51
|
Tao H, Zhang Y, Cao X, Deng Z, Liu T. Absolute quantification of proteins in the fatty acid biosynthetic pathway using protein standard absolute quantification. Synth Syst Biotechnol 2016; 1:150-157. [PMID: 29062939 PMCID: PMC5640790 DOI: 10.1016/j.synbio.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 11/24/2022] Open
Abstract
With worldwide attention on renewable energy and climate change, metabolic engineering of the fatty acid biosynthetic pathway has become an active area of research, with a view to enhance production of biofuels. Indeed, this pathway has already been extensively studied in Escherichia coli. Nevertheless, little is known about the absolute abundance of the enzymes involved, information that may be valuable for engineering, such as the optimal molar ratios of different proteins. In this study, we use protein standard absolute quantification (PSAQ) to measure the absolute abundance of proteins that catalyze fatty acid biosynthesis in E. coli. In addition, the changes of protein abundance were analyzed by comparing the differences between high-yield and the background strain. Our work highlights opportunities to enhance fatty acid production by measuring protein molar ratios and identifying catalytic and regulatory bottlenecks. More importantly, our results provide evidence that PSAQ is a generally valuable tool to investigate metabolic pathways.
Collapse
Affiliation(s)
- Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China
| | - Xiaoying Cao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P.R. China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, P.R. China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan 430068, P.R. China
| |
Collapse
|
52
|
Yao J, Bruhn DF, Frank MW, Lee RE, Rock CO. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria. J Biol Chem 2015; 291:171-81. [PMID: 26567338 DOI: 10.1074/jbc.m115.699462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.
Collapse
Affiliation(s)
| | - David F Bruhn
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | - Richard E Lee
- Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
53
|
Demissie RD, Kabre P, Tuntland ML, Fung LWM. An Efficient and Economical Assay to Screen for Triclosan Binding to FabI. ACTA ACUST UNITED AC 2015; 21:391-8. [PMID: 26538431 DOI: 10.1177/1087057115615085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/11/2015] [Indexed: 11/15/2022]
Abstract
Triclosan is an effective inhibitor for enoyl acyl carrier protein reductase (ENR) in fatty acid biosynthesis. Triclosan-resistant mutants of ENR have emerged. Thus, it is important to detect these triclosan-resistant mutations in ENR. Generally, enzyme activity assays on the mutants are used to determine the effect of triclosan on ENR activity. Since the substrates are linked to acyl carrier protein (ACP), the assays are challenging due to the need to prepare the ACP and link it to the substrates. Non-ACP-linked (coenzyme A [CoA]-linked) substrates can be used in some ENR, but not in all. Consequently, screening for triclosan-resistant mutants is also challenging. We have developed a simple thermal shift assay, which does not use ACP-linked substrates, to determine the binding ability of triclosan to the ENR active site, and thus it can be used for screening for triclosan-resistant mutants. Staphylococcus aureus FabI enzyme and its mutants were used to demonstrate the binding ability of triclosan with NADP(+) to FabI. The direct correlation between the binding ability and enzyme activity was demonstrated with Francisella tularensis FabI. This method may also be applied to select effective triclosan analogues that inhibit ENR activity.
Collapse
|
54
|
Miyazawa T, Takahashi S, Kawata A, Panthee S, Hayashi T, Shimizu T, Nogawa T, Osada H. Identification of Middle Chain Fatty Acyl-CoA Ligase Responsible for the Biosynthesis of 2-Alkylmalonyl-CoAs for Polyketide Extender Unit. J Biol Chem 2015; 290:26994-27011. [PMID: 26378232 DOI: 10.1074/jbc.m115.677195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
Understanding the biosynthetic mechanism of the atypical polyketide extender unit is important for the development of bioactive natural products. Reveromycin (RM) derivatives produced by Streptomyces sp. SN-593 possess several aliphatic extender units. Here, we studied the molecular basis of 2-alkylmalonyl-CoA formation by analyzing the revR and revS genes, which form a transcriptional unit with the revT gene, a crotonyl-CoA carboxylase/reductase homolog. We mainly focused on the uncharacterized adenylate-forming enzyme (RevS). revS gene disruption resulted in the reduction of all RM derivatives, whereas reintroduction of the gene restored the yield of RMs. Although RevS was classified in the fatty acyl-AMP ligase clade based on phylogenetic analysis, biochemical characterization revealed that the enzyme catalyzed the middle chain fatty acyl-CoA ligase (FACL) but not the fatty acyl-AMP ligase activity, suggesting the molecular evolution for acyl-CoA biosynthesis. Moreover, we examined the in vitro conversion of fatty acid into 2-alkylmalonyl-CoA using purified RevS and RevT. The coupling reaction showed efficient conversion of hexenoic acid into butylmalonyl-CoA. RevS efficiently catalyzed C8-C10 middle chain FACL activity; therefore, we speculated that the acyl-CoA precursor was truncated via β-oxidation and converted into (E)-2-enoyl-CoA, a RevT substrate. To determine whether the β-oxidation process is involved between the RevS and RevT reaction, we performed the feeding experiment using [1,2,3,4-(13)C]octanoic acid. (13)C NMR analysis clearly demonstrated incorporation of the [3,4-(13)C]octanoic acid moiety into the structure of RM-A. Our results provide insight into the role of uncharacterized RevS homologs that may catalyze middle chain FACL to produce a unique polyketide extender unit.
Collapse
Affiliation(s)
- Takeshi Miyazawa
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and; the Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shunji Takahashi
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and
| | - Akihiro Kawata
- the Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Suresh Panthee
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and
| | - Teruo Hayashi
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and
| | - Takeshi Shimizu
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and
| | - Toshihiko Nogawa
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Chemical Biology Research Group, Saitama 351-0198 and; the Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| |
Collapse
|
55
|
Lowry B, Walsh CT, Khosla C. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature's Chemical Logic. Synlett 2015; 26:1008-1025. [PMID: 26207083 PMCID: PMC4507746 DOI: 10.1055/s-0034-1380264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature's core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway's constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature's biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques.
