51
|
Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, Hägerhäll C, Gorton L. Electrical Wiring of Live, Metabolically Enhanced Bacillus subtilis Cells with Flexible Osmium-Redox Polymers. J Am Chem Soc 2009; 131:16171-6. [DOI: 10.1021/ja905442a] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vasile Coman
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Tobias Gustavsson
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Arnonas Finkelsteinas
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Claes von Wachenfeldt
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Cecilia Hägerhäll
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| | - Lo Gorton
- Department of Biochemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden, and Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62, Lund, Sweden
| |
Collapse
|
52
|
Gordon D, Krishnamurthy V, Chung SH. Generalized Langevin models of molecular dynamics simulations with applications to ion channels. J Chem Phys 2009; 131:134102. [DOI: 10.1063/1.3233945] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
53
|
Chitta RK, Rempel DL, Gross ML. The gramicidin dimer shows both EX1 and EX2 mechanisms of H/D exchange. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1813-1820. [PMID: 19631556 PMCID: PMC2767204 DOI: 10.1016/j.jasms.2009.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
Abstract
We describe the use of H/D amide exchange and electrospray ionization mass spectrometry to study, in organic solvents, the pentadecapeptide gramicidin as a model for protein self association. In methanol-OD, all active H's in the peptide exchange for D within 5 min, indicating a monomer/dimer equilibrium that is shifted towards the fast-exchanging monomer. H/D exchange in n-propanol-OD, however, showed a partially protected gramicidin that slowly converts to a second species that exchanges nearly all the active hydrogens, indicating EX1 kinetics for the H/D exchange. We propose that this behavior is the result of the slower rate of unfolding in n-propanol compared with that in methanol. The rate constant for the unfolding of the dimer is the rate of disappearance of the partially protected species, and it agrees within a factor of two with a value reported in literature. The rate constant of dimer refolding can be determined from the ratio of the rate constant for unfolding and the affinity constant for the dimer, which we determined in an earlier study. The unfolding activation energy is 20 kcal mol(-1), determined by performing the exchange experiments as a function of temperature. To study gramicidin in an even more hydrophobic medium than n-propanol, we measured its H/D exchange kinetics in a phospholipids vesicle and found a different H/D amide exchange behavior. Gramicidin is an unusual peptide dimer that can exhibit both EX1 and EX2 mechanisms for its H/D exchange, depending on the solvent.
Collapse
Affiliation(s)
- Raghu K Chitta
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
54
|
Pospiech EM, Geil B, Fujara F, Winter R. The Effect of Incorporation of Gramicidin on the Translational Lipid Diffusion in Bicontinuous Cubic Monoolein/Water Mesophases. Z PHYS CHEM 2009. [DOI: 10.1524/zpch.2009.6058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The influence of incorporating the polypeptide gramicidin on the lateral mobility of the monoacylglyceride monoolein (MO) in its bicontinuous cubic lipid mesophases is studied applying static field gradient NMR. The effects of gramicidin on the topology, structure and phase behaviour of the system are characterized by small-angle x-ray scattering (SAXS) experiments. On the structural level the experiments show significant shifts in the boundaries of the various mesophases. Measurements of the translational dynamics are restricted to cubic mesophases, where the diffusion coefficients of lipid and additive are determined both by geometrical obstruction and by lipid-protein interaction effects.
Collapse
|
55
|
Schneggenburger PE, Beerlink A, Worbs B, Salditt T, Diederichsen U. A Novel Heavy-Atom Label for Side-Specific Peptide Iodination: Synthesis, Membrane Incorporation and X-ray Reflectivity. Chemphyschem 2009; 10:1567-76. [DOI: 10.1002/cphc.200900241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
56
|
Esquembre R, Poveda JA, Mateo CR. Biophysical and Functional Characterization of an Ion Channel Peptide Confined in a Sol−Gel Matrix. J Phys Chem B 2009; 113:7534-40. [DOI: 10.1021/jp9019443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rocío Esquembre
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| | - José Antonio Poveda
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| | - C. Reyes Mateo
- Instituto de Biología Molecular y Celular. Universidad Miguel Hernández de Elche, 03202 Elche (Alicante), Spain
| |
Collapse
|
57
|
Siu SWI, Böckmann RA. Low Free Energy Barrier for Ion Permeation Through Double-Helical Gramicidin. J Phys Chem B 2009; 113:3195-202. [DOI: 10.1021/jp810302k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shirley W. I. Siu
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| | - Rainer A Böckmann
- Theoretical and Computational Membrane Biology, Center for Bioinformatics, Saarland University, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| |
Collapse
|
58
|
Nemukhin AV, Kaliman IA, Moskovsky AA. Modeling negative ion defect migration through the gramicidin A channel. J Mol Model 2009; 15:1009-12. [DOI: 10.1007/s00894-009-0463-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
59
|
Corvis Y, Korchowiec B, Korchowiec J, Badis M, Mironiuk-Puchalska E, Fokt I, Priebe W, Rogalska E. Complexation of metal ions in Langmuir films formed with two amphiphilic dioxadithia crown ethers. J Phys Chem B 2008; 112:10953-63. [PMID: 18698707 DOI: 10.1021/jp803072b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two new crown ethers presented in this study were synthesized in order to investigate two important features of ionophores, namely metal cation complexation and interfacial properties, and the way in which they interrelate. The two derivatives were conceived as analogs of membrane phospholipids with respect to their amphiphilicity and geometry. They contain a hydrophilic 1,1'-dioxo-3,3'-dithio-14-crown ether headgroup and bear two myristoyl or stearoyl lateral chains. The length of the myristoyl and stearoyl derivatives in an extended conformation is comparable with the thickness of the individual leaflets of cell membranes. The membrane-related and complexation properties of the two crown ether derivatives were studied in monomolecular films spread on pure water and on aqueous solutions of mono-, di-, and trivalent metal salts. The properties of the monolayers are described quantitatively using thermodynamic models. The compression isotherms of the monolayers formed on different subphases show a clear-cut differentiation of the monovalent and di- or trivalent cations with both ligands. This differentiation was interpreted in terms of conformational changes occurring in the crown ether derivatives upon complexation. Molecular modeling indicates that the mono- and divalent cations are coordinated differently by the ligands, yielding complexes with different conformations. The differences of the conformations of the mono- and di- or trivalent cation complexes may be important from the point of view of the interactions with lipid membranes and the biological activity of these potential ionophores.
