51
|
Abstract
A surprisingly fewer than expected number of genes in the human genome suggests that sophistication of its biologic system is, in part, due to complex regulation of protein activities. The activities of most cellular proteins are regulated by post-translational modifications. One of the most important post-translational modifications is reversible protein phosphorylation, which decorates more than 30% of the proteome and regulates signal transduction pathways under normal conditions as well as in disorders such as diabetes, neurodegenerative diseases, autoimmune diseases and several forms of cancers. This review examines the recent developments in mass spectrometry-based methods for phosphoproteome analysis and its applications for the study of signal transduction pathways. The basic principles of non-mass spectrometry-based methods, such as chemical genetics and flow cytometry-based approaches, are also discussed as well as their specific advantages to signaling studies. Finally, signaling pathways are discussed in the light of large-scale protein interaction studies. The proteomic methods addressed in this review are emerging as some of the essential components in systems biology, which seeks to describe signaling networks through integration of diverse types of data and, in the future, to allow computational simulations of complex biologic pathways in health and disease.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Skaggs Institute for Chemical Biology, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
52
|
Kim BG, Kim HJ, Park HJ, Kim YJ, Yoon WJ, Lee SJ, Ryoo HM, Cho JY. Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 2006; 6:1166-74. [PMID: 16421932 DOI: 10.1002/pmic.200500289] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Runx2 is a key transcription factor in osteoblast differentiation, and its activity is regulated by fibroblast growth factors (FGFs). Craniosynostosis, characterized by premature suture closure, results from mutations that generate constitutively active FGF receptors (FGFRs). We previously showed that FGF/FGFR-activated protein kinase C (PKC) is involved in the expression and activity of Runx2. Activated PKCdelta physically interacts with Runx2 in FGF2-stimulated MC3T3-E1 preosteoblastic cells. Immunopurified Runx2 protein reacted with PKCdelta kinase, and a phosphorylated 1460-Da peptide fragment (amino acids 241-252, 1380-Da) derived from Runx2 was also detected in MS analysis. Computer analysis predicted that Ser247 in this Runx2 can be a possible phosphorylation site by PKCdelta. We also showed that Runx2 activity after FGF stimulation correlates with the presence of the Runx2 Ser247 residue. The S247A (Ser --> Ala) mutation confers decreased transcriptional activity on a Runx2-responsive promoter after FGF treatment.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Jung-Gu, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
Proteomics reveals complex protein expression, function, interactions and localization in different phenotypes of neuron. As proteomics, regarded as a highly complex screening technology, moves from a theoretical approach to practical reality, neuroscientists have to determine the most-appropriate applications for this technology. Even though proteomics compliments genomics, it is in sheer contrast to the basically constant genome due to its dynamic nature. Neuroscientists have to surmount difficulties particular to the research in neuroscience; such as limited sample amounts, heterogeneous cellular compositions in samples and the fact that many proteins of interest are hydrophobic proteins. The necessity of exclusive technology, sophisticated software and skilled manpower tops the challenge. This review examines subcellular organelle isolation, protein fractionation and separation using two-dimensional gel electrophoresis (2-DGE) as well as multi-dimensional liquid chromatography (LC) followed by mass spectrometry (MS). The methods for quantifying relative gene product expression between samples (e.g., two-dimensional difference in gel electrophoresis (2D-DIGE), isotope-coded affinity tag (ICAT) and iTRAQ) are elaborated. An overview of the techniques used currently to assign post-translational modification status on a proteomics scale is also evaluated. The feasible coverage of the proteome, ability to detect unique cell components such as post-synaptic densities and membrane proteins, resource requirements and quantitative as well as qualitative reliability of different approaches is also discussed. While there are many challenges in neuroproteomics, this field promises many returns in the future.
Collapse
|
54
|
Pal M, Moffa A, Sreekumar A, Ethier SP, Barder TJ, Chinnaiyan A, Lubman DM. Differential Phosphoprotein Mapping in Cancer Cells Using Protein Microarrays Produced from 2-D Liquid Fractionation. Anal Chem 2005; 78:702-10. [PMID: 16448042 DOI: 10.1021/ac0511243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A combination of protein microarrays and two-dimensional liquid-phase separation of proteins has been used for global profiling of the phosphoproteome in human breast cancer cells. This method has been applied to study changes in phosphorylation profile resulting from treatment of the cancer cells with PD173074, a known receptor tyrosine kinase inhibitor. The proteins separated by 2-D liquid-phase separation were arrayed on epoxy-coated glass slides and first screened for phosphorylation using fluorescent Pro-Q Diamond stain. The candidate proteins were then identified using MALDI/ESI MS/MS analysis. Further, validation was achieved by immunoblot analysis using anti-phosphotyrosine antibodies. A dynamic range of approximately 100 was achieved on the microarray when beta-casein was used as a standard protein for obtaining quantitative data. Importantly, the power of this method lies in its ability to identify a large group of proteins in a single experiment that are coregulated in their posttranslational modifications, upon treatment with the inhibitor. Since proteins are known to form interacting circuits that eventually lead to various signaling events, detection of such global phosphorylation profiles might enable delineation of functional pathways that play an important role during cancer initiation and progression.
Collapse
Affiliation(s)
- Manoj Pal
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. MASS SPECTROMETRY REVIEWS 2005; 24:828-846. [PMID: 15538747 DOI: 10.1002/mas.20042] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The general fields of biological sciences have seen phenomenal transformations in the past two decades at the level of data acquisition, understanding biological processes, and technological developments. Those advances have been made partly because of the advent of molecular biology techniques (which led to genomics) coupled to the advances made in mass spectrometry (MS) to provide the current capabilities and developments in proteomics. However, our current knowledge that approximately 30,000 human genes may code for up to 1 million or more proteins disengage the interface between the genome sequence database algorithms and MS to generate a major interest in independent de novo MS/MS sequence determination. Significant progress has been made in this area through procedures to covalently modify peptide N- and C-terminal amino-acids by sulfonation and guanidination to permit rapid de novo sequence determination by MS/MS analysis. A number of strategies that have been developed to perform qualitative and quantitative proteomics range from 2D-gel electrophoresis, affinity tag reagents, and stable-isotope labeling. Those procedures, combined with MS/MS peptide sequence analysis at the subpicomole level, permit the rapid and effective identification and quantification of a large number of proteins within a given biological sample. The identification of proteins per se, however, is not always sufficient to interpret biological function because many of the naturally occurring proteins are post-translationally modified. One such modification is protein phosphorylation, which regulates a large array of cellular biochemical pathways of the biological system. Traditionally, the study of phosphoprotein structure-function relationships involved classical protein chemistry approaches that required protein purification, peptide mapping, and the identification of the phosphorylated peptide regions and sites by N-terminal sequence analysis. Recent advances made in mass spectrometry have clearly revolutionized the studies of phosphoprotein biochemistry, and include the development of specific strategies to preferentially enrich phosphoproteins by covalent-modifications that incorporate affinity tags that use the physicochemical properties of phosphoaminoacids. The phosphoserine/phosphothreonine-containing proteins/peptides are derivatized under base-catalyzed conditions by thiol agents; mono- and di-thiol reagents both have been used in such studies. The thiol agent may have: (i) an affinity tag for protein enrichment; (ii) stable-isotopic variants for relative quantitation; or (iii) a combination of the moieties in (i) and (ii). These strategies and techniques, together with others, are reviewed, including their practical application to the study of phosphoprotein biochemistry and structure-function. The consensus of how classical protein chemistry and current MS technology overlap into special case of proteomics, namely "phosphoproteomics," will be discussed.