Collapse
Affiliation(s)
- Brian Lowry
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA;
| | - Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA; ; Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305 ; Department of Chemistry, 333 Campus Drive Mudd Building, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
56
|
Discovery of bacterial fatty acid synthase type II inhibitors using a novel cellular bioluminescent reporter assay. Antimicrob Agents Chemother 2015; 59:5775-87. [PMID: 26169404 DOI: 10.1128/aac.00686-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
Novel, cellular, gain-of-signal, bioluminescent reporter assays for fatty acid synthesis type II (FASII) inhibitors were constructed in an efflux-deficient strain of Pseudomonas aeruginosa and based on the discovery that FASII genes in P. aeruginosa are coordinately upregulated in response to pathway disruption. A screen of 115,000 compounds identified a series of sulfonamidobenzamide (SABA) analogs, which generated strong luminescent signals in two FASII reporter strains but not in four control reporter strains designed to respond to inhibitors of pathways other than FASII. The SABA analogs selectively inhibited lipid biosynthesis in P. aeruginosa and exhibited minimal cytotoxicity to mammalian cells (50% cytotoxic concentration [CC50] ≥ 80 μM). The most potent SABA analogs had MICs of 0.5 to 7.0 μM (0.2 to 3.0 μg/ml) against an efflux-deficient Escherichia coli (ΔtolC) strain but had no detectable MIC against efflux-proficient E. coli or against P. aeruginosa (efflux deficient or proficient). Genetic, molecular genetic, and biochemical studies revealed that SABA analogs target the enzyme (AccC) catalyzing the biotin carboxylase half-reaction of the acetyl coenzyme A (acetyl-CoA) carboxylase step in the initiation phase of FASII in E. coli and P. aeruginosa. These results validate the capability and the sensitivity of this novel bioluminescent reporter screen to identify inhibitors of E. coli and P. aeruginosa FASII.
Collapse
|
57
|
Payá-Milans M, Venegas-Calerón M, Salas JJ, Garcés R, Martínez-Force E. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus. PHYTOCHEMISTRY 2015; 111:27-36. [PMID: 25618244 DOI: 10.1016/j.phytochem.2014.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 05/18/2023]
Abstract
The acyl-[acyl carrier protein]:sn-1-glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyzes the first step of glycerolipid assembly within the stroma of the chloroplast. In the present study, the sunflower (Helianthus annuus, L.) stromal GPAT was cloned, sequenced and characterized. We identified a single ORF of 1344base pairs that encoded a GPAT sharing strong sequence homology with the plastidial GPAT from Arabidopsis thaliana (ATS1, At1g32200). Gene expression studies showed that the highest transcript levels occurred in green tissues in which chloroplasts are abundant. The corresponding mature protein was heterologously overexpressed in Escherichia coli for purification and biochemical characterization. In vitro assays using radiolabelled acyl-ACPs and glycerol-3-phosphate as substrates revealed a strong preference for oleic versus palmitic acid, and weak activity towards stearic acid. The positional fatty acid composition of relevant chloroplast phospholipids from sunflower leaves did not reflect the in vitro GPAT specificity, suggesting a more complex scenario with mixed substrates at different concentrations, competition with other acyl-ACP consuming enzymatic reactions, etc. In summary, this study has confirmed the affinity of this enzyme which would partly explain the resistance to cold temperatures observed in sunflower plants.
Collapse
Affiliation(s)
- Miriam Payá-Milans
- Instituto de la Grasa, CSIC, Edificio 46, Campus universitario Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Mónica Venegas-Calerón
- Instituto de la Grasa, CSIC, Edificio 46, Campus universitario Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain.
| | - Joaquín J Salas
- Instituto de la Grasa, CSIC, Edificio 46, Campus universitario Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Rafael Garcés
- Instituto de la Grasa, CSIC, Edificio 46, Campus universitario Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| | - Enrique Martínez-Force
- Instituto de la Grasa, CSIC, Edificio 46, Campus universitario Pablo de Olavide, Carretera de Utrera Km1, 41013 Sevilla, Spain
| |
Collapse
|
58
|
Yao J, Rock CO. How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem 2015; 290:5940-6. [PMID: 25648887 DOI: 10.1074/jbc.r114.636241] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors.
Collapse
Affiliation(s)
- Jiangwei Yao
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Charles O Rock
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
59
|
Marietou A, Nguyen ATT, Allen EE, Bartlett DH. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure. Front Microbiol 2015; 5:749. [PMID: 25610434 PMCID: PMC4285802 DOI: 10.3389/fmicb.2014.00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/10/2014] [Indexed: 12/03/2022] Open
Abstract
Much of microbial life on Earth grows and reproduces under the elevated hydrostatic pressure conditions that exist in deep-ocean and deep-subsurface environments. In this study adaptive laboratory evolution (ALE) experiments were conducted to investigate the possible modification of the piezosensitive Escherichia coli for improved growth at high pressure. After approximately 500 generations of selection, a strain was isolated that acquired the ability to grow at pressure non-permissive for the parental strain. Remarkably, this strain displayed growth properties and changes in the proportion and regulation of unsaturated fatty acids that indicated the acquisition of multiple piezotolerant properties. These changes developed concomitantly with a change in the gene encoding the acyl carrier protein, which is required for fatty acid synthesis.
Collapse
Affiliation(s)
- Angeliki Marietou
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Alice T T Nguyen
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Eric E Allen
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
60
|
Fatty acid metabolism in the Plasmodium apicoplast: Drugs, doubts and knockouts. Mol Biochem Parasitol 2015; 199:34-50. [DOI: 10.1016/j.molbiopara.2015.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
|
61
|
Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng 2014; 28:28-42. [PMID: 25485951 DOI: 10.1016/j.ymben.2014.11.009] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/23/2022]
Abstract
Recent concerns over the sustainability of petrochemical-based processes for production of desired chemicals have fueled research into alternative modes of production. Metabolic engineering of microbial cell factories such as Saccharomyces cerevisiae and Escherichia coli offers a sustainable and flexible alternative for the production of various molecules. Acetyl-CoA is a key molecule in microbial central carbon metabolism and is involved in a variety of cellular processes. In addition, it functions as a precursor for many molecules of biotechnological relevance. Therefore, much interest exists in engineering the metabolism around the acetyl-CoA pools in cells in order to increase product titers. Here we provide an overview of the acetyl-CoA metabolism in eukaryotic and prokaryotic microbes (with a focus on S. cerevisiae and E. coli), with an emphasis on reactions involved in the production and consumption of acetyl-CoA. In addition, we review various strategies that have been used to increase acetyl-CoA production in these microbes.
Collapse
Affiliation(s)
- Anastasia Krivoruchko
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yiming Zhang
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
62
|
Bukhari HST, Jakob RP, Maier T. Evolutionary origins of the multienzyme architecture of giant fungal fatty acid synthase. Structure 2014; 22:1775-1785. [PMID: 25456814 DOI: 10.1016/j.str.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Fungal fatty acid synthase (fFAS) is a key paradigm for the evolution of complex multienzymes. Its 48 functional domains are embedded in a matrix of scaffolding elements, which comprises almost 50% of the total sequence and determines the emergent multienzymes properties of fFAS. Catalytic domains of fFAS are derived from monofunctional bacterial enzymes, but the evolutionary origin of the scaffolding elements remains enigmatic. Here, we identify two bacterial protein families of noncanonical fatty acid biosynthesis starter enzymes and trans-acting polyketide enoyl reductases (ERs) as potential ancestors of scaffolding regions in fFAS. The architectures of both protein families are revealed by representative crystal structures of the starter enzyme FabY and DfnA-ER. In both families, a striking structural conservation of insertions to scaffolding elements in fFAS is observed, despite marginal sequence identity. The combined phylogenetic and structural data provide insights into the evolutionary origins of the complex multienzyme architecture of fFAS.