Collapse
Affiliation(s)
- Yohann Corvis
- Groupe d'Etude des Vecteurs Supramoléculaires du Médicament, Faculté des Sciences, BP 239, UMR 7565 CNRS/Nancy Université, 54506 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Broniatowski M, Dynarowicz-Łatka P. Semifluorinated alkanes--primitive surfactants of fascinating properties. Adv Colloid Interface Sci 2008; 138:63-83. [PMID: 18082155 DOI: 10.1016/j.cis.2007.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 11/05/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022]
Abstract
Semifluorinated alkanes (SFAs) are diblock molecules, in which two mutually immiscible moieties, namely the hydrocarbon segment and the perfluorinated segment are bound covalently. The presence of two opposing segments within one molecule makes semifluorinated alkanes a very interesting class of compounds, which show a particular behavior both in bulk and at interfaces. Their highly asymmetric structure, arising from the incompatibility of the both constituent parts, results in surface activity of these molecules (so-called primitive surfactants) when dissolved in organic solvents, and allows for the Langmuir monolayer formation if spread at the air/water interface, despite of the absence of any polar group. Since 1984 (when SFAs have been characterized for the first time by Rabolt et al. [Rabolt JF, Russell TP, Twieg RJ. Macromolecules 1984;17:2786]), semifluorinated alkanes have been subjected to many studies. The present article reviews the results obtained so far and covers the aspects of their synthesis, properties in bulk (solutions and solid state) and applications. Special emphasis is put on the Langmuir monolayer properties and self-organization of SFAs on solid substrates.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Jagiellonian University, Faculty of Chemistry, Ingardena 3, 30-060 Kraków, Poland.
| | | |
Collapse
|
61
|
Küsel A, Khattari Z, Schneggenburger PE, Banerjee A, Salditt T, Diederichsen U. Conformation and Interaction of ad,l-Alternating Peptide with a Bilayer Membrane: X-ray Reflectivity, CD, and FTIR Spectroscopy. Chemphyschem 2007; 8:2336-43. [DOI: 10.1002/cphc.200700477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
62
|
Analysis of Ca2+ binding with gramicidin double helices using subcritical fluid chromatography. J Chromatogr A 2007; 1171:104-11. [DOI: 10.1016/j.chroma.2007.09.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/18/2007] [Accepted: 09/20/2007] [Indexed: 11/17/2022]
|
63
|
Rausch JM, Marks JR, Rathinakumar R, Wimley WC. Beta-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. Biochemistry 2007; 46:12124-39. [PMID: 17918962 PMCID: PMC2583027 DOI: 10.1021/bi700978h] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a previous report we described the selection of potent, beta-sheet pore-forming peptides from a combinatorial library designed to mimic membrane-spanning beta-hairpins (Rausch, J. M., Marks, J. R., and Wimley, W. C. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 10511-10515). Here, we characterize their mechanism of action and compare the structure-function relationships in lipid vesicles to their activity in biological membranes. The pore-forming peptides bind to membrane interfaces and self-assemble into beta-sheets that cause a transient burst of graded leakage across the bilayers. Despite the continued presence of the structured peptides in the bilayer, at most peptide concentrations leakage is incomplete and ceases quickly after peptide addition with a deactivation half-time of several minutes. Molecules up to 3,000 Da escape from the transient pores, but much larger molecules do not. Fluorescence spectroscopy and quenching showed that the peptides reside mainly on the bilayer surface and are partially exposed to water, rather than in a membrane-spanning state. The "carpet" or "sinking raft" model of peptide pore formation offers a viable explanation for our observations and suggests that the selected pore-formers function with a mechanism that is similar to the natural pore-forming antimicrobial peptides. We therefore also characterized the antimicrobial and cytotoxic activity of these peptides. All peptides studied, including non-pore-formers, had sterilizing antimicrobial activity against at least some microbes, and most have low activity against mammalian cell membranes. Thus, the structure-function relationships that were apparent in the vesicle systems are similar to, but do not correlate completely with, the activity of the same peptides in biological membranes. However, of the peptides tested, only the pore-formers selected in the high-throughput screen have potent, broad-spectrum sterilizing activity against Gram-positive and Gram-negative bacteria as well as against fungi, while having only small lytic effects on human cells.
