living cells. Myosin motor protein activity, tested by blebbistatin inhibition, can only be detected, in terms of cortical mechanics, in living but not in fixed cells. We conclude that fixation interferes with motor proteins while maintaining a functional cortical actin web. Thus, fixation of cells opens up the prospect of differentially studying the actions of cellular myosin and actin.
Collapse
Affiliation(s)
- Kai Bodo Grimm
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | | | | |
Collapse
|
92
|
Microtubules mediate changes in membrane cortical elasticity during contractile activation. Exp Cell Res 2014; 322:21-9. [DOI: 10.1016/j.yexcr.2013.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 12/20/2022]
|
93
|
Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL. Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 2014; 35:262-72. [DOI: 10.1002/bem.21845] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 01/20/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Gary L. Thompson
- National Research Council; Joint Base San Antonio Fort Sam Houston; San Antonio Texas
| | - Caleb Roth
- Department of Radiological Sciences; University of Texas Health Science Center at San Antonio; San Antonio Texas
| | - Gleb Tolstykh
- National Research Council; Joint Base San Antonio Fort Sam Houston; San Antonio Texas
| | - Marjorie Kuipers
- Radio Frequency Bioeffects Branch; Bioeffects Division; Human Effectiveness Directorate; Air Force Research Laboratory; Joint Base San Antonio Fort Sam Houston; San Antonio Texas
| | - Bennett L. Ibey
- Radio Frequency Bioeffects Branch; Bioeffects Division; Human Effectiveness Directorate; Air Force Research Laboratory; Joint Base San Antonio Fort Sam Houston; San Antonio Texas
| |
Collapse
|
94
|
Soltanizadeh N, Kadivar M. Nanomechanical Characteristics of Meat and Its Constituents Postmortem: A Review. Crit Rev Food Sci Nutr 2014; 54:1117-39. [DOI: 10.1080/10408398.2011.627518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
95
|
Yu H, Xu L, Chen S. A transfer efficiency model for ultrasound mediated drug/gene transferring into cells. ULTRASONICS SONOCHEMISTRY 2014; 21:113-120. [PMID: 23911264 DOI: 10.1016/j.ultsonch.2013.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Ultrasound is a very promising technology to mediated drug/gene transferring into cells. However the relations between cell experimental conditions and results have been still unknown. It seriously impeded the development of the technology. In the article, a transfer efficiency model for ultrasound mediated drug/gene transferring into cells in stable cavitation was constructed. To testify the model, the numerical results were compared with the cell experimental data from six literatures in the entirely different experimental conditions. The numerical results fit the cell experimental data well. Despite simplifications and limitations, the model for the first time established the relationship between the cell experimental results about transfer efficiency and the conditions including ultrasound, microbubble and cells in stable cavitation.
Collapse
Affiliation(s)
- Hao Yu
- Biomedical Engineering Department, Shenzhen Polytechnic, Shenzhen, China
| | | | | |
Collapse
|
96
|
Braunsmann C, Proksch R, Revenko I, Schäffer TE. Creep compliance mapping by atomic force microscopy. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
97
|
Unal M, Alapan Y, Jia H, Varga AG, Angelino K, Aslan M, Sayin I, Han C, Jiang Y, Zhang Z, Gurkan UA. Micro and Nano-Scale Technologies for Cell Mechanics. Nanobiomedicine (Rij) 2014; 1:5. [PMID: 30023016 PMCID: PMC6029242 DOI: 10.5772/59379] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023] Open
Abstract
Cell mechanics is a multidisciplinary field that bridges cell biology, fundamental mechanics, and micro and nanotechnology, which synergize to help us better understand the intricacies and the complex nature of cells in their native environment. With recent advances in nanotechnology, microfabrication methods and micro-electro-mechanical-systems (MEMS), we are now well situated to tap into the complex micro world of cells. The field that brings biology and MEMS together is known as Biological MEMS (BioMEMS). BioMEMS take advantage of systematic design and fabrication methods to create platforms that allow us to study cells like never before. These new technologies have been rapidly advancing the study of cell mechanics. This review article provides a succinct overview of cell mechanics and comprehensively surveys micro and nano-scale technologies that have been specifically developed for and are relevant to the mechanics of cells. Here we focus on micro and nano-scale technologies, and their applications in biology and medicine, including imaging, single cell analysis, cancer cell mechanics, organ-on-a-chip systems, pathogen detection, implantable devices, neuroscience and neurophysiology. We also provide a perspective on the future directions and challenges of technologies that relate to the mechanics of cells.
Collapse
Affiliation(s)
- Mustafa Unal
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Yunus Alapan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Hao Jia
- Department of Biology, Case Western Reserve University, Cleveland, USA
| | - Adrienn G. Varga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Keith Angelino
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Mahmut Aslan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
| | - Ismail Sayin
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Chanjuan Han
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, USA
| | - Yanxia Jiang
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Zhehao Zhang
- Department of Civil Engineering, Case Western Reserve University, Cleveland, USA
| | - Umut A. Gurkan
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
- Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Cleveland, USA
- Department of Orthopaedics, Case Western Reserve University, Cleveland, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
| |
Collapse
|
98
|
Kidoaki S, Sakashita H. Rectified cell migration on saw-like micro-elastically patterned hydrogels with asymmetric gradient ratchet teeth. PLoS One 2013; 8:e78067. [PMID: 24147112 PMCID: PMC3798417 DOI: 10.1371/journal.pone.0078067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 11/29/2022] Open
Abstract
To control cell motility is one of the essential technologies for biomedical engineering. To establish a methodology of the surface design of elastic substrate to control the long-range cell movements, here we report a sophisticated cell culture hydrogel with a micro-elastically patterned surface that allows long-range durotaxis. This hydrogel has a saw-like pattern with asymmetric gradient ratchet teeth, and rectifies random cell movements. Durotaxis only occurs at boundaries in which the gradient strength of elasticity is above a threshold level. Consequently, in gels with unit teeth patterns, durotaxis should only occur at the sides of the teeth in which the gradient strength of elasticity is above this threshold level. Therefore, such gels are expected to support the long-range biased movement of cells via a mechanism similar to the Feynman-Smoluchowski ratchet, i.e., rectified cell migration. The present study verifies this working hypothesis by using photolithographic microelasticity patterning of photocurable gelatin gels. Gels in which each teeth unit was 100–120 µm wide with a ratio of ascending:descending elasticity gradient of 1:2 and a peak elasticity of ca. 100 kPa supported the efficient rectified migration of 3T3 fibroblast cells. In addition, long-range cell migration was most efficient when soft lanes were introduced perpendicular to the saw-like patterns. This study demonstrates that asymmetric elasticity gradient patterning of cell culture gels is a versatile means of manipulating cell motility.
Collapse
Affiliation(s)
- Satoru Kidoaki
- Research Field of Biomedical and Biophysical Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- * E-mail:
| | | |
Collapse
|
99
|
Kawano T, Kidoaki S. Corrigendum to “Elasticity boundary conditions required for cell mechanotaxis on microelastically-patterned gels” [Biomaterials 32 (2011) 2725–33]. Biomaterials 2013. [DOI: 10.1016/j.biomaterials.2013.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|