Collapse
Affiliation(s)
- Habib S T Bukhari
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
63
|
Operon for biosynthesis of lipstatin, the Beta-lactone inhibitor of human pancreatic lipase. Appl Environ Microbiol 2014; 80:7473-83. [PMID: 25239907 DOI: 10.1128/aem.01765-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-β-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the α-branched 3,5-dihydroxy fatty acid β-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two β-ketoacyl-acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the α-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the α-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3β-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the β-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique β-lactone ring.
Collapse
|
64
|
Ansong C, Sadler NC, Hill EA, Lewis MP, Zink EM, Smith RD, Beliaev AS, Konopka AE, Wright AT. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria. Front Microbiol 2014; 5:325. [PMID: 25071738 PMCID: PMC4080843 DOI: 10.3389/fmicb.2014.00325] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 12/17/2022] Open
Abstract
Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon toward biofuel precursors.
Collapse
Affiliation(s)
- Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Natalie C Sadler
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Michael P Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Allan E Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
65
|
Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, Rock CO. Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis. J Biol Chem 2014; 289:22365-76. [PMID: 24958721 DOI: 10.1074/jbc.m114.584185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The major phospholipid classes of the obligate intracellular bacterial parasite Chlamydia trachomatis are the same as its eukaryotic host except that they also contain chlamydia-made branched-chain fatty acids in the 2-position. Genomic analysis predicts that C. trachomatis is capable of type II fatty acid synthesis (FASII). AFN-1252 was deployed as a chemical tool to specifically inhibit the enoyl-acyl carrier protein reductase (FabI) of C. trachomatis to determine whether chlamydial FASII is essential for replication within the host. The C. trachomatis FabI (CtFabI) is a homotetramer and exhibited typical FabI kinetics, and its expression complemented an Escherichia coli fabI(Ts) strain. AFN-1252 inhibited CtFabI by binding to the FabI·NADH complex with an IC50 of 0.9 μM at saturating substrate concentration. The x-ray crystal structure of the CtFabI·NADH·AFN-1252 ternary complex revealed the specific interactions between the drug, protein, and cofactor within the substrate binding site. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infectious cycle caused a decrease in infectious titers that correlated with a decrease in branched-chain fatty acid biosynthesis. AFN-1252 treatment at the time of infection prevented the first cell division of C. trachomatis, although the cell morphology suggested differentiation into a metabolically active reticulate body. These results demonstrate that FASII activity is essential for C. trachomatis proliferation within its eukaryotic host and validate CtFabI as a therapeutic target against C. trachomatis.
Collapse
Affiliation(s)
| | - Yasser M Abdelrahman
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and the Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rosanna M Robertson
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 48105
| | - John V Cox
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Robert J Belland
- the Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Stephen W White
- Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 48105
| | | |
Collapse
|
66
|
Dibrova DV, Galperin MY, Mulkidjanian AY. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ Microbiol 2014; 16:907-18. [PMID: 24818264 DOI: 10.1111/1462-2920.12359] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analysing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids [acyl-coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase] with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyse biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications.
Collapse
|
67
|
Bhore SJ, Cha TS, Amelia K, Shah FH. Insights from computational analysis of full-length β-ketoacyl-[ACP] synthase-II cDNA isolated from American and African oil palms. J Nat Sci Biol Med 2014; 5:73-81. [PMID: 24678202 PMCID: PMC3961957 DOI: 10.4103/0976-9668.127292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Palm oil derived from fruits (mesocarp) of African oil palm (Elaeis guineensis Jacq. Tenera) and American oil palm (E. oleifera) is important for food industry. Due to high yield, Elaeis guineensis (Tenera) is cultivated on commercial scale, though its oil contains high (~54%) level of saturated fatty acids. The rate-limiting activity of beta-ketoacyl-[ACP] synthase-II (KAS-II) is considered mainly responsible for the high (44%) level of palmitic acid (C16:0) in the oil obtained from E. guineensis. Objective: The objective of this study was to annotate KAS-II cDNA isolated from American and African oil palms. Materials and Methods: The full-length E. oleifera KAS-II (EoKAS-II) cDNA clone was isolated using random method of gene isolation. Whereas, the E. guineensis KAS-II (EgTKAS-II) cDNA was isolated using reverse transcriptase polymerase chain reaction (RT-PCR) technique; and missing ends were obtained by employing 5’and 3’ RACE technique. Results: The results show that EoKAS-II and EgTKAS-II open reading frames (ORFs) are of 1689 and 1721 bp in length, respectively. Further analysis of the both EoKAS-II and EgTKAS-II predicted protein illustrates that they contains conserved domains for ‘KAS-I and II’, ‘elongating’ condensing enzymes, ‘condensing enzymes super-family’, and ‘3-oxoacyl-[ACP] synthase II’. The predicted protein sequences shows 95% similarity with each other. Consecutively, the three active sites (Cys, His, and His) were identified in both proteins. However, difference in positions of two active Histidine (His) residues was noticed. Conclusion: These insights may serve as the foundation in understanding the variable activity of KAS-II in American and African oil palms; and cDNA clones could be useful in the genetic engineering of oil palms.
Collapse
Affiliation(s)
- Subhash J Bhore
- Department of Molecular Biology, Melaka Institute of Biotechnology, Lot 7, Melaka International Trade Centre City, 75450 Ayer Keroh, Melaka, Kedah, Malaysia ; Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong-Semeling Road, Bedong, 08100, Kedah, Malaysia
| | - Thye S Cha
- School of Bioscience and Biotechnology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia ; Department of Biological Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu (UMT), 21030 Kuala Terengganu, Malaysia
| | - Kassim Amelia
- Department of Molecular Biology, Melaka Institute of Biotechnology, Lot 7, Melaka International Trade Centre City, 75450 Ayer Keroh, Melaka, Kedah, Malaysia ; Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong-Semeling Road, Bedong, 08100, Kedah, Malaysia
| | - Farida H Shah
- Department of Molecular Biology, Melaka Institute of Biotechnology, Lot 7, Melaka International Trade Centre City, 75450 Ayer Keroh, Melaka, Kedah, Malaysia ; School of Bioscience and Biotechnology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
68
|
Cukier CD, Hope AG, Elamin AA, Moynie L, Schnell R, Schach S, Kneuper H, Singh M, Naismith JH, Lindqvist Y, Gray DW, Schneider G. Discovery of an allosteric inhibitor binding site in 3-Oxo-acyl-ACP reductase from Pseudomonas aeruginosa. ACS Chem Biol 2013; 8:2518-27. [PMID: 24015914 PMCID: PMC3833349 DOI: 10.1021/cb4005063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3-Oxo-acyl-acyl carrier protein (ACP) reductase (FabG) plays a key role in the bacterial fatty acid synthesis II system in pathogenic microorganisms, which has been recognized as a potential drug target. FabG catalyzes reduction of a 3-oxo-acyl-ACP intermediate during the elongation cycle of fatty acid biosynthesis. Here, we report gene deletion experiments that support the essentiality of this gene in P. aeruginosa and the identification of a number of small molecule FabG inhibitors with IC50 values in the nanomolar to low micromolar range and good physicochemical properties. Structural characterization of 16 FabG-inhibitor complexes by X-ray crystallography revealed that the compounds bind at a novel allosteric site located at the FabG subunit-subunit interface. Inhibitor binding relies primarily on hydrophobic interactions, but specific hydrogen bonds are also observed. Importantly, the binding cavity is formed upon complex formation and therefore would not be recognized by virtual screening approaches. The structure analysis further reveals that the inhibitors act by inducing conformational changes that propagate to the active site, resulting in a displacement of the catalytic triad and the inability to bind NADPH.