Collapse
Affiliation(s)
- Erdjan Salih
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Department of Orthopaedic Surgery, Harvard Medical School and Children's Hospital Boston, Boston, MA 02115, USA. Erdjan.Salih@Gardenof knowledge.org
| |
Collapse
|
56
|
McCormick DJ, Holmes MW, Muddiman DC, Madden BJ. Mapping sites of protein phosphorylation by mass spectrometry utilizing a chemical-enzymatic approach: characterization of products from alpha-S1 casein phosphopeptides. J Proteome Res 2005; 4:424-34. [PMID: 15822919 PMCID: PMC2570211 DOI: 10.1021/pr049804u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel chemical-enzymatic approach was developed to facilitate identification of phosphorylation sites in isolated phosphoproteins. ESI-TOF mass spectrometry was used to characterize products from the chemical-enzymatic cleavage of specific phosphorylation sites in bovine alpha-S1 casein and synthetic phosphopeptides containing substitutions at a single phosphorylation site. Further refinements to this approach for identification of protein phosphorylation sites and its utility for the quantification of phosphopeptides by isotope-dilution mass spectrometry are presented.
Collapse
Affiliation(s)
- Daniel J McCormick
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
57
|
Xu CF, Lu Y, Ma J, Mohammadi M, Neubert TA. Identification of Phosphopeptides by MALDI Q-TOF MS in Positive and Negative Ion Modes after Methyl Esterification. Mol Cell Proteomics 2005; 4:809-18. [PMID: 15753120 DOI: 10.1074/mcp.t400019-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.
Collapse
Affiliation(s)
- Chong-Feng Xu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
58
|
Edberg DD, Adkins JN, Springer DL, Reeves R. Dynamic and Differential in Vivo Modifications of the Isoform HMGA1a and HMGA1b Chromatin Proteins. J Biol Chem 2005; 280:8961-73. [PMID: 15591590 DOI: 10.1074/jbc.m407348200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Most naturally occurring mammalian cancers and immortalized tissue culture cell lines share a common characteristic, the overexpression of full-length HMGA1 (high mobility group A1) proteins. The HMGA1 protooncogene codes for two closely related isoform proteins, HMGA1a and HMGA1b, and causes cancerous cellular transformation when overexpressed in either transgenic mice or "normal" cultured cell lines. Previous work has suggested that the in vivo types and patterns of the HMGA1 post-translational modifications (PTMs) differ between normal and malignant cells. The present study focuses on the important question of whether HMGA1a and HMGA1b proteins isolated from the same cell type have identical or different PTM patterns and also whether these isoform patterns differ between non-malignant and malignant cells. Two independent mass spectrometry methods were used to identify the types of PTMs found on specific amino acid residues on the endogenous HMGA1a and HMGA1b proteins isolated from a non-metastatic human mammary epithelial cell line, MCF-7, and a malignant metastatic cell line derived from MCF-7 cells that overexpressed the transgenic HMGA1a protein. Although some of the PTMs were the same on both the HMGA1a and HMGA1b proteins isolated from a given cell type, many other modifications were present on one but not the other isoform. Furthermore, we demonstrate that both HMGA1 isoforms are di-methylated on arginine and lysine residues. Most importantly, however, the PTM patterns on the endogenous HMGA1a and HMGA1b proteins isolated from non-metastatic and metastatic cells were consistently different, suggesting that the isoforms likely exhibit differences in their biological functions/activities in these cell types.
Collapse
Affiliation(s)
- Dale D Edberg
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | |
Collapse
|
59
|
Russell SA, Old W, Resing KA, Hunter L. Proteomic informatics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 61:127-57. [PMID: 15482814 DOI: 10.1016/s0074-7742(04)61006-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Steven A Russell
- Center for Computational Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
60
|
Chen R, Fearnley IM, Peak-Chew SY, Walker JE. The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 2004; 279:26036-45. [PMID: 15056672 DOI: 10.1074/jbc.m402710200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bovine heart mitochondria and in submitochondrial particles, membrane-associated proteins with apparent molecular masses of 18 and 10 kDa become strongly radiolabeled by [(32)P]ATP in a cAMP-dependent manner. The 18-kDa phosphorylated protein is subunit ESSS from complex I and not as previously reported the 18 k subunit (with the N-terminal sequence AQDQ). The phosphorylated residue in subunit ESSS is serine 20. In the 10 kDa band, the complex I subunit MWFE was phosphorylated on serine 55. In the presence of protein kinase A and cAMP, the same subunits of purified complex I were phosphorylated by [(32)P]ATP at the same sites. Subunits ESSS and MWFE both contribute to the membrane arm of complex I. Each has a single hydrophobic region probably folded into a membrane spanning alpha-helix. It is likely that the phosphorylation site of subunit ESSS lies in the mitochondrial matrix and that the site in subunit MWFE is in the intermembrane space. Subunit ESSS has no known role, but subunit MWFE is required for assembly into complex I of seven hydrophobic subunits encoded in the mitochondrial genome. The possible effects of phosphorylation of these subunits on the activity and/or the assembly of complex I remain to be explored.
Collapse
Affiliation(s)
- Ruming Chen
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | |
Collapse
|
61
|
Shen J, Smith RA, Stoll VS, Edalji R, Jakob C, Walter K, Gramling E, Dorwin S, Bartley D, Gunasekera A, Yang J, Holzman T, Johnson RW. Characterization of protein kinase A phosphorylation: multi-technique approach to phosphate mapping. Anal Biochem 2004; 324:204-18. [PMID: 14690684 DOI: 10.1016/j.ab.2003.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-technique approach to identification and mapping of phosphorylation on protein kinase A (PKA) is described. X-ray crystallography revealed phosphorylation at T197 and S338 while mass spectrometry (MS) on the intact protein suggested phosphorylation at three sites. Tryptic digestion, followed by MS, confirmed the presence of three phosphates. However, metal affinity treatment of the digest prior to MS revealed the presence of a fourth phosphopeptide. Subsequent analysis of the digests using liquid chromatography (LC) coupled with quadrupole ion trap (QIT) MS confirmed phosphorylation at S10 and S338 and suggested phosphorylation at S139 and T195/197. Unfortunately, identification of pS139 was inconclusive due to low signal intensity and early elution in reversed-phase LC while poor MS/MS data prevented localization of the phosphate to T195 or T197. Phosphopeptide modification with ethanethiol, followed by LC QIT-MS/MS, identified four phosphopeptides in a single experiment. In addition, the fragmentation data provided significantly more sequence information than data obtained from unmodified peptides. Data from this study suggested that PKA was completely phosphorylated at S10, T197, and S338 and partially phosphorylated at S139. These results illustrate that critical information can be lost unless multiple MS techniques are used for identification and validation of phosphorylation.
Collapse
Affiliation(s)
- Jianwei Shen
- Abbott Laboratories, Department of Structural Chemistry, 200 Abbott Park Road, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Kochin V, Pallari HM, Pant H, Eriksson JE. Approaches to Study Posttranslational Regulation of Intermediate Filament Proteins. Methods Cell Biol 2004; 78:373-409. [PMID: 15646626 DOI: 10.1016/s0091-679x(04)78014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology University of Turku, FIN-20521 Turku, Finland
| | | | | | | |
Collapse
|
63
|
Flora JW, Muddiman DC. Determination of the relative energies of activation for the dissociation of aromatic versus aliphatic phosphopeptides by ESI-FTICR-MS and IRMPD. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:121-127. [PMID: 14698562 DOI: 10.1016/j.jasms.2003.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI-FTICR-MS) coupled with infrared multiphoton dissociation (IRMPD) is potentially a powerful method for rapid phosphopeptide mapping of complex proteolytic digests. The dissociation of deprotonated phosphopeptides by IRMPD is energetically favorable over unmodified deprotonated peptides because of a lower energy of activation and a higher internal energy under identical irradiation conditions. The energies of activation for dissociation are determined for model peptides phosphorylated on an aliphatic side chain (serine) and an aromatic side chain (tyrosine). The determination of phosphorylation location provides important biochemical information identifying the kinase involved in specific phosphorylation mechanisms. The data presented in this manuscript also support the theory that for phosphopeptides, the phosphate moiety's P-O stretch is in direct resonance with the infrared laser (10.6 microm), thus increasing the relative absorptivity of the modified species. A greater extinction coefficient affords more extensive photon absorption and subsequently a greater internal energy at the rapid exchange limit.
