51
|
Kusoglu A, Goker Bagca B, Ozates Ay NP, Gunduz C, Biray Avci C. Telomerase inhibition regulates EMT mechanism in breast cancer stem cells. Gene 2020; 759:145001. [PMID: 32738420 DOI: 10.1016/j.gene.2020.145001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
BACKROUND CSCs having the common features of high telomerase activity and high migration and invasion capabilities play a vital role as the initiators of metastasis. Small molecule BIBR1532 has been shown to target cancer cells by inhibiting telomerase. Recent studies have suggested that telomerase activity is associated with epithelial mesenchymal transition (EMT). EMT program, which causes epithelial cells to acquire a mesenchymal morphology, is known to play a significant role in cancer metastasis. METHODS The hypothesis of our study was that suppression of telomerase in breast cancer and cancer stem cells would interrupt EMT mechanism. Cytotoxicity of BIBR1532 was evaluated using WST-1 assay in all cell lines and the effects of BIBR1532 on apoptosis were investigated with Annexin V. Migration rate of the cells was examined by wound healing assay and sphere forming capacities were observed by hanging drop test. Finally, the expression of 84 EMT-related genes was analyzed by real-time qPCR. RESULTS The IC50 values for the MDA-MB-231 and breast epithelial stem cells of BIBR1532 were analyzed as 18.04 and 38.71 µl at 72 h, respectively. Interestingly, apoptosis was only induced in stem cells. In hanging drop test, sphere areas were reduced in stem cells treated with BIBR1532. In wound healing assay, BIBR1532 decreased the migration rate of stem cells. Together with this, expression of EMT-related genes were regulated in stem cells towards a epithelial phenotype. CONCLUSION Our obtained results indicated that telomerase inhibition affects the EMT mechanism. The targeted elimination of breast cancer stem cells by a telomerase inhibitor in cancer treatment may limit the mobility and stemness of cancer cells interrupting the EMT mechanism, thus may prevent metastasis.
Collapse
Affiliation(s)
- Alican Kusoglu
- Ege University Medical School, Department of Medical Biology, Turkey.
| | | | | | - Cumhur Gunduz
- Ege University Medical School, Department of Medical Biology, Turkey
| | - Cigir Biray Avci
- Ege University Medical School, Department of Medical Biology, Turkey
| |
Collapse
|
52
|
Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B, Cheng SY. Stem cell programs in cancer initiation, progression, and therapy resistance. Am J Cancer Res 2020; 10:8721-8743. [PMID: 32754274 PMCID: PMC7392012 DOI: 10.7150/thno.41648] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.
Collapse
|
53
|
Carceles-Cordon M, Kelly WK, Gomella L, Knudsen KE, Rodriguez-Bravo V, Domingo-Domenech J. Cellular rewiring in lethal prostate cancer: the architect of drug resistance. Nat Rev Urol 2020; 17:292-307. [PMID: 32203305 PMCID: PMC7218925 DOI: 10.1038/s41585-020-0298-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Over the past 5 years, the advent of combination therapeutic strategies has substantially reshaped the clinical management of patients with advanced prostate cancer. However, most of these combination regimens were developed empirically and, despite offering survival benefits, are not enough to halt disease progression. Thus, the development of effective therapeutic strategies that target the mechanisms involved in the acquisition of drug resistance and improve clinical trial design are an unmet clinical need. In this context, we hypothesize that the tumour engineers a dynamic response through the process of cellular rewiring, in which it adapts to the therapy used and develops mechanisms of drug resistance via downstream signalling of key regulatory cascades such as the androgen receptor, PI3K-AKT or GATA2-dependent pathways, as well as initiation of biological processes to revert tumour cells to undifferentiated aggressive states via phenotype switching towards a neuroendocrine phenotype or acquisition of stem-like properties. These dynamic responses are specific for each patient and could be responsible for treatment failure despite multi-target approaches. Understanding the common stages of these cellular rewiring mechanisms to gain a new perspective on the molecular underpinnings of drug resistance might help formulate novel combination therapeutic regimens.
Collapse
Affiliation(s)
- Marc Carceles-Cordon
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - W Kevin Kelly
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen E Knudsen
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Josep Domingo-Domenech
- Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
54
|
Satish L, Evdokiou A, Geletu E, Hahn JM, Supp DM. Pirfenidone inhibits epithelial-mesenchymal transition in keloid keratinocytes. BURNS & TRAUMA 2020; 8:tkz007. [PMID: 32405508 DOI: 10.1093/burnst/tkz007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 01/23/2023]
Abstract
Background Keloids are benign fibroproliferative skin lesions that are difficult to treat and become a lifetime predicament for patients. Several treatment modalities have been put forth, but as yet no satisfactory approach to the prevention or treatment of keloids has been identified. The process of epithelial-to-mesenchymal transition (EMT) has been implicated in keloid scarring, as keloid keratinocytes display an EMT-like phenotype. This study investigated the potential of pirfenidone, an antifibrotic agent, to counteract EMT-like alterations in keloid keratinocytes, including gene expression, cell migratory and proliferative functions. Methods Normal and keloid keratinocytes were isolated from discarded normal skin tissues and from resected keloid tissues, respectively. Cells were quiesced for 24 h without epidermal growth factor DS-Qi1MCDigital and were exposed to transforming growth factor-beta1 (TGF-β1; 10 ng/mL), with or without pirfenidone (400 μg/mL), for an additional 24 h. The effects of pirfenidone on cytotoxicity, cell migration, cell proliferation, and on expression of genes and proteins involved in EMT were assayed. Statistical significance was determined by two-way ANOVA using Sigma Plot. Results We found that pirfenidone did not elicit any cytotoxic effect at concentrations up to 1000 μg/mL. A statistically significant dose-dependent decrease in basal cell proliferation rate was noted in both normal and keloid keratinocytes when exposed to pirfenidone at concentrations ranging from 200 to 1000 μg/mL. Pirfenidone significantly decreased basal cell migration in both normal and keloid keratinocytes, but a significant decrease in TGF-β1-induced cell migration was seen only in keloid keratinocytes. Significant inhibition of the expression of TGF-β1-induced core EMT genes, namely hyaluronan synthase 2, vimentin, cadherin-11, and wingless-type MMTV integration site family, member 5A along with fibronectin-1, was observed in both normal and keloid keratinocytes treated with pirfenidone. In addition, the protein levels of vimentin and fibronectin were significantly reduced by pirfenidone (400 μg/mL) in both normal and keloid keratinocytes. Conclusions For the first time, this study shows the efficacy of pirfenidone in inhibiting the EMT-like phenotype in keratinocytes derived from keloids, suggesting that pirfenidone may counteract a critical contributor of keloid progression and recurrence.
Collapse
Affiliation(s)
- Latha Satish
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45229, USA, and
| | - Alexander Evdokiou
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Eleni Geletu
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Jennifer M Hahn
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, OH 45229 USA.,Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
55
|
Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2020; 49:361-374. [PMID: 31063755 DOI: 10.1016/j.devcel.2019.04.010] [Citation(s) in RCA: 618] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process, mesenchymal-to-epithelial transition (MET), are fundamental processes in embryonic development and tissue repair but confer malignant properties to carcinoma cells, including invasive behavior, cancer stem cell activity, and greater resistance to chemotherapy and immunotherapy. Understanding the molecular and cellular basis of EMT provides fundamental insights into the etiology of cancer and may, in the long run, lead to new therapeutic strategies. Here, we discuss the regulatory mechanisms and pathological roles of epithelial-mesenchymal plasticity, with a focus on recent insights into the complexity and dynamics of this phenomenon in cancer.
Collapse
|
56
|
Abstract
Adipose tissue contribution to body mass ranges from 6% in male athletes to over 25% in obese men and over 30% in obese women. Crosstalk between adipocytes and cancer cells that exist in close proximity can lead to changes in the function and phenotype of both cell types. These interactions actively alter the tumour microenvironment (TME). Obesity is one of the major risk factors for multiple types of cancer, including breast cancer. In obesity, the increase in both size and number of adipocytes leads to instability of the TME, as well as increased hypoxia within the TME, which further enhances tumour invasion and metastasis. In this chapter, we will discuss the diverse aspects of adipocytes and adipocyte-derived factors that affect the TME as well as tumour progression and metastasis. In addition, we discuss how obesity affects the TME. We focus primarily on breast cancer but discuss what is known in other cancer types when relevant. We finish by discussing the studies needed to further understand these complex interactions.