Collapse
Affiliation(s)
- Cyprian D. Cukier
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Ayssar A. Elamin
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - Lucile Moynie
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Robert Schnell
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Schach
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, D-38126 Braunschweig, Germany
| | - James H. Naismith
- Biomedical
Sciences Research Complex, University of St. Andrews, St. Andrews KY16 9ST, U.K
| | - Ylva Lindqvist
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Gunter Schneider
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
69
|
Yao J, Maxwell JB, Rock CO. Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI). J Biol Chem 2013; 288:36261-71. [PMID: 24189061 DOI: 10.1074/jbc.m113.512905] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AFN-1252 is a potent antibiotic against Staphylococcus aureus that targets the enoyl-acyl carrier protein reductase (FabI). A thorough screen for AFN-1252-resistant strains was undertaken to identify the spectrum of mechanisms for acquired resistance. A missense mutation in fabI predicted to encode FabI(M99T) was isolated 49 times, and a single isolate was predicted to encode FabI(Y147H). AFN-1252 only bound to the NADPH form of FabI, and the close interactions between the drug and Met-99 and Tyr-147 explained how the mutations would result in resistant enzymes. The clone expressing FabI(Y147H) had a pronounced growth defect that was rescued by exogenous fatty acid supplementation, and the purified protein had less than 5% of the enzymatic activity of FabI. FabI(Y147F) was also catalytically defective but retained its sensitivity to AFN-1252, illustrating the importance of the conserved Tyr-147 hydroxyl group in FabI function. The strains expressing FabI(M99T) exhibited normal growth, and the biochemical properties of the purified protein were indistinguishable from those of FabI. The AFN-1252 Ki(app) increased from 4 nm in FabI to 69 nm in FabI(M99T), accounting for the increased resistance of the corresponding mutant strain. The low activity of FabI(Y147H) precluded an accurate Ki measurement. The strain expressing FabI(Y147H) was also resistant to triclosan; however, the strain expressing FabI(M99T) was more susceptible. Strains with higher levels of AFN-1252 resistance were not obtained. The AFN-1252-resistant strains remained sensitive to submicromolar concentrations of AFN-1252, which blocked growth through inhibition of fatty acid biosynthesis at the FabI step.
Collapse
Affiliation(s)
- Jiangwei Yao
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | |
Collapse
|
70
|
The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation. Biochem Biophys Res Commun 2013; 441:418-24. [PMID: 24161390 DOI: 10.1016/j.bbrc.2013.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/15/2013] [Indexed: 11/20/2022]
Abstract
Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.
Collapse
|
71
|
Wang Y, Ma S. Recent Advances in Inhibitors of Bacterial Fatty Acid Synthesis Type II (FASII) System Enzymes as Potential Antibacterial Agents. ChemMedChem 2013; 8:1589-608. [DOI: 10.1002/cmdc.201300209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/30/2013] [Indexed: 12/25/2022]
|
72
|
Stec J, Fomovska A, Afanador GA, Muench SP, Zhou Y, Lai BS, El Bissati K, Hickman MR, Lee PJ, Leed SE, Auschwitz JM, Sommervile C, Woods S, Roberts CW, Rice D, Prigge ST, McLeod R, Kozikowski AP. Modification of triclosan scaffold in search of improved inhibitors for enoyl-acyl carrier protein (ACP) reductase in Toxoplasma gondii. ChemMedChem 2013; 8:1138-60. [PMID: 23776166 DOI: 10.1002/cmdc.201300050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/26/2013] [Indexed: 11/08/2022]
Abstract
Through our focused effort to discover new and effective agents against toxoplasmosis, a structure-based drug design approach was used to develop a series of potent inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) enzyme in Toxoplasma gondii (TgENR). Modifications to positions 5 and 4' of the well-known ENR inhibitor triclosan afforded a series of 29 new analogues. Among the resulting compounds, many showed high potency and improved physicochemical properties in comparison with the lead. The most potent compounds 16 a and 16 c have IC50 values of 250 nM against Toxoplasma gondii tachyzoites without apparent toxicity to the host cells. Their IC50 values against recombinant TgENR were found to be 43 and 26 nM, respectively. Additionally, 11 other analogues in this series had IC50 values ranging from 17 to 130 nM in the enzyme-based assay. With respect to their excellent in vitro activity as well as improved drug-like properties, the lead compounds 16 a and 16 c are deemed to be excellent starting points for the development of new medicines to effectively treat Toxoplasma gondii infections.
Collapse
Affiliation(s)
- Jozef Stec
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Blatti JL, Michaud J, Burkart MD. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 2013; 17:496-505. [PMID: 23683348 DOI: 10.1016/j.cbpa.2013.04.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023]
Abstract
Microalgae are a promising feedstock for biodiesel and other liquid fuels due to their fast growth rate, high lipid yields, and ability to grow in a broad range of environments. However, many microalgae achieve maximal lipid yields only under stress conditions hindering growth and providing compositions not ideal for biofuel applications. Metabolic engineering of algal fatty acid biosynthesis promises to create strains capable of economically producing fungible and sustainable biofuels. The algal fatty acid biosynthetic pathway has been deduced by homology to bacterial and plant systems, and much of our understanding is gleaned from basic studies in these systems. However, successful engineering of lipid metabolism in algae will necessitate a thorough characterization of the algal fatty acid synthase (FAS) including protein-protein interactions and regulation. This review describes recent efforts to engineer fatty acid biosynthesis toward optimizing microalgae as a biodiesel feedstock.