Collapse
Affiliation(s)
- Joshua M. Rausch
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans LA, 70112-2699
| | - Jessica R. Marks
- Interdisciplinary Program in Molecular and Cellular Biosciences, Tulane University Health Sciences Center, New Orleans LA, 70112-2699
| | - Ramesh Rathinakumar
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans LA, 70112-2699
| | - William C. Wimley
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans LA, 70112-2699
| |
Collapse
|
64
|
Shi Q, Izvekov S, Voth GA. Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel. J Phys Chem B 2007; 110:15045-8. [PMID: 16884212 DOI: 10.1021/jp062700h] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recently developed multiscale coarse-graining (MS-CG) method (Izvekov, S.; Voth, G. A. J. Phys. Chem. B 2005, 109, 2469; J. Chem. Phys. 2005, 123, 134105) is used to build a mixed all-atom and coarse-grained (AA-CG) model of the gramicidin A (gA) ion channel embedded in a dimyristoylphosphatidylcholine (DMPC) lipid bilayer and water environment. In this model, the gA peptide was described in full atomistic detail, while the lipid and water molecules were described using coarse-grained representations. The atom-CG and CG-CG interactions in the mixed AA-CG model were determined using the MS-CG method. Molecular dynamics (MD) simulations were performed using the resulting AA-CG model. The results from simulations of the AA-CG model compare very favorably to those from all-atom MD simulations of the entire system. Since the MS-CG method employs a general and systematic approach to obtain effective interactions from the underlying all-atom models, the present approach to rigorously develop mixed AA-CG models has the potential to be extended to many other systems.
Collapse
|
65
|
Qin Z, Tepper HL, Voth GA. Effect of Membrane Environment on Proton Permeation through Gramicidin A Channels. J Phys Chem B 2007; 111:9931-9. [PMID: 17672487 DOI: 10.1021/jp0708998] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multistate empirical valence bond simulations were employed to study proton transport through gramicidin A channels embedded in two different lipid bilayers, glycerol 1-monooleate (GMO) and diphytanolphosphatidylcholine (DiPhPC). Free energy barriers to proton permeation were derived using a new internal reaction coordinate describing the proton permeation process. The large quantitative and qualitative differences between the two systems are discussed in terms of local bilayer structures, ordering of interfacial water, and channel flexibility in the two environments.
Collapse
Affiliation(s)
- Zhen Qin
- Center for Biophysical Modeling and Simulation and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
66
|
Boucher J, Trudel E, Méthot M, Desmeules P, Salesse C. Organization, structure and activity of proteins in monolayers. Colloids Surf B Biointerfaces 2007; 58:73-90. [PMID: 17509839 DOI: 10.1016/j.colsurfb.2007.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/24/2007] [Accepted: 03/26/2007] [Indexed: 12/17/2022]
Abstract
Many different processes take place at the cell membrane interface. Indeed, for instance, ligands bind membrane proteins which in turn activate peripheral membrane proteins, some of which are enzymes whose action is also located at the membrane interface. Native cell membranes are difficult to use to gain information on the activity of individual proteins at the membrane interface because of the large number of different proteins involved in membranous processes. Model membrane systems, such as monolayers at the air-water interface, have thus been extensively used during the last 50 years to reconstitute proteins and to gain information on their organization, structure and activity in membranes. In the present paper, we review the recent work we have performed with membrane and peripheral proteins as well as enzymes in monolayers at the air-water interface. We show that the structure and orientation of gramicidin has been determined by combining different methods. Furthermore, we demonstrate that the secondary structure of rhodopsin and bacteriorhodopsin is indistinguishable from that in native membranes when appropriate conditions are used. We also show that the kinetics and extent of monolayer binding of myristoylated recoverin is much faster than that of the nonmyristoylated form and that this binding is highly favored by the presence polyunsaturated phospholipids. Moreover, we show that the use of fragments of RPE65 allow determine which region of this protein is most likely involved in membrane binding. Monomolecular films were also used to further understand the hydrolysis of organized phospholipids by phospholipases A2 and C.
Collapse
Affiliation(s)
- Julie Boucher
- Unité de recherche en ophtalmologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec and Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, Que. G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
67
|
Capone R, Blake S, Restrepo MR, Yang J, Mayer M. Designing nanosensors based on charged derivatives of gramicidin A. J Am Chem Soc 2007; 129:9737-45. [PMID: 17625848 DOI: 10.1021/ja0711819] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We recently reported the possibility to detect chemical modifications on individual molecules by monitoring a change in the single ion channel conductance of derivatives of gramicidin A (gA) upon reaction with analytes in solution. These peptide-based nanosensors detect reaction-induced changes in the charge of gA derivatives that were engineered to carry specific functional groups near their C-terminus.1 Here, we discuss five key design parameters to optimize the performance of such chemomodulated ion channel sensors. In order to realize an effective sensor that measures changes in charge of groups attached to the C-terminus of a gA pore, the following conditions should be fulfilled: (1) the change in charge should occur as close to the entrance of the pore as possible; (2) the charge before and after reaction should be well-defined within the operational pH range; (3) the ionic strength of the recording buffer should be as low as possible while maintaining a detectable flow of ions through the pore; (4) the applied transmembrane voltage should be as high as possible while maintaining a stable membrane; (5) the lipids in the supporting membrane should either be zwitterionic or charged differently than the derivative of gA. We show that under the condition of high applied transmembrane potential (>100 mV) and low ionic strength of the recording buffer (< or =0.10 M), a change in charge at the entrance of the pore is the dominant requirement to distinguish between two differently charged derivatives of gA; the conductance of the heterodimeric gA pore reported here does not depend on a difference in charge at the exit of the pore. We provide a simple explanation for this asymmetric characteristic based on charge-induced local changes in the concentration of cations near the lipid bilayer membrane. Charge-based ion channel sensors offer tremendous potential for ultrasensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Chemical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, USA
| | | | | | | | | |
Collapse
|
68
|
Carnini A, Nguyen TT, Cramb DT. Fluorescence quenching of gramicidin D in model membranes by halothane. CAN J CHEM 2007. [DOI: 10.1139/v07-064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhaled anesthetics were introduced in surgery over a century ago. To this day, the molecular mechanism of anesthetic action remains largely unknown. However, ion-channels of neuronal membranes are believed to be the most- likely molecular targets of inhaled anesthetics. In the study presented here, we investigated the interaction of a simplified ion-channel system, gramicidin, with halothane, a small haloalkane inhaled anesthetic in various environments. Fluorescence-quenching experiments of gramicidin D in dioleoylphosphatidylcholine (DOPC) large unilamellar vesicles (LUVS) have shown that halothane can directly interact with the ion channel (KSV = 66 M–1). Halothane quenched the fluorescence from tryptophan residues located at the lipid bilayer – aqueous interfaces as well as those tryptophans located deeper in the bilayer. Quenching data from gramicidin D in sodium dodecyl sulfide (SDS) micelles revealed that the tryptophan residues located at the micelle–solvent interface were preferentially quenched by halothane (KSV = 22 M–1). In 1-octanol, fluorescence quenching was observed, but with a lower KSV value (KSV = 6 M–1) than in DOPC LUVS and SDS micelles. Taken together, these results indicate that halothane interactions with gramicidin, mediated by a lipid bilayer, are the strongest, and that the mechanism of anesthetic action may also be lipid-mediated.
