51
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
52
|
Newstead S, Kim H, von Heijne G, Iwata S, Drew D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2007; 104:13936-41. [PMID: 17709746 PMCID: PMC1955786 DOI: 10.1073/pnas.0704546104] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic membrane proteins are often difficult to produce in large quantities, which is a significant obstacle for further structural and biochemical investigation. Based on the analysis of 43 eukaryotic membrane proteins, we present a cost-effective high-throughput approach for rapidly screening membrane proteins that can be overproduced to levels of >1 mg per liter in Saccharomyces cerevisiae. We find that 70% of the well expressed membrane proteins tested in this system are stable, targeted to the correct organelle, and monodisperse in either Fos-choline 12 (FC-12) or n-dodecyl-beta-D-maltoside. We illustrate the advantage of such an approach, with the purification of monodisperse human and yeast nucleotide-sugar transporters to unprecedented levels. We estimate that our approach should be able to provide milligram quantities for at least one-quarter of all membrane proteins from both yeast and higher eukaryotic organisms.
Collapse
Affiliation(s)
- Simon Newstead
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
| | - Hyun Kim
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - So Iwata
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
- ERATO Human Receptor Crystallography Project, Kawasaki, Kanagawa 210-0855, Japan; and
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- To whom correspondence may be addressed. E-mail: or
| | - David Drew
- *Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, United Kingdom
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
53
|
Chloupková M, Pickert A, Lee JY, Souza S, Trinh YT, Connelly SM, Dumont ME, Dean M, Urbatsch IL. Expression of 25 human ABC transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 2007; 46:7992-8003. [PMID: 17569508 DOI: 10.1021/bi700020m] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.
Collapse
Affiliation(s)
- Maja Chloupková
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Arakawa T, Tsumoto K, Kita Y, Chang B, Ejima D. Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 2007; 33:587-605. [PMID: 17357829 DOI: 10.1007/s00726-007-0506-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
Amino acids are widely used in biotechnology applications. Since amino acids are natural compounds, they can be safely used in pharmaceutical applications, e.g., as a solvent additive for protein purification and as an excipient for protein formulations. At high concentrations, certain amino acids are found to raise intra-cellular osmotic pressure and adjust to the high salt concentrations of the surrounding medium. They are called "compatible solutes", since they do not affect macromolecular function. Not only are they needed to increase the osmotic pressure, they are known to increase the stability of the proteins. Sucrose, glycerol and certain amino acids were used to enhance the stability of unstable proteins after isolation from natural environments. The mechanism of the action of these protein-stabilizing amino acids is relatively well understood. On the contrary, arginine was accidentally discovered as a useful reagent for assisting in the refolding of recombinant proteins. This effect of arginine was ascribed to its ability to suppress aggregation of the proteins during refolding, thereby increasing refolding efficiency. By the same mechanism, arginine now finds much wider applications than previously anticipated in the research and development of proteins, in particular in pharmaceutical applications. For example, arginine solubilizes proteins from loose inclusion bodies, resulting in efficient production of active proteins. Arginine suppresses protein-protein interactions in solution and also non-specific adsorption to gel permeation chromatography columns. Arginine facilitates elution of bound proteins from various column resins, including Protein-A or dye affinity columns and hydrophobic interaction columns. This review covers various biotechnology applications of amino acids, in particular arginine.
Collapse
Affiliation(s)
- T Arakawa
- Alliance Protein Laboratories, Thousand Oaks, CA, USA.
| | | | | | | | | |
Collapse
|
55
|
Wang Z, Stalcup LD, Harvey BJ, Weber J, Chloupkova M, Dumont ME, Dean M, Urbatsch IL. Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8. Biochemistry 2006; 45:9929-39. [PMID: 16893193 DOI: 10.1021/bi0608055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 lead to sitosterolemia, a disorder characterized by sterol accumulation and premature atherosclerosis. ABCG5 and ABCG8 are both half-size transporters that have been proposed to function as heterodimers in vivo. We have expressed the recombinant human ABCG5 and ABCG8 genes in the yeast Pichia pastoris and purified the proteins to near homogeneity. Purified ABCG5 and ABCG8 had very low ATPase activities (<5 nmol min(-)(1) mg(-)(1)), suggesting that expression of ABCG5 or ABCG8 alone yielded nonfunctional transporters. Coexpression of the two genes in P. pastoris greatly increased the yield of pure proteins, indicating that the two transporters stabilize each other during expression and purification. Copurified ABCG5/G8 displayed low but significant ATPase activity with a V(max) of approximately 15 nmol min(-)(1) mg(-)(1). The ATPase activity was not stimulated by sterols. The catalytic activity of copurified ABCG5/G8 was characterized in detail, demonstrating low affinity for MgATP, a preference for Mg as a metal cofactor and ATP as a hydrolyzed substrate, and a pH optimum near 8.0. AlFx and BeFx inhibited MgATP hydrolysis by specific trapping of nucleotides in the ABCG5/G8 proteins. Furthermore, ABCG5/G8 eluted as a dimer on gel filtration columns. The data suggest that the hetero-dimer is the catalytically active species, and likely the active species in vivo.
Collapse
Affiliation(s)
- Zhanling Wang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Arakawa T, Ejima D, Kita Y, Tsumoto K. Small molecule pharmacological chaperones: From thermodynamic stabilization to pharmaceutical drugs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1677-87. [PMID: 17046342 DOI: 10.1016/j.bbapap.2006.08.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/04/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
A great deal of attention has been paid to so-called amyloid diseases, in which the proteins responsible for the cell death and resultant diseases undergo conformational changes and aggregate in vivo, although whether aggregate formation is the cause or the result of the cell death is controversial. Recently, an increasing attention is given to protein folding diseases tightly associated with mutations. These mutations result in temperature-dependent misfolding and hence inactivation of the proteins, leading to loss of function, at physiological temperature; at low so-called permissive temperatures, the mutant proteins correctly fold and acquire functional structure. Alternatively, activation can be induced by use of osmolytes, which restores the folding of the mutant proteins and hence are called chemical chaperones. The osmolytes are compatible with macromolecular function and do stabilize the native protein structure. However, chemical chaperones require high concentrations for effective folding of mutant proteins and hence are too toxic in in-vivo applications. This limitation can be overcome by pharmacological chaperones, whose functions are similar to the chemical chaperones, but occur at much lower concentrations, i.e., physiologically acceptable concentrations. Although the research and clinical importance of pharmacological chaperones has been emphasized, the initial and central concept of osmolytes is largely ignored. Here we attempt to bridge the concept of osmolytes to applications of pharmacological chaperones.
