51
|
Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:14841-6. [PMID: 22927411 DOI: 10.1073/pnas.1212454109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.
Collapse
|
52
|
Wang K, Schmied WH, Chin JW. Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl 2012; 51:2288-97. [PMID: 22262408 DOI: 10.1002/anie.201105016] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/10/2022]
Abstract
The genetic code of cells is near-universally triplet, and since many ribosomal mutations are lethal, changing the cellular ribosome to read nontriplet codes is challenging. Herein we review work on the incorporation of unnatural amino acids into proteins in response to quadruplet codons, and the creation of an orthogonal translation system in the cell that uses an evolved orthogonal ribosome to efficiently direct the incorporation of unnatural amino acids in response to quadruplet codons. Using this system multiple distinct unnatural amino acids have been incorporated and used to genetically program emergent properties into recombinant proteins. Extension of approaches to incorporate multiple unnatural amino acids may allow the combinatorial biosynthesis of materials and therapeutics, and drive investigations into whether life with additional genetically encoded polymers can evolve to perform functions that natural biological systems cannot.
Collapse
Affiliation(s)
- Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Hills Rd, Cambridge, CB2 0QH UK
| | | | | |
Collapse
|
53
|
Wang K, Schmied WH, Chin JW. Die Umprogrammierung des genetischen Codes: vom Triplett- zum Quadruplettcode. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201105016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Baker PJ, Montclare JK. Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase. Chembiochem 2011; 12:1845-8. [DOI: 10.1002/cbic.201100221] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 12/13/2022]
|
55
|
Spliced leader RNAs, mitochondrial gene frameshifts and multi-protein phylogeny expand support for the genus Perkinsus as a unique group of alveolates. PLoS One 2011; 6:e19933. [PMID: 21629701 PMCID: PMC3101222 DOI: 10.1371/journal.pone.0019933] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/19/2011] [Indexed: 01/04/2023] Open
Abstract
The genus Perkinsus occupies a precarious phylogenetic position. To gain a better understanding of the relationship between perkinsids, dinoflagellates and other alveolates, we analyzed the nuclear-encoded spliced-leader (SL) RNA and mitochondrial genes, intron prevalence, and multi-protein phylogenies. In contrast to the canonical 22-nt SL found in dinoflagellates (DinoSL), P. marinus has a shorter (21-nt) and a longer (22-nt) SL with slightly different sequences than DinoSL. The major SL RNA transcripts range in size between 80–83 nt in P. marinus, and ∼83 nt in P. chesapeaki, significantly larger than the typical ≤56-nt dinoflagellate SL RNA. In most of the phylogenetic trees based on 41 predicted protein sequences, P. marinus branched at the base of the dinoflagellate clade that included the ancient taxa Oxyrrhis and Amoebophrya, sister to the clade of apicomplexans, and in some cases clustered with apicomplexans as a sister to the dinoflagellate clade. Of 104 Perkinsus spp. genes examined 69.2% had introns, a higher intron prevalence than in dinoflagellates. Examination of Perkinsus spp. mitochondrial cytochrome B and cytochrome C oxidase subunit I genes and their cDNAs revealed no mRNA editing, but these transcripts can only be translated when frameshifts are introduced at every AGG and CCC codon as if AGGY codes for glycine and CCCCU for proline. These results, along with the presence of the numerous uncharacterized ‘marine alveolate group I' and Perkinsus-like lineages separating perkinsids from core dinoflagellates, expand support for the affiliation of the genus Perkinsus with an independent lineage (Perkinsozoa) positioned between the phyla of Apicomplexa and Dinoflagellata.
Collapse
|
56
|
Importance of single molecular determinants in the fidelity of expanded genetic codes. Proc Natl Acad Sci U S A 2011; 108:1320-5. [PMID: 21224416 DOI: 10.1073/pnas.1012276108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The site-selective encoding of noncanonical amino acids (NAAs) is a powerful technique for the installation of novel chemical functional groups in proteins. This is often achieved by recoding a stop codon and requires two additional components: an evolved aminoacyl tRNA synthetase (AARS) and a cognate tRNA. Analysis of the most successful AARSs reveals common characteristics. The highest fidelity NAA systems derived from the Methanocaldococcus jannaschii tyrosyl AARS feature specific mutations to two residues reported to interact with the hydroxyl group of the substrate tyrosine. We demonstrate that the restoration of just one of these determinants for amino acid specificity results in the loss of fidelity as the evolved AARSs become noticeably promiscuous. These results offer a partial explanation of a recently retracted strategy for the synthesis of glycoproteins. Similarly, we reinvestigated a tryptophanyl AARS reported to allow the site-selective incorporation of 5-hydroxy tryptophan within mammalian cells. In multiple experiments, the enzyme displayed elements of promiscuity despite its previous characterization as a high fidelity enzyme. Given the many similarities of the TyrRSs and TrpRSs reevaluated here, our findings can be largely combined, and in doing so they reinforce the long-established central dogma regarding the molecular basis by which these enzymes contribute to the fidelity of translation. Thus, our view is that the central claims of fidelity reported in several NAA systems remain unproven and unprecedented.