Collapse
|
69
|
Broniatowski M, Obidowicz K, Vila Romeu N, Broniatowska E, Dynarowicz-Łatka P. Mixed Langmuir monolayers of gramicidin A and fluorinated alcohols. J Colloid Interface Sci 2007; 313:600-7. [PMID: 17540396 DOI: 10.1016/j.jcis.2007.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 04/11/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Mixed monolayers of gramicidin A (GA) and three alcohols, differing in the degree of fluorination, namely C18OH, F18OH, and F8H10OH have been investigated by means of: surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM) aiming at finding appropriate molecules for incorporating gramicidin A for a biosensor design. Our results proved that only the semifluorinated alcohol is appropriate material for this purpose since it forms miscible and homogeneous monolayers with GA within the whole concentration range. The experimental results have been supported by the calculations of van der Waals energy profiles using the Insight II program. Both the hydrogenated and perfluorinated alcohols were found to aggregate at higher surface pressures, which exclude their application for gramicidin-based biosensor construction.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | | | | | |
Collapse
|
70
|
Trikeriotis M, Ghanotakis DF. Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int J Pharm 2007; 332:176-84. [PMID: 17070662 DOI: 10.1016/j.ijpharm.2006.09.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/15/2006] [Accepted: 09/21/2006] [Indexed: 11/26/2022]
Abstract
Four pharmaceutically active molecules, each representing a different class of antibiotic, were intercalated in layered double hydroxides. Two of them, gramicidin and amphotericin B, are hydrophobic, surface active drugs that were incorporated in artificial membranes formed in the interlayer of the inorganic host. The other two, ampicillin and nalidixic acid, are water soluble, commonly used antibiotics that were directly intercalated by using simple ion exchange reactions. The synthetic nanohybrid materials were characterized by various methods, as X-ray diffraction, infrared spectroscopy and ultraviolet-visible spectroscopy that verified the successful intercalation of the antibiotics and provided information regarding the interlayer structure of the nanohybrids. The reversible interaction of the antibiotic molecules with the inorganic host leads to release of the active drugs under the appropriate conditions. The release studies showed that the synthetic nanohybrids can successfully serve as controlled release systems for different kinds of antibiotics.
Collapse
Affiliation(s)
- Markos Trikeriotis
- Department of Chemistry, University of Crete, PO Box 2208, GR-71003 Voutes, Heraklion, Crete, Greece
| | | |
Collapse
|
71
|
Siu SWI, Böckmann RA. Electric field effects on membranes: Gramicidin A as a test ground. J Struct Biol 2007; 157:545-56. [PMID: 17116406 DOI: 10.1016/j.jsb.2006.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/25/2006] [Accepted: 10/03/2006] [Indexed: 11/19/2022]
Abstract
Electric fields due to transmembrane potential differences or ionic gradients across the membrane are presumably crucial for many reactions across membranes or close to membranes like signal transduction, control of ion channels or the generation of neural impulses. Molecular dynamics simulations have been used to study the influence of external electric fields on a mixed gramicidin/phospholipid bilayer system. At high field strengths, formation of membrane electropores occurred both close and distal to the gramicidin. Gramicidin was found to stabilize the membrane adjacent to the protein but also at larger distances of up to 2-3 nm. As a result, membrane pore formation was found to be significantly suppressed for the mixed gramicidin/DMPC system. Moderate field strengths only weakly affected the structure and dynamics of the gramicidin. Spontaneous potassium passage events in external electric fields were observed for both the head-to-head helical conformation as well as for the double helical conformation of gramicidin A. The double-helical conformation was found to facilitate ion passage compared to the head-to-head helical dimer.