Collapse
|
57
|
Ohashi-Kobayashi A, Ohashi K, Du WB, Omote H, Nakamoto R, Al-Shawi M, Maeda M. Examination of drug resistance activity of human TAP-like (ABCB9) expressed in yeast. Biochem Biophys Res Commun 2006; 343:597-601. [PMID: 16554024 DOI: 10.1016/j.bbrc.2006.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/02/2006] [Indexed: 11/29/2022]
Abstract
A half-type ABC transporter, human TAP-like (hTAPL) tagged with histidine cluster, was expressed in budding yeast protease-deficient strain BJ5457, and the effect of expression for resistance to peptide compounds including antibiotics and proteinase inhibitor was examined. Among these compounds, the yeast expressing hTAPL exhibits high sensitivity to valinomycin, a monovalent cation ionophore. A mutation in Walker A motif, which lost ATP-binding activity of hTAPL, eliminated the enhanced sensitivity to valinomycin. These findings suggest that the transport activity of hTAPL is important for conferring high valinomycin-sensitive phenotype to yeast.
Collapse
Affiliation(s)
- Ayako Ohashi-Kobayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Gatlik-Landwojtowicz E, Aänismaa P, Seelig A. Quantification and characterization of P-glycoprotein-substrate interactions. Biochemistry 2006; 45:3020-32. [PMID: 16503657 DOI: 10.1021/bi051380+] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is generally accepted that P-glycoprotein binds its substrates in the lipid phase of the membrane. Quantification and characterization of the lipid-transporter binding step are, however, still a matter of debate. We therefore selected 15 structurally diverse drugs and measured the binding constants from water to the activating (inhibitory) binding region of P-glycoprotein, K(tw(1)) (K(tw(2))), as well as the lipid-water partition coefficients, K(lw). The former were obtained by measuring the concentrations of half-maximum activation (inhibition), K(1) (K(2)), in living NIH-MDR-G185 mouse embryo fibroblasts using a Cytosensor microphysiometer, and the latter were derived from surface activity measurements. This allowed determination of the membrane concentration of drugs at half-maximum P-glycoprotein activation (C(b(1)) = (0.02 to 67) mmol/L lipid), which is much higher than the corresponding aqueous concentration (K(1) = (0.02 to 376) microM). Moreover we determined the free energy of drug binding from water to the activating binding region of the transporter (DeltaG degrees (tw(1)) = (-30 to -54) kJ/mol), the free energy of drug partitioning into the lipid membrane (DeltaG degrees (lw) = (-23 to -34) kJ/mol), and, as the difference of the two, the free energy of drug binding from the lipid membrane to the activating binding region of the transporter (DeltaG degrees (tl(1)) = (-7 to -27) kJ/mol). For the compounds tested DeltaG degrees (tl(1)) was less negative than DeltaG degrees (lw) but varied more strongly. The free energies of substrate binding to the transporter within the lipid phase, DeltaG degrees (tl(1)), are consistent with a modular binding concept, where the energetically most efficient binding module comprises two hydrogen bond acceptor groups.
Collapse
Affiliation(s)
- Ewa Gatlik-Landwojtowicz
- Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland
| | | | | |
Collapse
|
59
|
Shukla S, Rai V, Banerjee D, Prasad R. Characterization of Cdr1p, a major multidrug efflux protein of Candida albicans: purified protein is amenable to intrinsic fluorescence analysis. Biochemistry 2006; 45:2425-35. [PMID: 16475832 DOI: 10.1021/bi0519147] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Candida drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, confers multidrug resistance in immunocompromised and debilitated patients. A member of the ATP-binding cassette (ABC) superfamily of membrane transporters, Cdr1p contains two nucleotide binding/utilization sites (NBDs) and two transmembrane domains (TMDs). We had earlier characterized Cdr1p by its overexpression as a GFP-tagged fusion protein that elicits oligomycin-sensitive ATPase activity and is linked to drug extrusion. However, it is essential to have highly purified Cdr1p to understand the detailed molecular basis of structure and functions of this protein. In this study, we have developed a two-step purification protocol using stably overexpressed His-tagged Cdr1p in Saccharomyces cerevisiae. Purified Cdr1p exhibited divalent cation-dependent ATPase activity [approximately 1.2 micromol (mg of protein)(-)(1) min(-)(1)] with an apparent K(M) in the range of 1.8 to 2.1 mM and V(max) between 1.0 and 1.4 micromol (mg of protein)(-)(1) min(-)(1). Unlike its close homologue human P-gp/MDR1, purified Cdr1p only moderately displayed drug stimulated ATPase activity. By exploiting intrinsic fluorescence intensity of purified Cdr1p, which contains 24 tryptophan residues, we could monitor defined conformational changes upon substrate drug and ATP binding. It is observed that ATP binding to Cdr1p (K(d) = approximately 1.7 mM) is not a prerequisite for drug binding, and both the mechanisms of drug as well as ATP binding, which induce specific conformational changes, occur independent of each other. Our study for the first time provides a catalytically active purified ABC transporter from a fungal pathogen, which is amenable to fluorescence measurements and thus would be useful in understanding the molecular basis of antifungal transport.
