51
|
Kang SH, Cho J, Jeong H, Kwon SY. High RNA-binding Motif Protein 3 Expression Is Associated with Improved Clinical Outcomes in Invasive Breast Cancer. J Breast Cancer 2018; 21:288-296. [PMID: 30275857 PMCID: PMC6158158 DOI: 10.4048/jbc.2018.21.e34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Expression of RNA-binding motif protein 3 (RBM3) is induced by hypoxia and hypothermia. Recently, high expression of RBM3 was reported to be associated with a good prognosis in colon cancer, prostate cancer, ovarian cancer, and malignant melanoma. Studies on RBM3 in invasive breast carcinoma (IBC), however, are limited. METHODS RBM3 expression was examined using a tissue microarray from 361 patients with IBC. Immunohistochemistry was performed for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 to compare the expression of these markers. For scoring of RBM3 expression, NF (nuclear staining fraction)×NI (nuclear staining intensity) was used. The RBM3 expression score was considered indicative of either low (≤4) or high (>4) expression. Western blot analysis was performed on breast cancer cell lines to evaluate RBM3 expression. RESULTS Of the total 361 samples, 240 (66.5%) exhibited high RBM3 expression. High RBM3 expression was significantly associated with positivity for ER (p<0.001), PR (p<0.001), T stage (p<0.001), histologic grade (p<0.001), and % Ki-67 staining (p=0.004). Multivariate analysis revealed that high RBM3 expression was closely associated with prolonged disease-free survival (DFS) (p<0.001) and overall survival (OS) (p<0.001). Western blot analysis revealed reduced RBM3 expression in HCC1954 (HER2-enriched) and BT-20 (basal-like) cells with an aggressive phenotype. CONCLUSION High nuclear RBM3 expression is strongly associated with a prolonged DFS and OS. Furthermore, RBM3 expression is closely associated with good prognostic markers such as ER and PR in IBC. High nuclear RBM3 expression is, therefore, a critical biomarker of favorable clinical outcomes in IBC.
Collapse
Affiliation(s)
- Sun Hee Kang
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Jihyoung Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Korea
| | - Hasong Jeong
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
- Institute for Cancer Research, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
52
|
Xia W, Su L, Jiao J. Cold-induced protein RBM3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. J Cell Biol 2018; 217:3464-3479. [PMID: 30037926 PMCID: PMC6168273 DOI: 10.1083/jcb.201801143] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/06/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022] Open
Abstract
RBM3 plays a protective role in embryonic neurogenesis. This study finds that maternal cold stress affects the embryonic brain development via RBM3 and Yap. When RBM3 is knocked down or knocked out under the maternal cold stress, the embryonic neurogenesis was impaired. In mammals, a constant body temperature is an important basis for maintaining life activities. Here, we show that when pregnant mice are subjected to cold stress, the expression of RBM3, a cold-induced protein, is increased in the embryonic brain. When RBM3 is knocked down or knocked out in cold stress, embryonic brain development is more seriously affected, exhibiting abnormal neuronal differentiation. By detecting the change in mRNA expression during maternal cold stress, we demonstrate that Yap and its downstream molecules are altered at the RNA level. By analyzing RNA-binding motif of RBM3, we find that there are seven binding sites in 3′UTR region of Yap1 mRNA. Mechanistically, RBM3 binds to Yap1-3′UTR, regulates its stability, and affects the expression of YAP1. RBM3 and YAP1 overexpression can partially rescue the brain development defect caused by RBM3 knockout in cold stress. Collectively, our data demonstrate that cold temperature affects brain development, and RBM3 acts as a key protective regulator in cold stress.
Collapse
Affiliation(s)
- Wenlong Xia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
53
|
Eskla KL, Porosk R, Reimets R, Visnapuu T, Vasar E, Hundahl CA, Luuk H. Hypothermia augments stress response in mammalian cells. Free Radic Biol Med 2018; 121:157-168. [PMID: 29704622 DOI: 10.1016/j.freeradbiomed.2018.04.571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022]
Abstract
Mild hypothermia (32 °C) is routinely used in medical practice to alleviate hypoxic ischemic damage, however, the mechanisms that underlie its protective effects remain uncertain. Using a systems approach based on genome-wide expression screens, reporter assays and biochemical studies, we find that cellular hypothermia response is associated with the augmentation of major stress-inducible transcription factors Nrf2 and HIF1Α affecting the antioxidant system and hypoxia response pathways, respectively. At the same time, NF-κB, a transcription factor involved in the control of immune and inflammatory responses, was not induced by hypothermia. Furthermore, mild hypothermia did not trigger unfolded protein response. Lower temperatures (27 °C and 22 °C) did not activate Nrf2 and HIF1A pathways as efficiently as mild hypothermia. Current findings are discussed in the context of the thermodynamic hypothesis of therapeutic hypothermia. We argue that the therapeutic effects are likely to stem both from metabolic suppression (inhibitory component) and augmentation of stress tolerance (activating component). We argue that systems coping with cellular stressors are plausible targets of therapeutic hypothermia and deserve more attention in clinical hypothermia research.
Collapse
Affiliation(s)
- Kattri-Liis Eskla
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia.
| | - Rando Porosk
- Institute of Biomedicine and Translational Medicine, Department of Biochemistry, University of Tartu, Tartu, Estonia
| | - Riin Reimets
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Ansgar Hundahl
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia
| | - Hendrik Luuk
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, Tartu, Estonia; Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
54
|
Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 2018; 8:7367. [PMID: 29743635 PMCID: PMC5943363 DOI: 10.1038/s41598-018-25668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Collapse
|
55
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
56
|
Kim DY, Kim KM, Kim EJ, Jang WG. Hypothermia-induced RNA-binding motif protein 3 (RBM3) stimulates osteoblast differentiation via the ERK signaling pathway. Biochem Biophys Res Commun 2018; 498:459-465. [DOI: 10.1016/j.bbrc.2018.02.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
|
57
|
Ushio A, Eto K. RBM3 expression is upregulated by NF‐κB p65 activity, protecting cells from apoptosis, during mild hypothermia. J Cell Biochem 2018; 119:5734-5749. [DOI: 10.1002/jcb.26757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/25/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Ayako Ushio
- Department of Biological SciencesGraduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
| | - Ko Eto
- Department of Biological SciencesGraduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
| |
Collapse
|
58
|
Devi L, Makala H, Pothana L, Nirmalkar K, Goel S. Comparative efficacies of six different media for cryopreservation of immature buffalo (Bubalus bubalis) calf testis. Reprod Fertil Dev 2018; 28:872-885. [PMID: 25482277 DOI: 10.1071/rd14171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022] Open
Abstract
Buffalo calves have a high mortality rate (~80%) in commercial dairies and testis cryopreservation can provide a feasible option for the preservation of germplasm from immature males that die before attaining sexual maturity. The aim of the present study was to evaluate combinations of 10 or 20% dimethylsulfoxide (DMSO) with 0, 20 or 80% fetal bovine serum (FBS) for cryopreservation of immature buffalo testicular tissues, subjected to uncontrolled slow freezing. Tissues cryopreserved in 20% DMSO with 20% FBS (D20S20) showed total, tubular and interstitial cell viability, number of early apoptotic and DNA-damaged cells, surviving germ and proliferating cells and expression of testicular cell-specific proteins (POU class 5 homeobox (POU5F1), vimentin (VIM) and actin α2 (ACTA2)) similar to that of fresh cultured control (FCC; P>0.05). Expression of cytochrome P450, family 11, subfamily A (CYP11A1) protein and testosterone assay showed that only tissues cryopreserved in D20S20 had Leydig cells and secretory functions identical to that of FCC (P>0.05). High expression of superoxide dismutase2 (SOD2), cold-inducible RNA-binding protein (CIRBP) and RNA-binding motif protein3 (RBM3) proteins in cryopreserved tissues indicated involvement of cell signalling pathways regulating cellular protective mechanisms. Similarity in expression of pro-apoptosis proteins transcription factor tumour protein P53 (TP53) and BCL2-associated X protein (BAX) in D20S20 cryopreserved tissues to that of FCC (P>0.05) suggested lower apoptosis and DNA damage as key reasons for superior cryopreservation.