Collapse
Affiliation(s)
- Jason W Flora
- Deparatment of Chemistry, Virginia Commonwealth University, Richmond, Virginia 55905, USA
| | | |
Collapse
|
64
|
Novotná Z, Linek J, Hynek R, Martinec J, Potocký M, Valentová O. Plant PIP2
-dependent phospholipase D activity is regulated by phosphorylation. FEBS Lett 2003; 554:50-4. [PMID: 14596913 DOI: 10.1016/s0014-5793(03)01093-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phospholipase D (PLD) forms the major family of phospholipases that was first discovered and cloned in plants. In this report we have shown, for the first time, that C2 phosphatidylinositol-4,5-bisphosphate (PIP2)-dependent PLD(s) from 5 day hypocotyls of Brassica oleracea associated with plasma membrane is covalently modified-phosphorylated. Pre-incubation of the plasma membrane fraction with acid phosphatase resulted in concentration-dependent inhibition of PIP2-dependent PLD activity. Using matrix-assisted laser desorption/ionization time of flight mass spectrometry of tryptic in-gel digests, the BoPLDgamma(1,2) isoform was identified. Comparing the spectra of the proteins obtained from the plasma membrane fractions treated and non-treated with acid phosphatase, three peptides differing in the mass of the phosphate group (80 Da) were revealed: TMQMMYQTIYK, EVADGTVSVYNSPR and KASKSRGLGK which possess five potential Ser/Thr phosphorylation sites. Our findings suggest that a phosphorylation/dephosphorylation mechanism may be involved in the regulation of plant PIP2-dependent PLDgamma activity.
Collapse
Affiliation(s)
- Zuzana Novotná
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Prague 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
65
|
Thaler F, Valsasina B, Baldi R, Xie J, Stewart A, Isacchi A, Kalisz HM, Rusconi L. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal Bioanal Chem 2003; 376:366-73. [PMID: 12734628 DOI: 10.1007/s00216-003-1919-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Revised: 03/12/2003] [Accepted: 03/14/2003] [Indexed: 11/30/2022]
Abstract
beta-Elimination of the phosphate group on phosphoserine and phosphothreonine residues and addition of an alkyldithiol is a useful tool for analysis of the phosphorylation states of proteins and peptides. We have explored the influence of several conditions on the efficiency of this PO(4)(3-) elimination reaction upon addition of propanedithiol. In addition to the described influence of different bases, the solvent composition was also found to have a major effect on the yield of the reaction. In particular, an increase in the percentage of DMSO enhances the conversion rate, whereas a higher amount of protic polar solvents, such as water or isopropanol, induces the opposite effect. We have also developed a protocol for enrichment of the modified peptides, which is based on solid-phase covalent capture/release with a dithiopyridino-resin. The procedure for beta-elimination and isolation of phosphorylated peptides by solid-phase capture/release was developed with commercially available alpha-casein. Enriched peptide fragments were characterized by MALDI-TOF mass spectrometric analysis before and after alkylation with iodoacetamide, which allowed rapid confirmation of the purposely introduced thiol moiety. Sensitivity studies, carried out in order to determine the detection limit, demonstrated that samples could be detected even in the low picomolar range by mass spectrometry. The developed solid-phase enrichment procedure based on reversible covalent binding of the modified peptides is more effective and significantly simpler than methods based on the interaction between biotin and avidin, which require additional steps such as tagging the modified peptides and work-up of the samples prior to the affinity capture step.
Collapse
Affiliation(s)
- Florian Thaler
- Biology Department, Discovery Research Oncology, Pharmacia Corporation, Viale Pasteur 10, 20014 Nerviano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Kuyama H, Toda C, Watanabe M, Tanaka K, Nishimura O. An efficient chemical method for dephosphorylation of phosphopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:1493-1496. [PMID: 12820217 DOI: 10.1002/rcm.1078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phosphate moieties found on serine, threonine or tyrosine residues in peptides, e.g., in proteolytic digests of proteins, were cleaved using hydrofluoric acid or hydrogen fluoride-pyridine without side reactions.
Collapse
Affiliation(s)
- Hiroki Kuyama
- Life Science Laboratory, Shimadzu Corporation, Kyoto 604-8511, Japan
| | | | | | | | | |
Collapse
|
67
|
Loboda AV, Ackloo S, Chernushevich IV. A high-performance matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometer with collisional cooling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2508-2516. [PMID: 14608621 DOI: 10.1002/rcm.1241] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A high-performance orthogonal time-of-flight (TOF) mass spectrometer was developed specifically for use in combination with a matrix-assisted laser desorption/ionization (MALDI) source. The MALDI source features an ionization region containing a buffer gas with variable pressure. The source is interfaced to the TOF section via a collisional focusing ion guide. The pressure in the source influences the rate of cooling and allows control of ion fragmentation. The instrument provides uniform resolution up to 18,000 FWHM (full width at half maximum). Mass accuracy routinely achieved with a single-point internal recalibration is below 2 ppm for protein digest samples. The instrument is also capable of recording spectra of samples containing compounds with a broad range of masses while using one set of experimental conditions and without compromising resolution or mass accuracy.
Collapse
Affiliation(s)
- A V Loboda
- MDS SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4V8, Canada.
| | | | | |
Collapse
|
68
|
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, , (919) 515-5360 (PHONE), (919) 515-2505 (FAX)
| |
Collapse
|
69
|
Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, Vissers JPC. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2002; 13:792-803. [PMID: 12148804 DOI: 10.1016/s1044-0305(02)00420-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A tandem quadrupole time-of-flight (Q-TOF) mass spectrometer has been programmed such that phosphorylated peptides can automatically be discovered and identified in a way similar to that of the use of precursor ion or neutral loss scanning, but without the need to scan the quadrupole mass filter. Instead, the method capitalizes on the innate capability of the Q-TOF to record mass spectra and product ion spectra quickly, with good sensitivity and with good mass accuracy. Alternate mass spectra, with and without fragmentation, are recorded at high and low collision energy with the quadrupole operating in wideband mode. The method of analysis is both compatible with and dependant on liquid chromatography for separation of complex mixtures. The method has been demonstrated by searching for the neutral loss of 98 Da (H3PO4) from phosphoserine and phosphothreonine residues, or for the phosphorylated immonium ion at m/z 216 from phosphotyrosine. The method also incorporates acquisition of the product ion spectrum from any candidate precursor ions, thereby allowing confirmation of the neutral loss or product ion and providing additional sequence information to assist identification of the protein and assign the site of phosphorylation.
Collapse
Affiliation(s)
- R H Bateman
- Micromass Ltd., Wythenshawe, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
70
|
Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 2002; 20:261-8. [PMID: 12007495 DOI: 10.1016/s0167-7799(02)01944-3] [Citation(s) in RCA: 686] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In signal transduction in eukaryotes, protein phosphorylation is a key event. To understand signaling processes, we must first acquire an inventory of phosphoproteins and their phosphorylation sites under different conditions. Because phosphorylation is a dynamic process, elucidation of signaling networks also requires quantitation of these phosphorylation events. In this article, we outline several methods for enrichment of phosphorylated proteins and peptides and discuss various options for their identification and quantitation with special emphasis on mass spectrometry-based techniques.