Collapse
Affiliation(s)
- Sudhanshu Shukla
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | |
Collapse
|
60
|
Flegelova H, Haguenauer-Tsapis R, Sychrova H. Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2006; 1760:504-16. [PMID: 16503379 DOI: 10.1016/j.bbagen.2006.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 11/18/2022]
Abstract
Na+/H+ antiporters, integral membrane proteins that exchange protons for alkali metal cations, play multiple roles in probably all living organisms (preventing cells from excessive amounts of alkali metal cations, regulating intracellular pH and cell volume). In this work, we studied the functionality of rat plasma membrane NHE1-3 exchangers upon their heterologous expression in alkali-metal-cation sensitive Saccharomyces cerevisiae, and searched for conditions that would increase their level in the plasma membrane and improve their functionality. Though three tested exchangers were partially localized to the plasma membrane (and two of them (NHE2 and NHE3) in an active form), the bulk of the synthesized proteins were arrested along the secretory pathway, mainly in the ER. To increase the level of exchangers in the yeast plasma membrane several approaches (truncation of C-terminal regulatory sequences, expression in mutant yeast strains, construction of rat/yeast protein chimeras, various growth conditions and chemical chaperones) were tested. The only increase in the amount of NHE exchangers in the plasma membrane was obtained upon expression in a strain with the npi1 mutation, which significantly lowers the level of Rsp5 ubiquitin ligase in cells. This mutation helped to stabilize proteins in the plasma membrane.
Collapse
Affiliation(s)
- Hana Flegelova
- Department of Membrane Transport, Institute of Physiology AS CR, Videnska 1083, 142 20, Prague 4, Czech Republic
| | | | | |
Collapse
|
61
|
Xu Y, Rosenkranz S, Weng CL, Scharer JM, Moo-Young M, Chou CP. Characterization of the T7 promoter system for expressing penicillin acylase in Escherichia coli. Appl Microbiol Biotechnol 2006; 72:529-36. [PMID: 16411086 DOI: 10.1007/s00253-005-0293-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/04/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
The pac gene encoding penicillin acylase (PAC) was overexpressed under the regulation of the T7 promoter in Escherichia coli. PAC, with its complex formation mechanism, serves as a unique target protein for demonstration of several key strategies for enhancing recombinant protein production. The current T7 system for pac overexpression was fraught with various technical hurdles. Upon the induction with a conventional inducer of isopropyl-beta-D-thiogalactopyranoside (IPTG), the production of PAC was limited by the accumulation of PAC precursors (proPAC) as inclusion bodies and various negative cellular responses such as growth inhibition and cell lysis. The expression performance could be improved by the coexpression of degP encoding a periplasmic protein with protease and chaperone activities. In addition to IPTG, arabinose was shown to be another effective inducer. Interestingly, arabinose not only induced the current T7 promoter system for pac expression but also facilitated the posttranslational processing of proPAC for maturation, resulting in significant enhancement for the production of PAC. Glycerol appeared to have an effect similar to, but not as significant as, arabinose for enhancing the production of PAC. The study highlights the importance of developing suitable genetically engineered strains with culture conditions for enhancing recombinant protein production in E. coli.
Collapse
Affiliation(s)
- Yali Xu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 Canada
| | | | | | | | | | | |
Collapse
|
62
|
Sawamiphak S, Sophasan S, Endou H, Boonchird C. Functional expression of the rat organic anion transporter 1 (rOAT1) in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:44-51. [PMID: 16325760 DOI: 10.1016/j.bbamem.2005.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/30/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Organic anion transporter 1 (OAT1) is localized in the basolateral membrane of the proximal tubule in the kidney and plays an essential role in eliminating a wide range of organic anions, preventing their toxic effects on the body. Structural and functional studies of the transporter would be greatly assisted by inexpensive and rapid expression in the yeast Saccharomyces cerevisiae. The gene encoding rat OAT1 (rOAT1) contains many yeast non-preferred codons at the N-terminus and so was modified by fusion of the favored codon sequence of a hemagglutinin (HA) epitope preceding the start codon. The modified gene was cloned into several yeast expression plasmids, both integrative and multicopy, with either ADH1 promoter or GAL1 promoter in order to find a suitable expression system. Compared with the wild type gene, a substantial increase in rOAT1 expression was achieved by modification in the translational initiation region, suggesting that the codon chosen at the N-terminus influenced its expression. The highest inducible expression of rOAT1 was obtained under GAL1 promoter in 2 mu plasmid. A large fraction of rOAT1 was glycosylated in yeast, unaffected by growth temperature. The recombinant yeast expressing rOAT1 showed an increase in the uptake of p-aminohippurate (PAH) and this showed a positive correlation with rOAT1 expression level. Location of rOAT1 predominantly in the yeast plasma membrane confirmed correct processing. The importance of glycosylation for rOAT1 targeting was also shown. To our knowledge, this is the first successful functional expression of rOAT1 in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Suphansa Sawamiphak
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama 6 Road, Phayathai, Rajathevee Bangkok 10400, Thailand
| | | | | | | |
Collapse
|
63
|
Abstract
Human P-glycoprotein (ABCB1) is a primary multidrug transporter located in plasma membranes, that utilizes the energy of ATP hydrolysis to pump toxic xenobiotics out of cells. P-glycoprotein employs a most unusual molecular mechanism to perform this drug transport function. Here we review our work to elucidate the molecular mechanism of drug transport by P-glycoprotein. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Development of novel spin-labeled transport substrates has allowed for quantitative and rigorous measurements of drug transport in real time by EPR spectroscopy. We have developed a new drug transport model of P-glycoprotein from the results of mutagenic, quantitative thermodynamic and kinetic studies. This model satisfactorily accounts for most of the unusual kinetic, coupling, and physiological features of P-glycoprotein. Additionally, an atomic detail structural model of P-glycoprotein has been devised to place our results within a proper structural context.
Collapse
Affiliation(s)
- Marwan K Al-Shawi
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, P.O. Box 800736, Charlottesville, Virginia, 22908-0736, USA
| | | |
Collapse
|
64
|
Rivetta A, Slayman C, Kuroda T. Quantitative modeling of chloride conductance in yeast TRK potassium transporters. Biophys J 2005; 89:2412-26. [PMID: 16040756 PMCID: PMC1366741 DOI: 10.1529/biophysj.105.066712] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
So-called TRK proteins are responsible for active accumulation of potassium in plants, fungi, and bacteria. A pair of these proteins in the plasma membrane of Saccharomyces cerevisiae, ScTrk1p and ScTrk2p, also admit large, adventitious, chloride currents during patch-recording (Cl- efflux). Resulting steady-state current-voltage curves can be described by two simple kinetic models, most interestingly, voltage-driven channeling of ions through a pair of activation-energy barriers that lie within the membrane dielectric, near the inner (alpha) and outer (beta) surfaces. Two barrier heights (E(alpha) and E(beta)) and two relative distances (a1 and b2) from the surfaces specify the model. Measured current amplitude parallels intracellular chloride concentration and is strongly enhanced by acidic extracellular pH. The former implies an exponential variation of a1, between approximately 0.2 and approximately 0.4 of the membrane thickness, whereas the latter implies a linear variation of E(beta), by 0.69 Kcal mol(-1)/pH. The model requires membrane slope conductance to rise exponentially with increasingly large negative membrane voltage, as verified by data from a few yeast spheroplasts that tolerated voltage clamping at -200 to -300 mV. The behaviors of E(beta) and a1 accord qualitatively with a hypothetical structural model for fungal TRK proteins, suggesting that chloride ions flow through a central pore formed by symmetric aggregation of four TRK monomers.