Collapse
Affiliation(s)
- Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Himesh Makala
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Khemlal Nirmalkar
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
59
|
Marosi K, Moehl K, Navas-Enamorado I, Mitchell SJ, Zhang Y, Lehrmann E, Aon MA, Cortassa S, Becker KG, Mattson MP. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation. FASEB J 2018; 32:3844-3858. [PMID: 29485903 DOI: 10.1096/fj.201701378rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evolutionary considerations suggest that the body has been optimized to perform at a high level in the food-deprived state when fatty acids and their ketone metabolites are a major fuel source for muscle cells. Because controlled food deprivation in laboratory animals and intermittent energy restriction in humans is a potent physiologic stimulus for ketosis, we designed a study to determine the impact of intermittent food deprivation during endurance training on performance and to elucidate the underlying cellular and molecular mechanisms. Male mice were randomly assigned to either ad libitum feeding or alternate-day food deprivation (ADF) groups, and half of the mice in each diet group were trained daily on a treadmill for 1 mo. A run to exhaustion endurance test performed at the end of the training period revealed superior performance in the mice maintained on ADF during training compared to mice fed ad libitum during training. Maximal O2 consumption was increased similarly by treadmill training in mice on ADF or ad libitum diets, whereas respiratory exchange ratio was reduced in ADF mice on food-deprivation days and during running. Analyses of gene expression in liver and soleus tissues, and metabolomics analysis of blood suggest that the metabolic switch invoked by ADF and potentiated by exercise strongly modulates molecular pathways involved in mitochondrial biogenesis, metabolism, and cellular plasticity. Our findings demonstrate that ADF engages metabolic and cellular signaling pathways that result in increased metabolic efficiency and endurance capacity.-Marosi, K., Moehl, K., Navas-Enamorado, I., Mitchell, S. J., Zhang, Y., Lehrmann, E., Aon, M. A., Cortassa, S., Becker, K. G., Mattson, M. P. Metabolic and molecular framework for the enhancement of endurance by intermittent food deprivation.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Ignacio Navas-Enamorado
- Translational Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sarah J Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit Core Facility, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
60
|
Blagden S, Abdel Mouti M, Chettle J. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1432. [PMID: 28762650 PMCID: PMC5763387 DOI: 10.1002/wrna.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs, long ncRNAs, and others) cooperate within a post-transcriptional network to regulate the expression of genes required for many aspects of cancer behavior including its sensitivity to chemotherapy. Here, using an RBP-centric approach, we explore the current knowledge surrounding contributers to post-transcriptional gene regulation (PTGR) in ovarian cancer and identify commonalities that hint at the existence of an evolutionarily conserved core PTGR network. This network regulates survival and chemotherapy resistance in the contemporary context of the cancer cell. There is emerging evidence that cancers become dependent on PTGR factors for their survival. Further understanding of this network may identify innovative therapeutic targets as well as yield crucial insights into the hard-wiring of many malignancies, including ovarian cancer. WIREs RNA 2018, 9:e1432. doi: 10.1002/wrna.1432 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Mechanisms RNA in Disease and Development > RNA in Disease.
Collapse
|
61
|
Fujita T, Liu Y, Higashitsuji H, Itoh K, Shibasaki K, Fujita J, Nishiyama H. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins. Biochem Biophys Res Commun 2018; 495:935-940. [DOI: 10.1016/j.bbrc.2017.11.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
|
62
|
Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG, Bateman J, Bryant S, Guzikowski AR, Tsai SL, Coyne S, Ye WW, Freeman RM, Peshkin L, Tabin CJ, Regev A, Haas BJ, Whited JL. A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Rep 2017; 18:762-776. [PMID: 28099853 PMCID: PMC5419050 DOI: 10.1016/j.celrep.2016.12.063] [Citation(s) in RCA: 530] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/30/2022] Open
Abstract
Mammals have extremely limited regenerative capabilities; however, axolotls are profoundly regenerative and can replace entire limbs. The mechanisms underlying limb regeneration remain poorly understood, partly because the enormous and incompletely sequenced genomes of axolotls have hindered the study of genes facilitating regeneration. We assembled and annotated a de novo transcriptome using RNA-sequencing profiles for a broad spectrum of tissues that is estimated to have near-complete sequence information for 88% of axolotl genes. We devised expression analyses that identified the axolotl orthologs of cirbp and kazald1 as highly expressed and enriched in blastemas. Using morpholino anti-sense oligonucleotides, we find evidence that cirbp plays a cytoprotective role during limb regeneration whereas manipulation of kazald1 expression disrupts regeneration. Our transcriptome and annotation resources greatly complement previous transcriptomic studies and will be a valuable resource for future research in regenerative biology.
Collapse
Affiliation(s)
- Donald M Bryant
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Kimberly Johnson
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tia DiTommaso
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Timothy Tickle
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Matthew Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078, USA
| | - Duygu Payzin-Dogru
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tae J Lee
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Nicholas D Leigh
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Tzu-Hsing Kuo
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Francis G Davis
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Joel Bateman
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Sevara Bryant
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Anna R Guzikowski
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Stephanie L Tsai
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Steven Coyne
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - William W Ye
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Clifford J Tabin
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Brian J Haas
- Broad Institute of MIT and Harvard and Klarman Cell Observatory, 7 Cambridge Center, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Department of Orthopedic Surgery, Brigham & Women's Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA.
| |
Collapse
|
63
|
Zhou RB, Lu XL, Zhang CY, Yin DC. RNA binding motif protein 3: a potential biomarker in cancer and therapeutic target in neuroprotection. Oncotarget 2017; 8:22235-22250. [PMID: 28118608 PMCID: PMC5400660 DOI: 10.18632/oncotarget.14755] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
RNA binding motif 3 (RBM3) is a highly conserved cold-induced RNA binding protein that is transcriptionally up-regulated in response to harsh stresses. Featured as RNA binding protein, RBM3 is involved in mRNA biogenesis as well as stimulating protein synthesis, promoting proliferation and exerting anti-apoptotic functions. Nowadays, accumulating immunohistochemically studies have suggested RBM3 function as a proto-oncogene that is associated with tumor progression and metastasis in various cancers. Moreover, emerging evidences have also indicated that RBM3 is equally effective in neuroprotection. In the present review, we provide an overview of current knowledge concerning the role of RBM3 in various cancers and neuroprotection. Additionally, its potential roles as a promising diagnostic marker for cancer and a possible therapeutic target for neuro-related diseases are discussed.