Collapse
Affiliation(s)
- Matthias Mann
- Center for Experimental Bioinformatics, University of Southern Denmark, M, DK-5230, Odense, Denmark.
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Common strategies employed for general protein detection include organic dye, silver stain, radiolabeling, reverse stain, fluorescent stain, chemiluminescent stain and mass spectrometry-based approaches. Fluorescence-based protein detection methods have recently surpassed conventional technologies such as colloidal Coomassie blue and silver staining in terms of quantitative accuracy, detection sensitivity, and compatibility with modern downstream protein identification and characterization procedures, such as mass spectrometry. Additionally, specific detection methods suitable for revealing protein post-translational modifications have been devised over the years. These include methods for the detection of glycoproteins, phosphoproteins, proteolytic modifications, S-nitrosylation, arginine methylation and ADP-ribosylation. Methods for the detection of a range of reporter enzymes and epitope tags are now available as well, including those for visualizing beta-glucuronidase, beta-galactosidase, oligohistidine tags and green fluorescent protein. Fluorescence-based and mass spectrometry-based methodologies are just beginning to offer unparalleled new capabilities in the field of proteomics through the performance of multiplexed quantitative analysis. The primary objective of differential display proteomics is to increase the information content and throughput of proteomics studies through multiplexed analysis. Currently, three principal approaches to differential display proteomics are being actively pursued, difference gel electrophoresis (DIGE), multiplexed proteomics (MP) and isotope-coded affinity tagging (ICAT). New multiplexing capabilities should greatly enhance the applicability of the two-dimensional gel electrophoresis technique with respect to addressing fundamental questions related to proteome-wide changes in protein expression and post-translational modification.
Collapse
Affiliation(s)
- Wayne F Patton
- Proteomics Section, Biosciences Department, Molecular Probes, Inc., 4849 Pitchford Avenue, Eugene, OR 97402-9165, USA.
| |
Collapse
|
72
|
Loughrey Chen S, Huddleston MJ, Shou W, Deshaies RJ, Annan RS, Carr SA. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol Cell Proteomics 2002; 1:186-96. [PMID: 12096118 DOI: 10.1074/mcp.m100032-mcp200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior to anaphase in Saccharomyces cerevisiae, Cdc14 protein phosphatase is sequestered within the nucleolus and inhibited by Net1, a component of the RENT complex in budding yeast. During anaphase the RENT complex disassembles, allowing Cdc14 to migrate to the nucleus and cytoplasm where it catalyzes exit from mitosis. The mechanism of Cdc14 release appears to involve the polo-like kinase Cdc5, which is capable of promoting the dissociation of a recombinant Net1.Cdc14 complex in vitro by phosphorylation of Net1. We report here the phosphorylation site mapping of recombinant Net1 (Net1N) and a mutant Net1N allele (Net1N-19m) with 19 serines or threonines mutated to alanine. A variety of chromatographic and mass spectrometric-based strategies were used, including immobilized metal-affinity chromatography, alkaline phosphatase treatment, matrix-assisted laser-desorption post-source decay, and a multidimensional electrospray mass spectrometry-based approach. No one approach was able to identify all phosphopeptides in the tryptic digests of these proteins. Most notably, the presence of a basic residue near the phosphorylated residue significantly hampered the ability of alkaline phosphatase to hydrolyze the phosphate moiety. A major goal of research in proteomics is to identify all proteins and their interactions and post-translational modification states. The failure of any single method to identify all sites in highly phosphorylated Net1N, however, raises significant concerns about how feasible it is to map phosphorylation sites throughout the proteome using existing technologies.
Collapse
Affiliation(s)
- Susan Loughrey Chen
- Proteomics and Biological Mass Spectrometry, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | |
Collapse
|
73
|
Cartee TL, Wertz GW. Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol 2001; 75:12188-97. [PMID: 11711610 PMCID: PMC116116 DOI: 10.1128/jvi.75.24.12188-12197.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The M2-1 protein of respiratory syncytial (RS) virus is a transcriptional processivity and antitermination factor. The M2-1 protein has a Cys3His1 zinc binding motif which is essential for function, is phosphorylated, and has been shown to interact with the RS virus nucleocapsid (N) protein. In the work reported here, we determined the sites at which the M2-1 protein was phosphorylated and investigated the importance of these phosphorylated residues for M2-1 function in transcription. By combining protease digestion, matrix-assisted laser desorption ionization-time of flight mass spectrometry, and site-directed mutagenesis, we identified the phosphorylated residues as serines 58 and 61, not threonine 56 and serine 58 as previously reported. Serines 58 and 61 and the surrounding amino acids are in a consensus sequence for phosphorylation by casein kinase I. Consistent with this, we showed that the unphosphorylated M2-1 protein synthesized in Escherichia coli could be phosphorylated in vitro by casein kinase I. The effect of eliminating phosphorylation by site-specific mutagenesis of serines 58 and 61 on the function of the M2-1 protein in transcription of RS virus subgenomic replicons was assayed. The activities of the M2-1 protein phosphorylation mutants in transcriptional antitermination were tested over a range of concentrations and were found to be substantially inhibited at all concentrations. The data show that phosphorylation is important for the M2-1 protein function in transcription. However, mutation of the M2-1 phosphorylation sites did not interfere with the ability of the M2-1 protein to interact with the N protein in transfected cells. The interaction of the M2-1 and N proteins in cotransfected cells was found to be sensitive to RNase A, indicating that the M2-1-N protein interaction was mediated via RNA. Furthermore, the M2-1 protein was shown to bind monocistronic and polycistronic RS virus mRNAs during infection.
Collapse
Affiliation(s)
- T L Cartee
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
74
|
Kalo MS, Yu HH, Pasquale EB. In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. J Biol Chem 2001; 276:38940-8. [PMID: 11466320 DOI: 10.1074/jbc.m105815200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EphB2 is a receptor tyrosine kinase of the Eph family and ephrin-B1 is one of its transmembrane ligands. In the embryo, EphB2 and ephrin-B1 participate in neuronal axon guidance, neural crest cell migration, the formation of blood vessels, and the development of facial structures and the inner ear. Interestingly, EphB2 and ephrin-B1 can both signal through their cytoplasmic domains and become tyrosine-phosphorylated when bound to each other. Tyrosine phosphorylation regulates EphB2 signaling and likely also ephrin-B1 signaling. Embryonic retina is a tissue that highly expresses both ephrin-B1 and EphB2. Although the expression patterns of EphB2 and ephrin-B1 in the retina are different, they partially overlap, and both proteins are substantially tyrosine-phosphorylated. To understand the role of ephrin-B1 phosphorylation, we have identified three tyrosines of ephrin-B1 as in vivo phosphorylation sites in transfected 293 cells stimulated with soluble EphB2 by using mass spectrometry and site-directed mutagenesis. These tyrosines are also physiologically phosphorylated in the embryonic retina, although the extent of phosphorylation at each site may differ. Furthermore, many of the tyrosines of EphB2 previously identified as phosphorylation sites in 293 cells (Kalo, M. S., and Pasquale, E. B. (1999) Biochemistry 38, 14396-14408) are also phosphorylated in retinal tissue. Our data underline the complexity of ephrin-Eph bidirectional signaling by implicating many tyrosine phosphorylation sites of the ligand-receptor complex.