Collapse
|
57
|
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020; 19:39-56. [PMID: 31601994 DOI: 10.1038/s41573-019-0044-1] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/05/2023]
Abstract
The success of targeted therapies in cancer treatment has been impeded by various mechanisms of resistance. Besides the acquisition of resistance-conferring genetic mutations, reversible mechanisms that lead to drug tolerance have emerged. Plasticity in tumour cells drives their transformation towards a phenotypic state that no longer depends on the drug-targeted pathway. These drug-refractory cells constitute a pool of slow-cycling cells that can either regain drug sensitivity upon treatment discontinuation or acquire permanent resistance to therapy and drive relapse. In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in various cancers, ranging from prostate and lung adenocarcinoma to melanoma and basal cell carcinoma. Our understanding of the mechanisms that control this phenotypic switch has also expanded, revealing the crucial role of reprogramming factors and chromatin remodelling. Further deciphering the molecular basis of tumour cell plasticity has the potential to contribute to new therapeutic strategies which, combined with existing anticancer treatments, could lead to deeper and longer-lasting clinical responses.
Collapse
Affiliation(s)
- Soufiane Boumahdi
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
58
|
Martos T, Casadevall D, Albanell J. Circulating Tumor Cells: Applications for Early Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:135-146. [PMID: 32304084 DOI: 10.1007/978-3-030-35805-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy among women. Most of breast cancer patients are diagnosed in early stages and will be treated with curative intent. Despite this, some patients will relapse. The identification of patients at high risk remains an important challenge. CTCs can be useful to identify this patients, to assess tumor dynamics and to monitoring therapy. There is definitive evidence on the prognostic role of CTCs in early breast cancer (eBC) but its clinical utility in daily practice is still lacking. We have to take into consideration that the studies published to date mainly evaluated the presence of CTC based on the expression of epithelial surface markers. Future studies need to overcome this limitation and important advances in technical methods can assess CTCs and capture the heterogeneity of the tumor landscape. It is also tempting to speculate that CTCs may also provide complementary information on the interplay of tumor cells with the immune system. The combination of different methods to detect tumoral disease by liquid biopsy may provide new ways to personalize in an unprecedented manner the management of patients with eBC.
Collapse
Affiliation(s)
- Tamara Martos
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain
| | - David Casadevall
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Albanell
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain. .,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CEXS Department, Pompeu Fabra University, Barcelona, Spain. .,CIOCC HM Delfos, Barcelona, Spain.
| |
Collapse
|
59
|
MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation. Cells 2019; 8:cells8121495. [PMID: 31771093 PMCID: PMC6953103 DOI: 10.3390/cells8121495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (i) modulator of YAP/TAZ expression and (ii) a regulator of EGFR signaling during osteoblast commitments. Starting from the observation on hMSCs and primary osteoblast cell lines (Nh-Ost) in which EMT genes and miR-33a displayed a specific expression, we performed a gain and loss of function study with miR-33a-5p and 3p on hMSCs cells and Nh-Ost. After 24 h of transfections, we evaluated the modulation of EMT and osteoblast genes expression by qRT-PCR, Western blot, and Osteoimage assays. Through bioinformatic analysis, we identified YAP as the putative target of miR-33a-3p. Its role was investigated by gain and loss of function studies with miR-33a-3p on hMSCs; qRT-PCR and Western blot analyses were also carried out. Finally, the possible role of EGFR signaling in YAP/TAZ modulation by miR-33a-3p expression was evaluated. Human MSCs were treated with EGF-2 and EGFR inhibitor for different time points, and qRT-PCR and Western blot analyses were performed. The above-mentioned methods revealed a balance between miR-33a-5p and miR-33a-3p expression during hMSCs osteoblast differentiation. The human MSCs phenotype was maintained by miR-33a-5p, while the maintenance of the osteoblast phenotype in the Nh-Ost cell model was permitted by miR-33a-3p expression, which regulated YAP/TAZ through the modulation of EGFR signaling. The inhibition of EGFR blocked the effects of miR-33a-3p on YAP/TAZ modulation, favoring the maintenance of hMSCs in a committed phenotype. A new possible personalized therapeutic approach to bone regeneration was discussed, which might be mediated by customizing delivery of miR-33a in simultaneously targeting EGFR and YAP signaling with combined use of drugs.
Collapse
|
60
|
Majka SM, Rojas M, Petrache I, Foronjy RF. Mesenchymal Regulation of the Microvascular Niche in Chronic Lung Diseases. Compr Physiol 2019; 9:1431-1441. [PMID: 31688970 DOI: 10.1002/cphy.c180043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adult lung is comprised of diverse vascular, epithelial, and mesenchymal progenitor cell populations that reside in distinct niches. Mesenchymal progenitor cells (MPCs) are intimately associated with both the epithelium and the vasculature, and new evidence is emerging to describe their functional roles in these niches. Also emerging, following lineage analysis and single cell sequencing, is a new understanding of the diversity of mesenchymal cell subpopulations in the lung. However, several gaps in knowledge remain, including how newly defined MPC lineages interact with cells in the vascular niche and the role of adult lung MPCs during lung repair and regeneration following injury, especially in chronic lung diseases. Here we summarize how the current evidence on MPC regulation of the microvasculature during tissue homeostasis and injury may inform studies on understanding their role in chronic lung disease pathogenesis or repair. © 2019 American Physiological Society. Compr Physiol 9:1431-1441, 2019.
Collapse
Affiliation(s)
- Susan M Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Mauricio Rojas
- McGowan Institute for Regenerative Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| |
Collapse
|
61
|
Uretmen Kagiali ZC, Sanal E, Karayel Ö, Polat AN, Saatci Ö, Ersan PG, Trappe K, Renard BY, Önder TT, Tuncbag N, Şahin Ö, Ozlu N. Systems-level Analysis Reveals Multiple Modulators of Epithelial-mesenchymal Transition and Identifies DNAJB4 and CD81 as Novel Metastasis Inducers in Breast Cancer. Mol Cell Proteomics 2019; 18:1756-1771. [PMID: 31221721 PMCID: PMC6731077 DOI: 10.1074/mcp.ra119.001446] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.
Collapse
Affiliation(s)
| | - Erdem Sanal
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Karayel
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Ayse Nur Polat
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey
| | - Özge Saatci
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208
| | - Pelin Gülizar Ersan
- ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Kathrin Trappe
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Y Renard
- ‖Bioinformatics Unit (MF1), Robert Koch Institute, 13353 Berlin, Germany
| | - Tamer T Önder
- **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey; ‡‡School of Medicine, Koç University, 34450 Istanbul, Turkey
| | - Nurcan Tuncbag
- §§Graduate School of Informatics, Department of Health Informatics, METU, 06800 Ankara, Turkey; ¶¶Cancer Systems Biology Laboratory (CanSyL), METU, 06800 Ankara, Turkey
| | - Özgür Şahin
- §Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208; ¶Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Nurhan Ozlu
- ‡Department of Molecular Biology and Genetics, Koç University, 34450 Istanbul, Turkey; **Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| |
Collapse
|
62
|
Arnold JM, Gu F, Ambati CR, Rasaily U, Ramirez-Pena E, Joseph R, Manikkam M, San Martin R, Charles C, Pan Y, Chatterjee SS, Den Hollander P, Zhang W, Nagi C, Sikora AG, Rowley D, Putluri N, Zhang XHF, Karanam B, Mani SA, Sreekumar A. UDP-glucose 6-dehydrogenase regulates hyaluronic acid production and promotes breast cancer progression. Oncogene 2019; 39:3089-3101. [PMID: 31308490 PMCID: PMC6960374 DOI: 10.1038/s41388-019-0885-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022]
Abstract
An improved understanding of the biochemical alterations that accompany tumor progression and metastasis is necessary to inform the next generation of diagnostic tools and targeted therapies. Metabolic reprogramming is known to occur during the epithelial-mesenchymal transition (EMT), a process that promotes metastasis. Here, we identify metabolic enzymes involved in extracellular matrix remodeling that are upregulated during EMT and are highly expressed in patients with aggressive mesenchymal-like breast cancer. Activation of EMT significantly increases production of hyaluronic acid, which is enabled by the reprogramming of glucose metabolism. Using genetic and pharmacological approaches, we show that depletion of the hyaluronic acid precursor UDP-glucuronic acid is sufficient to inhibit several mesenchymal-like properties including cellular invasion and colony formation in vitro, as well as tumor growth and metastasis in vivo. We found that depletion of UDP-glucuronic acid altered the expression of PPAR-gamma target genes and increased PPAR-gamma DNA-binding activity. Taken together, our findings indicate that the disruption of EMT-induced metabolic reprogramming affects hyaluronic acid production, as well as associated extracellular matrix remodeling and represents pharmacologically actionable target for the inhibition of aggressive mesenchymal-like breast cancer progression.