Collapse
Affiliation(s)
- Ren-Bin Zhou
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Xiao-Li Lu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Chen-Yan Zhang
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, PR China
| |
Collapse
|
64
|
Harvey R, Dezi V, Pizzinga M, Willis AE. Post-transcriptional control of gene expression following stress: the role of RNA-binding proteins. Biochem Soc Trans 2017; 45:1007-14. [PMID: 28710288 PMCID: PMC5655797 DOI: 10.1042/bst20160364] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/19/2022]
Abstract
The ability of mammalian cells to modulate global protein synthesis in response to cellular stress is essential for cell survival. While control of protein synthesis is mediated by the regulation of eukaryotic initiation and elongation factors, RNA-binding proteins (RBPs) provide a crucial additional layer to post-transcriptional regulation. RBPs bind specific RNA through conserved RNA-binding domains and ensure that the information contained within the genome and transcribed in the form of RNA is exported to the cytoplasm, chemically modified, and translated prior to folding into a functional protein. Thus, this group of proteins, through mediating translational reprogramming, spatial reorganisation, and chemical modification of RNA molecules, have a major influence on the robust cellular response to external stress and toxic injury.
Collapse
Affiliation(s)
- Robert Harvey
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | - Veronica Dezi
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K
| | | | - Anne E Willis
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, U.K.
| |
Collapse
|
65
|
Siesing C, Sorbye H, Dragomir A, Pfeiffer P, Qvortrup C, Pontén F, Jirström K, Glimelius B, Eberhard J. High RBM3 expression is associated with an improved survival and oxaliplatin response in patients with metastatic colorectal cancer. PLoS One 2017; 12:e0182512. [PMID: 28800641 PMCID: PMC5553773 DOI: 10.1371/journal.pone.0182512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Background High expression of the RNA-binding motif protein 3 (RBM3) has been shown to correlate, with prolonged survival in several malignant diseases and with the benefit of platinum-based chemotherapy in ovarian cancer. The aim of this study was to evaluate RBM3 in metastatic colorectal cancer (mCRC) as a prognostic factor for overall survival and in relation to benefit of first-line chemotherapy. Methods Immunohistochemical staining was conducted and evaluated in tumours from 455 mCRC patients. Kaplan-Meier analysis and Cox regression proportional hazards models were used to access the impact of RBM3 expression on overall survival (OS) and progression-free survival (PFS). Results High RBM3 expression, both nuclear and cytoplasmic, was an independent prognostic factor for prolonged OS (hazard ratio [HR] 0.67, 95% confidence interval [CI] 0.50–0.90 and HR 0.66, 95% CI 0.48–0.91, respectively). PFS was significantly longer in patients with high RBM3 expression who had received first-line oxaliplatin based treatment, compared to those who had received irinotecan based treatment, both regarding nuclear and cytoplasmic expression (p-value 0.020 and 0.022 respectively). Conclusion High RBM3 expression is an independent predictor of prolonged survival in mCRC patients, in particular in patients treated with first-line oxaliplatin based chemotherapy.
Collapse
Affiliation(s)
- Christina Siesing
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
- * E-mail:
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anca Dragomir
- Section of Pathology, Uppsala university Hospital and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Camilla Qvortrup
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Fredrik Pontén
- Section of Pathology, Uppsala university Hospital and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Section of Experimental and Clinical Oncology, Uppsala University, Uppsala, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
66
|
Kilbride P, Mahbubani KT, Saeb-Parsy K, Morris GJ. Engaging Cold to Upregulate Cell Proliferation in Alginate-Encapsulated Liver Spheroids. Tissue Eng Part C Methods 2017; 23:455-464. [PMID: 28727981 DOI: 10.1089/ten.tec.2017.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For many years, the impact of hyper- and hypothermia on mammalian cells has been examined. With the exception of short, low temperature storage, which has uses in areas such as preservation for transplantation or regenerative medicine, advantages for the use of low temperature treatment in hepatocytes have not been previously reported. We have observed that alginate-encapsulated HepG2 liver spheroids that are cryopreserved or experience a cold reduction in temperature (≤10°C) for periods between 1 and 90 min display an enhanced cell proliferation during culture 7-16 days post-treatment compared with untreated samples. Following 8-12 days post-treatment, alginate-encapsulated liver spheroids experienced a cell density of 1.71 ± 0.35 times that of control samples (p < 0.001). This effect occurred in samples with a variety of cold treatments. This low temperature treatment offers a simple method to rapidly increase cell proliferation rates for extended culture systems, such as bioartificial liver devices. This would allow the manufacture of required biomass more rapidly, and to a higher cell density, reducing final required biomass volume. This could enable bioartificial liver devices to be prepared more cheaply, making them a more cost effective treatment.
Collapse
Affiliation(s)
| | - Krishnaa T Mahbubani
- 2 Department of Surgery, University of Cambridge , Cambridge, United Kingdom .,3 Cambridge NIHR Biomedical Research Centre , Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- 2 Department of Surgery, University of Cambridge , Cambridge, United Kingdom .,3 Cambridge NIHR Biomedical Research Centre , Cambridge, United Kingdom
| | | |
Collapse
|
67
|
The role of cold‐inducibleRNAbinding protein in cell stress response. Int J Cancer 2017; 141:2164-2173. [DOI: 10.1002/ijc.30833] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/01/2017] [Indexed: 12/24/2022]
|
68
|
Fujita T, Higashitsuji H, Higashitsuji H, Liu Y, Itoh K, Sakurai T, Kojima T, Kandori S, Nishiyama H, Fukumoto M, Fukumoto M, Shibasaki K, Fujita J. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3. Sci Rep 2017; 7:2295. [PMID: 28536481 PMCID: PMC5442135 DOI: 10.1038/s41598-017-02473-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are structurally related to hnRNPs and upregulated in response to moderately low temperatures in mammalian cells. Although contributions of splicing efficiency, the gene promoters activated upon mild hypothermia and the transcription factor Sp1 to induction of CIRP have been reported, precise mechanisms by which hypothermia and other stresses induce the expression of mammalian cold-inducible proteins (CIPs) are poorly understood. By screening the serine/arginine-rich splicing factors (SRSFs), we report that the transcript and protein levels of SRSF5 were increased in mammalian cells cultured at 32 °C. Expression of SRSF5 as well as CIRP and RBM3 were also induced by DNA damage, hypoxia, cycloheximide and hypotonicity. Immunohistochemical studies demonstrated that SRSF5 was constitutively expressed in male germ cells and the level was decreased in human testicular germ cell tumors. SRSF5 facilitated production of p19 H-RAS, and increased sensitivity to doxorubicin in human U-2 OS cells. Induction of CIPs was dependent on transient receptor potential vanilloid 4 (TRPV4) channel protein, but seemed independent of its ion channel activity. These findings indicate a previously unappreciated role for the TRP protein in linking environmental stress to splicing.