Collapse
|
57
|
|
58
|
Masuda I, Matsuzaki M, Kita K. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Res 2010; 38:6186-94. [PMID: 20507907 PMCID: PMC2952869 DOI: 10.1093/nar/gkq449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
59
|
Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 2010; 464:441-4. [PMID: 20154731 DOI: 10.1038/nature08817] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 01/07/2010] [Indexed: 11/09/2022]
Abstract
The in vivo, genetically programmed incorporation of designer amino acids allows the properties of proteins to be tailored with molecular precision. The Methanococcus jannaschii tyrosyl-transfer-RNA synthetase-tRNA(CUA) (MjTyrRS-tRNA(CUA)) and the Methanosarcina barkeri pyrrolysyl-tRNA synthetase-tRNA(CUA) (MbPylRS-tRNA(CUA)) orthogonal pairs have been evolved to incorporate a range of unnatural amino acids in response to the amber codon in Escherichia coli. However, the potential of synthetic genetic code expansion is generally limited to the low efficiency incorporation of a single type of unnatural amino acid at a time, because every triplet codon in the universal genetic code is used in encoding the synthesis of the proteome. To encode efficiently many distinct unnatural amino acids into proteins we require blank codons and mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs that recognize unnatural amino acids and decode the new codons. Here we synthetically evolve an orthogonal ribosome (ribo-Q1) that efficiently decodes a series of quadruplet codons and the amber codon, providing several blank codons on an orthogonal messenger RNA, which it specifically translates. By creating mutually orthogonal aminoacyl-tRNA synthetase-tRNA pairs and combining them with ribo-Q1 we direct the incorporation of distinct unnatural amino acids in response to two of the new blank codons on the orthogonal mRNA. Using this code, we genetically direct the formation of a specific, redox-insensitive, nanoscale protein cross-link by the bio-orthogonal cycloaddition of encoded azide- and alkyne-containing amino acids. Because the synthetase-tRNA pairs used have been evolved to incorporate numerous unnatural amino acids, it will be possible to encode more than 200 unnatural amino acid combinations using this approach. As ribo-Q1 independently decodes a series of quadruplet codons, this work provides foundational technologies for the encoded synthesis and synthetic evolution of unnatural polymers in cells.
Collapse
Affiliation(s)
- Heinz Neumann
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
60
|
Baranov PV, Venin M, Provan G. Codon size reduction as the origin of the triplet genetic code. PLoS One 2009; 4:e5708. [PMID: 19479032 PMCID: PMC2682656 DOI: 10.1371/journal.pone.0005708] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/22/2009] [Indexed: 11/26/2022] Open
Abstract
The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon-anticodon interactions.
Collapse
Affiliation(s)
- Pavel V Baranov
- Biochemistry Department, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
61
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
62
|
Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. ACTA ACUST UNITED AC 2009; 15:1187-97. [PMID: 19022179 DOI: 10.1016/j.chembiol.2008.10.004] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 09/04/2008] [Accepted: 10/02/2008] [Indexed: 11/23/2022]
Abstract
Pyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNA(Pyl). In this study, N(epsilon)-(tert-butyloxycarbonyl)-L-lysine (BocLys) and N(epsilon)-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNA(Pyl) by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an N(epsilon)-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher in vitro aminoacylation and in vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the in vitro aminoacylation activity for N(epsilon)-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing N(epsilon)-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation.
Collapse
|
63
|
|
64
|
Näsvall SJ, Nilsson K, Björk GR. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance. J Mol Biol 2008; 385:350-67. [PMID: 19013179 DOI: 10.1016/j.jmb.2008.10.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 11/15/2022]
Abstract
If a ribosome shifts to an alternative reading frame during translation, the information in the message is usually lost. We have selected mutants of Salmonella typhimurium with alterations in tRNA(cmo5UGG)(Pro) that cause increased frameshifting when present in the ribosomal P-site. In 108 such mutants, two parts of the tRNA molecule are altered: the anticodon stem and the D-arm, including its tertiary interactions with the variable arm. Some of these alterations in tRNA(cmo5UGG)(Pro) are in close proximity to ribosomal components in the P-site. The crystal structure of the 30S subunit suggests that the C-terminal end of ribosomal protein S9 contacts nucleotides 32-34 of peptidyl-tRNA. We have isolated mutants with defects in the C-terminus of S9 that induce +1 frameshifting. Combinations of changes in tRNA(cmo5UGG)(Pro) and S9 suggest that an interaction occurs between position 32 of the peptidyl-tRNA and the C-terminal end of S9. Together, our results suggest that the cause of frameshifting is an aberrant interaction between the peptidyl-tRNA and the P-site environment. We suggest that the "ribosomal grip" of the peptidyl-tRNA is pivotal for maintaining the reading frame.
Collapse
MESH Headings
- Frameshifting, Ribosomal
- Models, Molecular
- Mutation, Missense
- Nucleic Acid Conformation
- Point Mutation
- Protein Biosynthesis
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Pro/genetics
- RNA, Transfer, Pro/metabolism
- Reading Frames
- Ribosomal Protein S9
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Salmonella typhimurium/physiology
Collapse
Affiliation(s)
- S Joakim Näsvall
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
65
|
Christian T, Hou YM. Distinct determinants of tRNA recognition by the TrmD and Trm5 methyl transferases. J Mol Biol 2007; 373:623-32. [PMID: 17868690 PMCID: PMC2064070 DOI: 10.1016/j.jmb.2007.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 11/24/2022]
Abstract
TrmD and Trm5 are, respectively, the bacterial and eukarya/archaea methyl transferases that catalyze transfer of the methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37 in tRNA to synthesize m1G37-tRNA. The m1G37 modification prevents tRNA frameshifts on the ribosome by assuring correct codon-anticodon pairings, and thus is essential for the fidelity of protein synthesis. Although TrmD and Trm5 are derived from unrelated AdoMet families and recognize the cofactor using distinct motifs, the question of whether they select G37 on tRNA by the same, or different, mechanism has not been answered. Here we address this question by kinetic analysis of tRNA truncation mutants that lack domains typically present in the canonical L shaped structure, and by evaluation of the site of modification on tRNA variants with an expanded or contracted anticodon loop. With both experimental approaches, we show that TrmD and Trm5 exhibit separate and distinct mode of tRNA recognition, suggesting that they evolved by independent and non-overlapping pathways from their unrelated AdoMet families. Our results also shed new light onto the significance of the m1G37 modification in the controversial quadruplet-pairing model of tRNA frameshift suppressors.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