Collapse
Affiliation(s)
- Shirley W I Siu
- Saarland University, Center for Bioinformatics Saar, Theoretical and Computational Membrane Biology, P.O. Box 15 11 50, 66041 Saarbrücken, Germany
| | | |
Collapse
|
72
|
Weis M, Vanco M, Vitovic P, Hianik T, Cirák J. Study of gramicidin A--phospholipid interactions in Langmuir monolayers: analysis of their mechanical, thermodynamical, and electrical properties. J Phys Chem B 2007; 110:26272-8. [PMID: 17181285 DOI: 10.1021/jp064555d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms of interactions between gramicidin A (gA) and dimyristoylphosphatidylcholine (DMPC) in monolayers formed at the air-water interface were studied by analyzing their mechanical, thermodynamical, and electrical properties evaluated from measurements of pressure-area isotherms and of Maxwell displacement currents (MDC). A contactless method of recording MDC enabled us to monitor changes in the charge state of the monolayer-constituting molecules and to find the relation between a phase state of the monolayer and structural transitions of gA. The peptide-lipid interactions were quantified in terms of the excess of Gibbs free energy, excess entropy, as well as the molecular dipole moments at various gA/DMPC molar ratios, at various temperatures (in the gel phase and also in the liquid-crystalline phase of DMPC molecule), and at various surface pressures. It was found that the strongest interactions between gA and DMPC took place at the gA/DMPC molar ratio at around 0.25. At this monolayer composition, the phospholipids, via their carbonyl moieties, dominantly interact with the single helical gA, which mostly stands upright on the surface and is anchored by its C-terminus to the water surface, and prevent the formation of the intertwined helical gA dimers. The optimum ratio was confirmed also by anomalous electrical behavior of electrical dipole moments derived from MDC measurements.
Collapse
Affiliation(s)
- Martin Weis
- Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 812 19 Bratislava, Slovak Republic. Martin.Weis@ stuba.sk
| | | | | | | | | |
Collapse
|
73
|
Shabany H, Ferdani R, Gokel GW. Hydraphile Synthetic Channel Compounds: Models for Transmembrane, Cation-conducting Transporters. Supramol Chem 2006. [DOI: 10.1080/10610270108029456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hossein Shabany
- a Bioorganic Chemistry Program and Dept. of Molecular Biology and Pharmacology , Washington University School of Medicine , 660 South Euclid Ave., Campus Box 8103, St. Louis, MO, 63110, USA
| | - Riccardo Ferdani
- a Bioorganic Chemistry Program and Dept. of Molecular Biology and Pharmacology , Washington University School of Medicine , 660 South Euclid Ave., Campus Box 8103, St. Louis, MO, 63110, USA
| | - George W. Gokel
- a Bioorganic Chemistry Program and Dept. of Molecular Biology and Pharmacology , Washington University School of Medicine , 660 South Euclid Ave., Campus Box 8103, St. Louis, MO, 63110, USA
| |
Collapse
|
74
|
Broniatowski M, Suarez MN, Romeu NV, Dynarowicz-Łatka P. Gramicidin A Channel in a Matrix from a Semifluorinated Surfactant Monolayer. J Phys Chem B 2006; 110:19450-5. [PMID: 17004804 DOI: 10.1021/jp0623138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gramicidin A, a polypeptide antibiotic forming transmembrane ion channels, has been incorporated into a Langmuir monolayer formed by a semifluorinated alkane (SFA). In this work, partially fluorinated tetracosane, perfluorohexyloctadecane (F6H18), has been applied, aiming at finding a suitable matrix for gramicidin A to be transferred onto solid support for a biosensor design. For this purpose, the physiological conditions were of special interest (mixed monolayers containing low gramicidin proportion and the surface pressure of 30 mN/m). Mixed monolayers of gramicidin and SFA were found to be miscible within the whole range of mole fractions. A very significant increase of the stability of SFA monolayer has been found in the presence of gramicidin, even at such a low proportion as X(gramicidin) = 0.1, which is reflected in a 3.5-fold increase of the collapse pressure value of mixed monolayer as compared to the film from pure SFA. This interesting phenomenon has been interpreted as being due to the existence of a strong dipole-dipole interaction between both film-forming molecules. Opposite sign of the measured electric surface potential for gramicidin and SFA, resulting from different directions of the dipole moment vectors in both film molecules, implies that the ordered, antiparallel orientation of the dipole moments in the mixed gramicidin/SFA system can be responsible for its extremely high stability.
Collapse
Affiliation(s)
- Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | | | | | | |
Collapse
|
75
|
Chen X, Chen Z. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1257-73. [PMID: 16524559 DOI: 10.1016/j.bbamem.2006.01.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/11/2006] [Accepted: 01/24/2006] [Indexed: 11/29/2022]
Abstract
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
76
|
Vitovic P, Weis M, Tomcík P, Cirák J, Hianik T. Maxwell displacement current allows to study structural changes of gramicidin A in monolayers at the air-water interface. Bioelectrochemistry 2006; 70:469-80. [PMID: 16938494 DOI: 10.1016/j.bioelechem.2006.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/29/2006] [Accepted: 07/15/2006] [Indexed: 11/22/2022]
Abstract
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.