Collapse
Affiliation(s)
- Takanori Fujita
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan.,School of Economics, Nagoya University, Nagoya, Nagoya, 464-8601, Japan
| | - Hiroaki Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Hisako Higashitsuji
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Yu Liu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Katsuhiko Itoh
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan
| | - Toshiharu Sakurai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shuya Kandori
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Motoi Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, 980-8575, Japan.,Department of Molecular Pathology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Jun Fujita
- Department of Clinical Molecular Biology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8507, Japan. .,Department of Rehabilitation Medicine, Biwako-Chuo Hospital, Otsu, Shiga, 520-0834, Japan.
| |
Collapse
|
69
|
Rosenthal LM, Tong G, Walker C, Wowro SJ, Krech J, Pfitzer C, Justus G, Berger F, Schmitt KRL. Neuroprotection via RNA-binding protein RBM3 expression is regulated by hypothermia but not by hypoxia in human SK-N-SH neurons. HYPOXIA 2017; 5:33-43. [PMID: 28580361 PMCID: PMC5448696 DOI: 10.2147/hp.s132462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Therapeutic hypothermia is an established treatment for perinatal asphyxia. Yet, many term infants continue to die or suffer from neurodevelopmental disability. Several experimental studies have demonstrated a beneficial effect of mild-to-moderate hypothermia after hypoxic injury, but the understanding of hypothermia-induced neuroprotection remains incomplete. In general, global protein synthesis is attenuated by hypothermia, but a small group of RNA-binding proteins including the RNA-binding motif 3 (RBM3) is upregulated in response to cooling. The aim of this study was to establish an in vitro model to investigate the effects of hypoxia and hypothermia on neuronal cell survival, as well as to examine the kinetics of concurrent cold-shock protein RBM3 gene expression. METHODS Experiments were performed by using human SK-N-SH neurons exposed to different oxygen concentrations (21%, 8%, or 0.2% O2) for 24 hours followed by moderate hypothermia (33.5°C) or normothermia for 24, 48, or 72 hours. Cell death was determined by quantification of lactate dehydrogenase and neuron-specific enolase releases into the cell cultured medium, and cell morphology was assessed by using immunofluorescence staining. The regulation of RBM3 gene expression was assessed by reverse transcriptase-quantitative polymerase chain reaction and Western blot analysis. RESULTS Exposure to hypoxia (0.2% O2) for 24 hours resulted in significantly increased cell death in SK-N-SH neurons, whereas exposure to 8% O2 had no significant impact on cell viability. Post-hypoxia treatment with moderate hypothermia for 48 or 72 hours rescued the neurons from hypoxia-induced cell death. Moreover, exposure to severe hypoxia led to observable cell swelling, which was also attenuated by moderate hypothermia. Finally, moderate hypothermia but not hypoxia led to the induction of RBM3 expression on both transcriptional and translational levels. CONCLUSION Moderate hypothermia protects neurons from hypoxia-induced cell death. The expression of the cold-shock protein RBM3 is induced by moderate hypothermia and could be one possible mediator of hypothermia-induced neuroprotection.
Collapse
Affiliation(s)
- Lisa-Maria Rosenthal
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Christoph Walker
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Sylvia J Wowro
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Jana Krech
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Constanze Pfitzer
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin.,Berlin Institute of Health (BIH)
| | - Georgia Justus
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin.,Department of Pediatric Cardiology, Charité - University Medical Center, Berlin, Germany
| | | |
Collapse
|
70
|
Yang HJ, Ju F, Guo XX, Ma SP, Wang L, Cheng BF, Zhuang RJ, Zhang BB, Shi X, Feng ZW, Wang M. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep 2017; 7:41738. [PMID: 28134320 PMCID: PMC5278414 DOI: 10.1038/srep41738] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Lab of Biological Psychiatry, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Xin-Xin Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Juan Zhuang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Bin Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Wei Feng
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
71
|
Abstract
BACKGROUND Colitis-associated cancer (CAC) is caused by chronic intestinal inflammation and often results from refractory inflammatory bowel disease (IBD). Stress response proteins Cirp and HSPA4 are involved in the refractory clinical course and development of CAC. RNA-binding motif protein 3 (RBM3) is induced in response to various stresses and is upregulated in several cancers. However, the role of RBM3 in CAC is unclear. METHODS We assessed RBM3 expression and function in 263 human intestinal mucosa samples from patients with IBD and in Rbm3-deficient (Rbm3) mice. RESULTS Expression of RBM3 was correlated with the expression of stress response proteins Cirp, HSPA4, and HSP27 in the colonic mucosa of patients with IBD. Significant correlation was observed between the expression of RBM3 and that of Bcl-xL or stem cell markers. RBM3 expression increased and significantly correlated with R-spondin expression in the colonic mucosa of patients with refractory IBD, a condition associated with increased cancer risk, and RBM3 was overexpressed in human CACs. In the murine CAC model, Rbm3 deficiency decreased R-spondin and Bcl-xL expression and increased apoptotic cell number in the colonic mucosa, leading to reduced tumor multiplicity. Transplantation of wild-type and Rbm3 bone marrow did not alter tumor burden, indicating the importance of RBM3 in epithelial cells. CONCLUSIONS Our findings indicated that RBM3 was required for efficient inflammatory carcinogenesis in the murine CAC model and suggested that RBM3 could be a predictive biomarker of CAC risk and a new therapeutic target for cancer prevention in patients with IBD.
Collapse
|
72
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
73
|
Knight JRP, Bastide A, Peretti D, Roobol A, Roobol J, Mallucci GR, Smales CM, Willis AE. Cooling-induced SUMOylation of EXOSC10 down-regulates ribosome biogenesis. RNA (NEW YORK, N.Y.) 2016; 22:623-635. [PMID: 26857222 PMCID: PMC4793216 DOI: 10.1261/rna.054411.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo.
Collapse
Affiliation(s)
- John R P Knight
- Medical Research Council Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| | - Amandine Bastide
- Medical Research Council Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| | - Diego Peretti
- Medical Research Council Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom Department of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, United Kingdom
| | - Anne Roobol
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jo Roobol
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Giovanna R Mallucci
- Medical Research Council Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom Department of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, United Kingdom
| | - C Mark Smales
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Anne E Willis
- Medical Research Council Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| |
Collapse
|
74
|
Bedoya-López A, Estrada K, Sanchez-Flores A, Ramírez OT, Altamirano C, Segovia L, Miranda-Ríos J, Trujillo-Roldán MA, Valdez-Cruz NA. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture. PLoS One 2016; 11:e0151529. [PMID: 26991106 PMCID: PMC4798216 DOI: 10.1371/journal.pone.0151529] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/28/2016] [Indexed: 12/30/2022] Open
Abstract
Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system.
Collapse
Affiliation(s)
- Andrea Bedoya-López
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Karel Estrada
- Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Apoyo Bioinformático, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. México
| | - Juan Miranda-Ríos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio A. Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Norma A. Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
75
|
Control of translation in the cold: implications for therapeutic hypothermia. Biochem Soc Trans 2016; 43:333-7. [PMID: 26009172 DOI: 10.1042/bst20150052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlled whole-body cooling has been used since the 1950s to protect the brain from injury where cerebral blood flow is reduced. Therapeutic hypothermia has been used successfully during heart surgery, following cardiac arrest and with varied success in other instances of reduced blood flow to the brain. However, why reduced temperature is beneficial is largely unknown. Here we review the use of therapeutic hypothermia with a view to understanding the underlying biology contributing to the phenomenon. Interestingly, the benefits of cooling have recently been extended to treatment of chronic neurodegenerative diseases in two mouse models. Concurrently studies have demonstrated the importance of the regulation of protein synthesis, translation, to the cooling response, which is also emerging as a targetable process in neurodegeneration. Through these studies the potential importance of the rewarming process following cooling is also beginning to emerge. Altogether, these lines of research present new opportunities to manipulate cooling pathways for therapeutic gain.
