51
|
Liu Z, Balasubramanian V, Bhat C, Vahermo M, Mäkilä E, Kemell M, Fontana F, Janoniene A, Petrikaite V, Salonen J, Yli-Kauhaluoma J, Hirvonen J, Zhang H, Santos HA. Quercetin-Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin-Resistant Cancer Cells. Adv Healthc Mater 2017; 6. [PMID: 27943644 DOI: 10.1002/adhm.201601009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/25/2016] [Indexed: 11/11/2022]
Abstract
One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment.
Collapse
Affiliation(s)
- Zehua Liu
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Chinmay Bhat
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Mikko Vahermo
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics; Department of Physics; University of Turku; Turku FI-20014 Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry; Department of Chemistry; University of Helsinki; FI-00014 Helsinki Finland
| | - Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Agne· Janoniene
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10222 Vilnius Lithuania
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design; Institute of Biotechnology; Vilnius University; LT-10222 Vilnius Lithuania
- Department of Drug Chemistry; Faculty of Pharmacy; Lithuanian University of Health Sciences; LT-44307 Kaunas Lithuania
| | - Jarno Salonen
- Laboratory of Industrial Physics; Department of Physics; University of Turku; Turku FI-20014 Finland
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
- Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge MA 02138 USA
- Department of Pharmaceutical Science; Åbo Akademi University; Turku 20520 Finland
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
52
|
Li W, Liu D, Zhang H, Correia A, Mäkilä E, Salonen J, Hirvonen J, Santos HA. Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomater 2017; 48:238-246. [PMID: 27815166 DOI: 10.1016/j.actbio.2016.10.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
Abstract
Harsh conditions of the gastrointestinal tract hinder the oral delivery of many drugs. Developing oral drug delivery systems based on commercially available materials is becoming more challenging due to the demand for simultaneously delivering physicochemically different drugs for treating complex diseases. A novel architecture, namely nanotube-in-microsphere, was developed as a drug delivery platform by encapsulating halloysite nanotubes (HNTs) in a pH-responsive hydroxypropyl methylcellulose acetate succinate polymer using microfluidics. HNTs were selected as orally acceptable clay mineral and their lumen was enlarged by selective acid etching. Model drugs (atorvastatin and celecoxib) with different physicochemical properties and synergistic effect on colon cancer prevention and inhibition were simultaneously incorporated into the microspheres at a precise ratio, with atorvastatin and celecoxib being loaded in the HNTs and polymer matrix, respectively. The microspheres showed spherical shape, narrow particle size distribution and pH-responsive dissolution behavior. This nanotube/pH-responsive polymer composite protected the loaded drugs from premature release at pH⩽6.5, but allowed their fast release and enhanced the drug permeability, and the inhibition of colon cancer cell proliferation at pH 7.4. Overall, the nano-in-micro drug delivery composite fabricated by microfluidics is a promising and flexible platform for the delivery of multiple drugs for combination therapy. STATEMENT OF SIGNIFICANCE Halloysite nanotubes (HNTs) are attracting increasing attention for drug delivery applications. However, conventional HNTs-based oral drug delivery systems are lack of the capability to precisely control the drug release at a desired site in the gastrointestinal tract. In this study, a nanotube-in-microsphere drug delivery platform is developed by encapsulating HNTs in a pH-responsive polymer using microfluidics. Drugs with different physicochemical properties and synergistic effect on colon cancer therapy were simultaneously incorporated in the microspheres. The prepared microspheres prevented the premature release of the loaded drugs after exposure to the harsh conditions of the gastrointestinal tract, but allowed their simultaneously fast release, and enhanced the drug permeability and the inhibition of colon cancer cell proliferation in response to the colon pH.