66
|
Sugiyama M, Hong Z, Greenberg WA, Wong CH. In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD). Bioorg Med Chem 2007; 15:5905-11. [PMID: 17572092 PMCID: PMC1992742 DOI: 10.1016/j.bmc.2007.05.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 05/15/2007] [Accepted: 05/30/2007] [Indexed: 11/27/2022]
Abstract
Dihydroxyacetone phosphate (DHAP)-dependent aldolases have been widely used for organic synthesis. The major drawback of DHAP-dependent aldolases is their strict donor substrate specificity toward DHAP, which is expensive and unstable. Here we report the development of an in vivo selection system for the directed evolution of the DHAP-dependent aldolase, L-rhamnulose-1-phosphate aldolase (RhaD), to alter its donor substrate specificity from DHAP to dihydroxyacetone (DHA). We also report preliminary results on mutants that were discovered with this screen. A strain deficient in the L-rhamnose metabolic pathway in Escherichia coli (DeltarhaDAB, DE3) was constructed and used as a selection host strain. Co-expression of L-rhamnose isomerase (rhaA) and rhaD in the selection host did not restore its growth on minimal plate supplemented with L-rhamnose as a sole carbon source, because of the lack of L-rhamnulose kinase (RhaB) activity and the inability of WT RhaD aldolase to use unphosphorylated L-rhamnulose as a substrate. Use of this selection host and co-expression vector system gives us an in vivo selection for the desired mutant RhaD which can cleave unphosphorylated L-rhamnulose and allow the mutant to grow in the minimal media. An error-prone PCR (ep-PCR) library of rhaD gene on the co-expression vector was constructed and introduced into the rha-mutant, and survivors were selected in minimal media with l-rhamnose (MMRha media). An initial round of screening gave mutants allowing the selection strain to grow on MMRha plates. This in vivo selection system allows rapid screening of mutated aldolases that can utilize dihydroxyacetone as a donor substrate.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
67
|
Wang K, Neumann H, Peak-Chew SY, Chin JW. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 2007; 25:770-7. [PMID: 17592474 DOI: 10.1038/nbt1314] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/23/2007] [Indexed: 11/09/2022]
Abstract
In vivo incorporation of unnatural amino acids by amber codon suppression is limited by release factor-1-mediated peptide chain termination. Orthogonal ribosome-mRNA pairs function in parallel with, but independent of, natural ribosomes and mRNAs. Here we show that an evolved orthogonal ribosome (ribo-X) improves tRNA(CUA)-dependent decoding of amber codons placed in orthogonal mRNA. By combining ribo-X, orthogonal mRNAs and orthogonal aminoacyl-tRNA synthetase/tRNA pairs in Escherichia coli, we increase the efficiency of site-specific unnatural amino acid incorporation from approximately 20% to >60% on a single amber codon and from <1% to >20% on two amber codons. We hypothesize that these increases result from a decreased functional interaction of the orthogonal ribosome with release factor-1. This technology should minimize the functional and phenotypic effects of truncated proteins in experiments that use unnatural amino acid incorporation to probe protein function in vivo.
Collapse
Affiliation(s)
- Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | | | | | |
Collapse
|
68
|
Dunham CM, Selmer M, Phelps SS, Kelley AC, Suzuki T, Joseph S, Ramakrishnan V. Structures of tRNAs with an expanded anticodon loop in the decoding center of the 30S ribosomal subunit. RNA (NEW YORK, N.Y.) 2007; 13:817-23. [PMID: 17416634 PMCID: PMC1869038 DOI: 10.1261/rna.367307] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 02/15/2007] [Indexed: 05/14/2023]
Abstract
During translation, some +1 frameshift mRNA sites are decoded by frameshift suppressor tRNAs that contain an extra base in their anticodon loops. Similarly engineered tRNAs have been used to insert nonnatural amino acids into proteins. Here, we report crystal structures of two anticodon stem-loops (ASLs) from tRNAs known to facilitate +1 frameshifting bound to the 30S ribosomal subunit with their cognate mRNAs. ASL(CCCG) and ASL(ACCC) (5'-3' nomenclature) form unpredicted anticodon-codon interactions where the anticodon base 34 at the wobble position contacts either the fourth codon base or the third and fourth codon bases. In addition, we report the structure of ASL(ACGA) bound to the 30S ribosomal subunit with its cognate mRNA. The tRNA containing this ASL was previously shown to be unable to facilitate +1 frameshifting in competition with normal tRNAs (Hohsaka et al. 2001), and interestingly, it displays a normal anticodon-codon interaction. These structures show that the expanded anticodon loop of +1 frameshift promoting tRNAs are flexible enough to adopt conformations that allow three bases of the anticodon to span four bases of the mRNA. Therefore it appears that normal triplet pairing is not an absolute constraint of the decoding center.
Collapse
MESH Headings
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Crystallography, X-Ray
- Frameshifting, Ribosomal
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Thermus thermophilus/genetics
- Thermus thermophilus/metabolism
Collapse
|
69
|
Abstract
Recently, a general method was developed that makes it possible to genetically encode unnatural amino acids with diverse physical, chemical, or biological properties in Escherichia coli, yeast, and mammalian cells. More than 30 unnatural amino acids have been incorporated into proteins with high fidelity and efficiency by means of a unique codon and corresponding tRNA/aminoacyl-tRNA synthetase pair. These include fluorescent, glycosylated, metal-ion-binding, and redox-active amino acids, as well as amino acids with unique chemical and photochemical reactivity. This methodology provides a powerful tool both for exploring protein structure and function in vitro and in vivo and for generating proteins with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- The Jack H. Skirball Center for Chemical Biology & Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
70
|
Walker SE, Fredrick K. Recognition and positioning of mRNA in the ribosome by tRNAs with expanded anticodons. J Mol Biol 2006; 360:599-609. [PMID: 16730356 PMCID: PMC2602952 DOI: 10.1016/j.jmb.2006.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.