Collapse
Affiliation(s)
- Alberto Rivetta
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
65
|
Pisani DF, Rivoyre MD, Ruel L, Bonino F, Bidet M, Dechesne CA, Mus-Veteau I. Mouse myodulin, a new potential angiogenic factor, functionally expressed in yeast. Biochem Biophys Res Commun 2005; 331:552-6. [PMID: 15850795 DOI: 10.1016/j.bbrc.2005.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Indexed: 11/29/2022]
Abstract
Myodulin is a new integral membrane protein down-regulated in skeletal muscle atrophy. A first characterization suggested that myodulin could be a skeletal muscle angiogenic factor operating through direct cell-to-cell interactions. Here, we show that mouse myodulin can be expressed at the plasma membrane of Saccharomyces cerevisiae and purified. Co-culture experiments of myoblasts and cardiac vascular endothelial cells reveal that myodulin, either presented in yeast membranes or in liposomes after purification, increases the invasive potential of endothelial cells with a similar efficiency as when over-expressed in skeletal muscle cells. Functional essays using myodulin expressed in yeast bring new information about the myodulin functional mechanism, suggesting that one or several muscle cell components could be necessary for myodulin to increase the invasive potential of endothelial cells. The yield of purified myodulin should allow structure-function relationships studies for a better understanding of myodulin functional mechanisms.
Collapse
Affiliation(s)
- Didier F Pisani
- Laboratoire de Physiologie Cellulaire et Moléculaire, CNRS UMR 6548 Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
66
|
De Rivoyre M, Bonino F, Ruel L, Bidet M, Thérond P, Mus-Veteau I. Human receptor Smoothened, a mediator of Hedgehog signalling, expressed in its native conformation in yeast. FEBS Lett 2005; 579:1529-33. [PMID: 15733868 DOI: 10.1016/j.febslet.2005.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/19/2005] [Indexed: 12/14/2022]
Abstract
Though the role of Hedgehog (Hh) signalling in patterning and differentiation during development is well established, the underlying signal transduction mechanisms remain obscure. This is the first report on the overexpression of the human Hh signalling receptor Smoothened (hSmo) in Saccharomyces cerevisiae and Pichia pastoris. We show that hSmo is expressed in both types of yeast in its native conformational state. The first purification presented here will allow the characterisation of hSmo expressed in yeast, and the scale-up of hSmo production enabling structural studies to develop new therapeutic approaches against tumors and neurodegenerative diseases induced by Hh signalling dysfunction.
Collapse
Affiliation(s)
- Matthieu De Rivoyre
- Laboratoire de Physiologie Cellulaire et Moléculaire, UMR-CNRS 6548, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
67
|
Xu C, Ma H, Inesi G, Al-Shawi MK, Toyoshima C. Specific Structural Requirements for the Inhibitory Effect of Thapsigargin on the Ca2+ ATPase SERCA. J Biol Chem 2004; 279:17973-9. [PMID: 14970206 DOI: 10.1074/jbc.m313263200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutational analysis of amino acid residues lining the thapsigargin (TG) binding cavity at the interface of the membrane surface and cytosolic headpiece was performed in the Ca(2+) ATPase (SERCA-1). Specific mutations such as F256V, I765A, and Y837A reduce not only the apparent affinity of the ATPase for TG but also the maximal inhibitory effect. The effect of mutations is dependent on the type and size of the substitute side chain, indicating that hydrophobic partitioning of TG and complementary molecular shapes are involved not only in binding but also in the inhibitory mechanism. A major factor determining the inhibitory effect of bound TG is its interference with conformational changes that are required for the progress of the ATPase cycle. Most prominent and specific is the TG interference with a wide displacement of the Phe-256 side chain that is associated with the E2 to E1.2Ca(2+) transition. The specificity of the TG inhibitory mechanism is emphasized by the finding that the F256V mutation does not interfere at all with the effect of 2,5-di-(t-butyl)-hydroquinone, which is another SERCA inhibitor bound by hydrophobic partitioning. The specificity of the inhibitory mechanism is also emphasized by the observation that within the concentration range producing total inhibition of wild-type SERCA-1, TG produces a 4-fold stimulation of the P-glycoprotein (multidrug transporter) ATPase.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201-1503, USA
| | | | | | | | | |
Collapse
|
68
|
Omote H, Figler RA, Polar MK, Al-Shawi MK. Improved Energy Coupling of Human P-glycoprotein by the Glycine 185 to Valine Mutation†. Biochemistry 2004; 43:3917-28. [PMID: 15049699 DOI: 10.1021/bi035365l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A glycine 185 to valine mutation of human P-glycoprotein (ABCB1, MDR1) has been previously isolated from high colchicine resistance cell lines. We have employed purified and reconstituted P-glycoproteins expressed in Saccharomyces cerevisiae [Figler et al. (2000) Arch. Biochem. Biophys. 376, 34-46] and devised a set of thermodynamic analyses to reveal the mechanism of improved resistance. Purified G185V enzyme shows altered basal ATPase activity but a strong stimulation of colchicine- and etoposide-dependent activities, suggesting a tight regulation of ATPase activity by these drugs. The mutant enzyme has a higher apparent K(m) for colchicine and a lower K(m) for etoposide than that of wild type. Kinetic constants for other transported drugs were not significantly modified by this mutation. Systematic thermodynamic analyses indicate that the G185V enzyme has modified thermodynamic properties of colchicine- and etoposide-dependent activities. To improve the rate of colchicine or etoposide transport, the G185V enzyme has lowered the Arrhenius activation energy of the transport rate-limiting step. The high transition state energies of wild-type P-glycoprotein, when transporting etoposide or colchicine, increase the probability of nonproductive degradation of the transition state without transport. G185V P-glycoprotein transports etoposide or colchicine in an energetically more efficient way with decreased enthalpic and entropic components of the activation energy. Our new data fully reconcile the apparently conflicting results of previous studies. EPR analysis of the spin-labeled G185C enzyme in a cysteine-less background and kinetic parameters of the G185C enzyme indicate that position 185 is surrounded by other residues and is volume sensitive. These results and atomic detail structural modeling suggest that residue 185 is a pivotal point in transmitting conformational changes between the catalytic sites and the colchicine drug binding domain. Replacement of this residue with a bulky valine alters this communication and results in more efficient transport of etoposide or colchicine.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, P.O. Box 800736, Charlottesville, Virginia 22908-0736, USA