Collapse
Affiliation(s)
- James M Arnold
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Franklin Gu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chandrashekar R Ambati
- Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Uttam Rasaily
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Esmeralda Ramirez-Pena
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA.,Division of Cancer Prevention, National Cancer Institute, Rockville, MD, 20850, USA
| | - Robiya Joseph
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mohan Manikkam
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rebeca San Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Christy Charles
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yinghong Pan
- Seq-N-Edit Core, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA.,UPMC Genome Center, Pittsburgh, PA, 15232, USA
| | - Sujash S Chatterjee
- Seq-N-Edit Core, Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Petra Den Hollander
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chandandeep Nagi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
63
|
Xie T, Jiang C, Dai T, Xu R, Zhou X, Su X, Zhao X. Knockdown of XB130 restrains cancer stem cell-like phenotype through inhibition of Wnt/β-Catenin signaling in breast cancer. Mol Carcinog 2019; 58:1832-1845. [PMID: 31219645 DOI: 10.1002/mc.23071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
The cancer stem cells (CSCs) is a subset of cancer cells that possess stem cell properties, which plays a crucial role in the occurrence, metastasis, and recurrence of the tumor. XB130 is a novel adapter protein potentially serves as a functional factor in CSCs. To determine the role of CSCs in breast cancer, we focused on the study of XB130. In our study, we found that XB130 expression was significantly upregulated in breast cancer and was closely related to the clinicopathologic characteristics, overall survival and poor prognosis of breast cancer patients. Functionally, we found that knockdown of XB130 was not only played an important role in proliferation, epithelial-mesenchymal transition (EMT), and metastasis in breast cancer cells but also exhibited potent antitumor activity in animal tumor models. Moreover, we demonstrated that silencing endogenous XB130 regulated the cancer stem cell-like properties of breast cancer, including the formation of self-renewing spheres and the proportion of breast cancer SP+ cells. Mechanistically, our studies indicated that downregulation of XB130 restrained the EMT and Wnt/β-catenin signaling, so as to weaken the tumor-initiating cell-like phenotype of breast cancer cells. This study indicates that XB130 plays an important role in maintaining the EMT and stem cell-like characteristics of breast cancer cells, supporting the significance of XB130 as a new potential therapeutic target for early diagnosis and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tian Xie
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics, Obstetrics and Prenatal Diagnosis Center, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Jiang
- Department of Cancer Center, People's Hospital of Baoan District, Shenzhen, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China
| | - Ting Dai
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Cancer Center, Guangzhou, China.,Department of Internal Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Su
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zhao
- Department of GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.,The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
64
|
Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells. Stem Cells Int 2019; 2019:8387478. [PMID: 31191685 PMCID: PMC6525813 DOI: 10.1155/2019/8387478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development by which sessile epithelial cells are converted into migratory mesenchymal cells. Our laboratory has been successful in the establishment of Xenopus tropicalis immature Sertoli cells (XtiSCs) with the restricted differentiation potential. The aim of this study is the determination of factors responsible for EMT activation in XtiSCs and stemness window acquisition where cells possess the broadest differentiation potential. For this purpose, we tested three potent EMT inducers—GSK-3 inhibitor (CHIR99021), FGF2, and/or TGF-β1 ligand. XtiSCs underwent full EMT after 3-day treatment with CHIR99021 and partial EMT with FGF2 but not with TGF-β1. The morphological change of CHIR-treated XtiSCs to the typical spindle-like cell shape was associated with the upregulation of mesenchymal markers and the downregulation of epithelial markers. Moreover, only CHIR-treated XtiSCs were able to differentiate into chondrocytes in vitro and cardiomyocytes in vivo. Interestingly, EMT-shifted cells could migrate towards cancer cells (HeLa) in vitro and to the injury site in vivo. The results provide a better understanding of signaling pathways underlying the generation of testis-derived stem cells.
Collapse
|
65
|
Pouyafar A, Zadi Heydarabad M, Aghdam SB, Khaksar M, Azimi A, Rahbarghazi R, Talebi M. Resveratrol potentially increased the tumoricidal effect of doxorubicin on SKOV3 cancer stem cells in vitro. J Cell Biochem 2019; 120:8430-8437. [PMID: 30609135 DOI: 10.1002/jcb.28129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Ovarian cancer is associated with a high percentage of recurrence of tumor and resistance to chemotherapy. Cancer stem cells (CSCs) form a rare population with a significant capacity to begin and expand malignant diseases. Eliminating the drug resistance of CSCs by factors that have fewer side effects to the patient is vital. To investigate the effect of resveratrol (RES) and doxorubicin (DOX) on drug resistance and apoptosis of CSCs; at the first, isolation of CSCs from SKOV3 ovarian carcinoma cells and their dosage adjustment (IC50 ) with RES and DOX was performed. Then, isolated CSCs were treated with RES and DOX IC 50 of 55 and 250 nM, respectively. Subsequently, their effects on drug resistance and cell death were evaluated using real-time polymerase chain reaction, rhodamine 123 uptakes. The results of the present study demonstrated that treatment of SKOV3 with 55 μM of RES and 250 nM of DOX simultaneously increased cell viability in CSCs to DOX after 24 and 48 hours by increasing the expression of Bcl-2-associated X protein (BAX) and caspase-3 genes, and decreased the expression and function of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) genes indicated by intracellular the rhodamine 123 content. Treatment of RES could increase the activity of DOX cell viability in CSCs originated from SKOV3 ovarian carcinoma and decrease drug resistance capacity to DOX.
Collapse
Affiliation(s)
- Ayda Pouyafar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Zadi Heydarabad
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Bahar Aghdam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
66
|
Primitive Cancer Cell States: A Target for Drug Screening? Trends Pharmacol Sci 2019; 40:161-171. [DOI: 10.1016/j.tips.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
67
|
Tan M, Asad M, Heong V, Wong MK, Tan TZ, Ye J, Kuay KT, Thiery JP, Scott C, Huang RYJ. The FZD7-TWIST1 axis is responsible for anoikis resistance and tumorigenesis in ovarian carcinoma. Mol Oncol 2019; 13:757-780. [PMID: 30548372 PMCID: PMC6441896 DOI: 10.1002/1878-0261.12425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/24/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Frizzled family receptor 7 (FZD7), a Wnt signaling receptor, is associated with the maintenance of stem cell properties and cancer progression. FZD7 has emerged as a potential therapeutic target because it is capable of transducing both canonical and noncanonical Wnt signals. In this study, we investigated the regulatory pathway downstream of FZD7 and its functional roles. We found that FZD7 expression was crucial to the maintenance of the mesenchymal phenotype, anoikis resistance, and spheroid and tumor formation in ovarian cancer (OC). We identified TWIST1 as the crucial downstream effector of the FZD7 pathway. TWIST1, a basic helix loop helix transcription factor, is known to associate with mesenchymal and cancer stem cell phenotypes. Manipulating TWIST1 expression mimicked the functional consequences observed in the FZD7 model, and overexpression of TWIST1 partially rescued the functional phenotypes abolished by FZD7 knockdown. We further proved that FZD7 regulated TWIST1 expression through epigenetic modifications of H3K4me3 and H3K27ac at the TWIST1 proximal promoter. We also identified that the FZD7‐TWIST1 axis regulates the expression of BCL2, a gene that controls apoptosis. Identification of this FZD7‐TWIST1‐BCL2 pathway reaffirms the mechanism of anoikis resistance in OC. We subsequently showed that the FZD7‐TWIST1 axis can be targeted by using a small molecule inhibitor of porcupine, an enzyme essential for secretion and functional activation of Wnts. In conclusion, our results identified that the FZD7‐TWIST1 axis is important for tumorigenesis and anoikis resistance, and therapeutic inhibition results in cell death in OCs.