Collapse
|
76
|
Florianova L, Xu B, Traboulsi S, Elmansi H, Tanguay S, Aprikian A, Kassouf W, Brimo F. Evaluation of RNA-binding motif protein 3 expression in urothelial carcinoma of the bladder: an immunohistochemical study. World J Surg Oncol 2015; 13:317. [PMID: 26577765 PMCID: PMC4650614 DOI: 10.1186/s12957-015-0730-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background RNA-binding motif protein 3 (RBM3), involved in cell survival, has paradoxically been linked to both oncogenesis as well as an increased survival in several cancers, including urothelial carcinoma (UCA). Methods The putative prognostic role of RBM3 was studied using cystectomy specimens with 152 invasive UCA with 35 matched metastases, 65 carcinomas in situ (CIS), 22 high-grade papillary UCAs (PAP), and 112 benign urothelium cases. Results The H-score (HS, staining intensity × % of positive cells) was used for RBM3 immunoexpression. CIS showed the highest HS (mean = 140) followed by benign urothelium (mean = 97). Metastases showed higher HS than primary invasive UCA (P ≤ 0.0001), and high HS was associated with a lower pT stage (P ≤ 0.0001) and a trend toward the absence of lymphovascular invasion (LVI, P = 0.09), but not pN stage (P = 0.35) and surgical margin status (P = 0.81). Univariate analysis (UVA) of disease recurrence only showed an association between pN stage and LVI (P = 0.005 and 0.03, respectively). On UVA of mortality, pT stage was strongly associated with death (P = 0.01) while pN stage, LVI, surgical margin status, and HS were not. Multivariate analysis confirmed the lack of HS association with recurrence (P = 0.08) and death (P = 0.32). Conclusions Stronger RBM3 immunoexpression correlated with lower stage tumors and a diminished risk for LVI. However, RBM3 does not seem to carry a prognostic significance for clinical outcome (recurrence and mortality). The exact prognostic role of RBM3 in UCA is yet to be determined.
Collapse
Affiliation(s)
- Livia Florianova
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Bin Xu
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Samer Traboulsi
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Hazem Elmansi
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Simon Tanguay
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Armen Aprikian
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Wassim Kassouf
- Department of Urology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| | - Fadi Brimo
- Department of Pathology, McGill University Health Centre and McGill University, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
77
|
Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S. RNA binding protein RBM3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog 2015; 55:1503-1516. [PMID: 26331352 DOI: 10.1002/mc.22404] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer deaths in the United States. It arises from loss of intestinal epithelial homeostasis and hyperproliferation of the crypt epithelium. In order to further understand the pathogenesis of CRC it is important to further understand the factors regulating intestinal epithelial proliferation and more specifically, regulation of the intestinal epithelial stem cell compartment. Here, we investigated the role of the RNA binding protein RBM3 in stem cell homeostasis in colorectal cancers. Using a doxycycline (Dox) inducible RBM3 overexpressing cell lines HCT 116 and DLD-1, we measured changes in side population (SP) cells that have high xenobiotic efflux capacity and increased capacity for self-renewal. In both cell lines, RBM3 induction showed significant increases in the percentage of side population cells. Additionally, we observed increases in spheroid formation and in cells expressing DCLK1, LGR5 and CD44Hi . As the Wnt/β-catenin signaling pathway is important for both physiologic and cancer stem cells, we next investigated the effects of RBM3 overexpression on β-catenin activity. RBM3 overexpression increased levels of nuclear β-catenin as well as TCF/LEF transcriptional activity. In addition, there was inactivation of GSK3β leading to decreased β-catenin phosphorylation. Pharmacologic inhibition of GSK3β using (2'Z,3'E)-6-Bromoindirubin-3'-oxime (BIO) also recapitulates the RBM3 induced β-catenin activity. In conclusion, we see that RNA binding protein RBM3 induces stemness in colorectal cancer cells through a mechanism involving suppression of GSK3β activity thereby enhancing β-catenin signaling. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anand Venugopal
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Julia Balmaceda
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Badal Roy
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Dan A Dixon
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shahid Umar
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Scott J Weir
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
78
|
Jackson TC, Manole MD, Kotermanski SE, Jackson EK, Clark RSB, Kochanek PM. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 2015; 305:268-78. [PMID: 26265550 DOI: 10.1016/j.neuroscience.2015.08.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
Extremely mild hypothermia to 36.0 °C is not thought to appreciably differ clinically from 37.0 °C. However, it is possible that 36.0 °C stimulates highly sensitive hypothermic signaling mechanism(s) and alters biochemistry. To the best of our knowledge, no such ultra-sensitive pathway/mechanisms have been described. Here we show that cold stress protein RNA binding motif 3 (RBM3) increases in neuron and astrocyte cultures maintained at 33 °C or 36 °C for 24 or 48 h, compared to 37 °C controls. Neurons cultured at 36 °C also had increased global protein synthesis (GPS). Finally, we found that melatonin or fibroblast growth factor 21 (FGF21) augmented RBM3 upregulation in young neurons cooled to 36 °C. Our results show that a 1 °C reduction in temperature can induce pleiotropic biochemical changes by upregulating GPS in neurons which may be mediated by RBM3 and that this process can be pharmacologically mimicked and enhanced with melatonin or FGF21.
Collapse
Affiliation(s)
- T C Jackson
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, 200 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA 15260, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States.
| | - M D Manole
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, 200 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA 15260, United States; University of Pittsburgh School of Medicine, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224, United States
| | - S E Kotermanski
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, Pittsburgh, PA 15219, United States
| | - E K Jackson
- University of Pittsburgh School of Medicine, Department of Pharmacology and Chemical Biology, Bridgeside Point Building 1, 100 Technology Drive, Pittsburgh, PA 15219, United States
| | - R S B Clark
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, 200 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA 15260, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| | - P M Kochanek
- University of Pittsburgh School of Medicine, Safar Center for Resuscitation Research, 200 Hill Building, 3434 Fifth Avenue, Pittsburgh, PA 15260, United States; University of Pittsburgh School of Medicine, Department of Critical Care Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, United States
| |
Collapse
|
79
|
Melling N, Simon R, Mirlacher M, Izbicki JR, Stahl P, Terracciano LM, Bokemeyer C, Sauter G, Marx AH. Loss of RNA-binding motif protein 3 expression is associated with right-sided localization and poor prognosis in colorectal cancer. Histopathology 2015; 68:191-8. [PMID: 25922889 DOI: 10.1111/his.12726] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
AIMS RNA-binding motif protein 3 (RBM3) has recently been suggested as a prognostic biomarker in an array of human cancers. This study aimed to examine its effects in colorectal cancers. METHODS AND RESULTS RBM3 expression was analysed by immunohistochemistry on a tissue microarray containing 1800 colorectal cancers (CRCs). Nuclear RBM3 immunohistochemical staining was found in 95.9% of all interpretable CRCs. Loss of RBM3 expression was linked to advanced tumour stage (P < 0.0001), right-sided tumour localization (P < 0.0001), and poor prognosis (P = 0.0003). In a multivariable analysis including RBM3 staining, tumour grade, tumour stage, and nodal status, only tumour stage and nodal status proved to be independent prognostic markers (P < 0.0001 each), whereas the prognostic impact of RBM3 staining was not significant (P = 0.2655). CONCLUSIONS Our observations indicate that loss of RBM3 expression is an unfavourable prognostic marker in CRC, and is linked to right-sided tumour localization.