| | | | | | | |
Collapse
|
69
|
Zeng GF, Pypaert M, Slayman CL. Epitope Tagging of the Yeast K+ Carrier Trk2p Demonstrates Folding That Is Consistent with a Channel-like Structure. J Biol Chem 2004; 279:3003-13. [PMID: 14570869 DOI: 10.1074/jbc.m309760200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRK family proteins, which mediate the concentrative uptake of potassium by plant cells, fungi, and bacteria, resemble primitive potassium channels in sequence and have recently been proposed actually to fold like potassium channels in a 4-MPM motif (Durell, S. R., and Guy, H. R. (1999) Biophys. J. 77, 789 - 807), instead of like conventional substrate porters in the 12-TM motif (Gaber, R. F., Styles, C. A., and Fink, G. R. (1988) Mol. Cell. Biol. 8, 2848-2859). The known fungal members of this family possess a very long hydrophilic loop, positioned intracellularly in the K(+)-channel model and extracellularly in the substrate porter model. This and two shorter hydrophilic segments have been tested as topological markers for the true folding pattern of TRK proteins using Saccharomyces cerevisiae Trk2p. Hemagglutinin epitope tags were inserted into all three segments, and the enhanced green fluorescent protein (EGFP) was fused to the C terminus of Trk2p. The gene constructs were expressed from a high copy plasmid, and sidedness of the tags was determined by native fluorescence (EGFP), indirect immunofluorescence, and immunoelectron microscopy. Both the long-loop tag and the C-terminal EGFP fusion allowed abundant protein to reach the plasma membrane and support normal yeast growth. In all determinations, the long-loop tag was localized to the inner surface of the yeast cell plasma membrane, thus strongly supporting the channel-like folding model. Additional observations showed (i). membrane-associated Trk2p to lie in proteolipid rafts; (ii). significant tagged protein, expressed from the plasmid, to be sequestered in cytoplasmic vesicular-tubular clusters; and (iii). suppression of such clusters by yeast growth in 5-10% glycerol. This chaperone-like effect may assist other membrane proteins (overexpressed or heterologously expressed) to function within the yeast plasma membrane.
Collapse
Affiliation(s)
- Ge-Fei Zeng
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
70
|
Moiseenkova VY, Hellmich HL, Christensen BN. Overexpression and purification of the vanilloid receptor in yeast (Saccharomyces cerevisiae). Biochem Biophys Res Commun 2003; 310:196-201. [PMID: 14511670 DOI: 10.1016/j.bbrc.2003.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vanilloid receptor type 1 (VR1) is a novel membrane receptor activated by heat or chemical ligands conveying information about chemosensitive and thermosensitive pain. We have overexpressed and purified wild type VR1 (wtVR1) as well as several mutant forms using the yeast strain Saccharomyces cerevisiae with the goal of obtaining sufficient protein for structural studies. To facilitate the rapid assaying of protein production and purification we used PCR to construct mutant VR1-green fluorescent protein fusion genes. All recombinant inserts were engineered with 12 HIS tags on the C-terminus for metal affinity column purification. The yield of purified protein from 16L fermentation was about 1mg following a single-step purification procedure. By taking advantage of the calcium permeability of VR1 we measured changes in [Ca(2+)](i) in capsaicin-stimulated fura-2 loaded yeast cells expressing VR1.
Collapse
Affiliation(s)
- Vera Yu Moiseenkova
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
71
|
Al-Shawi MK, Polar MK, Omote H, Figler RA. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. J Biol Chem 2003; 278:52629-40. [PMID: 14551217 DOI: 10.1074/jbc.m308175200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATPase activity associated with P-glycoprotein (Pgp) is characterized by three drug-dependent phases: basal (no drug), drug-activated, and drug-inhibited. To understand the communication between drug-binding sites and ATP hydrolytic sites, we performed steady-state thermodynamic analyses of ATP hydrolysis in the presence and absence of transport substrates. We used purified human Pgp (ABCB1, MDR1) expressed in Saccharomyces cerevisiae (Figler, R. A., Omote, H., Nakamoto, R. K., and Al-Shawi, M. K. (2000) Arch. Biochem. Biophys. 376, 34-46) as well as Chinese hamster Pgp (PGP1). Between 23 and 35 degrees C, we obtained linear Arrhenius relationships for the turnover rate of hydrolysis of saturating MgATP in the presence of saturating drug concentrations (kcat), from which we calculated the intrinsic enthalpic, entropic, and free energy terms for the rate-limiting transition states. Linearity of the Arrhenius plots indicated that the same rate-limiting step was being measured over the temperature range employed. Using linear free energy analysis, two distinct transition states were found: one associated with uncoupled basal activity and the other with coupled drug transport activity. We concluded that basal ATPase activity associated with Pgp is not a consequence of transport of an endogenous lipid or other endogenous substrates. Rather, it is an intrinsic mechanistic property of the enzyme. We also found that rapidly transported substrates bound tighter to the transition state and required fewer conformational alterations by the enzyme to achieve the coupling transition state. The overall rate-limiting step of Pgp during transport is a carrier reorientation step. Furthermore, Pgp is optimized to transport drugs out of cells at high rates at the expense of coupling efficiency. The drug inhibition phase was associated with low affinity drug-binding sites. These results are consistent with an expanded version of the alternating catalytic site drug transport model (Senior, A. E., Al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett. 377, 285-289). A new kinetic model of drug transport is presented.