Collapse
Affiliation(s)
- Ming Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Mohammad Asad
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore
| | - Valerie Heong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore.,Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Meng Kang Wong
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Kuee Theng Kuay
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, Singapore.,Center for Translational Medicine, National University of Singapore, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
68
|
Ishay-Ronen D, Diepenbruck M, Kalathur RKR, Sugiyama N, Tiede S, Ivanek R, Bantug G, Morini MF, Wang J, Hess C, Christofori G. Gain Fat-Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell 2019; 35:17-32.e6. [PMID: 30645973 DOI: 10.1016/j.ccell.2018.12.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 12/05/2018] [Indexed: 01/06/2023]
Abstract
Cancer cell plasticity facilitates the development of therapy resistance and malignant progression. De-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate that cancer cell plasticity can be exploited therapeutically by forcing the trans-differentiation of EMT-derived breast cancer cells into post-mitotic and functional adipocytes. Delineation of the molecular pathways underlying such trans-differentiation has motivated a combination therapy with MEK inhibitors and the anti-diabetic drug Rosiglitazone in various mouse models of murine and human breast cancer in vivo. This combination therapy provokes the conversion of invasive and disseminating cancer cells into post-mitotic adipocytes leading to the repression of primary tumor invasion and metastasis formation.
Collapse
Affiliation(s)
- Dana Ishay-Ronen
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| | - Maren Diepenbruck
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | | | - Nami Sugiyama
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Stefanie Tiede
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Glenn Bantug
- University Hospital Basel, Department of Biomedicine, University of Basel, Switzerland
| | - Marco Francesco Morini
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Junrong Wang
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Christoph Hess
- University Hospital Basel, Department of Biomedicine, University of Basel, Switzerland
| | - Gerhard Christofori
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland.
| |
Collapse
|
69
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
70
|
Prognostic impact of microscopic vessel invasion and visceral pleural invasion and their correlations with epithelial-mesenchymal transition, cancer stemness, and treatment failure in lung adenocarcinoma. Lung Cancer 2018; 128:13-19. [PMID: 30642445 DOI: 10.1016/j.lungcan.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Microscopic vessel invasion (MVI) and visceral pleural invasion (VPI) have been recently reported as poor prognostic factors of non-small cell lung cancer. Epithelial-mesenchymal transition (EMT) and cancer stemness (CS) are known malignant phenotypes that induce resistance to cancer therapy. We aimed to assess the prognostic significance of MVI and the correlations among VPI/MVI, EMT, CS, and treatment failure for recurrent tumor. MATERIALS AND METHODS From 2002 to 2013, 1034 consecutive patients with pathological T1-4N0-2M0 lung adenocarcinoma underwent complete resection. Moreover, we established 206 tissue microarray (TMA) samples from 2002 to 2007. We then evaluated the prognostic impact of MVI, including conventional clinicopathological factors, and analyzed the VPI/MVI, EMT, CS, and treatment failure by TMA immunohistochemical staining. RESULTS Among the 1034 cases, the proportion of patients with a 5-year overall survival (OS) period was 63.9% and 88.2% (MVI: +/-; p < .001). Multivariate analysis revealed that both MVI and VPI were independent predictors of OS (HR 1.57 and 1.47, respectively). Significant separation of the OS rate curves was observed among the 3 groups [VPI/MVI: both positive (2), either positive (1), and both negative (0)]. Among the 206 TMA cases, these 3 groups of VPI/MVI were significantly correlated with EMT and CS. The median time to progression after recurrence were 3.8, 8.9, and 15.9 months, respectively (VPI/MVI: 2/1/0; p = 0.016). CONCLUSION MVI and VPI are significant prognostic factors of lung cancer, and they are correlated with EMT, CS, and treatment failure for recurrent tumor.
Collapse
|
71
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
72
|
Ningsih SS, Sari DH, Antarianto RD, Hardiany NS, Sadikin M, Wanandi SI, Jusman SW. Expressions of stemness markers in keloid tissue. MEDICAL JOURNAL OF INDONESIA 2018. [DOI: 10.13181/mji.v27i3.1920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Background: Keloid is an abnormal wound healing process that extends beyond the site of injury. Keloid and tumor’s shared similarity of recurrence suggesting a shared underlying mechanism that involves stemness. Octamer-binding transcription factor-4 (Oct-4) and aldehyde dehydrogenase-1 (ALDH1) are stem cell stemness markers. This study aimed to analyze Oct-4 and ALDH1 expressions in keloid tissues.Methods: Samples were obtained from keloid tissue excisions from three keloid patients and post-circumcision preputial skin from three healthy donors (normal control) in accordance with the local ethical committee regulation. Total RNA was isolated using TriPure Isolation kit (Ameritech), and expressions of Oct4 and ALDH1 mRNA in keloid and preputial skin were determined by quantitative reverse transcription–polymerase chain reaction (qRT-PCR) using Livak method.Results: The qRT-PCR analysis revealed the expressions of Oct4 and ALDH1 in keloid and preputial skin tissues. Keloid tissues exhibited lower expression levels of Oct-4 and ALDH1 than the preputial skin. The difference was statistically insignificant.Conclusion: Keloid tissues express Oct-4 and ALDH1 as stemness markers, and the stemness characteristics of keloid might be similar to a normal skin.
Collapse
|
73
|
Nguyen K, Yan Y, Yuan B, Dasgupta A, Sun J, Mu H, Do KA, Ueno NT, Andreeff M, Battula VL. ST8SIA1 Regulates Tumor Growth and Metastasis in TNBC by Activating the FAK-AKT-mTOR Signaling Pathway. Mol Cancer Ther 2018; 17:2689-2701. [PMID: 30237308 DOI: 10.1158/1535-7163.mct-18-0399] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/23/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023]
Abstract
Breast cancer stem-like cells (BCSC) are implicated in cancer recurrence and metastasis of triple-negative breast cancer (TNBC). We have recently discovered that ganglioside GD2 expression defines BCSCs and that ST8SIA1 regulates GD2 expression and BCSC function. In this report, we show that ST8SIA1 is highly expressed in primary TNBC; its expression is positively correlated with the expression of several BCSC-associated genes such as BCL11A, FOXC1, CXCR4, PDGFRβ, SOX2, and mutations in p53. CRISPR knockout of ST8SIA1 completely inhibited BCSC functions, including in vitro tumorigenesis and mammosphere formation. Mechanistic studies discovered activation of the FAK-AKT-mTOR signaling pathway in GD2+ BCSCs, and its tight regulation by ST8SIA1. Finally, knockout of ST8SIA1 completely blocked in vivo tumor growth and metastasis by TNBC cells. In summary, these data demonstrate the mechanism by which ST8SIA1 regulates tumor growth and metastasis in TNBC and identifies it as a novel therapeutic target.
Collapse
Affiliation(s)
- Khoa Nguyen
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Yan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhishek Dasgupta
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Sun
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Section of Translational Breast Cancer Research, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
74
|
TiHo-0906: a new feline mammary cancer cell line with molecular, morphological, and immunocytological characteristics of epithelial to mesenchymal transition. Sci Rep 2018; 8:13231. [PMID: 30185896 PMCID: PMC6125410 DOI: 10.1038/s41598-018-31682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Feline mammary carcinomas (FMCs) with anaplastic and malignant spindle cells histologically resemble the human metaplastic breast carcinoma (hMBC), spindle-cell subtype. hMBCs display epithelial-to-mesenchymal transition (EMT) characteristics. Herein we report the establishment and characterization of a cell line (TiHoCMglAdcar0906; TiHo-0906) exhibiting EMT-like properties derived from an FMC with anaplastic and malignant spindle cells. Copy-number variations (CNVs) by next-generation sequencing and immunohistochemical characteristics of the cell line and the tumour were compared. The absolute qPCR expression of EMT-related markers HMGA2 and CD44 was determined. The growth, migration, and sensitivity to doxorubicin were assessed. TiHo-0906 CNVs affect several genomic regions harbouring known EMT-, breast cancer-, and hMBCs-associated genes as AKT1, GATA3, CCND2, CDK4, ZEB1, KRAS, HMGA2, ESRP1, MTDH, YWHAZ, and MYC. Most of them were located in amplified regions of feline chromosomes (FCAs) B4 and F2. TiHo-0906 cells displayed an epithelial/mesenchymal phenotype, and high HMGA2 and CD44 expression. Growth and migration remained comparable during subculturing. Low-passaged cells were two-fold more resistant to doxorubicin than high-passaged cells (IC50: 99.97 nM, and 41.22 nM, respectively). The TiHo-0906 cell line was derived from a poorly differentiated cellular subpopulation of the tumour consistently displaying EMT traits. The cell line presents excellent opportunities for studying EMT on FMCs.