Collapse
Affiliation(s)
- Sarah E. Walker
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
71
|
Rodriguez EA, Lester HA, Dougherty DA. In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. Proc Natl Acad Sci U S A 2006; 103:8650-5. [PMID: 16728509 PMCID: PMC1482635 DOI: 10.1073/pnas.0510817103] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific incorporation of unnatural amino acids (UAAs) into proteins is a valuable tool for studying structure-function relationships, incorporating biophysical probes, and elucidating protein-protein interactions. In higher eukaryotic cells, the methodology is currently limited to incorporation of a single UAA in response to a stop codon, which is known as nonsense suppression. Frameshift suppression is a unique methodology for incorporating UAAs in response to quadruplet codons, but currently, it is mostly limited to in vitro protein translation systems. Here, we evaluate the viability of frameshift suppression in Xenopus oocytes. We demonstrate UAA incorporation by using yeast phenylalanine frameshift suppressor (YFFS) tRNAs that recognize two different quadruplet codons (CGGG and GGGU) in vivo. Suppression efficiency of the YFFS tRNAs increases nonlinearly with the amount of injected tRNA, suggesting a significant competition with endogenous, triplet-recognizing tRNA. Both frameshift suppressor tRNAs are less efficient than the amber suppressor tRNA THG73 (Tetrahymena thermophila G73), which has been used extensively for UAA incorporation in Xenopus oocytes. However, the two YFFS tRNAs are more "orthogonal" to the Xenopus system than THG73, and they offer a viable replacement when suppressing at promiscuous sites. To illustrate the potential of combining nonsense and frameshift suppression, we have site-specifically incorporated two and three UAAs simultaneously into a neuroreceptor expressed in vivo.
Collapse
Affiliation(s)
| | - Henry A. Lester
- Biology, California Institute of Technology, Pasadena, CA 91125
| | - Dennis A. Dougherty
- Divisions of *Chemistry and Chemical Engineering and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
72
|
Taira H, Hohsaka T, Sisido M. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Nucleic Acids Res 2006; 34:1653-62. [PMID: 16549877 PMCID: PMC1405820 DOI: 10.1093/nar/gkl087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin–tRNA conjugate, in which the 3′-terminal A unit was replaced by puromycin, was used. The puromycin–tRNA conjugate was fused to a C-terminus of streptavidin through the puromycin moiety in the ribosome. The streptavidin–puromycin–tRNA fusion molecule was collected and brought to the next round after amplification of the tRNA sequence. We applied this system to select efficient frameshift suppressor tRNAs from a tRNA library with a randomly mutated anticodon loop derived from yeast tRNACCCGPhe. After three rounds of the selection, we obtained novel frameshift suppressor tRNAs which had high decoding activity and good orthogonality against endogenous aminoacyl-tRNA synthetases. These results demonstrate that the in vitro selection system developed here is useful to obtain highly active tRNAs for the incorporation of non-natural amino acid from a tRNA library.
Collapse
MESH Headings
- Amino Acids/metabolism
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/chemistry
- Base Sequence
- Cell-Free System
- Codon/chemistry
- Escherichia coli/genetics
- Frameshifting, Ribosomal
- Gene Library
- Molecular Sequence Data
- Mutation
- Protein Biosynthesis
- Protein Engineering/methods
- Proteins/chemistry
- Puromycin/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Streptavidin/chemistry
- Yeasts/genetics
Collapse
Affiliation(s)
- Hikaru Taira
- Department of Bioscience and Bioengineering, Okayama UniversityTsushimanaka, Okayama 700-8530, Japan
- School of Materials Science, Japan Advanced Institute of Science and Technology1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- PRESTO, Japan Science and Technology Agency4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed. Tel: +81 761 51 1681; Fax: +81 761 51 1683;
| | - Masahiko Sisido
- Department of Bioscience and Bioengineering, Okayama UniversityTsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
73
|
Abstract
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a reconstituted E. coli translation system to simultaneously re-assign 35 of the 61 sense codons to 12 unnatural amino acid analogues. This reprogrammed genetic code was used to direct the synthesis of a single peptide containing 10 different unnatural amino acids. This system is compatible with mRNA-display, enabling the synthesis of unnatural peptide libraries of 10(14) unique members for the in vitro selection of functional unnatural molecules. We also show that the chemical space sampled by these libraries can be expanded using mutant aminoacyl-tRNA synthetases for the incorporation of additional unnatural amino acids or by the specific posttranslational chemical derivitization of reactive groups with small molecules. This system represents a first step toward a platform for the synthesis by enzymatic tRNA aminoacylation and ribosomal translation of cyclic peptides comprised of unnatural amino acids that are similar to the nonribosomal peptides.
Collapse
Affiliation(s)
- Kristopher Josephson
- Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
74
|
Rackham O, Chin JW. A network of orthogonal ribosome·mRNA pairs. Nat Chem Biol 2005; 1:159-66. [PMID: 16408021 DOI: 10.1038/nchembio719] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/20/2005] [Indexed: 11/09/2022]
Abstract
Synthetic biology promises the ability to program cells with new functions. Simple oscillators, switches, logic functions, cell-cell communication and pattern-forming circuits have been created by the connection of a small set of natural transcription factors and their binding sites in different ways to produce different networks of molecular interactions. However, the controlled synthesis of more complex synthetic networks and functions will require an expanded set of functional molecules with known molecular specificities. Here, we tailored the molecular specificity of duplicated Escherichia coli ribosome x mRNA pairs with respect to the wild-type ribosome and mRNAs to produce multiple orthogonal ribosome x orthogonal mRNA pairs that can process information in parallel with, but independent of, their wild-type progenitors. In these pairs, the ribosome exclusively translates the orthogonal mRNA, and the orthogonal mRNA is not a substrate for cellular ribosomes. We predicted and measured the network of interactions between orthogonal ribosomes and orthogonal mRNAs, and showed that they can be used to post-transcriptionally program the cell with Boolean logic.