Collapse
|
53
|
|
54
|
Maher S, Santos A, Kumeria T, Kaur G, Lambert M, Forward P, Evdokiou A, Losic D. Multifunctional microspherical magnetic and pH responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B 2017; 5:4097-4109. [DOI: 10.1039/c7tb00588a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Drug loaded luminescent porous silicon diatoms and magnetic bacterial nanowires were encapsulated within pH sensitive polymer forming biodegradable microcapsules using droplet-based microfluidics for targeting colorectal cancer.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
- Faculty of Pharmacy
| | - Abel Santos
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
- Institute for Photonics and Advanced Sensing (IPAS)
| | - Tushar Kumeria
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| | - Gagandeep Kaur
- Discipline of Surgery
- Basil Hetzel Institute
- The University of Adelaide
- Adelaide
- Australia
| | - Martin Lambert
- School of Civil
- Environmental and Mining Engineering
- The University of Adelaide
- Adelaide
- Australia
| | | | - Andreas Evdokiou
- Discipline of Surgery
- Basil Hetzel Institute
- The University of Adelaide
- Adelaide
- Australia
| | - Dusan Losic
- School of Chemical Engineering
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
55
|
Kong F, Zhang H, Qu X, Zhang X, Chen D, Ding R, Mäkilä E, Salonen J, Santos HA, Hai M. Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10195-10203. [PMID: 27689681 DOI: 10.1002/adma.201602763] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/21/2016] [Indexed: 05/28/2023]
Abstract
Gold nanorods, DNA origami, and porous silicon nanoparticle-functionalized biocompatible double emulsion are developed for versatile molecular targeted therapeutics and antibody combination therapy. This advanced photothermal responsive all-in-one biocompatible platform can be easily formed with great therapeutics loading capacity for different cancer treatments with synergism and multidrug resistance inhibition, which has great potential in advancing biomedical applications.
Collapse
Affiliation(s)
- Feng Kong
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongbo Zhang
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Xiangmeng Qu
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xu Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS, B1P 6L2, Canada
| | - Dong Chen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ruihua Ding
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mingtan Hai
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
56
|
Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ. Microfluidic Hydrodynamic Focusing for Synthesis of Nanomaterials. NANO TODAY 2016; 11:778-792. [PMID: 30337950 PMCID: PMC6191180 DOI: 10.1016/j.nantod.2016.10.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Microfluidics expands the synthetic space such as heat transfer, mass transport, and reagent consumption to conditions not easily achievable in conventional batch processes. Hydrodynamic focusing in particular enables the generation and study of complex engineered nanostructures and new materials systems. In this review, we present an overview of recent progress in the synthesis of nanostructures and microfibers using microfluidic hydrodynamic focusing techniques. Emphasis is placed on distinct designs of flow focusing methods and their associated mechanisms, as well as their applications in material synthesis, determination of reaction kinetics, and study of synthetic mechanisms.
Collapse
Affiliation(s)
- Mengqian Lu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Adem Ozcelik
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christopher L Grigsby
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
- Departments of Biomedical Engineering, and Systems Biology, Columbia University, New York, New York, 10027, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
57
|
Cao Z, Zhou X, Wang G. Selective Release of Hydrophobic and Hydrophilic Cargos from Multi-Stimuli-Responsive Nanogels. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28888-28896. [PMID: 27700021 DOI: 10.1021/acsami.6b10360] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Highly stable multi-stimuli-responsive nanogels for selective release of simultaneously encapsulated hydrophobic and hydrophilic cargos in a spatiotemporally controlled manner are demonstrated here. The nanogel is composed of hydrophilic pH- and thermoresponsive poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and hydrophobic photocleavable o-nitrobenzyl (ONB) linkage. The hydrophobic cargos were noncovalently encapsulated into lipophilic interiors of the nanogels, while the hydrophilic cargos were chemically linked to the nanogel precursor polymer PDMAEMA through a redox-cleavable disulfide junction. For these dual-loaded nanogels, hydrophobic cargos can be released in response to temperature, pH, and UV light, while the hydrophilic cargos can be released in response to redox reagent. The stimuli-selective release of hydrophobic and hydrophilic cargos affords the system with great potential applications in combination chemotherapy, tissue engineering, anticorrosion, and smart nanoreactors.