Collapse
|
75
|
Reduced expression of Twist 1 is protective against insulin resistance of adipocytes and involves mitochondrial dysfunction. Sci Rep 2018; 8:12590. [PMID: 30135600 PMCID: PMC6105588 DOI: 10.1038/s41598-018-30820-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/07/2018] [Indexed: 01/06/2023] Open
Abstract
Insulin resistance (IR) has become a global epidemic that represents a serious hazard to public health. However, the precise mechanisms modulating IR have not been fully elucidated. The present study aimed to investigate the role of transcriptional factor Twist 1 in adipocyte IR and to further explore the molecular mechanism. An in vitro IR model based on cultured 3T3-L1 adipocytes was established under high glucose/insulin stimulation and an in vivo IR model in C57/BL6J mice induced by a high fat diet (HFD) was also developed. Lentivirus targeting Twist 1 silencing was introduced. The relationships between Twist 1 expression and IR state, mitochondrial dysfunction and the downstream insulin signaling pathway were assayed. Our results firstly showed the elevation of Twist 1 in IR adipocytes, and Twist 1 silencing attenuated IR. Then mitochondrial ultra-structural damage, elevated ROS, decreased MMP and ATP, and changes in mitochondrial biosynthesis-related genes in IR group indicated mitochondrial dysfunction. Further, the downstream IRS/PI3K/AKT/GluT4 pathway was showed involved in Twist 1-mediated IR. In total, we provide evidence of a protective role of Twist 1 silencing in relieving the IR state of adipocytes. Mitochondrial dysfunction and the downstream IRS/PI3K/AKT/GluT4 pathway were involved in this Twist 1-mediated IR.
Collapse
|
76
|
Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial mesenchymal transition (EMT): a universal process in lung diseases with implications for cystic fibrosis pathophysiology. Respir Res 2018; 19:136. [PMID: 30021582 PMCID: PMC6052671 DOI: 10.1186/s12931-018-0834-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a genetic disorder that arises due to mutations in the Cystic Fibrosis Transmembrane Conductance Regulator gene, which encodes for a protein responsible for ion transport out of epithelial cells. This leads to a disruption in transepithelial Cl-, Na + and HCO3− ion transport and the subsequent dehydration of the airway epithelium, resulting in infection, inflammation and development of fibrotic tissue. Unlike in CF, fibrosis in other lung diseases including asthma, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis has been well characterised. One of the driving forces behind fibrosis is Epithelial Mesenchymal Transition (EMT), a process where epithelial cells lose epithelial proteins including E-Cadherin, which is responsible for tight junctions. The cell moves to a more mesenchymal phenotype as it gains mesenchymal markers such as N-Cadherin (providing the cells with migration potential), Vimentin and Fibronectin (proteins excreted to help form the extracellular matrix), and the fibroblast proliferation transcription factors Snail, Slug and Twist. This review paper explores the EMT process in a range of lung diseases, details the common links that these have to cystic fibrosis, and explores how understanding EMT in cystic fibrosis may open up novel methods of treating patients with cystic fibrosis.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia. .,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia. .,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.
| | - Nigel Farrow
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia.,Australian Respiratory Epithelium Consortium (AusRec), Perth, Western Australia, 6105, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, 72 King William Rd, North Adelaide, South Australia, 5006, Australia
| |
Collapse
|
77
|
Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): The 'fittest' for metastasis? Biochim Biophys Acta Rev Cancer 2018; 1870:151-157. [PMID: 29997040 DOI: 10.1016/j.bbcan.2018.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Metastasis is the leading cause of mortality among cancer patients. Dissemination enabled by an epithelial-to-mesenchymal transition (EMT) of carcinoma cells has long been considered to be the predominant mechanism for carcinoma metastasis, based on overexpression studies of many EMT-inducing transcription factors. Individual CTCs - and a binary framework of EMT - have been long considered to be sufficient and necessary condition for metastasis. However, recent studies have shown that collective migration and invasion through tumor buds and clusters of Circulating Tumor Cells (CTCs) as possibly being the prevalent mode of metastasis, although individual CTCs may still contribute to metastasis. These strands and clusters have been proposed to often exhibit a hybrid epithelial/mesenchymal (E/M) phenotype where cells retain epithelial traits of cell-cell adhesion and simultaneously gain mesenchymal characteristics of migration and invasion. To highlight the crucial questions regarding metastasis, we define EMT in a non-binary and context-specific manner, suggest that it can be viewed as a trans-differentiation process, and illustrate the implications of hybrid E/M phenotype(s) and cluster-based dissemination in metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
78
|
Soundararajan R, Paranjape AN, Maity S, Aparicio A, Mani SA. EMT, stemness and tumor plasticity in aggressive variant neuroendocrine prostate cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:229-238. [PMID: 29981816 DOI: 10.1016/j.bbcan.2018.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
Neuroendocrine/Aggressive Variant Prostate Cancers are lethal variants of the disease, with an aggressive clinical course and very short responses to conventional therapy. The age-adjusted incidence rate for this tumor sub-type has steadily increased over the past 20 years in the United States, with no reduction in the associated mortality rate. The molecular networks fueling its emergence and sustenance are still obscure; however, many factors have been associated with the onset and progression of neuroendocrine differentiation in clinically typical adenocarcinomas including loss of androgen-receptor expression and/or signaling, conventional therapy, and dysregulated cytokine function. "Tumor-plasticity" and the ability to dedifferentiate into alternate cell lineages are central to this process. Epithelial-to-mesenchymal (EMT) signaling pathways are major promoters of stem-cell properties in prostate tumor cells. In this review, we examine the contributions of EMT-induced cellular-plasticity and stem-cell signaling pathways to the progression of Neuroendocrine/Aggressive Variant Prostate Cancers in the light of potential therapeutic opportunities.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Anurag N Paranjape
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sankar Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Developmental Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
79
|
Fitzgerald W, Gomez-Lopez N, Erez O, Romero R, Margolis L. Extracellular vesicles generated by placental tissues ex vivo: A transport system for immune mediators and growth factors. Am J Reprod Immunol 2018; 80:e12860. [PMID: 29726582 PMCID: PMC6021205 DOI: 10.1111/aji.12860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
PROBLEM To study the mechanisms of placenta function and the role of extracellular vesicles (EVs) in pregnancy, it is necessary to develop an ex vivo system that retains placental cytoarchitecture and the primary metabolic aspects, in particular the release of EVs and soluble factors. Here, we developed such a system and investigated the pattern of secretion of cytokines, growth factors, and extracellular vesicles by placental villous and amnion tissues ex vivo. METHODS OF STUDY Placental villous and amnion explants were cultured for 2 weeks at the air/liquid interface and their morphology and the released cytokines and EVs were analyzed. Cytokines were analyzed with multiplexed bead assays, and individual EVs were analyzed with recently developed techniques that involved EV capture with magnetic nanoparticles coupled to anti-EV antibodies and flow cytometry. RESULTS Ex vivo tissues (i) remained viable and preserved their cytoarchitecture; (ii) maintained secretion of cytokines and growth factors; (iii) released EVs of syncytiotrophoblast and amnion epithelial cell origins that contain cytokines and growth factors. CONCLUSION A system of ex vivo placental villous and amnion tissues can be used as an adequate model to study placenta metabolic activity in normal and complicated pregnancies, in particular to characterize EVs by their surface markers and by encapsulated proteins. Establishment and benchmarking the placenta ex vivo system may provide new insight in the functional status of this organ in various placental disorders, particularly regarding the release of EVs and cytokines. Such EVs may have a prognostic value for pregnancy complications.