Collapse
Affiliation(s)
- M S Kalo
- Burnham Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
75
|
Abstract
Phosphorylation on serine, threonine and tyrosine residues is an extremely important modulator of protein function. Therefore, there is a great need for methods capable of accurately elucidating sites of phosphorylation. Although full characterization of phosphoproteins remains a formidable analytical challenge, mass spectrometry has emerged as an increasingly viable tool for this task. This review summarizes the methodologies currently available for the analysis of phosphoproteins by mass spectrometry, including enrichment of compounds of interest using immobilized metal affinity chromatography and chemical tagging techniques, detection of phosphopeptides using mass mapping and precursor ion scans, localization of phosphorylation sites by peptide sequencing, and quantitation of phosphorylation by the introduction of mass tags. Despite the variety of powerful analytical methods that are now available, complete characterization of the phosphorylation state of a protein isolated in small quantities from a biological sample remains far from routine.
Collapse
Affiliation(s)
- D T McLachlin
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
76
|
Philip R, Darnowski DW, Maughan PJ, Vodkin LO. Processing and localization of bovine beta-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2001; 161:323-335. [PMID: 11448763 DOI: 10.1016/s0168-9452(01)00420-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have examined the processing and subcellular localization of a chimeric gene consisting of the bovine milk protein, beta-casein, under the control of a soybean seed lectin promoter and its 32 amino acid signal sequence in the seeds of transgenic soybean plants. The beta-casein expressed in developing soybean seeds is a doublet with apparent molecular weight slightly smaller than the bovine beta-casein and expression of the protein was highest in immature cotyledons. The casein proteins were purified from the immature soybean seeds by immunoaffinity chromatography and were analyzed by two-dimensional gel electrophoresis, blotting, and amino terminal sequencing. The N-terminal sequences of both of the doublet soybean casein polypeptides were identical to the N-terminal sequence of the bovine beta-casein indicating that the 32 amino acid lectin signal sequence was cleaved precisely from the chimeric protein in developing soybean seeds. Analysis of the purified soybean beta-casein polypeptides by mass spectrometry (MALDI-MS) showed that they are not phosphorylated. Absence of added phosphate groups is the cause of the size difference between the soybean beta-casein and native bovine beta-casein protein. Immunolocalization experiments showed that the casein protein was found in the protein storage vacuoles (PSV) in developing and mature soybean seeds. The precise removal of the 32 amino acid lectin amino terminal sequence from the chimeric lectin-casein fusion suggests that the lectin expression cassette can be used for production of pharmaceutical or other recombinant proteins of added value in the developing soybean seed.
Collapse
Affiliation(s)
- R Philip
- Gene Logic Inc., 708 Quince Orchard Road, 20878, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
77
|
Henzel WJ, Stults JT. Matrix-assisted laser desorption/ionization time-of-flight mass analysis of peptides. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2001; Chapter 16:Unit 16.2. [PMID: 18429129 DOI: 10.1002/0471140864.ps1602s04] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is one of the most useful techniques for determining the mass of biomolecules, with exceptional capabilities for mass analysis of peptides. Relative to other ionization techniques, it provides high sensitivity and excellent tolerance of salt and other common buffer components. Routine detection limits for peptides are in the subpicomole range. The ions commonly observed are the protonated molecules (M+H(+)), which makes data analysis relatively easy. This overview discusses instrument configuration and calibration, sample preparation, along with specific approaches for analyzing peptide mixtures, synthetic peptides, and chemical modifications of peptides.
Collapse
Affiliation(s)
- W J Henzel
- Genentech, Inc., South San Francisco, California, USA
| | | |
Collapse
|
78
|
Zhao T, Heyduk T, Eissenberg JC. Phosphorylation site mutations in heterochromatin protein 1 (HP1) reduce or eliminate silencing activity. J Biol Chem 2001; 276:9512-8. [PMID: 11121421 DOI: 10.1074/jbc.m010098200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HP1 is an essential heterochromatin-associated protein in Drosophila. HP1 has dosage-dependent effects on the silencing of euchromatic genes that are mislocalized to heterochromatin and is required for the normal expression of at least two heterochromatic genes. HP1 is multiply phosphorylated in vivo, and HP1 hyperphosphorylation is correlated with heterochromatin assembly during development. The purpose of this study was to test whether HP1 phosphorylation modifies biological activity and biochemical properties of HP1. To determine sites of HP1 phosphorylation in vivo and whether phosphorylation affects any biochemical properties of HP1, we expressed Drosophila HP1 in lepidopteran cultured cells using a recombinant baculovirus vector. Phosphopeptides were identified by matrix-assisted laser desorption ionization/time of flight mass spectroscopy; these peptides contain target sites for casein kinase II, protein tyrosine kinase, and PIM-1 kinase. Purified HP1 from bacterial (unphosphorylated) and lepidopteran (phosphorylated) cells has similar secondary structure. Phosphorylation has no effect on HP1 self-association but alters the DNA binding properties of HP1, suggesting that phosphorylation could differentially regulate HP1-dependent interactions. Serine-to-alanine and serine-to-glutamate substitutions at consensus protein kinase motifs resulted in reduction or loss of silencing activity of mutant HP1 in transgenic flies. These results suggest that dynamic phosphorylation/dephosphorylation regulates HP1 activity in heterochromatic silencing.
Collapse
Affiliation(s)
- T Zhao
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
79
|
Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem 2001; 73:393-404. [PMID: 11217738 DOI: 10.1021/ac001130t] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, multidimensional electrospray MS-based strategy for phosphopeptide mapping is described which eliminates the need to radiolabel protein with 32P or 33P. The approach utilizes two orthogonal MS scanning techniques, both of which are based on the production of phosphopeptide-specific marker ions at m/z 63 and/or 79 in the negative ion mode. These scan methods are combined with liquid chromatography-electrospray mass spectrometry and nanoelectrospray MS/MS to selectively detect and identify phosphopeptides in complex proteolytic digests. Low-abundance, low-stoichiometry phosphorylation sites can be selectively determined in the presence of an excess of nonphosphorylated peptides, even in cases where the signal from the phosphopeptide is indistinguishable from background in the conventional MS scan. The strategy, which has been developed and refined in our laboratory over the past few years, is particularly well suited to phosphoproteins that are phosphorylated to varying degrees of stoichiometry on multiple sites. Sensitivity and selectivity of the method are demonstrated here using model peptides and a commercially available phosphoprotein standard. In addition, the strategy is illustrated by the complete in vitro and in vivo phosphopeptide mapping of Sic1p, a regulator of the G1/S transition in budding yeast.
Collapse
Affiliation(s)
- R S Annan
- Department of Physical and Structural Chemistry, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | |
Collapse
|
80
|
Janek K, Wenschuh H, Bienert M, Krause E. Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1593-1599. [PMID: 11544598 DOI: 10.1002/rcm.417] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article describes a simple procedure for the detection of phosphorylated peptides by comparable positive and negative ion mode matrix-assisted laser desorption/ionization mass spectrometry measurements. Based on studies with phosphorylated peptides (EAIXAAPFAK, X = pS, pT, pY) and their corresponding non-phosphorylated analogs, it was found that phosphopeptides, which are characterized by a low ionization efficiency in the positive ion mode, exhibit drastically increased signal intensities in the negative ion mode compared to their non-phosphorylated analogs. The effect was successfully used to identify phosphorylated sequences of the commonly used phosphoprotein standards, protein kinase A and beta-casein, by peptide mass fingerprint analyses of the corresponding Lys C and trypsin digests using both (positive and negative) ion modes. The comparison of positive and negative ion spectra of a given protein digest (relative intensity([M - H]-)/relative intensity([M + H]+)) can be used to identify any phosphopeptides present which may then be separated and analyzed further.