Collapse
Affiliation(s)
- Ziquan Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Xiaoteng Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
58
|
Yuryev M, Ferreira MPA, Balasubramanian V, Correia AMR, Mäkilä EM, Jokinen V, Andriichuk L, Kemell M, Salonen JJ, Hirvonen JT, Santos HA, Rivera C. Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine (Lond) 2016; 11:2471-81. [DOI: 10.2217/nnm-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To investigate porous silicon (PSi) nanoparticles (NPs) behavior in the embryonic brain. Materials & methods: Fluorescently labeled PSi NPs were injected into the embryonic brains intraventricularly and to the mother intravenously (iv.). Brain histology from different time points up to 3 days was analyzed and live brains imaged with two-photon microscopy. Results: PSi NPs were able to penetrate 80% of the embryonic cortical depth. Particle motility was confirmed in real-time in vivo. PSi NPs were able to penetrate the embryonic cortex after either iv. maternal or intraventricular injection. No developmental of macromorphological changes or increased cell apoptosis was observed. Conclusion: PSi NPs penetrate deep in the brain tissues of embryos after intraventricular injection and after iv. injection to the mother.
Collapse
Affiliation(s)
- Mikhail Yuryev
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mónica PA Ferreira
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra MR Correia
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ermei M Mäkilä
- Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Ville Jokinen
- Aalto University, School of Chemical Technology, FI-02150 Espoo, Finland
| | - Liliia Andriichuk
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 901, 13009 Marseille, France Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| |
Collapse
|
59
|
|
60
|
|
61
|
Araújo F, Shrestha N, Gomes MJ, Herranz-Blanco B, Liu D, Hirvonen JJ, Granja PL, Santos HA, Sarmento B. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. NANOSCALE 2016; 8:10706-13. [PMID: 27150301 PMCID: PMC5047059 DOI: 10.1039/c6nr00294c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/19/2016] [Indexed: 05/23/2023]
Abstract
Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.
Collapse
Affiliation(s)
- F Araújo
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal and ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - N Shrestha
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - M J Gomes
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal and ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - B Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - D Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - J J Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - P L Granja
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal and ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - H A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00790 Helsinki, Finland
| | - B Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal. and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal and CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| |
Collapse
|
62
|
Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016; 6:986-1003. [PMID: 27217832 PMCID: PMC4876623 DOI: 10.7150/thno.14860] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 01/10/2023] Open
Abstract
The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to "kill two birds with one stone", scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design "smart" nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics.
Collapse
Affiliation(s)
| | | | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
63
|
Fontana F, Mori M, Riva F, Mäkilä E, Liu D, Salonen J, Nicoletti G, Hirvonen J, Caramella C, Santos HA. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:988-996. [PMID: 26652045 DOI: 10.1021/acsami.5b10950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | | | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | | | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| |
Collapse
|
64
|
McInnes SJP, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:301-8. [PMID: 26654169 DOI: 10.1021/acs.langmuir.5b03794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.
Collapse
Affiliation(s)
| | | | | | | | - Jingjing Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Mahriah E Alf
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
65
|
Yang J, Katagiri D, Mao S, Zeng H, Nakajima H, Kato S, Uchiyama K. Inkjet printing based assembly of thermoresponsive core–shell polymer microcapsules for controlled drug release. J Mater Chem B 2016; 4:4156-4163. [DOI: 10.1039/c6tb00424e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A thermoresponsive polymer microcapsule with a hollow core–porous shell structure was fabricated based on inkjet printing, which can be used to control drug release by changing the temperature at around 38 °C.