Collapse
Affiliation(s)
- Jillian L Blatti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | | | | |
Collapse
|
74
|
Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapudi S, Navarro P, Cross F, Roberts JM. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS One 2013; 8:e58307. [PMID: 23505484 PMCID: PMC3594298 DOI: 10.1371/journal.pone.0058307] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
We describe how pathway engineering can be used to convert a single intermediate derived from lipid biosynthesis, fatty aldehydes, into a variety of biofuel precursors including alkanes, free fatty acids and wax esters. In cyanobacteria, long-chain acyl-ACPs can be reduced to fatty aldehydes, and then decarbonylated to alkanes. We discovered a cyanobacteria class-3 aldehyde-dehydrogenase, AldE, that was necessary and sufficient to instead oxidize fatty aldehyde precursors into fatty acids. Overexpression of enzymes in this pathway resulted in production of 50 to 100 fold more fatty acids than alkanes, and the fatty acids were secreted from the cell. Co-expression of acyl-ACP reductase, an alcohol-dehydrogenase and a wax-ester-synthase resulted in a third fate for fatty aldehydes: conversion to wax esters, which accumulated as intracellular lipid bodies. Conversion of acyl-ACP to fatty acids using endogenous cyanobacterial enzymes may allow biofuel production without transgenesis.
Collapse
Affiliation(s)
- Brett K. Kaiser
- Matrix Genetics, Seattle, Washington, United States of America
| | | | | | - Cameron Miller
- Matrix Genetics, Seattle, Washington, United States of America
| | - David Lawson
- Matrix Genetics, Seattle, Washington, United States of America
| | - Mark Budde
- Matrix Genetics, Seattle, Washington, United States of America
| | - Paul Warrener
- Matrix Genetics, Seattle, Washington, United States of America
| | - Angel Paredes
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Srinivas Mullapudi
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Patricia Navarro
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Fred Cross
- The Rockefeller University, New York, New York, United States of America
| | - James M. Roberts
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
75
|
Zhang Y, Ning F, Li X, Teng M. Structural insights into cofactor recognition of yeast mitochondria 3-oxoacyl-ACP reductase OAR1. IUBMB Life 2013; 65:154-62. [PMID: 23300157 DOI: 10.1002/iub.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 11/09/2022]
Abstract
3-Oxoacyl-(acyl-carrier-protein) reductase (OAR1 or FabG, EC.1.1.1.100) is responsible for the first reductive step in fatty acid biosynthesis using Nicotinamide Adenine Dinucleotide Phosphate (NADPH) as a cofactor. Recent studies suggest there is a fatty acid synthetase II pathway that consists of a series of separate enzymes in yeast mitochondrion. Here, we present the crystal structure of the yeast mitochondria OAR1 (ymtOAR1) alone in apo-form at 2.60 Å and complexed with NADPH at 2.10 Å resolution. Unlike the reported tetrameric OARs, ymtOAR1 forms a homodimer due to the different fold. The enzyme generates conformational changes upon NADPH binding to the active site. Moreover, two different cofactor-binding patterns are observed from two forms of complex crystals, and structural analysis implies the adenine end of cofactor may recognize enzyme prior to nicotinaminde end. Additionally, biochemical studies suggest Arg14 is important for cofactor recognition of ymtOAR1.
Collapse
Affiliation(s)
- YuJie Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | |
Collapse
|
76
|
Murtas G. Early self-reproduction, the emergence of division mechanisms in protocells. MOLECULAR BIOSYSTEMS 2012; 9:195-204. [PMID: 23232904 DOI: 10.1039/c2mb25375e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic Biology approaches are proposing model systems and providing experimental evidences that life can arise as spontaneous chemical self-assembly process where the ability to reproduce itself is an essential feature of the living system. The appearance of early cells has required an amphiphilic membrane compartment to confine molecular information against diffusion, and the ability to self-replicate the boundary layer and the genetic information. The initial spontaneous self-replication mechanisms based on thermodynamic instability would have evolved in a prebiotic and later biological catalysis. Early studies demonstrate that fatty acids spontaneously assemble into bilayer membranes, building vesicles able to grow by incorporation of free lipid molecules and divide. Early replication mechanisms may have seen inorganic molecules playing a role as the first catalysts. The emergence of a short ribozyme or short catalytic peptide may have initiated the first prebiotic membrane lipid synthesis required for vesicle growth. The evolution of early catalysts towards the simplest translation machine to deliver proteins from RNA sequences was likely to give early birth to one single enzyme controlling protocell membrane division. The cell replication process assisted by complex enzymes for lipid synthesis is the result of evolved pathways in early cells. Evolution from organic molecules to protocells and early cells, thus from chemistry to biology, may have occurred in and out of the boundary layer. Here we review recent experimental work describing membrane and vesicle division mechanisms based on chemico-physical spontaneous processes, inorganic early catalysis and enzyme based mechanisms controlling early protocell division and finally the feedback from minimal genome studies.
Collapse
Affiliation(s)
- Giovanni Murtas
- Istituto di Farmacologia Traslazionale, CNR, via fosso del Cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
77
|
Lin H, Wang Q, Shen Q, Zhan J, Zhao Y. Genetic engineering of microorganisms for biodiesel production. Bioengineered 2012; 4:292-304. [PMID: 23222170 DOI: 10.4161/bioe.23114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Collapse
Affiliation(s)
- Hui Lin
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou, China; Institute of Plant Science; College of Life Sciences; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|
78
|
Kung Y, Runguphan W, Keasling JD. From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 2012; 1:498-513. [PMID: 23656227 DOI: 10.1021/sb300074k] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amid grave concerns over global climate change and with increasingly strained access to fossil fuels, the synthetic biology community has stepped up to the challenge of developing microbial platforms for the production of advanced biofuels. The adoption of gasoline, diesel, and jet fuel alternatives derived from microbial sources has the potential to significantly limit net greenhouse gas emissions. In this effort, great strides have been made in recent years toward the engineering of microorganisms to produce transportation fuels derived from alcohol, fatty acid, and isoprenoid biosynthesis. We provide an overview of the biosynthetic pathways devised in the strain development of biofuel-producing microorganisms. We also highlight many of the commonly used and newly devised engineering strategies that have been employed to identify and overcome pathway bottlenecks and problems of toxicity to maximize production titers.
