51
|
Liu J, Wang CY, O'Brien JS. Prosaptide™D5, a retro‐inverso 11‐mer peptidomimetic, rescued dopaminergic neurons in a model of Parkinson's disease. FASEB J 2001. [DOI: 10.1096/fsb2fj000603fje] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Liu
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| | - Cui Ying Wang
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| | - John S. O'Brien
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| |
Collapse
|
52
|
Lapchak PA, Araujo DM, Shackelford DA, Zivin JA. Prosaptide exacerbates ischemia-induced behavioral deficits in vivo; an effect that does not involve mitogen-activated protein kinase activation. Neuroscience 2001; 101:811-4. [PMID: 11113331 DOI: 10.1016/s0306-4522(00)00466-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prosaposin is a 517 amino acid membrane component and secreted protein(5,7,9) that is proteolytically cleaved to generate the four small glycoproteins; saposins A, B, C and D.(9,13,19) Prosaposin's ability to promote neurite outgrowth(31) and to protect neurons from programmed cell death(28) in vitro, as well as to rescue neurons from ischemia and other damage in vivo(11,12,15,25) implied that prosaposin was neurotrophic/neuroprotectant.(1,7,24,31) The neurotrophic sequence of prosaposin was isolated to smaller peptide fragments termed prosaptides(15,31) within the amino terminal portion of saposin C.(1,6,8,10,17,20,21,28) The proposed use of synthetic prosaptides as peripherally administered neuroprotective and/or neurotrophic therapeutic agents has stemmed from their ability to cross the blood-brain barrier,(27) as well as their reported neurotrophic activity in vitro.(15,23,31) Few studies, however, have attempted to characterize these peptides, presumably due to their reported instability following peripheral administration.(27) With the recent design of a stable 11-mer retro-inverso prosaptide,(15,31) it has become feasible to investigate the pharmacological effects of a stable version of these peptides in the validated rabbit spinal cord ischemia model that has been used extensively in the development of therapeutics to treat ischemic stroke.(4,14,16,18) Our results show not only that prosaptide was not neurotrophic/neuroprotectant in vivo, but rather it worsened ischemia-induced behavioral deficits.
Collapse
Affiliation(s)
- P A Lapchak
- University of California San Diego, Department of Neuroscience, MTF 316, 9500 Gilman Drive, La Jolla CA 92093-0624, USA.
| | | | | | | |
Collapse
|
53
|
Misasi R, Sorice M, Di Marzio L, Campana WM, Molinari S, Cifone MG, Pavan A, Pontieri GM, O'Brien JS. Prosaposin treatment induces PC12 entry in the S phase of the cell cycle and prevents apoptosis: activation of ERKs and sphingosine kinase. FASEB J 2001; 15:467-74. [PMID: 11156962 DOI: 10.1096/fj.00-0217com] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report that prosaposin treatment induced extracellular signal-regulated kinases (ERKs) and sphingosine kinase activity, increased DNA synthesis, and prevented cell apoptosis. Prosaposin treatment induced pheochromocytoma cells (PC12) to enter the S phase of the cell cycle; this effect was inhibited by the MEK inhibitor PD98059, indicating that prosaposin-induced ERK phosphorylation is required for stimulation of DNA synthesis. The prosaposin effect was also inhibited by pertussis toxin, indicating that the prosaposin receptor is a G-protein-coupled receptor. Prosaposin rescued PC12 cells from apoptosis induced by staurosporine or ceramide. Sphingosine kinase activity was increased by prosaposin treatment. We propose that this effect is a mechanism underlying the proliferative and anti-apoptotic functions of prosaposin. Prosaposin appears to be a key regulatory factor in the ceramide-S-1-P rheostat, which regulates cell fate.
Collapse
Affiliation(s)
- R Misasi
- Dipartimento di Medicina Sperimentale e Patologia, Università 'La Sapienza' Roma, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Morales CR, Zhao Q, Lefrancois S, Ham D. Role of prosaposin in the male reproductive system: effect of prosaposin inactivation on the testis, epididymis, prostate, and seminal vesicles. ARCHIVES OF ANDROLOGY 2000; 44:173-86. [PMID: 10864364 DOI: 10.1080/014850100262146] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
SGP-1/prosaposin can be secreted or targeted to the lysosomes where it is processed into smaller saposins (A, B, C, and D) required for the hydrolysis of glycosphingolipids. The deficiency of saposins B and C results in variant forms of metachromatic leukodystrophy and Gaucher's disease, respectively, which are characterized by lysosomal storage of undegraded glycosphingolipids. In the nervous system, prosaposin presents trophic activity. A mouse model was recently developed by creating a null allele in embryonic stem cells through gene targeting to investigate the phenotypic diversity of prosaposin mutations and the involvement of this protein in lysosomal storage diseases, and for the development of therapeutic approaches. Mice homozygous mutants die at the age of 35-40 days and neurological disorders contribute to the early demise of the mutant mice. The male reproductive organs in homozygous mutants show several abnormalities, such as a decrease in testis size with reduced spermiogenesis and an involution of the prostate, seminal vesicles, and epididymis. In these animals, the blood levels of testosterone remain normal. In the prostate of homozygous mutants, only the basal epithelial cells appear to be present, while the secretory cells are absent. These findings suggest that prosaposin may be involved in the development and maintenance of the male reproductive organs, as well as, in cellular differentiation.
Collapse
Affiliation(s)
- C R Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
55
|
Yan L, Otero DA, Hiraiwa M, O'Brien JS. Prosaptide D5 reverses hyperalgesia: inhibition of calcium channels through a pertussis toxin-sensitive G-protein mechanism in the rat. Neurosci Lett 2000; 278:120-2. [PMID: 10643816 DOI: 10.1016/s0304-3940(99)00902-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A retro-inverso 11-mer peptidomimetic of prosaposin, Prosaptide D5, induced neurite outgrowth in NS20Y neuroblastoma cells and enhanced [35S]GTPgammaS binding to rat synaptosomal membrane at low nanomolar concentrations similar to prosaposin. Intramuscular injection of D5 ameliorated thermal hyperalgesia in the Seltzer rat model of neuropathic pain, returning paw withdrawal latency to control levels within 3 h after treatment. The effect was sustained for at least 48 h after injection. Prosaposin and D5 inhibited K+-stimulated synaptosomal 45Ca2+ uptake similar to omega-conotoxin MVIIC, demonstrating that both effectors modulated voltage-dependent calcium channels (VDCC); inhibition was largely abolished by pretreatment with pertussis toxin before D5 treatment. The results suggest a mechanism whereby VDCC are modulated by a pertussis toxin-sensitive G-protein coupled receptor; D5 binds to this receptor and thereby ameliorates hyperalgesia in the Seltzer model of neuropathic pain.