Collapse
Affiliation(s)
- K Janek
- Institute of Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | |
Collapse
|
81
|
Adamczyk M, Gebler JC, Wu J. Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1481-1488. [PMID: 11507762 DOI: 10.1002/rcm.394] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A new method combining chemical modification and affinity purification is described for the characterization of serine and threonine phosphopeptides in proteins. The method is based on the conversion of phosphoserine and phosphothreonine residues to S-(2-mercaptoethyl)cysteinyl or beta-methyl-S-(2-mercaptoethyl)cysteinyl residues by beta-elimination/1,2-ethanedithiol addition, followed by reversible biotinylation of the modified proteins. After trypsin digestion, the biotinylated peptides were affinity-isolated and enriched, and subsequently subjected to structural characterization by liquid chromatography/tandem mass spectrometry (LC/MS/MS). Database searching allowed for automated identification of modified residues that were originally phosphorylated. The applicability of the method is demonstrated by the identification of all known phosphorylation sites in a mixture of alpha-casein, beta-casein, and ovalbumin. The technique has potential for adaptations to proteome-wide analysis of protein phosphorylation.
Collapse
Affiliation(s)
- M Adamczyk
- Department of Chemistry (9NM), Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL 60064-6016, USA.
| | | | | |
Collapse
|
82
|
Ma Y, Lu Y, Zeng H, Ron D, Mo W, Neubert TA. Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:1693-1700. [PMID: 11555868 DOI: 10.1002/rcm.426] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A two-step mass spectrometric method for characterization of phosphopeptides from peptide mixtures is presented. In the first step, phosphopeptide candidates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) based on their higher relative intensities in negative ion MALDI spectra than in positive ion MALDI spectra. The detection limit for this step was found to be 18 femtomoles or lower in the case of unfractionated in-solution digests of a model phosphoprotein, beta-casein. In the second step, nanoelectrospray tandem mass (nES-MS/MS) spectra of doubly or triply charged precursor ions of these candidate phosphopeptides were obtained using a quadrupole time-of-flight (Q-TOF) mass spectrometer. This step provided information about the phosphorylated residues, and ruled out nonphosphorylated candidates, for these peptides. After [(32)P] labeling and reverse-phase high-performance liquid chromatography (RP-HPLC) to simplify the mixtures and to monitor the efficiency of phosphopeptide identification, we used this method to identify multiple autophosphorylation sites on the PKR-like endoplasmic reticulum kinase (PERK), a recently discovered mammalian stress-response protein.
Collapse
Affiliation(s)
- Y Ma
- Department of Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Tsay YG, Wang YH, Chiu CM, Shen BJ, Lee SC. A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal Biochem 2000; 287:55-64. [PMID: 11078583 DOI: 10.1006/abio.2000.4837] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is a state-of-the-art method of structural analysis of peptides/proteins. Here, using activating transcription factor-2 (ATF2) as an example, we report how LC/MS/MS data were processed to generate selected ion tracings for identification of phosphorylated peptides based on their parallel elution behavior with their nonphosphorylated analogs. Via this approach, we verified that amino acid residues Thr-69, Thr-71, and Ser-90 of ATF2 were the in vitro targets for c-Jun kinase. Selected ion tracing method was also used to quantitatively determine phosphorylation states of peptides. We demonstrated that the phosphorylation of Thr-69/Thr-71 was increased in response to ultraviolet irradiation specifically in subconfluent but not in confluent cultures. About 24% of Thr-69/Thr-71-containing segment were singly phosphorylated in subconfluent cultures, while minimal phosphorylation occurred in confluent cultures. In contrast, Ser-112 phosphorylation remained unaffected by cell densities. This strategy could be applied to the studies of a variety of modifications seen in various regulated cellular processes.
Collapse
Affiliation(s)
- Y G Tsay
- Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
85
|
Abstract
The application of mass spectrometry (MS) to large biomolecules has been revolutionized in the past decade with the development of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) techniques. ESI and MALDI permit solvent evaporation and sublimation of large biomolecules into the gaseous phase, respectively. The coupling of ESI or MALDI to an appropriate mass spectrometer has allowed the determination of accurate molecular mass and the detection of chemical modification at high sensitivity (picomole to femtomole). The interface of mass spectrometry hardware with computers and new extended mass spectrometric methods has resulted in the use of MS for protein sequencing, post-translational modifications, protein conformations (native, denatured, folding intermediates), protein folding/unfolding, and protein-protein or protein-ligand interactions. In this review, applications of MS, particularly ESI-MS and MALDI time-of-flight MS, to food proteins and peptides are described.
Collapse
Affiliation(s)
- H F Alomirah
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Montreal, Canada
| | | | | |
Collapse
|
86
|
Héricourt F, Blanc S, Redeker V, Jupin I. Evidence for phosphorylation and ubiquitinylation of the turnip yellow mosaic virus RNA-dependent RNA polymerase domain expressed in a baculovirus-insect cell system. Biochem J 2000; 349:417-25. [PMID: 10880340 PMCID: PMC1221164 DOI: 10.1042/0264-6021:3490417] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All RNA viruses known to date encode an RNA-dependent RNA polymerase (RdRp) that is required for replication of the viral genome. We have expressed and purified the turnip yellow mosaic virus (TYMV) RdRp in insect cells using a recombinant baculovirus, either in its native form, or fused to an hexa-histidine tag. Phosphorylation of the protein was demonstrated by labelling experiments in vivo, as well as phosphatase treatment of the purified protein in vitro. Phospho amino acid analysis and immunoblotting experiments identified serine and threonine residues as being the subject of phosphorylation. Peptide mass mapping using MS analysis of a protein digest revealed that phosphorylation sites are localized within a putative PEST sequence [a sequence rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues] in the N-terminal region of the protein. Using monoclonal antibodies specific for ubiquitin conjugates, we were able to demonstrate that the TYMV RdRp is conjugated to ubiquitin molecules when expressed in insect cells. These observations suggest that the TYMV RdRp may be processed selectively by the ubiquitin/proteasome degradation system upon phosphorylation of the PEST sequence.
Collapse
Affiliation(s)
- F Héricourt
- Laboratoire de Virologie Moléculaire, Institut Jacques Monod, UMR 7592, CNRS-Universités Paris 6-Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
| | | | | | | |
Collapse
|
87
|
Abstract
In this chapter we review the various methods available to the experimenter to analyse phosphorylated peptides. The initial steps in such an analysis involve the isolation of the phosphopeptides for analysis, and we outline the various current methods such as immobilised metal affinity chromatography, anti-phosphoamino acid antibodies as well as HPLC (High Pressure Liquid Chromatography) and TLC (Thin Layer Chromatography). The isolated peptides can be analysed by chemical modification followed by Edman degradation or by mass spectrometry (MS). We focus on MS methods and give examples illustrating the selective detection and sequencing of phosphopeptides.
Collapse
Affiliation(s)
- M Quadroni
- Biomedical Research Center, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
88
|
Ogueta S, Rogado R, Marina A, Moreno F, Redondo JM, Vázquez J. Identification of phosphorylation sites in proteins by nanospray quadrupole ion trap mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:556-565. [PMID: 10797652 DOI: 10.1002/(sici)1096-9888(200004)35:4<556::aid-jms969>3.0.co;2-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A method is described for identifying serine phosphorylation sites in proteins, based on conventional (32)P labeling followed by electrophoretic separation, 'in-gel' digestion with a protease, peptide extraction, reversed-phase high-performance liquid chromatographic separation and collection and off-line analysis of the radioactive fractions by nanospray ion trap mass spectrometry. The method was successfully applied to the identification of three phosphorylation sites in two proteins which were subjected to in vitro phosphorylation under physiological conditions. Different combinations of the various scanning modes of the ion trap, including high-resolution, multiple subfragmentation (or MS(n)) and fast scan analysis, were employed to identify the phosphopeptides, determine their sequence and localize the exact site of phosphorylation. 'Blind' fragmentation using fast scans was used to analyze a phosphopeptide which was undetectable in other scanning modes. The sequence, phosphorylation site and double cysteine modification of the potassium adduct of a peptide containing 35 residues were also determined by multiple fragmentation. The results not only support the validity of the proposed method for routine identification of phosphorylation sites, but also demonstrate the exceptional capability of off-line ion trap mass spectrometry in combination with nanospray ionization for performing very detailed studies on the structure of peptides.