Collapse
Affiliation(s)
- Pavol Vitovic
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Computer Sciences, Comenius University, 842 48 Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
77
|
|
78
|
Chang YP, Mahadeva R, Chang WSW, Shukla A, Dafforn TR, Chu YH. Identification of a 4-mer peptide inhibitor that effectively blocks the polymerization of pathogenic Z alpha1-antitrypsin. Am J Respir Cell Mol Biol 2006; 35:540-8. [PMID: 16778151 DOI: 10.1165/rcmb.2005-0207oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
alpha(1)-Antitrypsin (AT) is a major proteinase inhibitor within the lung. The Z variant of AT (E342K) polymerizes within the liver and lung, resulting in hepatic aggregation of AT and tissue deficiency, predisposing to early onset of cirrhosis and emphysema, respectively. Polymerization of the aberrant protein can be prevented in vitro by specific peptides such as FLEAIG. This peptide serves as a lead molecule to design a shorter peptide that may be effective as a therapeutic agent. In this study we employed a systematic chemical approach using alanine scanning of Ac-FLEAIG-OH and subsequent peptide shortening to study the binding of shorter peptides to Z-AT. While two additional 6-mer peptides Ac-FLAAIG-OH and Ac-FLEAAG-OH were found to bind to Z-AT, their daughter peptides Ac-FLEAA-NH(2) and Ac-FLAA-NH(2) also bound avidly to Z-AT and prevented polymerization of the protein. Further comparative studies revealed that the binding of Ac-FLAA-NH(2) was more specific for Z-AT. The peptide-AT complex formation was enhanced by the presence of C-terminal amide group on the peptide, and circular dichroism analysis demonstrated that a random coil rather than a beta-helical conformation favored binding of the peptide to AT. In summary, this study has identified novel small peptides that inhibit Z-AT polymerization, and are a significant advance towards the treatment of Z-AT-related cirrhosis and emphysema.
Collapse
Affiliation(s)
- Yi-Pin Chang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi, Taiwan 62102, ROC
| | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Ramakrishnan V, Ranbhor R, Kumar A, Durani S. The Link between Sequence and Conformation in Protein Structures Appears To Be Stereochemically Established. J Phys Chem B 2006; 110:9314-23. [PMID: 16671750 DOI: 10.1021/jp056417e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In search of the link between sequence and conformation in protein structures, we perform molecular dynamics analysis of the effect of stereochemical mutation in end-protected octa-alanine Ac-Ala8-NHMe from poly-L to an alternating-L,D structure. The mutation has a dramatic effect, transforming the peptide from a condition of extreme sensitivity to one of extreme insensitivity to solvent. Examining the molecular folds of poly-L and alternating-L,D structure in atomistic detail, we find them to differ in the relationship between peptide dipolar interactions at the local and nonlocal levels, either conflicting or harmonious depending upon the chain stereochemistry. The stereochemical transformation of interpeptide electrostatics from a condition of conflict to one of harmony explains the long-standing puzzle of why poly-L and alternating-L,D peptides strongly differ in properties such as "stiffness" and solvent sensitivity. Furthermore, it is possible that poly-L stereochemistry is also the fulcrum of protein sensitivity to the effects of amino acid side-chain structures via dielectric arbitrations in interpeptide electrostatics. Indeed the evidence is accumulating that the amino acid side chains differing in alpha-helix and beta-sheet propensities also differ in their desolvating effects in the adjacent and nearest-neighbor peptides and thus possibly in the solvent screening of peptide dipolar interactions.
Collapse
Affiliation(s)
- Vibin Ramakrishnan
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
81
|
Pfeifer JR, Reiss P, Koert U. Crown Ether-Gramicidin Hybrid Ion Channels: Dehydration-Assisted Ion Selectivity. Angew Chem Int Ed Engl 2006; 45:501-4. [PMID: 16342124 DOI: 10.1002/anie.200502570] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jochen R Pfeifer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | |
Collapse
|
82
|
Pfeifer JR, Reiß P, Koert U. Ionenkanäle aus Kronenether-Gramicidin-Hybriden: Ionenselektivität durch Unterstützung des Dehydratationsvorgangs. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502570] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
83
|
Zhang J, Thurbide KB. Direct analysis of gramicidin double helices using packed column supercritical fluid chromatography. J Chromatogr A 2006; 1101:286-92. [PMID: 16239008 DOI: 10.1016/j.chroma.2005.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 09/30/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
Direct analysis of the monomeric and four double helical dimeric conformations of gramicidin has been achieved using packed column supercritical fluid chromatography (pSFC). Using a PRP-1 polymeric column and typical conditions of 40 degrees C column temperature, 25 MPa column pressure, and 35% n-pentanol modifier addition, all of the gramicidin conformers were readily separated. To evaluate the method, the dynamic characteristics of the monomer and dimer species were monitored as a function of solvent type, incubation time, solvent temperature, and initial concentration. The findings agree with those previously obtained by other methods but also yield new information about the relative amounts of two closely related dimers (species 1 and 2) as well as the simultaneous changes in the full dimer/monomer distribution. Results indicate that the developed pSFC method can be an informative complimentary tool for readily monitoring changes in the full profile of gramicidin species present in different environments.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Chemistry, University of Calgary, 2500 University Drive, N.W., Calgary, Alta., Canada T2N 1N4
| | | |
Collapse
|
84
|
Ranbhor R, Ramakrishnan V, Kumar A, Durani S. The interplay of sequence and stereochemistry in defining conformation in proteins and polypeptides. Biopolymers 2006; 83:537-45. [PMID: 16888793 DOI: 10.1002/bip.20584] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sequential specification of conformation in proteins and polypeptides is a triangular interplay involving the system of linked peptides, the sequences in side chains, and water as solvent. Stereochemistry in side chain linkages is obviously important in the interaction between all of the players, but no specification of its explicit role, if any, in linking sequence with conformation has been made. Flory and coworkers made a puzzling observation in 1967 that, when mutated from poly-L to alternating-L,D stereochemical structure, polypeptides will suffer a reduction in overall dimension or characteristic ratio by an astonishing factor of 10 and to a value even lower than that predicted for free rotation (Miller, W. G.; Brant, D. A.; Flory, P. J. J Mol Biol 1967, 23, 67-80). Enquiring into this longstanding puzzle, Durani and coworkers found that the stereochemical modification will also abolish conformational sensitivity in polypeptide structure to solvent, because electrostatic interactions in the system of linked peptides are transformed from a condition of mutual conflict to one of harmony (Ramakrishnan, V.; Ranbhor, R.; Kumar, A.; Durani, S. J Phys Chem B 2006, 110, 9314-9323). Thus, poly-L stereochemistry could be the fulcrum linking sequences with phi,psis in protein and polypeptide structures, via dielectric arbitrations in a conflicting type of interpeptide electrostatics, in agreement with the electrostatic screening model of Avbelj and Moult (Avbelj, F.; Moult, J. Biochemistry 1995, 34, 755-764).