Collapse
Affiliation(s)
- L Yan
- Department of Neurosciences, School of Medicine, Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
56
|
Hirawa N, Uehara Y, Kawabata Y, Numabe A, Gomi T, Ikeda T, Suzuki T, Goto A, Toyo-oka T, Omata M. Long-term inhibition of renin-angiotensin system sustains memory function in aged Dahl rats. Hypertension 1999; 34:496-502. [PMID: 10489400 DOI: 10.1161/01.hyp.34.3.496] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Dahl salt-sensitive (DS) rat, a genetic model of salt-induced hypertension in humans, is more likely to develop severe vascular injuries than a rat with spontaneous hypertension. We designed an experiment to scrutinize the effects of renin-angiotensin inhibition on cognitive dysfunction in the aged, normotensive DS with a passive avoidance test. Eighteen months of treatment with a very low dose of the angiotensin-converting enzyme (ACE) inhibitor cilazapril (2.5 microg/mL in drinking water) or the angiotensin II type 1 receptor antagonist E4177 did not reduce blood pressure throughout the experiment, although in the low dose cilazapril group (12.5 microg/mL in drinking water), blood pressure dropped within 6 months after treatment began. The cilazapril treatments dose-dependently improved memory function in the aged, normotensive DS fed a low-salt diet compared with the untreated, control rats. This improvement was associated with significant increases in hippocampal CA1 cells and capillary densities in the CA1 regions compared with those in the untreated DS. Similarly, E4177 slightly improved the memory dysfunction observed in the aged DS. The cells in the hippocampal CA1 region were restored slightly, but the capillary densities were not influenced by the receptor antagonist. On the other hand, the ACE inhibitor and receptor antagonist both attenuated urinary protein excretions with an improvement of glomerular sclerosis. These data suggest that long-term treatment with an ACE inhibitor improves memory dysfunction probably through restoration of capillary and hippocampal cells. The effects are due to the inhibition of the angiotensin II type 1 receptor and probably to the enhancement of the kallikrein-kinin system.
Collapse
Affiliation(s)
- N Hirawa
- Health Service Center and Department of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Otero DA, Conrad B, O'Brien JS. Reversal of thermal hyperalgesia in a rat partial sciatic nerve ligation model by Prosaptide TX14(A). Neurosci Lett 1999; 270:29-32. [PMID: 10454138 DOI: 10.1016/s0304-3940(99)00461-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We used the partial sciatic nerve ligation (PSL) model of Seltzer to assess thermal hyperalgesia after administration of Prosaptide 14-mer, TX14(A). At a dose of 200 microg/kg in Wistar rats, subcutaneous delivery of TX14(A) reversed thermal hyperalgesia at 3 and 24 h. Values declined at 48 h and returned to baseline at 72 h. A dosing study of TX(14)A gave a dependent response with 100 microg/kg having a similar potency to the 200 microg/kg study with 50 and 10 microg/kg responding somewhat lower. When TX(14)A was administered every fourth day for 12 days at 100 microg/kg, 24 h post injection values returned to baseline each time. Our results suggest that Prosaptide may have potential for therapeutic use in neuropathic pain syndromes in humans.
Collapse
Affiliation(s)
- D A Otero
- Department of Neuroscience, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | |
Collapse
|
58
|
Fujita H, Sato K, Wen TC, Peng Y, Sakanaka M. Differential expressions of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J Cereb Blood Flow Metab 1999; 19:604-15. [PMID: 10366190 DOI: 10.1097/00004647-199906000-00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The extracellular concentrations of glutamate and its co-agonist for the N-methyl-d-aspartate (NMDA) receptor, glycine, may be under the control of amino acid transporters in the ischemic brain. However, there is little information on changes in glycine and glutamate transporters in the hippocampal CA1 field of gerbils with transient forebrain ischemia. This study investigated the spatial and temporal expressions of glycine transporter 1 (GLYT1) and three glutamate transporter (excitatory amino acid carrier 1, EAAC1; glutamate/aspartate transporter, GLAST; glutamate transporter 1, GLT1) mRNA in the gerbil hippocampus after 3 minutes of ischemia. The GLYT1 mRNA was transiently upregulated by the second day after ischemia in astrocytelike cells in close vicinity to hippocampal CA1 pyramidal neurons, possibly to reduce glycine concentration in the local extracellular spaces. The EAAC1 mRNA was abundantly expressed in almost all pyramidal neurons and dentate granule cells in the control gerbil hippocampus, whereas the expression level in CA1 pyramidal neurons started to decrease by the fourth day after ischemia in synchrony with degeneration of the CA1 neurons. The GLAST and GLT1 mRNA were rather intensely expressed in the dentate gyrus and CA3 field of the control hippocampus, respectively, but they were weakly expressed in the CA1 field before and after ischemia. As GLAST and GLT1 play a major role in the control of extracellular glutamate concentration, the paucity of these transporters in the CA1 field may account for the vulnerability of CA1 neurons to ischemia, provided that the functional GLAST and GLT1 proteins are also less in the CA1 field than in the CA3 field. This study suggests that the amino acid transporters play pivotal roles in the process of delayed neuronal death in the hippocampal CA1 field.