Collapse
Affiliation(s)
- Nathaniel Melling
- Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Mirlacher
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Philip Stahl
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carsten Bokemeyer
- Department of Oncology, Haematology, BMT with section Pneumology, Hubertus Wald Cancer Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
80
|
Krishnamurthy P, Kim JA, Jeong MJ, Kang CH, Lee SI. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol Genet Genomics 2015; 290:2279-95. [PMID: 26123085 DOI: 10.1007/s00438-015-1080-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.
Collapse
Affiliation(s)
- Panneerselvam Krishnamurthy
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, 660-701, Korea
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea.
| |
Collapse
|
81
|
Hypothermic Preconditioning of Human Cortical Neurons Requires Proteostatic Priming. EBioMedicine 2015; 2:528-35. [PMID: 26287272 PMCID: PMC4534756 DOI: 10.1016/j.ebiom.2015.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 01/23/2023] Open
Abstract
Hypothermia is potently neuroprotective but poor mechanistic understanding has restricted its clinical use. Rodent studies indicate that hypothermia can elicit preconditioning, wherein a subtoxic cellular stress confers resistance to an otherwise lethal injury. The molecular basis of this preconditioning remains obscure. Here we explore molecular effects of cooling using functional cortical neurons differentiated from human pluripotent stem cells (hCNs). Mild-to-moderate hypothermia (28–32 °C) induces cold-shock protein expression and mild endoplasmic reticulum (ER) stress in hCNs, with full activation of the unfolded protein response (UPR). Chemical block of a principal UPR pathway mitigates the protective effect of cooling against oxidative stress, whilst pre-cooling neurons abrogates the toxic injury produced by the ER stressor tunicamycin. Cold-stress thus preconditions neurons by upregulating adaptive chaperone-driven pathways of the UPR in a manner that precipitates ER-hormesis. Our findings establish a novel arm of neurocryobiology that could reveal multiple therapeutic targets for acute and chronic neuronal injury. Clinically-relevant cooling induces archetypal cold-shock and mild endoplasmic reticulum (ER) stress in human neurons. Hypothermic neuronal ER-stress elicits an adaptive unfolded protein response (UPR) with ER-hormesis. Hypothermic preconditioning of the ER provides cross-tolerance to oxidative neuronal injury and requires an intact UPR.
Collapse
|
82
|
Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochem J 2015; 465:227-38. [PMID: 25353634 DOI: 10.1042/bj20141014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cells respond to external stress conditions by controlling gene expression, a process which occurs rapidly via post-transcriptional regulation at the level of protein synthesis. Global control of translation is mediated by modification of translation factors to allow reprogramming of the translatome and synthesis of specific proteins that are required for stress protection or initiation of apoptosis. In the present study, we have investigated how global protein synthesis rates are regulated upon mild cooling. We demonstrate that although there are changes to the factors that control initiation, including phosphorylation of eukaryotic translation initiation factor 2 (eIF2) on the α-subunit, the reduction in the global translation rate is mediated by regulation of elongation via phosphorylation of eukaryotic elongation factor 2 (eEF2) by its specific kinase, eEF2K (eukaryotic elongation factor 2 kinase). The AMP/ATP ratio increases following cooling, consistent with a reduction in metabolic rates, giving rise to activation of AMPK (5'-AMP-activated protein kinase), which is upstream of eEF2K. However, our data show that the major trigger for activation of eEF2K upon mild cooling is the release of Ca2+ ions from the endoplasmic reticulum (ER) and, importantly, that it is possible to restore protein synthesis rates in cooled cells by inhibition of this pathway at multiple points. As cooling has both therapeutic and industrial applications, our data provide important new insights into how the cellular responses to this stress are regulated, opening up new possibilities to modulate these responses for medical or industrial use at physiological or cooler temperatures.
Collapse
|
83
|
RBM3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 2015; 518:236-9. [PMID: 25607368 PMCID: PMC4338605 DOI: 10.1038/nature14142] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
Abstract
In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity1. Reduction in synapse number is a consistent early feature of neurodegenerative diseases2, 3, suggesting deficient compensatory mechanisms. While much is known about toxic processes leading to synaptic dysfunction and loss in these disorders2,3, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity4, 5. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number cold-shock proteins in the brain, including the RNA binding protein, RBM36. The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5×FAD (Alzheimer-type) mice7, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. Further, RBM3 over-expression, achieved either by boosting endogenous levels through hypothermia prior to the loss of the RBM3 response, or by lentiviral delivery, resulted in sustained synaptic protection in 5×FAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold shock pathways as potential protective therapies in neurodegenerative disorders.
Collapse
|
84
|
Molecular characterization of RNA binding motif protein 3 (RBM3) gene from Pashmina goat. Res Vet Sci 2014; 98:51-8. [PMID: 25544695 DOI: 10.1016/j.rvsc.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 07/03/2014] [Accepted: 11/26/2014] [Indexed: 11/20/2022]
Abstract
Pashmina goat inhabits the high altitude cold arid desert of Ladakh, India. This goat is known for its finest and costliest under fiber. Though the under fiber may be a part of its complex thermoregulation mechanism, the genetics of its adaptability under cold conditions is not known. As an attempt to understand its adaptive genetics, and the role of RNA-binding proteins at the cellular response, this study was conducted to characterize the RBM3 gene in Pashmina goat and its expression during hypothermia. The ORF of Pashmina RBM3 gene was 273 bp. Phylogenetic analysis revealed that Pashmina RBM3 is closely related to Bos taurus RBM3. Pashmina RBM3 was characterized by comparative modeling studies. The final 3-D model contained two α-helices and four β-sheets. qRT-PCR data showed that Pashmina RBM3 gene expression was significantly higher (P < 0.05) at moderate (30 °C) hypothermic stress conditions as compared with deep (15 °C) hypothermia.
Collapse
|
85
|
Schmitt KRL, Tong G, Berger F. Mechanisms of hypothermia-induced cell protection in the brain. Mol Cell Pediatr 2014; 1:7. [PMID: 26567101 PMCID: PMC4530563 DOI: 10.1186/s40348-014-0007-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022] Open
Abstract
Therapeutic hypothermia is an effective cytoprotectant and promising intervention shown to improve outcome in patients following cardiac arrest and neonatal hypoxia-ischemia. However, despite our clinical and experimental experiences, the protective molecular mechanisms of therapeutic hypothermia remain to be elucidated. Therefore, in this brief overview we discuss both the clinical evidence and molecular mechanisms of therapeutic hypothermia in order to provide further insights into this promising intervention.
Collapse
Affiliation(s)
- Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Pediatric Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
86
|
Morita S, Furukawa S, Nishi K. Immunohistochemical evaluation of hypoxia markers in the myocardium. AUST J FORENSIC SCI 2014. [DOI: 10.1080/00450618.2014.906653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
87
|
Zhao W, Xu D, Cai G, Zhu X, Qian M, Liu W, Cui Z. Spatiotemporal pattern of RNA-binding motif protein 3 expression after spinal cord injury in rats. Cell Mol Neurobiol 2014; 34:491-9. [PMID: 24570111 DOI: 10.1007/s10571-014-0033-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/24/2014] [Indexed: 12/19/2022]
Abstract
RNA-binding motif protein 3 (RBM3) belongs to a very small group of cold inducible proteins with anti-apoptotic and proliferative functions. To elucidate the expression and possible function of RBM3 in central nervous system (CNS) lesion and repair, we performed a spinal cord injury (SCI) model in adult rats. Western blot analysis revealed that RBM3 level significantly increased at 1 day after damage, and then declined during the following days. Immunohistochemistry further confirmed that RBM3 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased at 1 day after SCI. Besides, double immunofluorescence staining showed RBM3 was primarily expressed in the neurons and a few of astrocytes in the normal group. While after injury, the expression of RBM3 increased both in neurons and astrocytes at 1 day. We also examined the expression profiles of proliferating cell nuclear antigen (PCNA) and active caspase-3 in injured spinal cords by western blot. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many RBM3-expressing cells and rare caspase-3 was observed in RBM3-expressing cells at 1 day after injury. Our data suggested that RBM3 might play important roles in CNS pathophysiology after SCI.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
88
|
Forsström B, Axnäs BB, Stengele KP, Bühler J, Albert TJ, Richmond TA, Hu FJ, Nilsson P, Hudson EP, Rockberg J, Uhlen M. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 2014; 13:1585-97. [PMID: 24705123 DOI: 10.1074/mcp.m113.033308] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody's linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens.