Collapse
Affiliation(s)
- Yan Kung
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Weerawat Runguphan
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Chemical and Biomolecular Engineering and Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
79
|
Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays. Appl Environ Microbiol 2012; 78:8611-22. [PMID: 23042167 DOI: 10.1128/aem.02111-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhamnolipids have multiple potential applications as "green" surfactants for industry, remediation, and medicine. As a result, they have been intensively investigated to add to our understanding of their biosynthesis and improve yields. Several studies have noted that the addition of a fatty acid cosubstrate increases rhamnolipid yields, but a metabolic explanation has not been offered, partly because biosynthesis studies to date have used sugar or sugar derivatives as the carbon source. The objective of this study was to investigate the role of fatty acid cosubstrates in improving rhamnolipid biosynthesis. A combination of stable isotope tracing and gene expression assays was used to identify lipid precursors and potential lipid metabolic pathways used in rhamnolipid synthesis when fatty acid cosubstrates are present. To this end, we compared the rhamnolipids produced and their yields using either glucose alone or glucose and octadecanoic acid-d(35) as cosubstrates. Using a combination of sugar and fatty acids, the rhamnolipid yield was significantly higher (i.e., doubled) than when glucose was used alone. Two patterns of deuterium incorporation (either 1 or 15 deuterium atoms) in a single Rha-C(10) lipid chain were observed for octadecanoic acid-d(35) treatment, indicating that in the presence of a fatty acid cosubstrate, both de novo fatty acid synthesis and β-oxidation are used to provide lipid precursors for rhamnolipids. Gene expression assays showed a 200- to 600-fold increase in the expression of rhlA and rhlB rhamnolipid biosynthesis genes and a more modest increase of 3- to 4-fold of the fadA β-oxidation pathway gene when octadecanoic acid was present. Taken together, these results suggest that the simultaneous use of de novo fatty acid synthesis and β-oxidation pathways allows for higher production of lipid precursors, resulting in increased rhamnolipid yields.
Collapse
|
80
|
Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:495-502. [PMID: 22981714 DOI: 10.1016/j.bbalip.2012.08.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 12/15/2022]
Abstract
Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest that these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
81
|
Lipidomic analysis of bacterial plasmalogens. Folia Microbiol (Praha) 2012; 57:463-72. [DOI: 10.1007/s12223-012-0178-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/13/2012] [Indexed: 11/27/2022]
|
82
|
Doan TTN, Kim JK, Mac QK, Chung C, Sampath N, Kim JG, Ahn YJ, Kang LW. Crystallization and preliminary X-ray crystallographic analysis of β-ketoacyl-ACP synthase I (XoFabB) from Xanthomonas oryzae pv. oryzae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1548-50. [PMID: 22139163 DOI: 10.1107/s1744309111040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/03/2011] [Indexed: 11/11/2022]
Abstract
The proteins in the fatty-acid synthesis pathway in bacteria have significant potential as targets for the development of antibacterial agents. An essential elongation step in fatty-acid synthesis is performed by β-ketoacyl-acyl carrier protein synthase I (FabB). The organism Xanthomonas oryzae pv. oryzae (Xoo) causes a destructive bacterial blight disease of rice. The XoFabB protein from Xoo was expressed, purified and crystallized for the three-dimensional structure determination that is essential for the development of specific inhibitors of the enzyme. An XoFabB crystal diffracted to 3.0 Å resolution and belonged to the tetragonal space group P4(1), with unit-cell parameters a = b = 82.2, c = 233.2 Å. Assuming that the crystallographic structure contains four molecules in the asymmetric unit, the corresponding V(M) would be 2.18 Å(3) Da(-1) and the solvent content would be 43.5%. The initial structure was determined by the MOLREP program with an R factor of 44.0% and does contain four monomers in the asymmetric unit.
Collapse
Affiliation(s)
- Thanh Thi Ngoc Doan
- Department of Advanced Technology Fusion, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
83
|
In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:18643-8. [PMID: 22042840 DOI: 10.1073/pnas.1110852108] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microbial fatty acid derivatives are emerging as promising alternatives to fossil fuel derived transportation fuels. Among bacterial fatty acid synthases (FAS), the Escherichia coli FAS is perhaps the most well studied, but little is known about its steady-state kinetic behavior. Here we describe the reconstitution of E. coli FAS using purified protein components and report detailed kinetic analysis of this reconstituted system. When all ketosynthases are present at 1 μM, the maximum rate of free fatty acid synthesis of the FAS exceeded 100 μM/ min. The steady-state turnover frequency was not significantly inhibited at high concentrations of any substrate or cofactor. FAS activity was saturated with respect to most individual protein components when their concentrations exceeded 1 μM. The exceptions were FabI and FabZ, which increased FAS activity up to concentrations of 10 μM; FabH and FabF, which decreased FAS activity at concentrations higher than 1 μM; and holo-ACP and TesA, which gave maximum FAS activity at 30 μM concentrations. Analysis of the S36T mutant of the ACP revealed that the unusual dependence of FAS activity on holo-ACP concentration was due, at least in part, to the acyl-phosphopantetheine moiety. MALDI-TOF mass spectrometry analysis of the reaction mixture further revealed medium and long chain fatty acyl-ACP intermediates as predominant ACP species. We speculate that one or more of such intermediates are key allosteric regulators of FAS turnover. Our findings provide a new basis for assessing the scope and limitations of using E. coli as a biocatalyst for the production of diesel-like fuels.
Collapse
|
84
|
Abstract
Carboxylases are among the most important enzymes in the biosphere, because they catalyze a key reaction in the global carbon cycle: the fixation of inorganic carbon (CO₂). This minireview discusses the physiological roles of carboxylases in different microbial pathways that range from autotrophy, carbon assimilation, and anaplerosis to biosynthetic and redox-balancing functions. In addition, the current and possible future uses of carboxylation reactions in synthetic biology are discussed. Such uses include the possible transformation of the greenhouse gas carbon dioxide into value-added compounds and the production of novel antibiotics.
Collapse
|
85
|
Sheu BC, Lin CC, Fu YH, Lee SY, Lai HC, Wu RS, Liu CH, Tsai JC, Lin S. Unraveling the role of the rssC gene of Serratia marcescens by atomic force microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:755-763. [PMID: 20961481 DOI: 10.1017/s1431927610093943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The product and direct role of the rssC gene of Serratia marcescens is unknown. For unraveling the role of the rssC gene, atomic force microscopy has been used to identify the surfaces of intact S. marcescens wild-type CH-1 cells and rssC mutant CH-1ΔC cells. The detailed surface topographies were directly visualized, and quantitative measurements of the physical properties of the membrane structures were provided. CH-1 and CH-1ΔC cells were observed before and after treatment with lysozyme, and their topography-related parameters, e.g., a valley-to-peak distance, mean height, surface roughness, and surface root-mean-square values, were defined and compared. The data obtained suggest that the cellular surface topography of mutant CH-1ΔC becomes rougher and more precipitous than that of wild-type CH-1 cells. Moreover, it was found that, compared with native wild-type CH-1, the cellular surface topography of lysozyme-treated CH-1 was not changed profoundly. The product of the rssC gene is thus predicted to be mainly responsible for fatty-acid biosynthesis of the S. marcescens outer membrane. This study represents the first direct observation of the structural changes in membranes of bacterial mutant cells and offers a new prospect for predicting gene expression in bacterial cells.