Collapse
Affiliation(s)
- H Fujita
- Department of Anatomy and Neuroscience, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | |
Collapse
|
59
|
Hiraiwa M, Campana WM, Mizisin AP, Mohiuddin L, O'Brien JS. Prosaposin: A myelinotrophic protein that promotes expression of myelin constituents and is secreted after nerve injury. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199906)26:4<353::aid-glia9>3.0.co;2-g] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
60
|
Tohyama J, Oya Y, Ezoe T, Vanier MT, Nakayasu H, Fujita N, Suzuki K. Ceramide accumulation is associated with increased apoptotic cell death in cultured fibroblasts of sphingolipid activator protein-deficient mouse but not in fibroblasts of patients with Farber disease. J Inherit Metab Dis 1999; 22:649-62. [PMID: 10399097 DOI: 10.1023/a:1005590316064] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ceramide is recognized as an intracellular mediator of cell growth, differentiation and apoptosis. Tumour necrosis factor, anti-fas antibody, radiation and anticancer drugs such as actinomycin D are known to induce apoptosis in several cell types through generation of ceramide by activation of the sphingomyelinase pathway or ceramide synthetase. In this study, we examined the occurrence of apoptosis in fibroblasts from patients with Farber disease and from sphingolipid activator protein-deficient (sap -/-) mouse. These cells accumulate ceramide as the result of genetic deficiency of acid ceramidase and the ceramidase activator (sap-D), respectively. Amounts of ceramide in fibroblasts from Farber patients and in fibroblasts from sap -/- mouse were increased 2.9-fold and 2.8-fold, respectively, over the level of controls. Despite the similar degree of ceramide accumulation, cells exhibiting apoptotic features were increased only in fibroblasts from the sap -/- mouse but not those from the Farber patients. Thymidine uptake of Farber fibroblasts was normal while that of sap -/- mouse fibroblasts was twice normal, consistent with the apparently normal growth and the different rates of apoptotic cell death in these two cell lines. These data suggest that intralysosomal accumulation of ceramide due to defective acid ceramidase or its activator may not play an important role as a mediator of apoptosis. The increased apoptosis in the cultured fibroblasts from the sap -/- mouse may be caused by mechanisms other than the ceramide accumulation. Although more frequent than normal, significant apoptotic cell death was not observed in sap -/- mouse brain in vivo.
Collapse
Affiliation(s)
- J Tohyama
- Neuroscience Center, University of North Carolina at Chapel Hill, School of Medicine 27599-7250, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Hozumi I, Hiraiwa M, Inuzuka T, Yoneoka Y, Akiyama K, Tanaka R, Kikugawa K, Nakano R, Tsuji S, O'Brien JS. Administration of prosaposin ameliorates spatial learning disturbance and reduces cavity formation following stab wounds in rat brain. Neurosci Lett 1999; 267:73-6. [PMID: 10400252 DOI: 10.1016/s0304-3940(99)00325-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effectiveness of prosaposin as a neurotrophic factor was investigated using rats with bilateral stab wounds, injecting 240 ng per day of prosaposin for 3 days. In Morris water maze task, after 3 weeks postoperation, the stab-wounds rats show significant impairment in acquisition compared with the sham-operated rats. In the transfer test the mean number of crossings of the platform place in stab-wounds was significantly lower than that in sham-operated rats (P < 0.01). The stab-wounds rats treated with prosaposin showed significant improvement (P < 0.05). The cavities following stab wounds in the rats treated with prosaposin were significantly smaller than those in the rats treated with (P < 0.05). Our data support that prosaposin is likely to be a new agent for brain injury.
Collapse
Affiliation(s)
- I Hozumi
- Department of Neurology, Brain Research Institute, Niigata University, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Igase K, Tanaka J, Kumon Y, Zhang B, Sadamoto Y, Maeda N, Sakaki S, Sakanaka M. An 18-mer peptide fragment of prosaposin ameliorates place navigation disability, cortical infarction, and retrograde thalamic degeneration in rats with focal cerebral ischemia. J Cereb Blood Flow Metab 1999; 19:298-306. [PMID: 10078882 DOI: 10.1097/00004647-199903000-00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It was previously reported that prosaposin possesses neurotrophic activity that is ascribed to an 18-mer peptide comprising the hydrophilic sequence of the rat saposin C domain. To evaluate the effect of the 18-mer peptide on ischemic neuronal damage, the peptide was infused in the left lateral ventricle immediately after occlusion of the left middle cerebral artery (MCA) in stroke-prone spontaneously hypertensive (SP-SH) rats. The treatment ameliorated the ischemia-induced space navigation disability and cortical infarction and prevented secondary thalamic degeneration in a dose-dependent manner. In culture experiments, treatment with the 18-mer peptide attenuated free radical-induced neuronal injury at low concentrations (0.002 to 2 pg/mL), and the peptide at higher concentrations (0.2 to 20 ng/mL) protected neurons against hypoxic insult. Furthermore, a saposin C fragment comprising the 18-mer peptide bound to synaptosomal fractions of the cerebral cortex, and this binding decreased at the 1st day after MCA occlusion and recovered to the preischemic level at the 7th day after ischemia. These findings suggest that the 18-mer peptide ameliorates neuronal damage in vivo and in vitro through binding to the functional receptor, although the cDNA encoding prosaposin receptor has not been determined yet.
Collapse
Affiliation(s)
- K Igase
- Department of Anatomy, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Tsuboi K, Hiraiwa M, O'Brien JS. Prosaposin prevents programmed cell death of rat cerebellar granule neurons in culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:249-55. [PMID: 9748612 DOI: 10.1016/s0165-3806(98)00109-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prosaposin, the precursor of sphingolipid activator proteins (saposin A-D), has been reported to be a neurotrophic factor in vitro and in vivo. Prosaposin mRNA is transiently expressed at a high level in developing cerebellum during the period of granule cell proliferation and maturation, suggesting its significance during development of cerebellum. Here we investigated the neuroprotective effect of prosaposin on cerebellar granule neurons, exposing primary cerebellar granule cells to low K+ which induced programmed cell death. Prosaposin rescued mature cerebellar granule neurons in a bimodal manner. A similar neuroprotective effect was obtained using TX14(A), a 14-mer neurotrophic peptide derivative of prosaposin. An additive neuroprotective effect was observed between BDNF and TX14(A), but not between IGF-1 and TX14(A). Prosaposin rescued 60% of nifedipine sensitive cerebellar granule neurons as well as IGF-1, while BDNF did not. Furthermore, the neuroprotective action of prosaposin was inhibited by LY294002, a specific inhibitor of PI 3-kinase. These findings indicated that prosaposin had a trophic effect upon newborn cerebellar granule cells and that the neuroprotective action was similar to that of IGF-1 rather than BDNF. Prosaposin may play a role in cerebellar development during programmed cell death of cerebellar neurons.