Collapse
Affiliation(s)
- Björn Forsström
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | | | | | - Jochen Bühler
- ¶NimbleGen Systems GmbH, Roche, Beuthenerstr. 2, D-84478 Waldkraiburg, Germany
| | - Thomas J Albert
- ‖Nimblegen, Roche Applied Science, 500 S. Rosa Rd., Madison, Wisconsin 53719
| | - Todd A Richmond
- ‖Nimblegen, Roche Applied Science, 500 S. Rosa Rd., Madison, Wisconsin 53719
| | - Francis Jingxin Hu
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Peter Nilsson
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden
| | - Elton P Hudson
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Johan Rockberg
- §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mathias Uhlen
- From the ‡Science for Life Laboratory, KTH - Royal Institute of Technology, SE-171 21 Stockholm, Sweden; §Department of Proteomics, KTH - Royal Institute of Technology, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
89
|
Grupp K, Wilking J, Prien K, Hube-Magg C, Sirma H, Simon R, Steurer S, Budäus L, Haese A, Izbicki J, Sauter G, Minner S, Schlomm T, Tsourlakis MC. High RNA-binding motif protein 3 expression is an independent prognostic marker in operated prostate cancer and tightly linked to ERG activation and PTEN deletions. Eur J Cancer 2014; 50:852-61. [DOI: 10.1016/j.ejca.2013.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 01/08/2023]
|
90
|
Alternative promoters regulate cold inducible RNA-binding (CIRP) gene expression and enhance transgene expression in mammalian cells. Mol Biotechnol 2013; 54:238-49. [PMID: 23589278 DOI: 10.1007/s12033-013-9649-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of a temperature shift cultivation to enhance recombinant protein yield is widely utilised in the bioprocessing industry. The responses of mammalian cells to heat stress are well characterized; however, the equivalent cold stress responses are not. In particular, the transcriptional mechanisms that lead to enhanced gene-specific expression upon cold stress have yet to be elucidated. We report here in silico and experimental identification and characterization of transcriptional control elements that regulate cold inducible RNA-binding (CIRP) gene expression and demonstrate these can be used for enhanced transgene expression. In silico analysis identified the core CIRP promoter and a number of conserved transcription factor-binding sites across mammalian species. The core promoter was confirmed by experimental studies that located the basal transcriptional regulatory elements of CIRP within 264 nucleotides upstream of the transcription start site. Deletion analysis of a fragment from -264 to -64 that contained two putative CAAT-binding sites abolished promoter activity. A second promoter was identified in the region -452 to -264 of the transcription start site which was able to drive transcription independent of the core promoter. As the two CIRP promoters were transcriptionally active and possibly cold responsive, we used electrophoretic mobility shift assays to show that both promoter regions are able to bind factors within a nuclear extract in a dose-dependent manner and that the formation of these complexes was specific to the promoter regions. Finally, we successfully demonstrate using a reporter gene approach that enhanced transgene expression can be achieved using the identified CIRP promoter.
Collapse
|
91
|
Zeng Y, Wodzenski D, Gao D, Shiraishi T, Terada N, Li Y, Vander Griend DJ, Luo J, Kong C, Getzenberg RH, Kulkarni P. Stress-response protein RBM3 attenuates the stem-like properties of prostate cancer cells by interfering with CD44 variant splicing. Cancer Res 2013; 73:4123-33. [PMID: 23667174 DOI: 10.1158/0008-5472.can-12-1343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stress-response pathways play an important role in cancer. The cold-inducible RNA-binding protein RBM3 is upregulated in several types of cancer, including prostate cancer, but its pathogenic contributions are undetermined. RBM3 is expressed at low basal levels in human fetal prostate or in CD133(+) prostate epithelial cells (PrEC), compared with the adult prostate or CD133-PrEC, and RBM3 is downregulated in cells cultured in soft agar or exposed to stress. Notably, RBM3 overexpression in prostate cancer cells attenuated their stem cell-like properties in vitro as well as their tumorigenic potential in vivo. Interestingly, either overexpressing RBM3 or culturing cells at 32°C suppressed RNA splicing of the CD44 variant v8-v10 and increased expression of the standard CD44 (CD44s) isoform. Conversely, silencing RBM3 or culturing cells in soft agar (under conditions that enrich for stem cell-like cells) increased the ratio of CD44v8-v10 to CD44s mRNA. Mechanistic investigations showed that elevating CD44v8-v10 interfered with MMP9-mediated cleavage of CD44s and suppressed expression of cyclin D1, whereas siRNA-mediated silencing of CD44v8-v10 impaired the ability of prostate cancer cells to form colonies in soft agar. Together, these findings suggested that RBM3 contributed to stem cell-like character in prostate cancer by inhibiting CD44v8-v10 splicing. Our work uncovers a hitherto unappreciated role of RBM3 in linking stress-regulated RNA splicing to tumorigenesis, with potential prognostic and therapeutic implications in prostate cancer.
Collapse
Affiliation(s)
- Yu Zeng
- The James Buchanan Brady Urological Institute, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ciafrè SA, Galardi S. microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol 2013; 10:935-42. [PMID: 23696003 PMCID: PMC4111733 DOI: 10.4161/rna.24641] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the last decade, an ever-growing number of connections between microRNAs (miRNAs) and RNA-binding proteins (RBPs) have uncovered a new level of complexity of gene expression regulation in cancer. In this review, we examine several aspects of the functional interactions between miRNAs and RBPs in cancer models. We will provide examples of reciprocal regulation: miRNAs regulating the expression of RBPs, or the converse, where an RNA-binding protein specifically regulates the expression of a specific miRNA, or when an RBP can exert a widespread effect on miRNAs via the modulation of a key protein for miRNA production or function. Moreover, we will focus on the ever-growing number of functional interactions that have been discovered in the last few years: RBPs that were shown to cooperate with microRNAs in the downregulation of shared target mRNAs or, on the contrary, that inhibit microRNA action, thus resulting in a protection of the specific target mRNAs. We surely need to obtain a deeper comprehension of such intricate networks to have a chance of understanding and, thus, fighting cancer.