Collapse
Affiliation(s)
- Bor-Ching Sheu
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, 100-51, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V. Autoluminescent plants. PLoS One 2010; 5:e15461. [PMID: 21103397 PMCID: PMC2980496 DOI: 10.1371/journal.pone.0015461] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/28/2010] [Indexed: 11/19/2022] Open
Abstract
Prospects of obtaining plants glowing in the dark have captivated the imagination of scientists and layman alike. While light emission has been developed into a useful marker of gene expression, bioluminescence in plants remained dependent on externally supplied substrate. Evolutionary conservation of the prokaryotic gene expression machinery enabled expression of the six genes of the lux operon in chloroplasts yielding plants that are capable of autonomous light emission. This work demonstrates that complex metabolic pathways of prokaryotes can be reconstructed and function in plant chloroplasts and that transplastomic plants can emit light that is visible by naked eye.
Collapse
Affiliation(s)
- Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, United States of America.
| | | | | | | | | |
Collapse
|
87
|
Goldfine H. The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res 2010; 49:493-8. [DOI: 10.1016/j.plipres.2010.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 02/01/2023]
|
88
|
Tipparaju SK, Muench SP, Mui EJ, Ruzheinikov SN, Lu JZ, Hutson SL, Kirisits MJ, Prigge ST, Roberts CW, Henriquez FL, Kozikowski AP, Rice DW, McLeod RL. Identification and development of novel inhibitors of Toxoplasma gondii enoyl reductase. J Med Chem 2010; 53:6287-300. [PMID: 20698542 DOI: 10.1021/jm9017724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxoplasmosis causes significant morbidity and mortality, and yet available medicines are limited by toxicities and hypersensitivity. Because improved medicines are needed urgently, rational approaches were used to identify novel lead compounds effective against Toxoplasma gondii enoyl reductase (TgENR), a type II fatty acid synthase enzyme essential in parasites but not present in animals. Fifty-three compounds, including three classes that inhibit ENRs, were tested. Six compounds have antiparasite MIC(90)s < or = 6 microM without toxicity to host cells, three compounds have IC(90)s < 45 nM against recombinant TgENR, and two protect mice. To further understand the mode of inhibition, the cocrystal structure of one of the most promising candidate compounds in complex with TgENR has been determined to 2.7 A. The crystal structure reveals that the aliphatic side chain of compound 19 occupies, as predicted, space made available by replacement of a bulky hydrophobic residue in homologous bacterial ENRs by Ala in TgENR. This provides a paradigm, conceptual foundation, reagents, and lead compounds for future rational development and discovery of improved inhibitors of T. gondii.
Collapse
Affiliation(s)
- Suresh K Tipparaju
- Drug Discovery Program, Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
In all organisms, fatty acid synthesis is achieved in variations of a common cyclic reaction pathway by stepwise, iterative elongation of precursors with two-carbon extender units. In bacteria, all individual reaction steps are carried out by monofunctional dissociated enzymes, whereas in eukaryotes the fatty acid synthases (FASs) have evolved into large multifunctional enzymes that integrate the whole process of fatty acid synthesis. During the last few years, important advances in understanding the structural and functional organization of eukaryotic FASs have been made through a combination of biochemical, electron microscopic and X-ray crystallographic approaches. They have revealed the strikingly different architectures of the two distinct types of eukaryotic FASs, the fungal and the animal enzyme system. Fungal FAS is a 2·6 MDa α₆β₆ heterododecamer with a barrel shape enclosing two large chambers, each containing three sets of active sites separated by a central wheel-like structure. It represents a highly specialized micro-compartment strictly optimized for the production of saturated fatty acids. In contrast, the animal FAS is a 540 kDa X-shaped homodimer with two lateral reaction clefts characterized by a modular domain architecture and large extent of conformational flexibility that appears to contribute to catalytic efficiency.
Collapse
|
90
|
Abstract
FA (fatty acid) synthesis represents a central, conserved process by which acyl chains are produced for utilization in a number of end-products such as biological membranes. Central to FA synthesis, the ACP (acyl carrier protein) represents the cofactor protein that covalently binds all fatty acyl intermediates via a phosphopantetheine linker during the synthesis process. FASs (FA synthases) can be divided into two classes, type I and II, which are primarily present in eukaryotes and bacteria/plants respectively. They are characterized by being composed of either large multifunctional polypeptides in the case of type I or consisting of discretely expressed mono-functional proteins in the type II system. Owing to this difference in architecture, the FAS system has been thought to be a good target for the discovery of novel antibacterial agents, as exemplified by the antituberculosis drug isoniazid. There have been considerable advances in this field in recent years, including the first high-resolution structural insights into the type I mega-synthases and their dynamic behaviour. Furthermore, the structural and dynamic properties of an increasing number of acyl-ACPs have been described, leading to an improved comprehension of this central carrier protein. In the present review we discuss the state of the understanding of FA synthesis with a focus on ACP. In particular, developments made over the past few years are highlighted.
Collapse
|
91
|
Arabolaza A, D'Angelo M, Comba S, Gramajo H. FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol Microbiol 2010; 78:47-63. [PMID: 20624224 DOI: 10.1111/j.1365-2958.2010.07274.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is essential for bacterial survival and adaptation to different environments. The regulation of fatty acid biosynthesis is therefore crucial for maintaining the correct composition and biophysical properties of cell membranes. This regulation implicates a biochemical control of key enzymes and a transcriptional regulation of genes involved in lipid metabolism. In Streptomyces coelicolor we found that control of lipid homeostasis is accomplished, at least in part, through the transcriptional regulation of fatty acid biosynthetic genes. A novel transcription factor, FasR (SCO2386), controls expression of fabDHPF operon and lies immediately upstream of fabD, in a cluster of genes that is highly conserved within actinomycetes. Disruption of fasR resulted in a mutant strain, with severe growth defects and a delay in the timing of morphological and physiological differentiation. Expression of fab genes was downregulated in the fasR mutant, indicating a role for this transcription factor as an activator. Consequently, the mutant showed a significant drop in fatty acid synthase activity and triacylglyceride accumulation. FasR binds specifically to a DNA sequence containing fabDHPF promoter region, both in vivo and in vitro. These data provide the first example of positive regulation of genes encoding core proteins of saturated fatty acid synthase complex.
Collapse
Affiliation(s)
- Ana Arabolaza
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531 (S2002LRK) Rosario, Argentina
| | | | | | | |
Collapse
|
92
|
Wu D, Wu XD, You XF, Ma XF, Tian WX. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid. Phytother Res 2010; 24 Suppl 1:S35-41. [PMID: 19444866 DOI: 10.1002/ptr.2873] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is important to develop new antibiotics aimed at novel targets. The investigation found that the leaf extracts from five maples (Acer platanoides, Acer campestre, Acer rubrum, Acer saccharum and Acer truncatum Bunge collected in Denmark, Canada and China) and their component tannic acid displayed antibacterial ability against 24 standard bacteria strains with the minimum inhibitory concentration of 0.3-8.0 mg/mL. Unlike the standard antibiotic levofloxacin (LFX), these samples inhibited Gram-positive bacteria more effectively than they inhibited Gram-negative bacteria. These samples effectively inhibited two antidrug bacterial strains. The results show that these samples inhibit bacteria by a different mechanism from LFX. These samples potently inhibited b-ketoacyl-ACP reductase (FabG), which is an important enzyme in bacterial fatty acid synthesis. Tannic acid showed the strongest inhibition on FabG with a half inhibition concentration of 0.78 microM (0.81 microg/mL). Furthermore, tannic acid and two maple leaf extracts showed time-dependent irreversible inhibition of FabG. These three samples also exhibited better inhibition on bacteria. It is suggested that FabG is the antibacteria target of maple leaf extracts and tannic acid, and both reversible and irreversible inhibitions of FabG are important for the antibacterial effect.