Collapse
Affiliation(s)
- Jianmin Yang
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Daisuke Katagiri
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Sifeng Mao
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hulie Zeng
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Shungo Kato
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
66
|
Li H, Yu H, Zhu C, Hu J, Du M, Zhang F, Yang D. Cisplatin and doxorubicin dual-loaded mesoporous silica nanoparticles for controlled drug delivery. RSC Adv 2016; 6:94160-94169. [DOI: 10.1039/c6ra17213j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Multicomponent therapeutic platforms have been proposed to minimize dosage of each drug and reduce toxicity, leading to achieving a synergistic effect and maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Huijuan Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Caiying Zhu
- Obstetrics & Gynecology Hospital
- Shanghai Medical College
- Fudan University
- Shanghai 200011
- China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Ming Du
- Obstetrics & Gynecology Hospital
- Shanghai Medical College
- Fudan University
- Shanghai 200011
- China
| | - Fayong Zhang
- Department of Neurosurgery
- Affiliated Huashan Hospital
- Fudan University
- Shanghai 200040
- China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
67
|
Hsu MN, Luo R, Kwek KZ, Por YC, Zhang Y, Chen CH. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co-glycolic acid) nanoparticle composites. BIOMICROFLUIDICS 2015; 9:052601. [PMID: 25825623 PMCID: PMC4376756 DOI: 10.1063/1.4916230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/04/2015] [Indexed: 05/05/2023]
Abstract
The poor solubility of many newly discovered drugs has resulted in numerous challenges for the time-controlled release of therapeutics. In this study, an advanced drug delivery platform to encapsulate and deliver hydrophobic drugs, consisting of poly (lactic-co-glycolic acid) (PLGA) nanoparticles incorporated within poly (ethylene glycol) (PEG) microgels, was developed. PLGA nanoparticles were used as the hydrophobic drug carrier, while the PEG matrix functioned to slow down the drug release. Encapsulation of the hydrophobic agents was characterized by fluorescence detection of the hydrophobic dye Nile Red within the microgels. In addition, the microcomposites prepared via the droplet-based microfluidic technology showed size tunability and a monodisperse size distribution, along with improved release kinetics of the loaded cargo compared with bare PLGA nanoparticles. This composite system has potential as a universal delivery platform for a variety of hydrophobic molecules.
Collapse
Affiliation(s)
| | - Rongcong Luo
- Department of Biomedical Engineering, National University of Singapore , Singapore 117575
| | - Kerwin Zeming Kwek
- Department of Biomedical Engineering, National University of Singapore , Singapore 117575
| | - Yong Chen Por
- Department of Plastic, Reconstructive and Aesthetic Surgery, KK Women's and Children's Hospital , Singapore 229899
| | | | | |
Collapse
|
68
|
Microfluidic conceived Trojan microcarriers for oral delivery of nanoparticles. Int J Pharm 2015; 493:7-15. [DOI: 10.1016/j.ijpharm.2015.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022]
|
69
|
Araújo F, Shrestha N, Shahbazi MA, Liu D, Herranz-Blanco B, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Sarmento B, Santos HA. Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS NANO 2015; 9:8291-8302. [PMID: 26235314 DOI: 10.1021/acsnano.5b02762] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional tailorable composite systems, specifically designed for oral dual-delivery of a peptide (glucagon-like peptide-1) and an enzymatic inhibitor (dipeptidyl peptidase 4 (DPP4)), were assembled through the microfluidics technique. Both drugs were coloaded into these systems for a synergistic therapeutic effect. The systems were composed of chitosan and cell-penetrating peptide modified poly(lactide-co-glycolide) and porous silicon nanoparticles as nanomatrices, further encapsulated in an enteric hydroxypropylmethylcellulose acetylsuccinate polymer. The developed multifunctional systems were pH-sensitive, inherited by the enteric polymer, enabling the release of the nanoparticles only in the simulated intestinal conditions. Moreover, the encapsulation into this polymer prevented the degradation of the nanoparticles' modifications. These nanoparticles showed strong and higher interactions with the intestinal cells in comparison with the nonmodified ones. The presence of DPP4 inhibitor enhanced the peptide permeability across intestinal cell monolayers. Overall, this is a promising platform for simultaneously delivering two drugs from a single formulation. Through this approach peptides are expected to increase their bioavailability and efficiency in vivo both by their specific release at the intestinal level and also by the reduced enzymatic activity. The use of this platform, specifically in combination of the two antidiabetic drugs, has clinical potential for the therapy of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Francisca Araújo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, University of Porto , 4150-180 Porto, Portugal