Collapse
Affiliation(s)
- Marwan K Al-Shawi
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908-0736, USA.
| | | | | | | |
Collapse
|
72
|
Lee SH, Altenberg GA. Expression of functional multidrug-resistance protein 1 in Saccharomyces cerevisiae: effects of N- and C-terminal affinity tags. Biochem Biophys Res Commun 2003; 306:644-9. [PMID: 12810067 DOI: 10.1016/s0006-291x(03)01029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Studies of the multidrug-resistance protein 1 (MRP1) have been hampered by the lack of a simple expression system allowing for rapid generation of mutants and yielding milligram amounts of protein. Here, we describe a Saccharomyces cerevisiae expression system that meets those conditions. MRP1 was expressed under the control of the constitutive PMA1 (yeast proton pump) promoter. The best conditions for expression were determined, including the use of the chemical chaperone glycerol, which increased MRP1 expression. N-terminal poly-histidine or FLAG affinity tags reduce MRP1 expression, whereas the same tags fused to the C-terminus had no effect. All the fusion proteins were functional. We conclude that because of its low cost and simplicity, the S. cerevisiae-based MRP1-expression system will be useful for studies where a large number of mutants or milligram amounts of purified MRP1 are needed.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Membrane Protein Laboratory, Sealy Center for Structural Biology, and Department of Physiology and Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| | | |
Collapse
|
73
|
Urbatsch IL, Tyndall GA, Tombline G, Senior AE. P-glycoprotein catalytic mechanism: studies of the ADP-vanadate inhibited state. J Biol Chem 2003; 278:23171-9. [PMID: 12670938 DOI: 10.1074/jbc.m301957200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetics of inhibition of ATPase activity of pure mouse Mdr3 P-glycoprotein upon incubation with MgADP and vanadate were studied along with the trapping of [14C]ADP in presence of vanadate. The presence of verapamil strongly magnified both effects. Inhibition of ATPase was also increased by several other drugs known to bind to drug-binding sites. Inhibition by ADP-vanadate was slow and depended cooperatively on nucleotide binding. Stoichiometry of [14C]ADP trapping by vanadate was 1 mol/mol P-glycoprotein at full inhibition. Catalytic site mutants prevented [14C]ADP trapping, whereas interdomain signal communication mutants reduced it in approximate correlation with their effects upon drug stimulation of ATPase. In explanation of the results, we propose that a "closed conformation" involving dimerization and interdigitation of the two nucleotide-binding domains is necessary to allow inhibition by ADP-vanadate. The results suggest that such a conformation occurs naturally during ATP hydrolysis. It is proposed that in order for the catalytic transition state to form, the two nucleotide-binding domains dimerize to form an integrated single entity containing two bound ATP with just one of the two ATP being hydrolyzed per dimerization event.
Collapse
Affiliation(s)
- Ina L Urbatsch
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
74
|
Howard EM, Roepe PD. Purified human MDR 1 modulates membrane potential in reconstituted proteoliposomes. Biochemistry 2003; 42:3544-55. [PMID: 12653559 DOI: 10.1021/bi026706i] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human multidrug resistance (hu MDR 1) cDNA was fused to a P. shermanii transcarboxylase biotin acceptor domain (TCBD), and the fusion protein was heterologously overexpressed at high yield in K(+)-uptake deficient Saccharomyces cerevisiae yeast strain 9.3, purified by avidin-biotin chromatography, and reconstituted into proteoliposomes (PLs) formed with Escherichia coli lipid. As measured by pH- dependent ATPase activity, purified, reconstituted, biotinylated MDR-TCBD protein is fully functional. Dodecyl maltoside proved to be the most effective detergent for the membrane solubilization of MDR-TCBD, and various salts were found to significantly affect reconstitution into PLs. After extensive analysis, we find that purified reconstituted MDR-TCBD protein does not catalyze measurable H(+) pumping in the presence of ATP. In the presence of physiologic [ATP], K(+)/Na(+) diffusion potentials monitored by either anionic oxonol or cationic carbocyanine are easily established upon addition of valinomycin to either control or MDR-TCBD PLs. However, in the absence of ATP, although control PLs still maintain easily measurable K(+)/Na(+) diffusion potentials upon addition of valinomycin, MDR-TCBD PLs do not. Dissipation of potential by MDR-TCBD is clearly [ATP] dependent and also appears to be Cl(-) dependent, since replacing Cl(-) with equimolar glutamate restores the ability of MDR-TCBD PLs to form a membrane potential in the absence of physiologic [ATP]. The data are difficult to reconcile with models that might propose ATP-catalyzed "pumping" of the fluorescent probes we use and are more consistent with electrically passive anion transport via MDR-TCBD protein, but only at low [ATP]. These observations may help to resolve the confusing array of data related to putative ion transport by hu MDR 1 protein.
Collapse
Affiliation(s)
- Ellen M Howard
- Department of Chemistry, Lombardi Cancer Center Program in Tumor Biology, Georgetown University, 37th and O Streets, Washington, DC 20057, USA
| | | |
Collapse
|
75
|
Opekarová M, Tanner W. Specific lipid requirements of membrane proteins--a putative bottleneck in heterologous expression. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:11-22. [PMID: 12586375 DOI: 10.1016/s0005-2736(02)00708-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane proteins are mostly protein-lipid complexes. For more than 30 examples of membrane proteins from prokaryotes, yeast, plant and mammals, the importance of phospholipids and sterols for optimal activity is documented. All crystallized membrane protein complexes show defined lipid-protein contacts. In addition, lipid requirements may also be transitory and necessary only for correct folding and intercellular transport. With respect to specific lipid requirements of membrane proteins, the phospholipid and glycolipid as well as the sterol content of the host cell chosen for heterologous expression should be carefully considered. The lipid composition of bacteria, archaea, yeasts, insects,Xenopus oocytes, and typical plant and mammalian cells are given in this review. A few examples of heterologous expression of membrane proteins, where problems of specific lipid requirements have been noticed or should be thought of, have been chosen.