Collapse
Affiliation(s)
- Wendy Fitzgerald
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Leonid Margolis
- Section of Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
80
|
Bronte G, Bravaccini S, Bronte E, Burgio MA, Rolfo C, Delmonte A, Crinò L. Epithelial-to-mesenchymal transition in the context of epidermal growth factor receptor inhibition in non-small-cell lung cancer. Biol Rev Camb Philos Soc 2018; 93:1735-1746. [PMID: 29671943 DOI: 10.1111/brv.12416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
The identification of oncogenic driver mutations in non-small-cell lung cancer (NSCLC) has led to the development of targeted drugs. Tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) target lung tumours bearing EGFR-activating mutations. This new therapeutic strategy has greatly improved tumour response rates. However, drug resistance invariably occurs during TKI-based treatment. Epithelial-to-mesenchymal transition (EMT) is one of the resistance mechanisms identified in EGFR-mutated NSCLC treated with TKIs. In this review we gather together the most important findings on this phenomenon in relation to cancer stem cells and cancer epigenetics. We also outline the correlation between the effects of stromal factors from the microenvironment, the transcription factors activated, the epigenetic changes in chromatin, and the evolution of cellular behaviour. Notably, EMT has already been shown to be the link between benign lung diseases such as chronic obstructive pulmonary disease and lung carcinogenesis. The various mechanisms of acquired resistance to EGFR-TKIs are also briefly described to provide background information on EMT. Our extensive review of the scientific literature serves to highlight the cellular and molecular events that lead to the onset of EMT in NSCLC cells treated with EGFR-TKIs. Finally, we put forward a hypothesis to explain why, in some cases, EMT rather than other known mechanisms is involved in resistance to TKIs.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Enrico Bronte
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Marco Angelo Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Christian Rolfo
- Phase I Early Clinical Trials Unit, Department of Oncology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
81
|
Orsi G, Barbolini M, Ficarra G, Tazzioli G, Manni P, Petrachi T, Mastrolia I, Orvieto E, Spano C, Prapa M, Kaleci S, D'Amico R, Guarneri V, Dieci MV, Cascinu S, Conte P, Piacentini F, Dominici M. GD2 expression in breast cancer. Oncotarget 2018; 8:31592-31600. [PMID: 28415563 PMCID: PMC5458232 DOI: 10.18632/oncotarget.16363] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/09/2017] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, including different subtypes having diverse incidence, drug-sensitivity and survival rates. In particular, claudin-low and basal-like BC have mesenchymal features with a dismal prognosis. Disialoganglioside GD2 is a typical neuroectodermal antigen expressed in a variety of cancers. Despite its potential relevance in cancer diagnostics and therapeutics, the presence and role of GD2 require further investigation, especially in BC. Therefore, we evaluated GD2 expression in a cohort of BC patients and its correlation with clinical-pathological features. Sixty-three patients with BC who underwent surgery without prior chemo- and/or radiotherapy between 2001 and 2014 were considered. Cancer specimens were analyzed by immunohistochemistry and GD2-staining was expressed according to the percentage of positive cells and by a semi-quantitative scoring system. Patient characteristics were heterogeneous by age at diagnosis, histotype, grading, tumor size, Ki-67 and receptor-status. GD2 staining revealed positive cancer cells in 59% of patients. Among them, 26 cases (41%) were labeled with score 1+ and 11 (18%) with score 2+. Notably, the majority of metaplastic carcinoma specimens stained positive for GD2. The univariate regression logistic analysis revealed a significant association of GD2 with triple-receptor negative phenotype and older age (> 78) at diagnosis. We demonstrate for the first time that GD2 is highly prevalent in a cohort of BC patients clustering on very aggressive BC subtypes, such as triple-negative and metaplastic variants.
Collapse
Affiliation(s)
- Giulia Orsi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Monica Barbolini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Guido Ficarra
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Giovanni Tazzioli
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Paola Manni
- Division of Pathology, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Tiziana Petrachi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Ilenia Mastrolia
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Enrico Orvieto
- Department of Pathology, Padua University Hospital, 2-35128 Padua, Italy
| | - Carlotta Spano
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Malvina Prapa
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Shaniko Kaleci
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Roberto D'Amico
- Department of Diagnostic and Clinical Medicine and Public Health, Statistics Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Stefano Cascinu
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Pierfranco Conte
- Department of Surgery, Oncology and Gastroenterology, Division of Medical Oncology 2, Istituto Oncologico Veneto IRCCS, 64-35128, Padua, Italy
| | - Federico Piacentini
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy.,Breast Unit, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, 71-41124 Modena, Italy
| |
Collapse
|
82
|
Di Domenico M, Giordano A. Signal transduction growth factors: the effective governance of transcription and cellular adhesion in cancer invasion. Oncotarget 2018; 8:36869-36884. [PMID: 28415812 PMCID: PMC5482705 DOI: 10.18632/oncotarget.16300] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Giulio Bizzozero classified the tissues concerning their capacity to self-renew during the adult life in labile, stable and permanent tissues. In 1940 Viktor Hamburger and Rita Levi Montalcini exposed the possibility to induce the growth of permanent cells thanks to a specific ligand Nerve Growth Factor (NGF). Stanley Cohen purified a protein the Epidermal Growth Factor (EGF), able to induce epidermis proliferation and to elicit precocious eye disclosure and teeth eruption, establishing the “inverse” relationships between the proliferation and differentiation. These two biological effects induced by EGF were according to EGFR signaling is involved in a large array of cellular functions such as proliferation, survival, adhesion, migration and differentiation. This review is focused on the key role of growth factors signaling and their downstream effectors in physiological and in pathological phenomena, the authors highlight the governance of Growth factors during the EMT in cancer invasion.
Collapse
Affiliation(s)
- Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Italy.,IRCCS Institute of Women's Health Malzoni Clinic, Avellino, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
83
|
Srinivasan A, Chang SY, Zhang S, Toh WS, Toh YC. Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling. Biomaterials 2018; 167:153-167. [PMID: 29571051 DOI: 10.1016/j.biomaterials.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRβ) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shu-Yung Chang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Wei Seong Toh
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #05-COR, Singapore 117456; NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Biomedical Institute for Global Health, Research and Technology (BIGHEART), MD6, 14 Medical Drive, #14-01, Singapore 117599.
| |
Collapse
|
84
|
ICAM3 mediates inflammatory signaling to promote cancer cell stemness. Cancer Lett 2018; 422:29-43. [PMID: 29477378 DOI: 10.1016/j.canlet.2018.02.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/05/2023]
Abstract
In this study, we present a medium throughput siRNA screen platform to identify inflammation genes that regulate cancer cell stemness. We identified several novel candidates that decrease OCT4 expression and reduce the ALDH + subpopulation both of which are characteristic of stemness. Furthermore, one of the novel candidates ICAM3 up-regulates in the ALDH + subpopulation, the side population and the developed spheres. ICAM3 knockdown reduces the side population, sphere formation and chemo-resistance in MDA-MB-231 human breast cancer cells and A549 lung cancer cells. In addition, mice bearing MDA-MB-231-shICAM3 cells develop smaller tumors and fewer lung metastases versus control. Interestingly, ICAM3 recruits and binds to Src by the YLPL motif in its intracellular domain which further activates the PI3K-AKT phosphorylation cascades. The activated p-AKT enhances SOX2 and OCT4 activity and thereby maintains cancer cell stemness. Meanwhile, the p-AKT facilitated p50 nuclear translocation/activation enhances p50 feedback and thereby promotes ICAM3 expression by binding to the ICAM3 promoter region. On this basis, Src and PI3K inhibitors suppress ICAM3-mediated signaling pathways and reduce chemo-resistance which results in tumor growth suppression in vitro and in vivo. In summary, we identify a potential CSC regulator and suggest a novel mechanism by which ICAM3 governs cancer cell stemness and inflammation.