Collapse
Affiliation(s)
- Oliver Rackham
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
75
|
Abstract
More than 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive and redox active amino acids, glycosylated and heavy atom derived amino acids in addition to those with keto, azido and acetylenic chains. In this article, we describe recent advances that make it possible to add new building blocks systematically to the genetic codes of bacteria, yeast and mammalian cells. Taken together these tools will enable the detailed investigation of protein structure and function, which is not possible with conventional mutagenesis. Moreover, by lifting the constraints of the existing 20-amino-acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- T Ashton Cropp
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
76
|
Mao PL, Liu TF, Kueh K, Wu P. Predicting the efficiency of UAG translational stop signal through studies of physicochemical properties of its composite mono- and dinucleotides. Comput Biol Chem 2005; 28:245-56. [PMID: 15548451 DOI: 10.1016/j.compbiolchem.2004.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/27/2004] [Accepted: 05/29/2004] [Indexed: 12/01/2022]
Abstract
In this study, we explored the problem of predicting the UAG stop-codon read-through efficiency. The reported nucleotide sequences were first converted into physicochemical property vectors before being presented to a machine learning algorithm. Two sets of physicochemical properties were applied: one for mononucleosides (in terms of steric bulk, hydrophobicity and electronics) and another for dinucleotides. To the best of our knowledge, this is the first report of how dinucleotides are converted into principle components derived from NMR chemical shift data. A few efficiency prediction models were then derived and a comparison between mononucleoside and dinucleotide-based models was shown. In the derived models, the coefficients of these property based predictors lend themselves to bio-physical interpretations, an advantage which is demonstrated in this study via a prediction model based on the steric bulk factor. Although it is quite simple, the steric bulk factor model explained well the effect of sequence variations surrounding the amber stop codon and the tRNA bearing UCCU anticodon. We further proposed new alternatives at position -1 and +4 of a UAG stop codon sequence to enhance the readthrough efficiency. This research may contribute to a better understanding of the readthrough mechanisms and may also help to study the normal translation termination process.
Collapse
Affiliation(s)
- Pei-Lin Mao
- Institute of Bioengineering and Nanotechnology, 51 Science Park Road, #01-01/10, The Aries, Singapore 117586, Singapore
| | | | | | | |
Collapse
|
77
|
|
78
|
Abstract
Although chemists can synthesize virtually any small organic molecule, our ability to rationally manipulate the structures of proteins is quite limited, despite their involvement in virtually every life process. For most proteins, modifications are largely restricted to substitutions among the common 20 amino acids. Herein we describe recent advances that make it possible to add new building blocks to the genetic codes of both prokaryotic and eukaryotic organisms. Over 30 novel amino acids have been genetically encoded in response to unique triplet and quadruplet codons including fluorescent, photoreactive, and redox-active amino acids, glycosylated amino acids, and amino acids with keto, azido, acetylenic, and heavy-atom-containing side chains. By removing the limitations imposed by the existing 20 amino acid code, it should be possible to generate proteins and perhaps entire organisms with new or enhanced properties.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
79
|
Budisa N. Prolegomena zum experimentellen Engineering des genetischen Codes durch Erweiterung seines Aminosäurerepertoires. Angew Chem Int Ed Engl 2004. [DOI: 10.1002/ange.200300646] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Budisa N. Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire. Angew Chem Int Ed Engl 2004; 43:6426-63. [PMID: 15578784 DOI: 10.1002/anie.200300646] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein synthesis and its relation to the genetic code was for a long time a central issue in biology. Rapid experimental progress throughout the past decade, crowned with the recently elucidated ribosomal structures, provided an almost complete description of this process. In addition important experiments provided solid evidence that the natural protein translation machinery can be reprogrammed to encode genetically a vast number of non-coded (i.e. noncanonical) amino acids. Indeed, in the set of 20 canonical amino acids as prescribed by the universal genetic code, many desirable functionalities, such as halogeno, keto, cyano, azido, nitroso, nitro, and silyl groups, as well as C=C or C[triple bond]C bonds, are absent. The ability to encode genetically such chemical diversity will enable us to reprogram living cells, such as bacteria, to express tailor-made proteins exhibiting functional diversity. Accordingly, genetic code engineering has developed into an exciting emerging research field at the interface of biology, chemistry, and physics.
Collapse
Affiliation(s)
- Nediljko Budisa
- Max-Planck-Institut für Biochemie, Junior Research Group "Moleculare Biotechnologie", Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| |
Collapse
|
81
|
Murakami H, Kourouklis D, Suga H. Using a solid-phase ribozyme aminoacylation system to reprogram the genetic code. ACTA ACUST UNITED AC 2004; 10:1077-84. [PMID: 14652075 DOI: 10.1016/j.chembiol.2003.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report a simple and economical tRNA aminoacylation system based upon a resin-immobilized ribozyme, referred to as Flexiresin. This catalytic system features a broad spectrum of activities toward various phenylalanine (Phe) analogs and suppressor tRNAs. Most importantly, it allows users to perform the tRNA aminoacylation reaction and isolate the aminoacylated tRNAs in a few hours. We coupled the Flexiresin system with a high-performance cell-free translation system and demonstrated protein mutagenesis with seven different Phe analogs in parallel. Thus, the technology developed herein provides a new tool that significantly simplifies the procedures for the synthesis of aminoacyl-tRNAs charged with nonnatural amino acids, which makes the nonnatural amino acid mutagenesis of proteins more user accessible.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
82
|
Abstract
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
83
|
England PM. Unnatural Amino Acid Mutagenesis: A Precise Tool for Probing Protein Structure and Function. Biochemistry 2004; 43:11623-9. [PMID: 15362846 DOI: 10.1021/bi048862q] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first general method for the biosynthetic incorporation of unnatural amino acids into proteins was reported in 1989. The ensuing years have seen the solid development and subsequent implementation of "unnatural amino acid mutagenesis" in a number of groundbreaking studies. Over 100 different amino acids have been incorporated into dozens of soluble and transmembrane proteins, using both cell-extract and cell-intact translation systems. The approach has provided insights into ligand-binding sites, conformational changes, and protein-protein interactions with a level of precision simply unparalleled by conventional mutagenesis. Here, the methodology is outlined, significant applications of the approach are summarized, and recent major improvements in the method are discussed. The future will likely see many more investigators utilizing this approach to manipulate proteins as it realizes its promise of becoming a tool with enormous potential.