Collapse
Affiliation(s)
- K Tsuboi
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
64
|
Wen TC, Tanaka J, Peng H, Desaki J, Matsuda S, Maeda N, Fujita H, Sato K, Sakanaka M. Interleukin 3 prevents delayed neuronal death in the hippocampal CA1 field. J Exp Med 1998; 188:635-49. [PMID: 9705946 PMCID: PMC2213360 DOI: 10.1084/jem.188.4.635] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the central nervous system, interleukin (IL)-3 has been shown to exert a trophic action only on septal cholinergic neurons in vitro and in vivo, but a widespread distribution of IL-3 receptor (IL-3R) in the brain does not conform to such a selective central action of the ligand. Moreover, the mechanism(s) underlying the neurotrophic action of IL-3 has not been elucidated, although an erythroleukemic cell line is known to enter apoptosis after IL-3 starvation possibly due to a rapid decrease in Bcl-2 expression. This in vivo study focused on whether IL-3 rescued noncholinergic hippocampal neurons from lethal ischemic damage by modulating the expression of Bcl-xL, a Bcl-2 family protein produced in the mature brain. 7-d IL-3 infusion into the lateral ventricle of gerbils with transient forebrain ischemia prevented significantly hippocampal CA1 neuron death and ischemia-induced learning disability. TUNEL (terminal deoxynucleotidyltransferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling) staining revealed that IL-3 infusion caused a significant reduction in the number of CA1 neurons exhibiting DNA fragmentation 7 d after ischemia. The neuroprotective action of IL-3 appeared to be mediated by a postischemic transient upregulation of the IL-3R alpha subunit in the hippocampal CA1 field where IL-3Ralpha was barely detectable under normal conditions. In situ hybridization histochemistry and immunoblot analysis demonstrated that Bcl-xL mRNA expression, even though upregulated transiently in CA1 pyramidal neurons after ischemia, did not lead to the production of Bcl-xL protein in ischemic gerbils infused with vehicle. However, IL-3 infusion prevented the decrease in Bcl-xL protein expression in the CA1 field of ischemic gerbils. Subsequent in vitro experiments showed that IL-3 induced the expression of Bcl-xL mRNA and protein in cultured neurons with IL-3Ralpha and attenuated neuronal damage caused by a free radical-producing agent FeSO4. These findings suggest that IL-3 prevents delayed neuronal death in the hippocampal CA1 field through a receptor-mediated expression of Bcl-xL protein, which is known to facilitate neuron survival. Since IL-3Ralpha in the hippocampal CA1 region, even though upregulated in response to ischemic insult, is much less intensely expressed than that in the CA3 region tolerant to ischemia, the paucity of IL-3R interacting with the ligand may account for the vulnerability of CA1 neurons to ischemia.
Collapse
Affiliation(s)
- T C Wen
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Ehime, 791-0295 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 1998; 95:4635-40. [PMID: 9539790 PMCID: PMC22542 DOI: 10.1073/pnas.95.8.4635] [Citation(s) in RCA: 762] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) produced by the kidney and the liver (in fetuses) stimulates erythropoiesis. In the central nervous system, neurons express EPO receptor (EPOR) and astrocytes produce EPO. EPO has been shown to protect primary cultured neurons from N-methyl-D-aspartate (NMDA) receptor-mediated glutamate toxicity. Here we report in vivo evidence that EPO protects neurons against ischemia-induced cell death. Infusion of EPO into the lateral ventricles of gerbils prevented ischemia-induced learning disability and rescued hippocampal CA1 neurons from lethal ischemic damage. The neuroprotective action of exogenous EPO was also confirmed by counting synapses in the hippocampal CA1 region. Infusion of soluble EPOR (an extracellular domain capable of binding with the ligand) into animals given a mild ischemic treatment that did not produce neuronal damage, caused neuronal degeneration and impaired learning ability, whereas infusion of the heat-denatured soluble EPOR was not detrimental, demonstrating that the endogenous brain EPO is crucial for neuronal survival. The presence of EPO in neuron cultures did not repress a NMDA receptor-mediated increase in intracellular Ca2+, but rescued the neurons from NO-induced death. Taken together EPO may exert its neuroprotective effect by reducing the NO-mediated formation of free radicals or antagonizing their toxicity.
Collapse
Affiliation(s)
- M Sakanaka
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Peng H, Wen TC, Tanaka J, Maeda N, Matsuda S, Desaki J, Sudo S, Zhang B, Sakanaka M. Epidermal growth factor protects neuronal cells in vivo and in vitro against transient forebrain ischemia- and free radical-induced injuries. J Cereb Blood Flow Metab 1998; 18:349-60. [PMID: 9538899 DOI: 10.1097/00004647-199804000-00002] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor (EGF) has been considered to be a candidate for neurotrophic factors on the basis of the results of several in vitro studies. However, the in vivo effect of EGF on ischemic neurons as well as its mechanism of action have not been fully understood. In the present in vivo study using a gerbil ischemia-model, we examined the effects of EGF on ischemia-induced learning disability and hippocampal CA1 neuron damage. Cerebroventricular infusion of EGF (24 or 120 ng/d) for 7 days to gerbils starting 2 hours before or immediately after transient forebrain ischemia caused a significant prolongation of response latency time in a passive avoidance task in comparison with the response latency of vehicle-treated ischemic animals. Subsequent histologic examinations showed that EGF effectively prevented delayed neuronal death of CA1 neurons in the stratum pyramidale and preserved synapses intact within the strata moleculare, radiatum, and oriens of the hippocampal CA1 region. In situ detection of DNA fragmentation (TUNEL staining) revealed that ischemic animals infused with EGF contained fewer TUNEL-positive neurons in the hippocampal CA1 field than those infused with vehicle alone at the seventh day after ischemia. In primary hippocampal cultures, EGF (0.048 to 6.0 ng/mL) extended the survival of cultured neurons, facilitated neurite outgrowth, and prevented neuronal damage caused by the hydroxyl radical-producing agent FeSO4 and by the peroxynitrite-producing agent 3-morpholinosydnonimine in a dose-dependent manner. Moreover, EGF significantly attenuated FeSO4-induced lipid peroxidation of cultured neurons. These findings suggest that EGF has a neuroprotective effect on ischemic hippocampal neurons in vivo possibly through inhibition of free radical neurotoxicity and lipid peroxidation.
Collapse
Affiliation(s)
- H Peng
- Department of Anatomy, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.