Collapse
Affiliation(s)
- Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier, Roma, Italy.
| | | |
Collapse
|
93
|
Effects of moderate and deep hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain Res 2013; 1504:74-84. [PMID: 23415676 DOI: 10.1016/j.brainres.2013.01.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/02/2013] [Accepted: 01/22/2013] [Indexed: 11/23/2022]
Abstract
Therapeutic hypothermia has emerged as an effective neuroprotective therapy for cardiac arrest survivors. There are a number of purported mechanisms for therapeutic hypothermia, but the exact mechanism still remains to be elucidated. Although hypothermia generally down-regulates protein synthesis and metabolism in mammalian cells, a small subset of homologous (>70%) cold-shock proteins (RNA-binding motif protein 3, RBM3 and cold-inducible RNA-binding protein, CIRP) are induced under these conditions. In addition, RBM3 up-regulation in neuronal cells has recently been implicated in hypothermia-induced neuroprotection. Therefore, we compared the effects of moderate (33.5°C) and deep (17°C) hypothermia with normothermia (37°C) on the regulation of RBM3 and CIRP expressions in murine organotypic hippocampal slice cultures (OHSC), hippocampal neuronal cells (HT-22), and microglia cells (BV-2). Moderate hypothermia resulted in significant up-regulation of both RBM3 and CIRP mRNA in murine OHSC, but deep hyporthermia did not. RBM3 protein regulation was also significantly up-regulated by 33.5°C, but no significant up-regulation of CIRP protein was observed in the OHSC. Additionally, OHSC exposed to 17°C for 24h were positive for Propidium Iodide (PI) immunostaining, indicating the onset of cell death. Similarly, RBM3 gene expression in a HT-22 neuronal cells mono-culture and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were also up-regulated at 33.5°C but only in the co-culture at 17°C. No significant up-regulation of RBM3 nor CIRP gene expression were observed in a BV-2 mono-culture at either temperature. We observed that RBM3 mRNA and protein expressions in murine OHSC, as well as in mono-culture of HT-22 neuronal cells and direct co-culture of HT-22 neuronal cells with BV-2 microglia cells were significantly up-regulated by exposure to moderate hypothermia. These findings further support the implication of RBM3 as a potential effector for hypothermia-induced neuroprotection.
Collapse
|
94
|
Abstract
The aim of the study was to extend the survival of adult spinal motor neurons in serum free culture. Anterior half of the spinal cord was removed from young adult mice and dissociated. Cultured cells attempted to extend neurites within hours of incubation at 37 °C and died within 24 h. To prevent this early regenerative activity, thus to decrease the metabolic requirements of the neurons, cultures were transferred to 4 °C immediately after they were set and kept there for 3 days. Preparations were then taken to 37 °C where they lived up to 8 days. Some neurons continued to extend neurites until the day they died. To understand whether the enhancement of survival involves new protein synthesis, transcription and translation were blocked during cold pre-incubation, which shortened the half life of neurons but not changed the maximum survival period. In conclusion this study has shown that, in the serum-free cultures, the survival of adult spinal motor neurons can be significantly enhanced by cold pre-incubation whose effect seems to depend largely on a reduction in the metabolic activity and less on new protein synthesis.
Collapse
Affiliation(s)
- Serap Bektaş
- Yüzüncü Yıl University, School of Medicine, Physiology Department, Van, Turkey
| | | |
Collapse
|
95
|
Abstract
MicroRNAs (miRNAs) function as 21-24 nucleotide guide RNAs that use partial base-pairing to recognize target messenger RNAs and repress their expression. As a large fraction of protein-coding genes are under miRNA control, production of the appropriate level of specific miRNAs at the right time and in the right place is integral to most gene regulatory pathways. MiRNA biogenesis initiates with transcription, followed by multiple processing steps to produce the mature miRNA. Every step of miRNA production is subject to regulation and disruption of these control mechanisms has been linked to numerous human diseases, where the balance between the expression of miRNAs and their targets becomes distorted. Here we review the basic steps of miRNA biogenesis and describe the various factors that control miRNA transcription, processing, and stability in animal cells. The tremendous effort put into producing the appropriate type and level of specific miRNAs underscores the critical role of these small RNAs in gene regulation.
Collapse
Affiliation(s)
- Emily F Finnegan
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
96
|
Hjelm B, Brennan DJ, Zendehrokh N, Eberhard J, Nodin B, Gaber A, Pontén F, Johannesson H, Smaragdi K, Frantz C, Hober S, Johnson LB, Påhlman S, Jirström K, Uhlen M. High nuclear RBM3 expression is associated with an improved prognosis in colorectal cancer. Proteomics Clin Appl 2012; 5:624-35. [PMID: 21956899 DOI: 10.1002/prca.201100020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
PURPOSE In this study, we investigated the prognostic impact of human RBM3 expression in colorectal cancer using tissue microarray-based immunohistochemical analysis. EXPERIMENTAL DESIGN One polyclonal antibody and four monoclonal anti-RBM3 antibodies were generated and epitope mapped using two different methods. Bacterial display revealed five distinct epitopes for the polyclonal antibody, while the four mouse monoclonal antibodies were found to bind to three of the five epitopes. A peptide suspension bead array assay confirmed the five epitopes of the polyclonal antibody, while only one of the monoclonal antibodies could be mapped using this approach. Antibody specificity was confirmed by Western blotting and immunohistochemistry, including siRNA-mediated knock-down. Two of the antibodies (polyclonal and monoclonal) were subsequently used to analyze RBM3 expression in tumor samples from two independent colorectal cancer cohorts, one consecutive cohort (n=270) and one prospectively collected cohort of patients with cancer of the sigmoid colon (n=305). RBM3-expression was detected, with high correlation between both antibodies (R=0.81, p<0.001). RESULTS In both cohorts, tumors with high nuclear RBM3 staining had significantly prolonged the overall survival. This was also confirmed in multivariate analysis, adjusted for established prognostic factors. CONCLUSION AND CLINICAL RELEVANCE These data demonstrate that high tumor-specific nuclear expression of RBM3 is an independent predictor of good prognosis in colorectal cancer.
Collapse
Affiliation(s)
- Barbara Hjelm
- Department of Proteomics, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Yang C, Wang L, Siva VS, Shi X, Jiang Q, Wang J, Zhang H, Song L. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity. PLoS One 2012; 7:e32012. [PMID: 22359656 PMCID: PMC3281114 DOI: 10.1371/journal.pone.0032012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Abstract
Background The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P<0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17°C for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII-CfCSP grew vigorously, indicating that CfCSP shared a similar function with E. coli CSPs for the cold adaptation. Conclusions These results suggest that CfCSP is a novel eukaryotic cold-regulated nucleic acid-binding protein and may function as an RNA chaperone in vivo during the cold adaptation process.
Collapse
Affiliation(s)
- Chuanyan Yang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Vinu S. Siva
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Shi
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Qiufen Jiang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
98
|
|
99
|
Pilotte J, Dupont-Versteegden EE, Vanderklish PW. Widespread regulation of miRNA biogenesis at the Dicer step by the cold-inducible RNA-binding protein, RBM3. PLoS One 2011; 6:e28446. [PMID: 22145045 PMCID: PMC3228759 DOI: 10.1371/journal.pone.0028446] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/08/2011] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ~70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ~70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events.
Collapse
Affiliation(s)
- Julie Pilotte
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Esther E. Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter W. Vanderklish
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
100
|
Jonsson L, Gaber A, Ulmert D, Uhlén M, Bjartell A, Jirström K. High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression. Diagn Pathol 2011; 6:91. [PMID: 21955582 PMCID: PMC3195697 DOI: 10.1186/1746-1596-6-91] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer. FINDINGS Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, p = 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, p = 0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, p = 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, p = 0.009 for clinical progression). CONCLUSION Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.
Collapse
Affiliation(s)
- Liv Jonsson
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|