Collapse
|
85
|
Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, Wang QS, Feng YM. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 2018; 7:79688-79705. [PMID: 27806311 PMCID: PMC5346745 DOI: 10.18632/oncotarget.12939] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/25/2016] [Indexed: 11/25/2022] Open
Abstract
Bone is one of the most common organs of breast cancer metastasis. Cancer cells that mimic osteoblasts by expressing bone matrix proteins and factors have a higher likelihood of metastasizing to bone. However, the molecular mechanisms of osteomimicry formation of cancer cells remain undefined. Herein, we identified a set of bone-related genes (BRGs) that are ectopically co-expressed in primary breast cancer tissues and determined that osteomimetic feature is obtained due to the osteoblast-like transformation of epithelial breast cancer cells that have undergone epithelial-mesenchymal transition (EMT) followed by bone morphogenetic protein-2 (BMP2) stimulation. Furthermore, we demonstrated that breast cancer cells that transformed into osteoblast-like cells with high expression of BRGs showed enhanced chemotaxis, adhesion, proliferation and multidrug resistance in an osteoblast-mimic bone microenvironment in vitro. During these processes, runt-related transcription factor 2 (RUNX2) functioned as a master mediator by suppressing or activating the transcription of BRGs that underlie the dynamic antagonism between the TGF-β/SMAD and BMP/SMAD signaling pathways in breast cancer cells. Our findings suggest a novel mechanism of osteomimicry formation that arises in primary breast tumors, which may explain the propensity of breast cancer to metastasize to the skeleton and contribute to potential strategies for predicting and targeting breast cancer bone metastasis and multidrug resistance.
Collapse
Affiliation(s)
- Cong-Cong Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Gui-Xi Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Li-Duan Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xin Du
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Rui He
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin 300060, China
| |
Collapse
|
86
|
Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 2018; 15:271-286. [PMID: 29460922 DOI: 10.1038/nrurol.2018.22] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.
Collapse
Affiliation(s)
- Alastair H Davies
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| | - Himisha Beltran
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street, New York, NY, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, Canada.,Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2775 Laurel Street, Vancouver, BC, Canada
| |
Collapse
|
87
|
Case Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1069:135-209. [DOI: 10.1007/978-3-319-89354-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
88
|
Molecular Mechanisms Responsible for Anti-inflammatory and Immunosuppressive Effects of Mesenchymal Stem Cell-Derived Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1084:187-206. [PMID: 31175638 DOI: 10.1007/5584_2018_306] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.
Collapse
|
89
|
Lund K, Olsen CE, Wong JJW, Olsen PA, Solberg NT, Høgset A, Krauss S, Selbo PK. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin. J Exp Clin Cancer Res 2017; 36:187. [PMID: 29258566 PMCID: PMC5738190 DOI: 10.1186/s13046-017-0662-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. METHODS 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. RESULTS The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS2a, altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105-expressing 5-FUR cells, whereas little effect was seen in the CD105-negative non-resistant parental cancer cell lines. Strikingly, using the intracellular drug delivery method photochemical internalization (PCI) by combining light-controlled activation of the TPCS2a with nanomolar levels of CD105-saporin resulted in strong cytotoxic effects in the 5-FUR cell population. CONCLUSION Our findings suggested that autophagy is an important resistance mechanism against the chemotherapeutic drug 5-FU in pancreatic cancer cells, and that inhibition of the autophagy process, either by CQ or lysosomal photodamage, can contribute to increased sensitivity to 5-FU. For the first time, we demonstrate the promise of PCI-based targeting of CD105 in site-specific elimination of 5-FU resistant pancreatic cancer cells in vitro. In conclusion, PCI-based targeting of CD105 may represent a potent anticancer strategy and should be further evaluated in pre-clinical models.
Collapse
Affiliation(s)
- Kaja Lund
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Judith Jing Wen Wong
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Petter Angell Olsen
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Nina Therese Solberg
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Anders Høgset
- PCI Biotech AS, Ullernchaussèn 64, 0379 Oslo, Norway
| | - Stefan Krauss
- Unit for Cell Signaling, Institute of Microbiology, Rikshospitalet, 0372 Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112, Blindern, 0317 Oslo, Norway
| | - Pål Kristian Selbo
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| |
Collapse
|
90
|
Characteristics of Trophoblasts in Long-Term Culture. Bull Exp Biol Med 2017; 164:259-265. [PMID: 29177904 DOI: 10.1007/s10517-017-3969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 10/18/2022]
Abstract
We analyzed more than 40 cytotrophoblast cultures derived from cell islets that grew from trypsinized tissue fragments of placental microvilli. Phenotypic variability of trophoblasts was demonstrated. Changes in trophoblast morphology from epithelium-like or oval cells to bipolar and spindle-shaped or twisted and then to mesenchymal-like cells as well as intensive expression of cytokeratin-7 and vimentin attested to epithelial-mesenchymal transition of trophoblasts during in vitro culturing. Analysis of the expression of specific markers in long-term trophoblast culture (≥7 passages) revealed the possibility of culture contamination with other non-trophoblast cells including fibroblasts. High risk of trophoblast culture contamination with rapidly growing cells necessitates regular control of the cultures used in fundamental studies. Our experiments confirmed the possibility of long-term culturing of cells maintaining trophoblast properties. The identity and purity of 4 trophoblast cultures free from contamination and retaining the properties of pure culture during long-term (>10 passages) culturing in vitro were confirmed.
Collapse
|
91
|
Reprogramming to developmental plasticity in cancer stem cells. Dev Biol 2017; 430:266-274. [PMID: 28774727 DOI: 10.1016/j.ydbio.2017.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/26/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance.
Collapse
|
92
|
Wu B, An C, Li Y, Yin Z, Gong L, Li Z, Liu Y, Heng BC, Zhang D, Ouyang H, Zou X. Reconstructing Lineage Hierarchies of Mouse Uterus Epithelial Development Using Single-Cell Analysis. Stem Cell Reports 2017. [PMID: 28625536 PMCID: PMC5511104 DOI: 10.1016/j.stemcr.2017.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The endometrial layer comprises luminal and glandular epithelia that both develop from the same simple layer of fetal uterine epithelium. Mechanisms of uterine epithelial progenitor self-renewal and differentiation are unclear. This study aims to systematically analyze the molecular and cellular mechanisms of uterine epithelial development by single-cell analysis. An integrated set of single-cell transcriptomic data of uterine epithelial progenitors and their differentiated progenies is provided. Additionally the unique molecular signatures of these cells, characterized by sequential upregulation of specific epigenetic and metabolic activities, and activation of unique signaling pathways and transcription factors, were also investigated. Finally a unique subpopulation of early progenitor, as well as differentiated luminal and glandular lineages, were identified. A complex cellular hierarchy of uterine epithelial development was thus delineated. Our study therefore systematically decoded molecular markers and a cellular program of uterine epithelial development that sheds light on uterine developmental biology. Single-cell transcriptome of mouse uterine epithelial development is provided Epithelial progenitors during early development of uterine epithelia is identified Molecular cascades orchestrating uterine epithelial development are dissected Cellular hierarchical map of uterine epithelial development is reconstructed
Collapse
Affiliation(s)
- Bingbing Wu
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Chengrui An
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Yu Li
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Zi Yin
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Lin Gong
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Zhenli Li
- Department of Pathology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yixiao Liu
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Boon Chin Heng
- Department of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hongwei Ouyang
- Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, PR China.
| | - Xiaohui Zou
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang 310003, PR China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, Zhejiang 310058, PR China; Dr.Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regeneration Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China.
| |
Collapse
|
93
|
Manupati K, Dhoke NR, Debnath T, Yeeravalli R, Guguloth K, Saeidpour S, De UC, Debnath S, Das A. Inhibiting epidermal growth factor receptor signalling potentiates mesenchymal–epithelial transition of breast cancer stem cells and their responsiveness to anticancer drugs. FEBS J 2017; 284:1830-1854. [DOI: 10.1111/febs.14084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Kanakaraju Manupati
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Neha R. Dhoke
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Tanusree Debnath
- Department of Chemistry Maharaja Bir Bikram College Agartala Tripura India
| | - Ragini Yeeravalli
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| | - Kalpana Guguloth
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Shahrzad Saeidpour
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Utpal Chandra De
- Department of Chemistry Tripura University Agartala Tripura India
| | - Sudhan Debnath
- Department of Chemistry Maharaja Bir Bikram College Agartala Tripura India
| | - Amitava Das
- Centre for Chemical Biology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Academy of Scientific & Innovative Research New Delhi India
| |
Collapse
|
94
|
Castle J, Morris K, Pritchard S, Kirwan CC. Challenges in enumeration of CTCs in breast cancer using techniques independent of cytokeratin expression. PLoS One 2017; 12:e0175647. [PMID: 28422972 PMCID: PMC5397021 DOI: 10.1371/journal.pone.0175647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Given the current postulated plasticity between epithelial and mesenchymal states of migratory cancer cells the detection of non-epithelial CTCs is an important scientific and clinical goal. METHODS We used the filtration-based ISET technology to enrich circulating tumour cells (CTCs) in early breast cancer blood samples and identify them using a morphology-based immunocytochemistry (ICC) approach. RESULTS We found greater numbers of putative CTCs by this approach than by the cytokeratin-based CellSearch technology, but a high number of CTC false positives were identified in healthy volunteer samples which were not reduced in successive blood draws. Preliminary work using an oestrogen receptor (ER)-based multiplex ICC method in metastatic breast cancer ISET samples indicated a low number of ER+ CTCs even at this advanced stage. CONCLUSIONS This work highlights the challenges in enumerating CTCs without conventional epithelial markers.