Collapse
Affiliation(s)
- Pamela M England
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA.
| |
Collapse
|
84
|
Strømgaard A, Jensen AA, Strømgaard K. Site-Specific Incorporation of Unnatural Amino Acids into Proteins. Chembiochem 2004; 5:909-16. [PMID: 15239046 DOI: 10.1002/cbic.200400060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Strømgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
85
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
86
|
Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG. An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci U S A 2004; 101:7566-71. [PMID: 15138302 PMCID: PMC419646 DOI: 10.1073/pnas.0401517101] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With few exceptions the genetic codes of all known organisms encode the same 20 amino acids, yet all that is required to add a new building block are a unique tRNA/aminoacyl-tRNA synthetase pair, a source of the amino acid, and a unique codon that specifies the amino acid. For example, the amber nonsense codon, TAG, together with orthogonal Methanococcus jannaschii or Escherichia coli tRNA/synthetase pairs have been used to genetically encode a variety of unnatural amino acids in E. coli and yeast, respectively. However, the availability of noncoding triplet codons ultimately limits the number of amino acids encoded by any organism. Here, we report the design and generation of an orthogonal synthetase/tRNA pair derived from archaeal tRNA(Lys) sequences that efficiently and selectively incorporates an unnatural amino acid into proteins in response to the quadruplet codon, AGGA. Frameshift suppression with L-homoglutamine (hGln) does not significantly affect protein yields or cell growth rates and is mutually orthogonal with amber suppression, permitting the simultaneous incorporation of two unnatural amino acids, hGln and O-methyl-L-tyrosine, at distinct positions within myoglobin. This work suggests that neither the number of available triplet codons nor the translational machinery itself represents a significant barrier to further expansion of the genetic code.
Collapse
Affiliation(s)
- J Christopher Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
87
|
Nakayama M, Ohara O. A system using convertible vectors for screening soluble recombinant proteins produced in Escherichia coli from randomly fragmented cDNAs. Biochem Biophys Res Commun 2004; 312:825-30. [PMID: 14680840 DOI: 10.1016/j.bbrc.2003.10.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Indexed: 11/17/2022]
Abstract
Protein insolubility is a major problem when producing recombinant proteins (e.g., to be used as antigens) from large cDNAs in Escherichia coli. Here, we describe a system using three convertible plasmid vectors to screen for soluble proteins produced in E. coli. This system experimentally identified any random cDNA fragments producing soluble protein domains. Shotgun fragments introduced into any of our three plasmids, which contain Gateway recombination sites, fused in-frame to the ORF of the protein tag. These plasmids produced N-terminal GST- and C-terminal three-frame-adaptive FLAG-tagged proteins, kanamycin-resistant gene-tagged proteins (which were pre-selected for in-frame fused cDNAs), or GFP-tagged fusion proteins. The latter is useful as a fluorescence indicator of protein folding. The Gateway recombination sites promote smooth conversion for enrichment of in-frame clones and facilitate both protein solubility assays and final production of proteins without the C-terminal tag. This high-throughput screening method is particularly useful for procedures that require the handling of many cDNAs in parallel.
Collapse
Affiliation(s)
- Manabu Nakayama
- Department of Human Gene Research, Kazusa DNA Research Institute, Chiba, Japan.
| | | |
Collapse
|
88
|
Abstract
Movement of tRNA and mRNA through the ribosome is coupled. However, selection for suppression of a -1 frameshift mutation in Escherichia coli has yielded a class of mutant tRNAs that can violate this mechanism and "hop" or disengage from their cognate codons and re-pair downstream in the mRNA. Previously described tRNA mutants of this class included those with insertions in the anticodon of tRNA(Val)1. This report describes further tRNA(Val)1 alterations that enhance hopping; these include a novel insertion in the anticodon loop, base substitutions in the anticodon stem and a base deletion in the variable loop. These results indicate that several different features of a tRNA are important for maintaining stable codon-anticodon interactions and coupled movement of tRNA and mRNA during the elongation phase of protein synthesis.
Collapse
MESH Headings
- Anticodon/genetics
- Anticodon/metabolism
- Base Sequence
- Biological Transport, Active
- Codon/genetics
- Codon/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Frameshift Mutation
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Nucleic Acid Conformation
- RNA Stability
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/genetics
- RNA, Transfer, Val/metabolism
- Ribosomes/metabolism
- Sequence Deletion
- Suppression, Genetic
Collapse
Affiliation(s)
- Michael O'Connor
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
89
|
Anderson JC, Schultz PG. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. Biochemistry 2003; 42:9598-608. [PMID: 12911301 DOI: 10.1021/bi034550w] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that an amber suppressor tRNA/aminoacyl-tRNA synthetase pair derived from the tyrosyl-tRNA synthetase of Methanococcus jannaschii can be used to genetically encode unnatural amino acids in response to the amber nonsense codon, TAG. However, we have been unable to modify this pair to decode either the opal nonsense codon, TGA, or the four-base codon, AGGA, limiting us to a 21 amino acid code. To overcome this limitation, we have adapted a leucyl-tRNA synthetase from Methanobacterium thermoautotrophicum and leucyl tRNA derived from Halobacterium sp. NRC-1 as an orthogonal tRNA-synthetase pair in Escherichia coli to decode amber (TAG), opal (TGA), and four-base (AGGA) codons. To improve the efficiency and selectivity of the suppressor tRNA, extensive mutagenesis was performed on the anticodon loop and acceptor stem. The two most significant criteria required for an efficient amber orthogonal suppressor tRNA are a CU(X)XXXAA anticodon loop and the lack of noncanonical or mismatched base pairs in the stem regions. These changes afford only weak suppression of TGA and AGGA. However, this information together with an analysis of sequence similarity of multiple native archaeal tRNA sequences led to efficient, orthogonal suppressors of opal codons and the four-base codon, AGGA. Ultimately, it should be possible to use these additional orthogonal pairs to genetically incorporate multiple unnatural amino acids into proteins.