Collapse
Affiliation(s)
- Dan Wu
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | | | | | | | | |
Collapse
|
93
|
Chan DI, Tieleman DP, Vogel HJ. Molecular Dynamics Simulations of β-Ketoacyl-, β-Hydroxyacyl-, and trans-2-Enoyl-Acyl Carrier Proteins of Escherichia coli. Biochemistry 2010; 49:2860-8. [DOI: 10.1021/bi901713r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David I. Chan
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
94
|
Wu BN, Zhang YM, Rock CO, Zheng JJ. Structural modification of acyl carrier protein by butyryl group. Protein Sci 2009; 18:240-6. [PMID: 19177367 DOI: 10.1002/pro.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes known as the type II fatty acid synthase. Acyl carrier protein (ACP) shuttles the acyl intermediates between individual pathway enzymes. In this study, we determined the solution structures of three different forms of ACP, apo-ACP, ACP, and butyryl-ACP under identical experimental conditions. The structural studies revealed that attachment of butyryl acyl intermediate to ACP alters the conformation of ACP. This finding supports the more general notion that the attachment of different acyl intermediates alters the ACP structure to facilitate their recognition and turnover by the appropriate target enzymes.
Collapse
Affiliation(s)
- Bai-Nan Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
95
|
Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc Natl Acad Sci U S A 2009; 106:12580-6. [PMID: 19617564 DOI: 10.1073/pnas.0903030106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Large hydrogen-isotopic (D/H) fractionations between lipids and growth water have been observed in most organisms studied to date. These fractionations are generally attributed to isotope effects in the biosynthesis of lipids, and are frequently assumed to be approximately constant for the purpose of reconstructing climatic variables. Here, we report D/H fractionations between lipids and water in 4 cultured members of the phylum Proteobacteria, and show that they can vary by up to 500 per thousand in a single organism. The variation cannot be attributed to lipid biosynthesis as there is no significant change in these pathways between cultures, nor can it be attributed to changing substrate D/H ratios. More importantly, lipid/water D/H fractionations vary systematically with metabolism: chemoautotrophic growth (approximately -200 to -400 per thousand), photoautotrophic growth (-150 to -250 per thousand), heterotrophic growth on sugars (0 to -150 per thousand), and heterotrophic growth on TCA-cycle precursors and intermediates (-50 to +200 per thousand) all yield different fractionations. We hypothesize that the D/H ratios of lipids are controlled largely by those of NADPH used for biosynthesis, rather than by isotope effects within the lipid biosynthetic pathway itself. Our results suggest that different central metabolic pathways yield NADPH--and indirectly lipids--with characteristic isotopic compositions. If so, lipid deltaD values could become an important biogeochemical tool for linking lipids to energy metabolism, and would yield information that is highly complementary to that provided by (13)C about pathways of carbon fixation.
Collapse
|
96
|
Jerga A, Rock CO. Acyl-Acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J Biol Chem 2009; 284:15364-8. [PMID: 19376778 PMCID: PMC2708833 DOI: 10.1074/jbc.c109.002410] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long-chain acyl-acyl carrier proteins (acyl-ACP) are established biochemical regulators of bacterial type II fatty acid synthases due to their ability to feedback-inhibit the early steps in the biosynthetic pathway. In Streptococcus pneumoniae, the expression of the fatty acid synthase (fab) genes is controlled by a helix-turn-helix transcriptional repressor called FabT. A screen of pathway intermediates identified acyl-ACP as a ligand that increased the affinity of FabT for DNA. FabT bound to a wide range of acyl-ACP chain lengths in the absence of DNA, but only the long-chain acyl-ACPs increase the affinity of FabT for DNA. FabT affinity for DNA increased with increasing acyl-ACP chain length with cis-vaccenoyl-ACP being the most effective ligand. Thus, FabT is a new ACP-interacting partner that acts as a transcriptional rheostat to fine tune the expression of the fab genes based on the demand for fatty acids.
Collapse
Affiliation(s)
- Agoston Jerga
- From the Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
97
|
Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 2009; 141:31-41. [PMID: 19428728 DOI: 10.1016/j.jbiotec.2009.02.018] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/15/2009] [Accepted: 02/20/2009] [Indexed: 01/03/2023]
Abstract
This paper compares three possible strategies for enhanced lipid overproduction in microalgae: the biochemical engineering (BE) approaches, the genetic engineering (GE) approaches, and the transcription factor engineering (TFE) approaches. The BE strategy relies on creating a physiological stress such as nutrient-starvation or high salinity to channel metabolic fluxes to lipid accumulation. The GE strategy exploits our understanding to the lipid metabolic pathway, especially the rate-limiting enzymes, to create a channelling of metabolites to lipid biosynthesis by overexpressing one or more key enzymes in recombinant microalgal strains. The TFE strategy is an emerging technology aiming at enhancing the production of a particular metabolite by means of overexpressing TFs regulating the metabolic pathways involved in the accumulation of target metabolites. Currently, BE approaches are the most established in microalgal lipid production. The TFE is a very promising strategy because it may avoid the inhibitive effects of the BE approaches and the limitation of "secondary bottlenecks" as commonly observed in the GE approaches. However, it is still a novel concept to be investigated systematically.
Collapse
|
98
|
Xu Z, Metsä-Ketelä M, Hertweck C. Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives. J Biotechnol 2009; 140:107-13. [DOI: 10.1016/j.jbiotec.2008.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/08/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
99
|
Sado-Kamdem SL, Vannini L, Guerzoni ME. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int J Food Microbiol 2009; 129:288-94. [DOI: 10.1016/j.ijfoodmicro.2008.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 11/26/2008] [Accepted: 12/09/2008] [Indexed: 11/25/2022]
|
100
|
Huang H, Wu D, Tian WX, Ma XF, Wu XD. Antimicrobial effect by extracts of rhizome ofAlpinia officinarumHance may relate to its inhibition of β-ketoacyl-ACP reductase. J Enzyme Inhib Med Chem 2008; 23:362-8. [DOI: 10.1080/14756360701622099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hui Huang
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dan Wu
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Wei-Xi Tian
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Feng Ma
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao-Dong Wu
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|