Collapse
Affiliation(s)
- M Opekarová
- Institute of Microbiology, Czech Academy of Sciences, 142 20 4 Prague, Czech Republic
| | | |
Collapse
|
76
|
Lee SH, Altenberg GA. Transport of leukotriene C4 by a cysteine-less multidrug resistance protein 1 (MRP1). Biochem J 2003; 370:357-60. [PMID: 12398766 PMCID: PMC1223133 DOI: 10.1042/bj20021452] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Revised: 10/23/2002] [Accepted: 10/24/2002] [Indexed: 11/17/2022]
Abstract
Overexpression of multidrug resistance protein 1 (MRP1), an ATP-binding cassette protein, causes multidrug resistance. We developed a functional cysteine-less version of MRP1 that provides a framework for detailed biochemical and biophysical studies. The 18 Cys residues of a truncated MRP1 (tMRP1; lacking the first multispanning transmembrane domain) were replaced with Ala to generate Cys-less tMRP1 (CL tMRP1). CL tMRP1 expressed in Saccharomyces cerevisiae membranes displayed high-affinity ATP-dependent transport of the MRP1 substrate leukotriene C4. Compared with full-length MRP1, the K m for leukotriene C4 transport by CL tMRP1 was increased approximately 3-fold, while V max was not affected. Thus a functional CL tMRP1 can be expressed using a low-cost and rapid-generation yeast expression system. This Cys-less protein can be used for biochemical, spectroscopic and structural studies to elucidate the mechanism of drug transport by MRP1.
Collapse
Affiliation(s)
- Sung H Lee
- Membrane Protein Laboratory, Sealy Center for Structural Biology and Department of Physiology and Biophysics, The University of Texas Medical Branch, Galveston, TX 77555-0437, USA
| | | |
Collapse
|
77
|
Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 2002; 10:983-94. [PMID: 12453408 DOI: 10.1016/s1097-2765(02)00696-2] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) supports disulfide formation through an essential protein relay involving Ero1p and protein disulfide isomerase (PDI). We find that in addition to having a tightly associated flavin adenine dinucleotide (FAD) moiety, yeast Ero1p is highly responsive to small changes in physiological levels of free FAD. This sensitivity underlies the dependence of oxidative protein folding on cellular FAD levels. FAD is synthesized in the cytosol but can readily enter the ER lumen and promote Ero1p-catalyzed oxidation. Ero1p then uses molecular oxygen as its preferred terminal electron acceptor. Thus Ero1p directly couples disulfide formation to the consumption of molecular oxygen, but its activity is modulated by free lumenal FAD levels, potentially linking disulfide formation to a cell's nutritional or metabolic status.
Collapse
Affiliation(s)
- Benjamin P Tu
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
78
|
Omote H, Al-Shawi MK. A Novel Electron Paramagnetic Resonance Approach to Determine the Mechanism of Drug Transport by P-glycoprotein. J Biol Chem 2002; 277:45688-94. [PMID: 12244102 DOI: 10.1074/jbc.m206479200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-driven pumping of a variety of drugs out of cells by the human P-glycoprotein poses a serious problem to medical therapy. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Membrane permeability of transported drugs and consequent lack of an experimentally defined drug position have made resolution of the transport mechanism difficult by classical techniques. To overcome these obstacles we devised a novel EPR spin-labeled verapamil for use as a transport substrate. Spin-labeled verapamil was an excellent transport substrate with apparent turnover number, K(m) and K(i) values of 5.8 s(-1), 4 microm, and 210 microm, respectively, at pH 7.4 and 37 degrees C. The apparent affinities were approximately 10-fold higher than for unlabeled verapamil. Spin-labeled verapamil stimulated ATPase activity approximately 5-fold, was relatively hydrophilic, and had a very low flip-flop rate, making it an ideal transport substrate. The K(m) for MgATP activation of transport was 0.8 mm. By measuring the mobility of spin-labeled verapamil during transport experiments, we were able to resolve the location of the drug in proteoliposome suspensions. Steady state gradients of spin-labeled verapamil within the range of K(i)/K(m) ratios were observed.
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, Virginia 22908-0736, USA
| | | |
Collapse
|
79
|
Lenoir G, Menguy T, Corre F, Montigny C, Pedersen PA, Thinès D, le Maire M, Falson P. Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1560:67-83. [PMID: 11958776 DOI: 10.1016/s0005-2736(01)00458-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Large amounts of heterologous C-terminally his-tagged SERCA1a Ca(2+)-ATPase were expressed in yeast using a galactose-regulated promoter and purified by Ni(2+) affinity chromatography followed by Reactive red chromatography. Optimizing the number of galactose inductions and increasing the amount of Gal4p transcription factor improved expression. Lowering the temperature from 28 degrees C to 18 degrees C during expression enhanced the recovery of solubilized and active Ca(2+)-ATPase. In these conditions, a 4 l yeast culture produced 100 mg of Ca(2+)-ATPase, 60 and 22 mg being pelleted with the heavy and light membrane fractions respectively, representing 7 and 1.7% of total proteins. The Ca(2+)-ATPase expressed in light membranes was 100% solubilized with L-alpha-lysophosphatidylcholine (LPC), 50% with n-dodecyl beta-D-maltoside (DM) and 25% with octaethylene glycol mono-n-dodecyl ether (C(12)E(8)). Compared to LPC, DM preserved specific activity of the solubilized Ca(2+)-ATPase during the chromatographic steps. Starting from 1/6 (3.8 mg) of the total amount of Ca(2+)-ATPase expressed in light membranes, 800 microg could be routinely purified to 50% purity by metal affinity chromatography and then 200 microg to 70% with Reactive red chromatography. The purified Ca(2+)-ATPase displayed the same K(m) for calcium and ATP as the native enzyme but a reduced specific activity ranging from 4.5 to 7.3 micromol ATP hydrolyzed/min/mg Ca(2+)-ATPase. It was stable and active for several days at 4 degrees C or after removal of DM with Bio-beads and storage at -80 degrees C.