Collapse
Affiliation(s)
- Ranjit Ranbhor
- School of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai - 400076, India
| | | | | | | |
Collapse
|
85
|
Kim Y, Lillo A, Moss JA, Janda KD. A contiguous stretch of methionine residues mediates the energy-dependent internalization mechanism of a cell-penetrating peptide. Mol Pharm 2005; 2:528-35. [PMID: 16323960 DOI: 10.1021/mp050035b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently we characterized an unusual switch in the internalization mechanism of the monomeric and dimeric forms of the cell-penetrating peptide RDLWEMMMVSLACQY. Here, we observed both energy-dependent and energy-independent modes of peptide uptake by the target B-lymphocytes WI-L2-729HF2, suggesting that higher-order structure might modulate the action of this novel cell-penetrating peptide. In the present work, we propose a possible internalization mechanism for the dimeric peptide which involves an initial interaction with the cell membrane, followed by an energy-dependent internalization process which requires the contiguous Met(6-8) sequence.
Collapse
Affiliation(s)
- Youngsoo Kim
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
86
|
Vila-Romeu N, Nieto-Suárez M, Castro-Silva M. Behavior of gramicidin A–ethyl nonadecanoate mixed Langmuir monolayers spread at the air–water interface. Colloids Surf A Physicochem Eng Asp 2005. [DOI: 10.1016/j.colsurfa.2005.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
87
|
Antonenko YN, Stoilova TB, Kovalchuk SI, Egorova NS, Pashkovskaya AA, Sobko AA, Kotova EA, Sychev SV, Surovoy AY. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A. FEBS Lett 2005; 579:5247-52. [PMID: 16165129 DOI: 10.1016/j.febslet.2005.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/04/2005] [Accepted: 08/06/2005] [Indexed: 11/27/2022]
Abstract
Ion-channel activity of a series of gramicidin A analogues carrying charged amino-acid sequences on the C-terminus of the peptide was studied on planar bilayer lipid membranes and liposomes. It was found that the analogue with the positively charged sequence GSGRRRRSQS forms classical cationic pores at low concentrations and large unselective pores at high concentrations. The peptide was predominantly in the right-handed beta(6.3)-helical conformation in liposomes as shown by circular dichroism spectroscopy. The single-channel conductance of the large pore was estimated to be 320pS in 100mM choline chloride as judged from the fluctuation analysis of the multi-channel current. The analogue with the negatively charged sequence GSGEEEESQS exhibited solely classical cationic channel activity. The ability of a peptide to form different type of channels can be used in the search for broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Schracke N, Linne U, Mahlert C, Marahiel MA. Synthesis of linear gramicidin requires the cooperation of two independent reductases. Biochemistry 2005; 44:8507-13. [PMID: 15938641 DOI: 10.1021/bi050074t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The linear pentadecapeptide gramicidin has been reported to be assembled by four large multimodular nonribosomal peptide synthetases (NRPSs), LgrABCD, that comprise 16 modules. During biosynthesis, the N-formylated 16mer peptide is bound to the peptidyl carrier protein (PCP) of the terminal module via a thioester bond to the carboxyl group of the last amino acid glycine(16). In a first reaction the peptide is released from the protein template in an NAD(P)H-dependent reduction step catalyzed by the adjacent reductase forming an aldehyde intermediate. Here we present the biochemical proof that this aldehyde intermediate is further reduced by an aldoreductase, LgrE, in an NADPH-dependent manner to form the final product gramicidin A, N-formyl-pentadecapeptide-ethanolamine. To determine the potential use of the two reductases in the construction of hybrid NRPSs, we have tested their ability to accept a variety of different substrates in vitro. The results obtained give way to a broad spectrum of possible use.
Collapse
Affiliation(s)
- Nadine Schracke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
89
|
Vila-Romeu N, Nieto-Suarez M, Dynarowicz-Łatka P. Miscibility of Gramicidin A−Ethyl Nonadecanoate in Langmuir Monolayers in the Presence of Salts Dissolved in the Subphase. J Phys Chem B 2005; 109:14965-70. [PMID: 16852895 DOI: 10.1021/jp050920+] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The behavior of binary mixed Langmuir monolayers from gramicidin A (GA) and ethyl nonadecanoate (EN), spread on aqueous subphases containing NaCl and CaCl2, was investigated on the basis of the analysis of surface pressure-average area per molecule (pi-A) isotherms complemented with Brewster angle microscopy (BAM) images. Compression modulus versus surface pressure (C(S-1)-pi) curves indicate the existence of interactions in the GA-EN mixed monolayers at low surface pressures (below 5 mN m(-1)). However, for mixtures in which the ester is the predominant component, both GA and EN are miscible within regions from fully expanded to collapse. To examine the interactions between both components in the studied system, values of the mean molecular area per molecule (A12) were plotted as a function of molar fraction of gramicidin A (X(GA)). A12-X(GA) plots exhibit negative deviations from ideality at high surface pressures, wherein beta-helices of GA are vertically oriented in respect to the interface. However, at surface pressures below the plateau transition, which is due to reorientation of GA, the binary system obeys the additive rule. Brewster angle microscopy (BAM) was applied for a direct visualization of the monolayers morphologies. The obtained images prove that for molar ratios of GA > or = 0.3 and at surface pressures above 5 mN m(-1), both components are immiscible at the interface. The observed negative deviations from the additively rule were attributed to the formation of a three-dimensional phase in the mixed film, which provokes its contraction at the interface.