| | - Neha Shrestha
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Ermei M Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Laboratory of Industrial Physics, University of Turku , FI-20014 Turku, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, University of Turku , FI-20014 Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, University of Porto , 4150-180 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|
70
|
Vasiliauskas R, Liu D, Cito S, Zhang H, Shahbazi MA, Sikanen T, Mazutis L, Santos HA. Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14822-14832. [PMID: 26098382 DOI: 10.1021/acsami.5b04824] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we report the production of monodisperse hollow microparticles from three different polymers, namely, pH-responsive acetylated dextran and hypromellose acetate succinate and biodegradable poly(lactic-co-glycolic acid), at varying polymer concentrations using a poly(dimethylsiloxane)-based microfluidic device. Hollow microparticles formed during solvent diffusion into the continuous phase when the polymer close to the interface solidified, forming the shell. In the inner part of the particle, phase separation induced solvent droplet formation, which dissolved the shell, forming a hole and a hollow-core particle. Computational simulations showed that, despite the presence of convective recirculation around the droplet, the mass-transfer rate of the solvent dissolution from the droplet to the surrounding phase was dominated by diffusion. To illustrate the potential use of hollow microparticles, we simultaneously encapsulated two anticancer drugs and investigated their loading and release profiles. In addition, by utilizing different polymer shells and polymer concentrations, the release profiles of the model drugs could be tailored according to specific demands and applications. The high encapsulation efficiency, controlled drug release, unique hollow microparticle structure, small particle size (<7 μm), and flexibility of the polymer choice could make these microparticles advanced platforms for pulmonary drug delivery.
Collapse
Affiliation(s)
- Remigijus Vasiliauskas
- †Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Dongfei Liu
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Salvatore Cito
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Hongbo Zhang
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Tiina Sikanen
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Linas Mazutis
- †Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
- §School of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hélder A Santos
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
71
|
Peng F, Cao Z, Ji X, Chu B, Su Y, He Y. Silicon nanostructures for cancer diagnosis and therapy. Nanomedicine (Lond) 2015; 10:2109-23. [DOI: 10.2217/nnm.15.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The emergence of nanotechnology suggests new and exciting opportunities for early diagnosis and therapy of cancer. During the recent years, silicon-based nanomaterials featuring unique properties have received great attention, showing high promise for myriad biological and biomedical applications. In this review, we will particularly summarize latest representative achievements on the development of silicon nanostructures as a powerful platform for cancer early diagnosis and therapy. First, we introduce the silicon nanomaterial-based biosensors for detecting cancer markers (e.g., proteins, tumor-suppressor genes and telomerase activity, among others) with high sensitivity and selectivity under molecular level. Then, we summarize in vitro and in vivo applications of silicon nanostructures as efficient nanoagents for cancer therapy. Finally, we discuss the future perspective of silicon nanostructures for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Fei Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhaohui Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
72
|
Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2298-304. [PMID: 25684077 DOI: 10.1002/adma.201405408] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/18/2015] [Indexed: 05/17/2023]
Abstract
A versatile and robust microfluidic nanoprecipitation platform for high throughput synthesis of nanoparticles is fabricated. The versatility of this platform is proven through the successful preparation of different types of nanoparticles. This platform presents great robustness, with homogeneous nanoparticles always being obtained, regardless of the formulation parameters. The diameter and surface charge of the prepared nanoparticles can also be easily tuned.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
73
|
Wang CF, Sarparanta MP, Mäkilä EM, Hyvönen ML, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA. Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 2015; 48:108-18. [DOI: 10.1016/j.biomaterials.2015.01.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
74
|