Collapse
Affiliation(s)
- Guillaume Lenoir
- CEA, Centre d'Etudes de Saclay, Département de Biologie Cellulaire et Moléculaire, Section de Biophysique des Protéines Membranaires, Unité de Recherche Associée 2096 of the CNRS, Bât. 528, 91191 Cedex, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Urbatsch IL, Wilke-Mounts S, Gimi K, Senior AE. Purification and characterization of N-glycosylation mutant mouse and human P-glycoproteins expressed in Pichia pastoris cells. Arch Biochem Biophys 2001; 388:171-7. [PMID: 11361134 DOI: 10.1006/abbi.2001.2299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein confers multidrug resistance in mammalian cells and basic structure-function studies of it are germane to anti-cancer and anti-AIDS therapy. Pure, detergent-soluble mouse MDR3 and human MDR1 P-glycoproteins have recently been obtained in sufficient quantity for high-resolution structure analysis after expression in Pichia pastoris (N. Lerner-Marmarosh et al. (1999) J. Biol. Chem. 274, 34711-34718). The degree of glycosylation of these preparations was unknown, and was of relevance for crystallization studies. Therefore mutant proteins in which the N-glycosylation sites were eliminated (Asn --> Gln in mouse MDR3 Pgp, Asn --> Gln or Ala in human MDR1 Pgp) were expressed in P. pastoris and purified to homogeneity. Yields of mutant Pgp were the same as for parent wild-type proteins. Nucleotide-binding and catalytic (ATPase) characteristics were completely normal in the mutant proteins. Mass spectrometry indicated that mutant and wild-type proteins did not differ significantly in mass, demonstrating that the wild-type proteins contain no N-glycosylation.
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA
| | | | | | | |
Collapse
|
81
|
Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, Gros P, Senior AE. Cysteines 431 and 1074 are responsible for inhibitory disulfide cross-linking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 2001; 276:26980-7. [PMID: 11356825 DOI: 10.1074/jbc.m010829200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human wild-type and Cys-less P-glycoproteins were expressed in Pichia pastoris and purified in high yield in detergent-soluble form. Both ran on SDS gels as a single 140-kDa band in the presence of reducing agent and showed strong verapamil-stimulated ATPase activity in the presence of added lipid. The wild type showed spontaneous formation of higher molecular mass species in the absence of reducing agent, and its ATPase was activated by dithiothreitol. Oxidation with Cu(2+) generated the same higher molecular mass species, primarily at 200 and approximately 300 kDa, in high yield. Cross-linking was reversed by dithiothreitol and prevented by pretreatment with N-ethylmaleimide. Using proteins containing different combinations of naturally occurring Cys residues, it was demonstrated that an inhibitory intramolecular disulfide bond forms between Cys-431 and Cys-1074 (located in the Walker A sequences of nucleotide-binding sites 1 and 2, respectively), giving rise to the 200-kDa species. In addition, dimeric P-glycoprotein species ( approximately 300 kDa) form by intermolecular disulfide bonding between Cys-431 and Cys-1074. The ready formation of the intramolecular disulfide between Cys-431 and Cys-1074 establishes that the two nucleotide-binding sites of P-glycoprotein are structurally very close and capable of intimate functional interaction, consistent with available information on the catalytic mechanism. Formation of such a disulfide in vivo could, in principle, underlie a regulatory mechanism and might provide a means of intervention to inhibit P-glycoprotein.
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Urbatsch IL, Gimi K, Wilke-Mounts S, Senior AE. Investigation of the role of glutamine-471 and glutamine-1114 in the two catalytic sites of P-glycoprotein. Biochemistry 2000; 39:11921-7. [PMID: 11009605 DOI: 10.1021/bi001220s] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
P-glycoprotein, also known as multidrug resistance protein, pumps drugs out of cells using ATP hydrolysis as the energy source. Glutamine-471 and the corresponding glutamine-1114 in the two catalytic sites of P-glycoprotein are conserved in ABC transporters. X-ray structures show that they lie close to the bound nucleotide. Proposed functional roles are (1) activation of the attacking water for ATP hydrolysis, (2) coordination of the essential Mg(2+) cofactor in Mg nucleotide, and (3) signal communication between catalytic site reaction chemistry and drug-binding sites. We made mutations Q471A, Q471E, Q1114A, and Q1114E in mouse MDR3 P-glycoprotein. Pure mutant and wild-type proteins were prepared and subjected to enzymatic and biochemical characterization. We conclude from the results that the primary role of this glutamine residue is in interdomain signal communication. Coordination of the Mg(2+) cofactor is not a critical functional role, neither is activation of the attacking water molecule, although an auxiliary role in positioning the water cannot be ruled out. We found that equivalent mutations (Ala or Glu) in either of the two P-glycoprotein catalytic sites produced the same effects, implying functional symmetry of the two sites.
Collapse
Affiliation(s)
- I L Urbatsch
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
83
|
Gao M, Yamazaki M, Loe DW, Westlake CJ, Grant CE, Cole SP, Deeley RG. Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4. J Biol Chem 1998; 273:10733-10740. [PMID: 9553138 DOI: 10.1002/9781118705308.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Multidrug resistance protein (MRP) is a broad specificity, primary active transporter of organic anion conjugates that confers a multidrug resistance phenotype when transfected into drug-sensitive cells. The protein was the first example of a subgroup of the ATP-binding cassette superfamily whose members have three membrane-spanning domains (MSDs) and two nucleotide binding domains. The role(s) of the third MSD of MRP and its related transporters is not known. To begin to address this question, we examined the ability of various MRP fragments, expressed individually and in combination, to transport the MRP substrate, leukotriene C4 (LTC4). We found that elimination of the entire NH2-terminal MSD or just the first putative transmembrane helix, or substitution of the MSD with the comparable region of the functionally and structurally related transporter, the canalicular multispecific organic anion transporter (cMOAT/MRP2), had little effect on protein accumulation in the membrane. However, all three modifications decreased LTC4 transport activity by at least 90%. Transport activity could be reconstituted by co-expression of the NH2-terminal MSD with a fragment corresponding to the remainder of the MRP molecule, but this required both the region encoding the transmembrane helices of the NH2-terminal MSD and the cytoplasmic region linking it to the next MSD. In contrast, a major part of the cytoplasmic region linking the NH2-proximal nucleotide binding domain of the protein to the COOH-proximal MSD was not required for active transport of LTC4.
Collapse
Affiliation(s)
- M Gao
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|