Collapse
Affiliation(s)
- S Ogueta
- Centro de Biología Molecular 'Severo Ochoa,' Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
89
|
Zhou W, Merrick BA, Khaledi MG, Tomer KB. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2000; 11:273-282. [PMID: 10757163 DOI: 10.1016/s1044-0305(00)00100-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Consecutive enzymatic reactions of analytes which are affinity bound to immobilized metal ion beads with subsequent direct analysis of the products by matrix-assisted laser desorption/ionization mass spectrometry have been used for detecting phosphorylation sites. The usefulness of this method was demonstrated by analyzing two commercially available phosphoproteins, beta-casein and alpha-casein, as well as one phosphopeptide from a kinase reaction mixture. Agarose loaded with either Fe3+ or Ga3+ was used to isolate phosphopeptides from the protein digest. Results from using either metal ion were complementary. Less overall suppression effect was achieved when Ga3+-loaded agarose was used to isolate phosphopeptides. The selectivity for monophosphorylated peptides, however, was better with Fe3+-loaded agarose. This technique is easy to use and has the ability to analyze extremely complicated phosphopeptide mixtures. Moreover, it eliminates the need for prior high-performance liquid chromatography separation or radiolabeling, thus greatly simplifying the sample preparation.
Collapse
Affiliation(s)
- W Zhou
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
90
|
Plafker SM, Woods AS, Gibson W. Phosphorylation of simian cytomegalovirus assembly protein precursor (pAPNG.5) and proteinase precursor (pAPNG1): multiple attachment sites identified, including two adjacent serines in a casein kinase II consensus sequence. J Virol 1999; 73:9053-62. [PMID: 10516011 PMCID: PMC112937 DOI: 10.1128/jvi.73.11.9053-9062.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly protein precursor (pAP) of cytomegalovirus (CMV), and its homologs in other herpesviruses, functions at several key steps during the process of capsid formation. This protein, and the genetically related maturational proteinase, is distinguished from the other capsid proteins by posttranslational modifications, including phosphorylation. The objective of this study was to identify sites at which pAP is phosphorylated so that the functional significance of this modification and the enzyme(s) responsible for it can be determined. In the work reported here, we used peptide mapping, mass spectrometry, and site-directed mutagenesis to identify two sets of pAP phosphorylation sites. One is a casein kinase II (CKII) consensus sequence that contains two adjacent serines, both of which are phosphorylated. The other site(s) is in a different domain of the protein, is phosphorylated less frequently than the CKII site, does not require preceding CKII-site phosphorylation, and causes an electrophoretic mobility shift when phosphorylated. Transfection/expression assays for proteolytic activity showed no gross effect of CKII-site phosphorylation on the enzymatic activity of the proteinase or on the substrate behavior of pAP. Evidence is presented that both the CKII sites and the secondary sites are phosphorylated in virus-infected cells and plasmid-transfected cells, indicating that these modifications can be made by a cellular enzyme(s). Apparent compartmental differences in phosphorylation of the CKII-site (cytoplasmic) and secondary-site (nuclear) serines suggest the involvement of more that one enzyme in these modifications.
Collapse
Affiliation(s)
- S M Plafker
- Virology Laboratories, Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
91
|
Abstract
Autophosphorylation regulates the function of receptor tyrosine kinases. To dissect the mechanism by which Eph receptors transmit signals, we have developed an approach using matrix-assisted laser desorption-ionization (MALDI) mass spectrometry to map systematically their in vivo tyrosine phosphorylation sites. With this approach, phosphorylated peptides from receptors digested with various endoproteinases were selectively isolated on immobilized anti-phosphotyrosine antibodies and analyzed directly by MALDI mass spectrometry. Multiple in vivo tyrosine phosphorylation sites were identified in the juxtamembrane region, kinase domain, and carboxy-terminal tail of EphB2 and EphB5, and found to be remarkably conserved between these EphB receptors. A number of these sites were also identified as in vitro autophosphorylation sites of EphB5 by phosphopeptide mapping using two-dimensional chromatography. Only two in vitro tyrosine phosphorylation sites had previously been directly identified for Eph receptors. Our data further indicate that in vivo EphB2 and EphB5 are also extensively phosphorylated on serine and threonine residues. Because phosphorylation at each site can affect receptor signaling properties, the multiple phosphorylation sites identified here for the EphB receptors suggest a complex regulation of their functions, presumably achieved by autophosphorylation as well as phosphorylation by other kinases. In addition, we show that MALDI mass spectrometry can be used to determine the binding sites for Src homology 2 (SH2) domains by identifying the EphB2 phosphopeptides that bind to the SH2 domain of the Src kinase.
Collapse
Affiliation(s)
- M S Kalo
- The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
92
|
Wang Y, Guo W, Liang L, Esselman WJ. Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J Biol Chem 1999; 274:7454-61. [PMID: 10066810 DOI: 10.1074/jbc.274.11.7454] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45 is a receptor-type protein-tyrosine phosphatase (PTP) that is required for antigen-specific stimulation and proliferation in lymphocytes. This study was designed to determine the nature of specific kinases in lymphocytes that phosphorylate CD45 and to determine the effect of phosphorylation on CD45 PTP activity. A major cytoplasmic lymphocyte kinase that phosphorylated CD45 was identified as casein kinase 2 (CK2) by use of an in-gel kinase assay in combination with immunoprecipitation, immunodepletion, and specific inhibition. Mutational analysis of CK2 consensus sites showed that the target for CK2 was in an acidic insert of 19 amino acids in the D2 domain, and Ser to Ala mutations at amino acids 965, 968, 969, and 973 abrogated CK2 phosphorylation of CD45. CK2 phosphorylation increased CD45 activity 3-fold toward phosphorylated myelin basic protein, and this increase was reversible by PP2A treatment. Mutation of Ser to Glu at the CK2 sites had the same effect as phosphorylation and also tripled the Vmax of CD45. CD45 isolated in vivo was highly phosphorylated and could not be phosphorylated by CK2 without prior dephosphorylation with phosphatase PP2A. We conclude that CK2 is a major lymphocyte kinase that is responsible for in vivo phosphorylation of CD45, and phosphorylation at specific CK2 sites regulates CD45 PTP activity.
Collapse
Affiliation(s)
- Y Wang
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | |
Collapse
|
93
|
Floyd PD, Li L, Moroz TP, Sweedler JV. Characterization of peptides from Aplysia using microbore liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry guided purification. J Chromatogr A 1999; 830:105-13. [PMID: 10023620 DOI: 10.1016/s0021-9673(98)00880-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Liquid chromatography (LC) has been used extensively for the separation and isolation of peptides due to its high selectivity and peak capacity. An approach combining microbore LC with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) detection is described to identify peptides in cells and guide the purification of peptides from the marine mollusc Aplysia californica. Direct MALDI-MS of neurons and processes provides molecular mass information for unknown peptides with almost no sample preparation, and LC-MALDI-MS allows the isolation and purification of these peptides from pooled samples, thus enabling new putative neuropeptides to be isolated from complex cellular samples. Both direct MALDI-MS and LC-MALDI-MS are compared in terms of detecting peptides from neuronal samples. Using both approaches, two peaks from Aplysia californica connectives having molecular masses of 5013 and 5021 have been isolated, partially sequenced and identified as novel collagen-like peptides.