Collapse
Affiliation(s)
- I Hozumi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata City, Japan
| | | | | |
Collapse
|
68
|
Campana WM, Hiraiwa M, O'Brien JS. Prosaptide activates the MAPK pathway by a G-protein-dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J 1998; 12:307-14. [PMID: 9506474 DOI: 10.1096/fasebj.12.3.307] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prosaposin, the precursor of saposins A, B, C, and D, was recently reported to be a neurotrophic factor in vivo and in vitro. The neurotrophic region of prosaposin has been localized to a 12-amino acid sequence within the saposin C domain and has been used to derive biologically active synthetic peptides (14-22 residues), called prosaptides. Treatment of primary Schwann cells and an immortalized Schwann cell line, iSC, with a 14-mer prosaptide, TX14(A) (10 nM), enhanced phosphorylation of mitogen-activated kinases ERK1 (p44 MAPK) and ERK2 (p42 MAPK) within 5 min, which was blocked by 4 h pretreatment with pertussis toxin. Furthermore, incubation of Schwann cells with the nonhydrolyzable GDP analog GDP-betaS inhibited TX14(A)-induced ERK phosphorylation. TX14(A) enhanced the sulfatide content of primary Schwann cells by 2.5-fold, which was inhibited by pretreatment with pertussis toxin or the synthetic MAP kinase kinase inhibitor PD098059. In addition, TX14(A) increased the tyrosine phosphorylation of all three isoforms of the adapter molecule, Shc, which coincided with the association of p60Src and PI(3)K. Inhibition of PI3(K) by wortmannin blocked TX14(A)-induced ERK phosphorylation. These data demonstrate that TX14(A) uses a pertussis toxin-sensitive G-protein pathway to activate ERKs, which is essential for enhanced sulfatide synthesis in Schwann cells.
Collapse
Affiliation(s)
- W M Campana
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla 92093, USA
| | | | | |
Collapse
|
69
|
Campana WM, Hiraiwa M, O'brien JS. Prosaptide activates the MAPK pathway by a G‐protein‐dependent mechanism essential for enhanced sulfatide synthesis by Schwann cells. FASEB J 1998. [DOI: 10.1096/fasebj.12.03.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- W. Marie Campana
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| | - Masao Hiraiwa
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| | - John S. O'brien
- Department of NeurosciencesUniversity of CaliforniaSchool of Medicine San Diego La Jolla 92093 California USA
| |
Collapse
|
70
|
Kawabe T, Wen TC, Matsuda S, Ishihara K, Otsuda H, Sakanaka M. Platelet-derived growth factor prevents ischemia-induced neuronal injuries in vivo. Neurosci Res 1997; 29:335-43. [PMID: 9527625 DOI: 10.1016/s0168-0102(97)00105-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Platelet-derived growth factor (PDGF) has been considered to be a neuroprotective factor candidate on the basis of several in vitro studies. However, the in vivo effect of PDGF on ischemic neurons has not been determined. In the present study, the effect of PDGF-BB on the ischemia-induced disability of passive avoidance task and hippocampal CA1 neuron death in normothermic gerbils, whose the brain temperature was kept at 37.0 +/- 0.2 degrees C during 3-min occlusion of the common carotid arteries was investigated. When PDGF-BB was continuously infused for 7 days into the cerebral ventricles of gerbils with transient forebrain ischemia, response latency time in a passive avoidance task was significantly prolonged. Subsequent histological examinations showed that PDGF-BB effectively increased the number of viable pyramidal neurons in the hippocampal CA1 region as well as synapses within the strata moleculare, radiatum and oriens of the region in comparison with the numbers of neurons and synapses in vehicle-treated ischemic gerbils. In situ detection of DNA fragmentation (TUNEL staining) revealed that TUNEL-positive neurons in the hippocampal CA1 field of vehicle-treated ischemic gerbils were much more numerous than those in the field of PDGF-BB-treated ischemic animals after 7 days ischemia. These findings suggest that the present ischemic animal model exhibits a more delayed neuronal degeneration of the hippocampal CA1 field than the conventional 5-min ischemic model and that the 7-day infusion of PDGF-BB, starting 2 h before ischemic insult, not only prevents delayed neuronal death in the hippocampal CA1 field at 7 days after forebrain ischemia but also inhibits a slowly progressive neuronal degeneration occurring thereafter.
Collapse
Affiliation(s)
- T Kawabe
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Sudo S, Wen TC, Desaki J, Matsuda S, Tanaka J, Arai T, Maeda N, Sakanaka M. Beta-estradiol protects hippocampal CA1 neurons against transient forebrain ischemia in gerbil. Neurosci Res 1997; 29:345-54. [PMID: 9527626 DOI: 10.1016/s0168-0102(97)00106-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta-estradiol has been considered to be a neurotrophic agent, but its in vivo effect on gerbils with transient forebrain ischemia has not yet been demonstrated. In the first set of the present experiments, we infused beta-estradiol at a dose of 0.05 or 0.25 microg/day for 7 days into the lateral ventricles of normothermic gerbils starting 2 h before 3-min forebrain ischemia. Beta-estradiol infusion at a dose of 0.25 microg/day prevented significantly the ischemia-induced reduction of response latency time as revealed by a step-down passive avoidance task. Subsequent light and electron microscopic examinations showed that pyramidal neurons in the hippocampal CA1 region as well as synapses within the strata moleculare, radiatum and oriens of the region were significantly more numerous in gerbils infused with beta-estradiol than in those receiving saline infusion. Beta-estradiol at a dose of 1.25 microg/day was ineffective and occasionally increased the mortality of experimental animals. Since the total brain content of exogenous beta-estradiol at 12 h after forebrain ischemia was estimated to be less than 145 ng, the second set of experiments focused on the neurotrophic action of beta-estradiol at concentrations around 100 ng/ml in vitro. Beta-estradiol at concentrations of 1-100 ng/ml facilitated the survival and process extension of cultured hippocampal neurons, but it did not exhibit any significant radical-scavenging effects at the concentration range. On the other hand, 100 microg/ml of beta-estradiol, even though failing to support hippocampal neurons in vitro, effectively scavenged free radicals in subsequent in vitro studies, as demonstrated elsewhere. These findings suggest that beta-estradiol at a dose of 0.25 microg/day prevents ischemia-induced learning disability and neuronal loss at early stages after transient forebrain ischemia, possibly via a receptor-mediated pathway without attenuating free radical neurotoxicity.