Mo R, Jiang T, Sun W, Gu Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials 2015; 50:67-74. [PMID: 25736497 DOI: 10.1016/j.biomaterials.2015.01.053] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 12/23/2022]
Abstract
Stimuli-triggered drug delivery systems are primarily focused on the applications of the tumor microenvironmental or cellular physiological cues to enhance the release of drugs at the target site. In this study, we applied adenosine-5'-triphosphate (ATP), the primary "energy molecule", as a trigger for enhanced release of preloaded drugs responding to the intracellular ATP concentration that is significantly higher than the extracellular level. A new ATP-responsive anticancer drug delivery strategy utilizing DNA-graphene crosslinked hybrid nanoaggregates as carriers was developed for controlled release of doxorubicin (DOX), which consists of graphene oxide (GO), two single-stranded DNA (ssDNA, denoted as DNA1 and DNA2) and ATP aptamer. The single-stranded DNA1 and DNA2 together with the ATP aptamer serve as the linkers upon hybridization for controlled assembly of the DNA-GO nanoaggregates, which effectively inhibited the release of DOX from the GO nanosheets. In the presence of ATP, the responsive formation of the ATP/ATP aptamer complex causes the dissociation of the aggregates, which promoted the release of DOX in the environment with a high ATP concentration such as cytosol compared with that in the ATP-deficient extracellular fluid. This supports the development of a novel ATP-responsive platform for targeted on-demand delivery of anticancer drugs inside specific cells.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyue Jiang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
75
|
Liu D, Zhang H, Mäkilä E, Fan J, Herranz-Blanco B, Wang CF, Rosa R, Ribeiro AJ, Salonen J, Hirvonen J, Santos HA. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials 2015; 39:249-59. [DOI: 10.1016/j.biomaterials.2014.10.079] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
|
76
|
Huang P, Hu M, Zhou L, Wang Y, Pang Y, Tong G, Huang W, Su Y, Zhu X. Self-delivery nanoparticles from an amphiphilic covalent drug couple of irinotecan and bendamustine for cancer combination chemotherapy. RSC Adv 2015. [DOI: 10.1039/c5ra16511c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate an approach to prepare an anticancer drug self-delivery system from an amphiphilic covalent drug couple (Ir–Bd) for cancer combination chemotherapy.
Collapse
Affiliation(s)
- Ping Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Minxi Hu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yao Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yan Pang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Gangsheng Tong
- Instrumental Analysis Center
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yue Su
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
77
|
Yang J, Katagiri D, Mao S, Zeng H, Nakajima H, Uchiyama K. Generation of controlled monodisperse porous polymer particles by dipped inkjet injection. RSC Adv 2015. [DOI: 10.1039/c4ra13275k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A piezoelectric drop-on-demand (DOD) inkjet microchip with its nozzle immersed in organic phase was used to generate monodisperse porous polymer particles.
Collapse
Affiliation(s)
- Jianmin Yang
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Daisuke Katagiri
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Sifeng Mao
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hulie Zeng
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry
- Graduate School of Urban Environmental Sciences
- Tokyo Metropolitan University
- Hachioji
- Japan
| |
Collapse
|
78
|
Almeida PV, Shahbazi MA, Mäkilä E, Kaasalainen M, Salonen J, Hirvonen J, Santos HA. Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. NANOSCALE 2014; 6:10377-87. [PMID: 25074521 PMCID: PMC4234906 DOI: 10.1039/c4nr02187h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Active targeting of nanoparticles to receptor-overexpressing cancer cells has great potential for enhancing the cellular uptake of nanoparticles and for reducing fast clearance of the nanoparticles from the body. Herein, we present a preparation method of a porous silicon (PSi)-based nanodelivery system for breast cancer targeting, by covalently conjugating a synthesized amide-modified hyaluronic acid (HA(+)) derived polymer on the surface of undecylenic acid-modified thermally hydrocarbonized PSi (UnTHCPSi) nanoparticles. The resulting UnTHCPSi-HA(+) nanoparticles showed relatively small size, reduced polydispersibility, high biocompatibility, improved colloidal and human plasma stability, as well as enhanced cellular interactions and internalization. Moreover, we demonstrated that the enhanced cellular association of UnTHCPSi-HA(+) relies on the capability of the conjugated HA(+) to bind and consequently target CD44 receptors expressed on the surface of breast cancer cells, thus making the HA(+)-functionalized UnTHCPSi nanoparticles a suitable and promising nanoplatform for the targeting of CD44-overexpressing breast tumors and for drug delivery.
Collapse
Affiliation(s)
- Patrick V Almeida
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|