Collapse
Affiliation(s)
- P D Floyd
- Department of Chemistry, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
94
|
Voitenleitner C, Rehfuess C, Hilmes M, O'Rear L, Liao PC, Gage DA, Ott R, Nasheuer HP, Fanning E. Cell cycle-dependent regulation of human DNA polymerase alpha-primase activity by phosphorylation. Mol Cell Biol 1999; 19:646-56. [PMID: 9858588 PMCID: PMC83922 DOI: 10.1128/mcb.19.1.646] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase alpha-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase alpha-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase alpha-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase alpha-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase alpha-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- C Voitenleitner
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, and Vanderbilt Cancer Center, Nashville, Tennessee 37232-6838, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Asara JM, Allison J. Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1999; 10:35-44. [PMID: 9888183 DOI: 10.1016/s1044-0305(98)00129-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used successfully to detect phosphorylation sites in proteins. Applications may be limited by the low response of phosphopeptides compared to nonphosphorylated peptides in MALDI MS. The addition of ammonium salts to the matrix/analyte solution substantially enhances the signal for phosphopeptides. In examples shown for equimolar mixtures, the phosphorylated peptide peaks become the largest peaks in the spectrum upon ammonium ion addition. This can allow for the identification of phosphopeptides in an unfractionated proteolytic digestion mixture. Sufficient numbers of protonated phosphopeptides can be generated such that they can be subjected to postsource decay analysis, in order to confirm the number of phosphate groups present. The approach works well with the common MALDI matrices such as alpha-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid, and with ammonium salts such as diammonium citrate and ammonium acetate.
Collapse
Affiliation(s)
- J M Asara
- Department of Chemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
96
|
DeGnore JP, Qin J. Fragmentation of phosphopeptides in an ion trap mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 1998; 9:1175-88. [PMID: 9794085 DOI: 10.1016/s1044-0305(98)00088-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A systematic study of the fragmentation pattern of phosphopeptides in an electrospray (ESI) ion trap mass spectrometer is presented. We show that phosphotyrosine- and phosphothreonine-containing peptides show complicated fragmentation patterns. These phosphopeptides were observed to lose the phosphate moiety in the form of H3PO4 and/or HPO3, but were also detected with no loss of the phosphate group. The tendency to lose the phosphate moiety depends strongly on the charge state. Thus, the highest observed charge state tends to retain the phosphate moiety with extensive fragmentation along the peptide backbone. We also show that phosphoserine-containing peptides have relatively simple fragmentation patterns of losing H3PO4. This loss is independent of the charge state. We suggest strategies for the accurate identification of phosphorylation sites using the ion trap mass spectrometer.
Collapse
Affiliation(s)
- J P DeGnore
- Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
97
|
Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A 1998; 808:23-41. [PMID: 9652109 DOI: 10.1016/s0021-9673(98)00115-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein phosphorylation plays a central role in many biological and biomedical phenomena. In this review, while a brief overview of the occurrence and function of protein phosphorylation is given, the primary focus is on studies related to the detection and analysis of phosphorylation both in vivo and in vitro. We focus on phosphorylation of serine, threonine and tyrosine, the most commonly phosphorylated amino acids in eukaryotes. Technologies such as radiolabelling, antibody recognition, chromatographic methods (HPLC, TLC), electrophoresis, Edman sequencing and mass spectrometry are reviewed. We consider the speed, simplicity and sensitivity of tools for detection and identification of protein phosphorylation, as well as quantitation and site characterisation. The limitations of currently available methods are summarised.
Collapse
Affiliation(s)
- J X Yan
- Macquarie University Centre for Analytical Biotechnology, School of Biological Sciences, Macquarie University, Sydney NSW, Australia
| | | | | | | |
Collapse
|
98
|
Zhang X, Herring CJ, Romano PR, Szczepanowska J, Brzeska H, Hinnebusch AG, Qin J. Identification of phosphorylation sites in proteins separated by polyacrylamide gel electrophoresis. Anal Chem 1998; 70:2050-9. [PMID: 9608844 DOI: 10.1021/ac971207m] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a fast, sensitive, and robust procedure for the identification of precise phosphorylation sites in proteins separated by polyacrylamide gel electrophoresis by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF) and online capillary liquid chromatography electrospray tandem ion trap mass spectrometry (LC/ESI/MS/MS). With this procedure, a single phosphorylation site was identified on as little as 20 ng (500 fmol) of the baculovirus-expressed catalytic domain of myosin I heavy-chain kinase separated by gel electrophoresis. The phosphoprotein is digested in the gel with trypsin, and the resulting peptides are extracted with > 60% yield and analyzed by MALDI/TOF before and after digestion with a phosphatase to identify the phosphopeptides. The phosphopeptides are then separated and fragmented in an on-line LC/ESI ion trap mass spectrometer to identify the precise phosphorylation sites. This procedure eliminates any off-line HPLC separation and minimizes sample handling. The use of MALDI/TOF and LCQ, two types of mass spectrometers that are widely available to the biological community, will make this procedure readily accessible to biologists. We applied this technique to identify two autophosphorylation sites and to assign at least another 12 phosphorylation sites to two tryptic peptides in a series of experiments using a gel slice containing only 200 ng (3 pmol) of human double-stranded RNA-activated protein kinase expressed in a mutant strain of the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- X Zhang
- Laboratory of Biophysical Chemistry, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Jensen ON, Larsen MR, Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: Strategies and applications. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(1998)33:2+<74::aid-prot9>3.0.co;2-b] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
100
|
Neville DC, Rozanas CR, Price EM, Gruis DB, Verkman AS, Townsend RR. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci 1997; 6:2436-45. [PMID: 9385646 PMCID: PMC2143598 DOI: 10.1002/pro.5560061117] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gene encodes an apical membrane Cl- channel regulated by protein phosphorylation. To identify cAMP-dependent protein kinase (PKA)-phosphorylated residues in full-length CFTR, immobilized metal-ion affinity chromatography (IMAC) was used to selectively purify phosphopeptides. The greater specificity of iron-loaded (Fe3+) nitrilotriacetic (NTA). Sepharose compared to iminodiacetic acid (IDA) metal-chelating matrices was demonstrated using a PKA-phosphorylated recombinant NBD1-R protein from CFTR. Fe(3+)-loaded NTA Sepharose preferentially bound phosphopeptides, whereas acidic and poly-His-containing peptides were co-purified using the conventional IDA matrices. IMAC using NTA Sepharose enabled the selective recovery of phosphopeptides and identification of phosphorylated residues from a complex proteolytic digest. Phosphopeptides from PKA-phosphorylated full-length CFTR, generated in Hi5 insect cells using a baculovirus expression system, were purified using NTA Sepharose. Phosphopeptides were identified using matrix-assisted laser desorption mass spectrometry (MALDI/MS) with post-source decay (PSD) analysis and collision-induced dissociation (CID) experiments. Phosphorylated peptides were identified by mass and by the metastable loss of HPO3 and H3PO4 from the parent ions. Peptide sequence and phosphorylation at CFTR residues 660Ser, 737Ser, and 795Ser were confirmed using MALDI/PSD analysis. Peptide sequences and phosphorylation at CFTR residues 700Ser, 712Ser, 768Ser, and 813Ser were deduced from peptide mass, metastable fragment ion formation, and PKA consensus sequences. Peptide sequence and phosphorylation at residue 753Ser was confirmed using MALDI/CID analysis. This is the first report of phosphorylation of 753Ser in full-length CFTR.
Collapse
Affiliation(s)
- D C Neville
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | | | | | |
Collapse
|