Collapse
Affiliation(s)
- J Christopher Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
90
|
Atkins JF, Baranov PV, Fayet O, Herr AJ, Howard MT, Ivanov IP, Matsufuji S, Miller WA, Moore B, Prère MF, Wills NM, Zhou J, Gesteland RF. Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:217-32. [PMID: 12762024 DOI: 10.1101/sqb.2001.66.217] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bullerwell CE, Forget L, Lang BF. Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences. Nucleic Acids Res 2003; 31:1614-23. [PMID: 12626702 PMCID: PMC152866 DOI: 10.1093/nar/gkg264] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 7-9 tRNAs, some of which require 5'-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile.
Collapse
Affiliation(s)
- C E Bullerwell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| | | | | |
Collapse
|
92
|
Esposito D, Fey JP, Eberhard S, Hicks AJ, Stern DB. In vivo evidence for the prokaryotic model of extended codon-anticodon interaction in translation initiation. EMBO J 2003; 22:651-6. [PMID: 12554665 PMCID: PMC140755 DOI: 10.1093/emboj/cdg072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Initiation codon context is an important determinant of translation initiation rates in both prokaryotes and eukaryotes. Such sequences include the Shine- Dalgarno ribosome-binding site, as well as other motifs surrounding the initiation codon. One proposed interaction is between the base immediately preceding the initiation codon (-1 position) and the nucleotide 3' to the tRNAf(Met) anticodon, at position 37. Adenine is conserved at position 37, and a uridine at -1 has been shown in vitro to favor initiation. We have tested this model in vivo, by manipulating the chloroplast of the green alga Chlamydomonas reinhardtii, where the translational machinery is prokaryotic in nature. We show that translational defects imparted by mutations at the petA -1 position can be suppressed by compensatory mutations at position 37 of an ectopically expressed tRNA(fMet). The mutant tRNAs are fully aminoacylated and do not interfere with the translation of other proteins. Although this extended base pairing is not an absolute requirement for initiation, it may convey added specificity to transcripts carrying non-standard initiation codons, and/or preserve translational fidelity under certain stress conditions.
Collapse
Affiliation(s)
- Donna Esposito
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Julien P. Fey
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Stephan Eberhard
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - Amanda J. Hicks
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| | - David B. Stern
- Boyce Thompson Institute for Plant Research and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA and Institut de Biologie Physico-Chimique du CNRS (UPR 1261), 13 rue Pierre et Marie Curie, 75005 Paris, France Present address: Charles River Laboratories, Troy, NY 12180-7617, USA Present address: Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201, USA Corresponding author e-mail:
D.Esposito and J.P.Fey contributed equally to this work
| |
Collapse
|
93
|
DeSantis G, Liu J, Clark DP, Heine A, Wilson IA, Wong CH. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem 2003; 11:43-52. [PMID: 12467706 DOI: 10.1016/s0968-0896(02)00429-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2-Deoxyribose-5-phosphate aldolase (DERA, EC 4.1.2.4) catalyzes the reversible aldol reaction between acetaldehyde and D-glyceraldehyde-3-phosphate to generate D-2-deoxyribose-5-phosphate. It is unique among the aldolases as it catalyzes the reversible asymmetric aldol addition reaction of two aldehydes. In order to expand the substrate scope and stereoselectivity of DERA, structure-based substrate design as well as site-specific mutation has been investigated. Using the 1.05 A crystal structure of DERA in complex with its natural substrate as a guide, five site-directed mutants were designed in order to improve its activity with the unnatural nonphosphorylated substrate, D-2-deoxyribose. Of these, the S238D variant exhibited a 2.5-fold improvement over the wild-type enzyme in the retroaldol reaction of 2-deoxyribose. Interestingly, this S238D mutant enzyme was shown to accept 3-azidopropinaldehyde as a substrate in a sequential asymmetric aldol reaction to form a deoxy-azidoethyl pyranose, which is a precursor to the corresponding lactone and the cholesterol-lowering agent Lipitor. This azidoaldehyde is not a substrate for the wild-type enzyme. Another structure-based design of new nonphosphorylated substrates was focused on the aldol reaction with inversion in enantioselectivity using the wild type or the S238D variant as the catalyst and 2-methyl-substituted aldehydes as substrates. An example was demonstrated in the asymmetric synthesis of a deoxypyranose as a new effective synthon for the total synthesis of epothilones. In addition, to facilitate the discovery of new enzymatic reactions, the engineered E. coli strain SELECT (Deltaace, adhC, DE3) was developed to be used in the future for selection of DERA variants with novel nonphosphorylated acceptor specificity.
Collapse
Affiliation(s)
- Grace DeSantis
- Department of Chemistry, The Scripps Research Institute, 10550N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Chemical and biological diversity of protein structures and functions can be widely expanded by position-specific incorporation of non-natural amino acids carrying a variety of specialty side groups. After the pioneering works of Schultz's group and Chamberlin's group in 1989, noticeable progress has been made in expanding types of amino acids, in finding novel methods of tRNA aminoacylation and in extending genetic codes for directing the positions. Aminoacylation of tRNA with non-natural amino acids has been achieved by directed evolution of aminoacyl-tRNA synthetases or some ribozymes. Codons have been extended to include four-base codons or non-natural base pairs. Multiple incorporation of different non-natural amino acids has been achieved by the use of a different four-base codon for each tRNA. The combination of these novel techniques has opened the possibility of synthesising non-natural mutant proteins in living cells.