Collapse
Affiliation(s)
- John Castle
- Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute; Manchester, United Kingdom
| | - Karen Morris
- Clinical and Experimental Pharmacology, Cancer Research UK Manchester Institute; Manchester, United Kingdom
| | - Susan Pritchard
- Department of Histopathology, University Hospital of South Manchester; Manchester, United Kingdom
| | - Cliona C Kirwan
- Division of Molecular and Clinical Cancer Sciences, University of Manchester; Department of Academic Surgery, University Hospital of South Manchester, Manchester, United Kingdom
| |
Collapse
|
95
|
Chen T, You Y, Jiang H, Wang ZZ. Epithelial-mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 2017; 232:3261-3272. [PMID: 28079253 DOI: 10.1002/jcp.25797] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/14/2022]
Abstract
The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan You
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
96
|
Nolan KD, Kaur J, Isaacs JS. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget 2017; 8:19323-19341. [PMID: 28038472 PMCID: PMC5386687 DOI: 10.18632/oncotarget.14252] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022] Open
Abstract
Heat-shock protein 90 (Hsp90), a highly conserved molecular chaperone, is frequently upregulated in tumors, and remains an attractive anti-cancer target. Hsp90 is also found extracellularly, particularly in tumor models. Although extracellular Hsp90 (eHsp90) action is not well defined, eHsp90 targeting attenuates tumor invasion and metastasis, supporting its unique role in tumor progression. We herein investigated the potential role of eHsp90 as a modulator of cancer stem-like cells (CSCs) in prostate cancer (PCa). We report a novel function for eHsp90 as a facilitator of PCa stemness, determined by its ability to upregulate stem-like markers, promote self-renewal, and enhance prostasphere growth. Moreover, eHsp90 increased the side population typically correlated with the drug-resistant phenotype. Intriguingly, tumor cells with elevated surface eHsp90 exhibited a marked increase in stem-like markers coincident with increased expression of the epithelial to mesenchymal (EMT) effector Snail, indicating that surface eHsp90 may enrich for a unique CSC population. Our analysis of distinct effectors modulating the eHsp90-dependent CSC phenotyperevealed that eHsp90 is a likely facilitator of stem cell heterogeneity. Taken together, our findings provide unique functional insights into eHsp90 as a modulator of PCa plasticity, and provide a framework towards understanding its role as a driver of tumor progression.
Collapse
Affiliation(s)
- Krystal D. Nolan
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jasmine Kaur
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| | - Jennifer S. Isaacs
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Hollings Cancer Center, Charleston, SC, USA
| |
Collapse
|
97
|
Méndez-López LF, Davila-Velderrain J, Domínguez-Hüttinger E, Enríquez-Olguín C, Martínez-García JC, Alvarez-Buylla ER. Gene regulatory network underlying the immortalization of epithelial cells. BMC SYSTEMS BIOLOGY 2017; 11:24. [PMID: 28209158 PMCID: PMC5314717 DOI: 10.1186/s12918-017-0393-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tumorigenic transformation of human epithelial cells in vitro has been described experimentally as the potential result of spontaneous immortalization. This process is characterized by a series of cell-state transitions, in which normal epithelial cells acquire first a senescent state which is later surpassed to attain a mesenchymal stem-like phenotype with a potentially tumorigenic behavior. In this paper we aim to provide a system-level mechanistic explanation to the emergence of these cell types, and to the time-ordered transition patterns that are common to neoplasias of epithelial origin. To this end, we first integrate published functional and well-curated molecular data of the components and interactions that have been found to be involved in such cell states and transitions into a network of 41 molecular components. We then reduce this initial network by removing simple mediators (i.e., linear pathways), and formalize the resulting regulatory core into logical rules that govern the dynamics of each of the network components as a function of the states of its regulators. RESULTS Computational dynamic analysis shows that our proposed Gene Regulatory Network model recovers exactly three attractors, each of them defined by a specific gene expression profile that corresponds to the epithelial, senescent, and mesenchymal stem-like cellular phenotypes, respectively. We show that although a mesenchymal stem-like state can be attained even under unperturbed physiological conditions, the likelihood of converging to this state is increased when pro-inflammatory conditions are simulated, providing a systems-level mechanistic explanation for the carcinogenic role of chronic inflammatory conditions observed in the clinic. We also found that the regulatory core yields an epigenetic landscape that restricts temporal patterns of progression between the steady states, such that recovered patterns resemble the time-ordered transitions observed during the spontaneous immortalization of epithelial cells, both in vivo and in vitro. CONCLUSION Our study strongly suggests that the in vitro tumorigenic transformation of epithelial cells, which strongly correlates with the patterns observed during the pathological progression of epithelial carcinogenesis in vivo, emerges from underlying regulatory networks involved in epithelial trans-differentiation during development.
Collapse
Affiliation(s)
- Luis Fernando Méndez-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon, A. P. 14-740, México, 07300 D.F México
| | | | - Elisa Domínguez-Hüttinger
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| | | | | | - Elena R. Alvarez-Buylla
- Instituto de Ecología, UNAM, Cd. Universitaria, México, 04510 D.F México
- Centro de Ciencias de la Complejidad, UNAM, Cd. Universitaria, México, 04510 D.F México
| |
Collapse
|
98
|
HDAC3 mediates smoking-induced pancreatic cancer. Oncotarget 2016; 7:7747-60. [PMID: 26745602 PMCID: PMC4884951 DOI: 10.18632/oncotarget.6820] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Smoking is a major risk factor for developing pancreatic adenocarcinoma (PDAC); however, little is known about the mechanisms involved. Here we employed a genetic animal model of early stages of PDAC that overexpresses oncogenic Kras in the pancreas to investigate the mechanisms of smoking-induced promotion of the disease in vivo. We confirmed the regulation of the interactions between the tumor microenvironment cells using in vitro cellular systems. Aerial exposure to cigarette smoke stimulated development of pancreatic intraepithelial neaoplasia (PanIN) lesions associated with a tumor microenvironment-containing features of human PDAC including fibrosis, activated stellate cells, M2-macrophages and markers of epithelial-mesenchymal transition (EMT). The pro-cancer effects of smoking were prevented by Histone Deacetylase HDAC I/II inhibitor Saha. Smoking decreased histone acetylation associated with recruitment of and phenotypic changes in macrophages; which in turn, stimulated survival and induction of EMT of the pre-cancer and cancer cells. The interaction between the cancer cells and macrophages is mediated by IL-6 produced under the regulation of HDAC3 translocation to the nucleus in the cancer cells. Pharmacological and molecular inhibitions of HDAC3 decreased IL-6 levels in cancer cells. IL-6 stimulated the macrophage phenotype change through regulation of the IL-4 receptor level of the macrophage. This study demonstrates a novel pathway of interaction between cancer cells and tumor promoting macrophages involving HDAC3 and IL-6. It further demonstrates that targeting HDAC3 prevents progression of the disease and could provide a strategy for treating the disease considering that the HDAC inhibitor we used is FDA approved for a different disease.
Collapse
|
99
|
Sarcomatoid adrenocortical carcinoma: a comprehensive pathological, immunohistochemical, and targeted next-generation sequencing analysis. Hum Pathol 2016; 58:113-122. [DOI: 10.1016/j.humpath.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
|
100
|
Dhasarathy A, Roemmich JN, Claycombe KJ. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Mol Aspects Med 2016; 54:37-49. [PMID: 27825817 DOI: 10.1016/j.mam.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - James N Roemmich
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA
| | - Kate J Claycombe
- USDA-ARS-PA, Grand Forks Human Nutrition Research Center, 2420 2nd Avenue North, Grand Forks, ND 58203, USA.
| |
Collapse
|