Collapse
Affiliation(s)
- S Sudo
- Department of Anesthesiology, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Hiraiwa M, Campana WM, Martin BM, O'Brien JS. Prosaposin receptor: evidence for a G-protein-associated receptor. Biochem Biophys Res Commun 1997; 240:415-8. [PMID: 9388493 DOI: 10.1006/bbrc.1997.7673] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prosaposin, the precursor of sphingolipid activator protein (saposins A-D), has been identified as a neurotrophic factor capable of inducing neural differentiation and preventing cell death. The putative prosaposin receptor was partially purified from baboon brain membranes by affinity chromatography using a saposin C-column. The purified preparation gave a single major protein band with an apparent molecular weight of 54 kDa on SDS-PAGE. Affinity cross-linking of 11 kDa 125I-saposin C demonstrated the presence of a 66 kDa product, indicative of an apparent molecular weight of 55 kDa for the receptor. A GTP gamma S-binding assay using cell membranes from SHSY5Y neural cells demonstrated agonist stimulated binding of [35S]-GTP gamma S upon treatment with prosaptide TX14(A) a peptide from the neurotrophic region; maximal binding was obtained at 2 nM. TX14(A) stimulated binding was abolished by prior treatment of SHSY5Y cells with pertussis toxin and by a scrambled and an all D-amino acid-derivative of the 14-mer. A 14-mer mutant prosaptide (6N-->6D) competed with TX14(A) with a Ki of 0.7 nM. Immunoblot analysis using an antibody against the G0 alpha subunit demonstrated that the purified receptor preparation contained a 40 kDa reactive band consistent with association of G0 alpha and the receptor. These findings indicate that the signaling induced by prosaposin and TX14(A) is generated by binding to a G0-protein associated receptor.
Collapse
Affiliation(s)
- M Hiraiwa
- Department of Neurosciences, University of California, School of Medicine, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
73
|
Matsuda S, Wen TC, Karasawa Y, Araki H, Otsuka H, Ishihara K, Sakanaka M. Protective effect of a prostaglandin I2 analog, TEI-7165, on ischemic neuronal damage in gerbils. Brain Res 1997; 769:321-8. [PMID: 9374201 DOI: 10.1016/s0006-8993(97)00724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
TTC-909 (Clinprost), a chemically stable PGI2 analog, isocarbacyclin methyl ester (TEI-9090 or Clinprost) incorporated in lipid microspheres, when administered intravenously after brain ischemia, prevents ischemic neuronal damage possibly by modulating cerebral blood flow and platelet aggregation. However, the possibility exists that TEI-7165, which is the free acid form and a central metabolite of TEI-9090, has direct neurotrophic action in vivo, since TEI-7165 has been shown to block neuronal voltage-dependent Ca2+ channels in vitro, and a novel prostacyclin receptor showing high affinity with TEI-7165 has been detected in a variety of brain regions including the hippocampus. In the present study, we infused TEI-7165 for 7 days into the lateral ventricle of gerbils starting 2 h before or just after 3-min forebrain ischemia. TEI-7165 infusion prevented significantly the ischemia-induced shortening of response latency time as revealed by a step-down passive avoidance task. Subsequent light and electron microscopic examinations showed that pyramidal neurons in the hippocampal CA1 region, as well as synapses within the strata moleculare, radiatum and oriens of the region, were significantly more numerous in gerbils infused with TEI-7165 than in those receiving vehicle infusion. TEI-7165 infusion did not affect hippocampal blood flow or temperature. These findings, together with the previously depicted accumulation of centrally administered [3H]TEI-7165 around hippocampal neurons, suggest that TEI-7165 has a direct neuroprotective action in brain ischemia.
Collapse
Affiliation(s)
- S Matsuda
- Department of Anatomy, Ehime University School of Medicine, Shigenobu, Japan
| | | | | | | | | | | | | |
Collapse
|
74
|
Zhao Q, Hay N, Morales CR. Structural analysis of the mouse prosaposin (SGP-1) gene reveals the presence of an exon that is alternatively spliced in transcribed mRNAs. Mol Reprod Dev 1997; 48:1-8. [PMID: 9266755 DOI: 10.1002/(sici)1098-2795(199709)48:1<1::aid-mrd1>3.0.co;2-n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SGP-1/prosaposin can be secreted or targeted to the lysosomes where it is processed into smaller saposins A, B, C, and D required for the hydrolysis of glycosphingolipids. The deficiency of saposins B and C results in variant forms of metachromatic leukodystrophy and Gaucher's disease, respectively, which are characterized by lysosomal storage of undegraded glycosphingolipids. A required step to correct these genetic defects, or to understand the targeting mechanism of SGP-1 to the lysosomes, or to the extracellular space as well as its interaction with specific glycosphingolipids, is the analysis of the gene encoding this protein. Thus our investigation dealt with the molecular cloning of the mouse SGP-1 gene. Sequence analysis revealed that the mouse SGP-1 gene consists of 15 exons ranging from nine base pairs to 298 base pairs and 14 introns, which ranged from 89 base pairs to >8 kb in length. Our data show that saposin A is encoded by the exons 3, 4, and 5, saposin B by exons 6, 7, 8, and 9, saposin C by exons 10 and 11, and saposin D by exons 12, 13, and 14. The translation start codon is located within exon 1, and the translation stop codon is located within exon 15. The exon/intron boundaries were in accordance to the AG/GT consensus sequences. Our data also revealed that the SGP-1 gene has an exon consisting of the nine base pairs (CAG GAT CAG) encoding the three amino acids of saposin B, which may be alternatively spliced in the SGP-1 mRNA. The presence of the different forms of alternatively spliced mRNAs in various tissues was analyzed by RT-PCR. This approach demonstrated that prosaposin mRNAs of brain, heart, and muscle contain the nine base pairs of exon 8, whereas the transcripts from testis, lung, pancreas, spleen, and kidney do not contain this exon 8. Sequence comparison between the human and mouse prosaposin showed that exon 11 of mouse SGP-1 consists of 279 base pairs, whereas the human prosaposin gene consists of 187 base pairs. The extra 93 base pairs encode 31 amino acids corresponding to a proline-rich region located between saposin C and saposin D in the mouse prosaposin molecule. Finally, the availability of these genomic clones provides a starting point for further studies on the genetic role of specific sequences on the structure and function of SGP-1/prosaposin and its derived saposin proteins. In conclusion, we cloned and sequenced the mouse prosaposin (SGP-1) gene. The structural analysis of this gene revealed the presence of an exon that is alternatively spliced in transcribed mRNAs in a tissue-specific manner.