Collapse
Affiliation(s)
- Takahiro Hohsaka
- Department of Bioscience and Biotechnology, Okayama University, 3-1-1 Tsushimanaka, 700-8530, Okayama, Japan
| | | |
Collapse
|
95
|
Choi H, Otten S, McClain WH. Isolation of novel tRNA(Ala) mutants by library selection in a tRNA(Ala) knockout strain. Biochimie 2002; 84:705-11. [PMID: 12457558 DOI: 10.1016/s0300-9084(02)01407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA(Ala) recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA(Ala) knockout strain. Mutants of tRNA(Ala) having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.
Collapse
Affiliation(s)
- H Choi
- Department of Bacteriology, University of Wisconsin, WI Madison 53706-1567, USA
| | | | | |
Collapse
|
96
|
O'Connor M. Insertions in the anticodon loop of tRNA1Gln(sufG) and tRNA(Lys) promote quadruplet decoding of CAAA. Nucleic Acids Res 2002; 30:1985-90. [PMID: 11972336 PMCID: PMC113831 DOI: 10.1093/nar/30.9.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Base insertion mutations in the anticodons of two different Escherichia coli tRNAs have been isolated that allow suppression of a series of +1 frameshift mutations. Insertion of a U between positions 34 and 35 of tRNAGln1 or addition of a G between positions 36 and 37 of tRNA(Lys) expand the anticodons of both tRNAs similarly to 3'-GUUU(-5') and allow decoding of complementary 5'-CAAA(-3') quadruplets. Analysis of the suppressed mRNA sequences suggests that suppression occurs by pairing of the expanded anticodons to all four bases of the complementary, quadruplet codon. The tRNA Gln mutants are identical to the sufG class of frameshift suppressors isolated both in Salmonella enterica serovar Typhimurium and E. coli by Kohno and Roth and previously thought to affect tRNA(Lys).
Collapse
MESH Headings
- Anticodon
- Base Sequence
- Chromosome Mapping
- Codon
- Escherichia coli/genetics
- Frameshift Mutation
- Genes, Bacterial
- Genes, Suppressor
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Transfer, Gln/chemistry
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/physiology
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/physiology
- Salmonella/genetics
Collapse
Affiliation(s)
- Michael O'Connor
- J. W. Wilson Laboratory, Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA. michael_o'
| |
Collapse
|
97
|
Manabe S, Sakamoto K, Nakahara Y, Sisido M, Hohsaka T, Ito Y. Preparation of glycosylated amino acid derivatives for glycoprotein synthesis by in vitro translation system. Bioorg Med Chem 2002; 10:573-81. [PMID: 11814845 DOI: 10.1016/s0968-0896(01)00304-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
General preparation of glycosylated amino acylated nucleotide for in vitro peptide synthesis was described. Both O-glycosylated amino acyl nucleotides and C-glycosylated amino acyl nucleotide were synthesized by choosing the appropriate protecting group.
Collapse
Affiliation(s)
- Shino Manabe
- RIKEN (The Institute of Physical and Chemical Research) and CREST, Japan Science and Technology Corporation (JST), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T, Nakayama H, Takio K, Yabuki T, Kigawa T, Kodama K, Yokogawa T, Nishikawa K, Yokoyama S. An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 2002; 20:177-82. [PMID: 11821864 DOI: 10.1038/nbt0202-177] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An unnatural base pair of 2-amino-6-(2-thienyl)purine (denoted by s) and pyridin-2-one (denoted by y) was developed to expand the genetic code. The ribonucleoside triphosphate of y was site-specifically incorporated into RNA, opposite s in a template, by T7 RNA polymerase. This transcription was coupled with translation in an Escherichia coli cell-free system. The yAG codon in the transcribed ras mRNA was recognized by the CUs anticodon of a yeast tyrosine transfer RNA (tRNA) variant, which had been enzymatically aminoacylated with an unnatural amino acid, 3-chlorotyrosine. Site-specific incorporation of 3-chlorotyrosine into the Ras protein was demonstrated by liquid chromatography-mass spectrometry (LC-MS) analysis of the products. This coupled transcription-translation system will permit the efficient synthesis of proteins with a tyrosine analog at the desired position.
Collapse
Affiliation(s)
- Ichiro Hirao
- Yokoyama CytoLogic Project, ERATO, JST, c/o RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
In a laboratory coselection of reporter messages containing a single randomized essential two-, four-, five-, or six-base "codon" with suppressor tRNA(Ser) libraries whose members possessed randomized anticodon loops of varying sizes, only four- and five-base "codon-anticodon" interactions survived. These suppressor tRNAs accomplish +1 and -1 frameshift suppression, suggesting biological significance. They also display some properties common to serine tRNAs; such properties include a modest excess of Ser anticodons that might assist tRNA charging.
Collapse
Affiliation(s)
- Laura F Landweber
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
100
|
Anderson JC, Magliery TJ, Schultz PG. Exploring the limits of codon and anticodon size. CHEMISTRY & BIOLOGY 2002; 9:237-44. [PMID: 11880038 DOI: 10.1016/s1074-5521(02)00094-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously employed a combinatorial approach to identify the most efficient suppressors of four-base codons in E. coli. We have now examined the suppression of two-, three-, four-, five-, and six-base codons with tRNAs containing 6-10 nt in their anticodon loops. We found that the E. coli translational machinery tolerates codons of 3-5 bases and that tRNAs with 6-10 nt anticodon loops can suppress these codons. However, N-length codons were found to prefer N + 4-length anticodon loops. Additionally, sequence preferences, including the requirement of Watson-Crick complementarity to the codon, were evident in the loops. These selections have yielded efficient suppressors of four-base and five-base codons for our ongoing efforts to expand the genetic code. They also highlight some of the parameters that underlie the fidelity of frame maintenance.
Collapse
Affiliation(s)
- J Christopher Anderson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|