Collapse
Affiliation(s)
- Q Zhao
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
75
|
Lim JH, Wen TC, Matsuda S, Tanaka J, Maeda N, Peng H, Aburaya J, Ishihara K, Sakanaka M. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci Res 1997; 28:191-200. [PMID: 9237267 DOI: 10.1016/s0168-0102(97)00041-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our previous study showed that the oral administration of red ginseng powder before but not after transient forebrain ischemia prevented delayed neuronal death in gerbils, and that a neuroprotective molecule within red ginseng powder was ginsenoside Rb1. However, it remains to be clarified whether or not ginsenoside Rb1 acts directly on the ischemic brain, and the mechanism by which ginsenoside Rb1 protects the ischemic CA1 neurons is not determined. Without elucidation of the pharmacological property of ginsenoside Rb1, the drug would not be accepted as a neuroprotective agent. The present study demonstrated that the intracerebroventricular infusion of ginsenoside Rb1 after 3.5 min or 3 min forebrain ischemia, precluded significantly the ischemia-induced shortening of response latency in a step-down passive avoidance task and rescued a significant number of hippocampal CA1 neurons from lethal ischemic damage. The intracerebroventricular infusion of ginsenoside Rb1 did not affect hippocampal blood flow or hippocampal temperature except that it caused a slight increase in hippocampal blood flow at 5 min after transient forebrain ischemia. Furthermore, ginsenoside Rb1 at concentrations of 0.1-100 fg/ml (0.09-90 fM) rescued hippocampal neurons from lethal damage caused by the hydroxyl radical-promoting agent FeSO4 in vitro, and the Fenton reaction system containing p-nitrosodimethylaniline confirmed the hydroxyl radical-scavenging activity of ginsenoside Rb1. These findings suggest that the central infusion of ginsenoside Rb1 after forebrain ischemia protects hippocampal CA1 neurons against lethal ischemic damage possibly by scavenging free radicals which are overproduced in situ after brain ischemia and reperfusion. The present study may validate the empirical usage of ginseng root over thousands of years for the prevention of cerebrovascular diseases.
Collapse
Affiliation(s)
- J H Lim
- Department of Anatomy, Ehime University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Hiraiwa M, Taylor EM, Campana WM, Darin SJ, O'Brien JS. Cell death prevention, mitogen-activated protein kinase stimulation, and increased sulfatide concentrations in Schwann cells and oligodendrocytes by prosaposin and prosaptides. Proc Natl Acad Sci U S A 1997; 94:4778-81. [PMID: 9114068 PMCID: PMC20801 DOI: 10.1073/pnas.94.9.4778] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prosaposin, the precursor of saposins A, B, C, and D, was recently identified as a neurotrophic factor. Herein prosaposin was found to increase sulfatide concentrations in primary and transformed Schwann cells (iSC) and oligodendrocytes (differentiated CG4 cells). Of the four mature saposins, only saposin C was found to increase sulfatide concentrations in these cell types. A similar result was obtained by using peptides (prosaptides) encompassing the neurotrophic sequence located in the saposin C domain. Dose-response curves demonstrated maximal enhancement by saposin C and prosaptides at low nanomolar concentrations (5-10 nM). The increase in sulfatide concentration by a 14-mer prosaptide, TX14(A), in CG4 oligodendrocytes was about 3-fold greater than in primary Schwann cells. A mutant prosaptide with a single amino acid replacement of Asn --> Asp was inactive. Prosaptides did not induce cell proliferation of primary Schwann cells, iSC cells, or CG4 oligodendrocytes but nanomolar concentrations of prosaptides prevented cell death of iSC cells and CG4 oligodendrocytes. Immunoblot analysis demonstrated that phosphorylation of both mitogen-activated protein kinase p-42 and p-44 isoforms were enhanced 3- to 5-fold after 5 min of treatment with prosaptides at concentrations of 1-5 nM. These findings suggest that prosaposin and prosaptides bind to a receptor that initiates signal transduction to promote myelin lipid synthesis and prolong cell survival in both Schwann cells and oligodendrocytes. Prosaposin may function as a myelinotrophic factor in vivo during development and repair of myelinated nerves explaining the deficiency of myelin observed in prosaposin-deficient mice and humans.
Collapse
Affiliation(s)
- M Hiraiwa
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
77
|
Patton S, Carson GS, Hiraiwa M, O'Brien JS, Sano A. Prosaposin, a neurotrophic factor: presence and properties in milk. J Dairy Sci 1997; 80:264-72. [PMID: 9058267 DOI: 10.3168/jds.s0022-0302(97)75934-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The presence of prosaposin, the precursor of the sphingolipid activator proteins (saposins A, B, C, and D), was investigated in bovine milk. The milk proteins were resolved by SDS-PAGE, blotted onto nitrocellulose sheets, and immunostained. Each of three appropriate antibodies defined a band from milk that matched in mobility the reference prosaposin from human milk at a relative molecular mass of 66,000. Evidence of mature saposins was not found. Prosaposin was detected in milk of other species chimpanzee, rhesus, goat, and rat) and was consistently observed in samples of retail milk and from individual cows. Prosaposin was not associated with particulate matter (fat globules, casein micelles, membrane fragments, and somatic cells) in either human or bovine milk. Rather, prosaposin was located exclusively in the milk serum (whey), existing in monomeric form, as revealed by nondenaturing PAGE. A commercial whey protein concentrate (75% protein) appeared to retain milk prosaposin quantitatively. Properties that were useful in the isolation of prosaposin from milk were its binding to concanavalin A, retention by anion-exchange cellulose, and resistance to precipitation by heating. The possibility that bovine milk prosaposin nutritionally benefits the humans who consume it is enhanced by the fact that only part of its saposin C segment is required for neurotrophic activity.
Collapse
Affiliation(s)
- S Patton
- Department of Neurosciences, University of California San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
78
|
Vielhaber G, Hurwitz R, Sandhoff K. Biosynthesis, processing, and targeting of sphingolipid activator protein (SAP )precursor in cultured human fibroblasts. Mannose 6-phosphate receptor-independent endocytosis of SAP precursor. J Biol Chem 1996; 271:32438-46. [PMID: 8943309 DOI: 10.1074/jbc.271.50.32438] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Sphingolipid activator proteins (SAPs) are essential cofactors for the lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acidic exohydrolases. SAP-A, -B, -C, and -D derive from proteolysis of a 73-kDa glycoprotein, the SAP precursor. In the present publication, we studied the intracellular transport and the endocytosis of SAP precursor in human skin fibroblasts. Our data indicate that SAP precursor bears phosphate residues on noncomplex carbohydrate chains linked to the SAP-C and the SAP-D domain and sulfate residues on complex carbohydrate chains located within the SAP-A, -C, and possibly the SAP-D domain. Treatment of fibroblasts with either bafilomycin A1 or 3-methyladenine indicates that proteolytic cleavage of SAP precursor begins as early as in the late endosomes. To determine whether targeting of SAP precursor depends on mannose 6-phosphate residues, we analyzed the processing of SAP precursor in I-cell disease fibroblasts. In these cells nearly normal amounts of newly synthesized SAP-C were found, although secretion of SAP precursor was enhanced 2-3-fold. Moreover, SAP-C could be localized to lysosomal structures by indirect immunofluorescence in normal and in I-cell disease fibroblasts. Mannose 6-phosphate was not found to interfere significantly with endocytosis of SAP precursor. Normal fibroblasts internalized SAP precursor secreted from I-cells nearly as efficiently as the protein secreted from normal cells. To our surprise, deglycosylated SAP precursor was taken up by mannose 6-phosphate receptor double knock out mouse fibroblasts more efficiently than the glycosylated protein. We propose that intracellular targeting of SAP precursor to lysosomes is only partially dependent on mannose 6-phosphate residues, whereas its endocytosis occurs in a carbohydrate-independent manner.
Collapse
Affiliation(s)
- G Vielhaber
- Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Germany.
| | | | | |
Collapse
|
79
|
Henseler M, Klein A, Glombitza GJ, Suziki K, Sandhoff K. Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system. J Biol Chem 1996; 271:8416-23. [PMID: 8626540 DOI: 10.1074/jbc.271.14.8416] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sphingolipid activator proteins (SAPs) are non-enzymatic glycoproteins required for lysosomal degradation of various sphingolipids with short oligosaccharide chains by their respective exohydrolases. Four of these (SAP-A to SAP-D or saposins A to D) are derived from a common precursor by proteolytic processing. Alternative splicing of the SAP-precursor gene results in insertion of additional 6 or 9 bases of exon 8' or 8, respectively, into the SAP-B coding region of the transcribed mRNAs. To examine the features of the three different SAP-precursor proteins (prosaposins), the respective cDNAs were stably expressed in baby hamster kidney cells. Pulse-chase experiments with transfected cells and endocytosis studies on human fibroblasts showed that synthesis, transport, and maturation of all SAP-precursor led to formation of the four mature SAPs (SAP-A to SAP-D). In order to determine the biological function of the three different SAP-B isoforms, SAP-precursor-deficient human fibroblasts were loaded with recombinant SAP-precursor proteins with or without 2- and 3-amino acid insertions, respectively, purified from the medium of the baby hamster kidney cells. They were found to stimulate at nanomolar concentrations the turnover of biosynthetically labeled ceramide, glucosylceramide, and lactosylceramide. Since the physiological function of SAP-B is to stimulate the degradation of sulfatide by arylsulfatase A (EC 3.1.6.1) and globotriaosylceramide by beta-galactosidase (EC 3.2.1.23) loading studies with the respective exogenously labeled lipids on SAP-precursor-deficient fibroblasts were performed. Addition of different purified SAP-precursors to the medium of the lipid-loaded fibroblasts showed positive stimulation of the lipid degradation by all three SAP-B isoforms derived from the SAP-precursors. These findings establish that all three forms of the SAP-B can function as sulfatide/globotriaosylceramide activator.
Collapse
Affiliation(s)
- M Henseler
- Institut für Organische Chemie und Biochemie, Universität Bonn, D-53121 Bonn, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
80
|
Matsuda S, Wen TC, Morita F, Otsuka H, Igase K, Yoshimura H, Sakanaka M. Interleukin-6 prevents ischemia-induced learning disability and neuronal and synaptic loss in gerbils. Neurosci Lett 1996; 204:109-12. [PMID: 8929990 DOI: 10.1016/0304-3940(96)12340-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin-6 (IL-6) has been shown to have potent neurotrophic activity on peripheral and central neurons in vitro. However, it remains to be determined whether or not IL-6 rescues hippocampal CA1 neurons from lethal ischemia and prevents ischemia-induced learning disability. In the present in vivo study, we infused IL-6 continuously for 7 days into the lateral ventricle of gerbil starting 2 h before 3-min forebrain ischemia. IL-6 infusion prevented the occurrence of ischemia-induced learning disability in a dose-dependent manner as revealed by a step-down passive avoidance task. Subsequent light and electron microscopic examinations showed that pyramidal neurons in the CA1 region of the hippocampus as well as synapses within the strata moleculare, radiatum and oriens of the region were significantly more numerous in gerbils infused with IL-6 than in those receiving vehicle infusion. These findings suggest that IL-6 has a trophic effect on ischemic hippocampal neurons.
Collapse
Affiliation(s)
- S Matsuda
- Department of Anatomy, Ehime University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
81
|
Wen TC, Matsuda S, Yoshimura H, Kawabe T, Sakanaka M. Ciliary neurotrophic factor prevents ischemia-induced learning disability and neuronal loss in gerbils. Neurosci Lett 1995; 191:55-8. [PMID: 7659291 DOI: 10.1016/0304-3940(95)11574-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ciliary neurotrophic factor (CNTF) has been shown to have potent neurotrophic activity on peripheral and central neurons in vitro and in vivo. However, it remains to be determined whether or not CNTF rescues hippocampal CA1 neurons from lethal ischemia and prevents ischemia-induced learning disability. In the present in vivo study, we infused CNTF continuously for 7 days into the lateral ventricle of gerbil starting 2 h before 3-min forebrain ischemia. CNTF infusion prevented the occurrence of ischemia-induced learning disability in a dose-dependent manner as revealed by the step-down passive avoidance task. Subsequent light and electron microscopic examinations showed that pyramidal neurons in the CA1 region of the hippocampus as well as synapses within the strata moleculare, lacunosum/radiatum and oriens of the region were significantly more numerous in gerbils infused with CNTF than in those receiving vehicle infusion. These findings suggest that CNTF has a trophic effect on ischemic hippocampal neurons.
Collapse
Affiliation(s)
- T C Wen
- Department of Anatomy, Ehime University School of Medicine, Japan
| | | | | | | | | |
Collapse
|