Collapse
Affiliation(s)
- N Vila-Romeu
- Department of Physical Chemistry-Faculty of Sciences, University of Vigo, Campus As Lagoas s/n 32004 Ourense, Spain.
| | | | | |
Collapse
|
90
|
Chitta RK, Rempel DL, Gross ML. Determination of affinity constants and response factors of the noncovalent dimer of gramicidin by electrospray ionization mass spectrometry and mathematical modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1031-8. [PMID: 15914025 DOI: 10.1016/j.jasms.2005.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/08/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
The dimerization of gramicidin, a 15-residue membrane peptide, in solution can be viewed as a model for protein-protein interactions. We reported previously that the dimer can be observed when electrosprayed from organic solvents and that the abundances of the dimer depends on the dielectric constant of the solvent. Here, we report an effort to determine an affinity constant for the dimerization of gramicidin by using gas-phase abundance. Two issues affecting the determination are the electrospray-induced dissociation of the dimer and discrimination in the electrospray of the dimer compared with the monomer. Other methods developed for the purpose of determining affinity from mass spectral abundance do not address the dissociation of the complex in the gas phase or can not be applied for cases of low affinity constant, K(a). We present a mathematical model that uses the ratio of the signal intensities of the dimer and the monomer during a titration. The model also incorporates the dissociation and an electrospray ionization-response factor of the dimer for extracting the affinity constant for the dimerization of gramicidin. The dimerization constants from the new method agree within a factor of two with values reported in the literature.
Collapse
Affiliation(s)
- Raghu K Chitta
- Department of Chemistry, Washington University, Saint Louis, Missouri 63130, USA
| | | | | |
Collapse
|
91
|
Ramakrishnan V, Ranbhor R, Durani S. Simulated folding in polypeptides of diversified molecular tacticity: Implications for protein folding and de novo design. Biopolymers 2005; 78:96-105. [PMID: 15690413 DOI: 10.1002/bip.20241] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stereochemistry could be a powerful variable for conformational tune up of polypeptides for de novo design. It may be also useful probe of possible role of interamide energetics in selection and stabilization of conformation. The homopolypeptides Ac-Xxx30-NHMe, with Xxx = Ala, Val, and Leu, of diversified stereochemical structure are generated by simulated racemization with a modified GROMOS-96 force field. The polypeptides, and other systematic stereochemical variants, are folded by simulated annealing with another modified GROMOS-96 force field under the dielectric constant values 1, 4, and 10. The resultant 15,000 molecular folds of isotactic (poly-L-chiral), syndiotactic (alternating L,D-chiral), and heterotactic (random-L,D-chiral) stereochemical structure, belonging to three polypeptide series, achieved under three different folding conditions, are assessed statistically for structure-to-energy-to-conformation relationship. The results suggest that interamide electrostatics could be a major factor in secondary-structure selection in polypeptides while main-chain stereochemistry could dictate molecular packing and therefore the relative magnitude of hydrogen-bond and Lennard-Jones (LJ) contributions in conformational energy. A method for computational design of heterotactic molecular folds in polypeptide structure has been developed, and the first road map for a chiral tune up of polypeptide structure based on stereochemical engineering has been laid down. Broad implications for protein structure, folding, and de novo design are briefly discussed.
Collapse
Affiliation(s)
- Vibin Ramakrishnan
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai-400076, India
| | | | | |
Collapse
|
92
|
Abstract
The biological ion channel gramicidin A (gA) was modified by synthetic means to obtain the tail-to-tail linked asymmetric gA-derived dimer compound 3. Single-channel current measurements for 3 in planar lipid bilayers exhibit an Eisenman I ion selectivity for alkali cations. The structural asymmetry does not lead to an observable functional asymmetry. The structure of 3 in solution without and with Cs cations was investigated by 1H-NMR spectroscopy. In CDCl3/CD3OH (1 : 1, v/v), 3 forms a mixture of double-stranded beta-helices. Upon addition of excess CsCl, the double-stranded species are converted completely into one new conformer: the right-handed single-stranded beta-helix. A combination of DQF-COSY and TOCSY was used for the assignment of the 1H-NMR spectrum of the Cs-3 complex in CDCl3/CD3OH (1 : 1, v/v). A total of 69 backbone, 27 long-range, and 64 side-chain distance restraints were obtained from NOESY together with 25 phi and 14 chi1 torsion angles obtained from coupling constants. These data were used as input for structure calculation with dyana built in sybyl 6.8. A final set of 11 structures with an average rmsd for the backbone of 0.45 A was obtained (PDB: 1TKQ). The structure of the Cs-3 complex in solution is equivalent to the bioactive channel conformation in the membrane environment.
Collapse
Affiliation(s)
- Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
93
|
Koert PDU. Synthetic ion channels: Functional analysis and structural studies. Phys Chem Chem Phys 2005; 7:1501-6. [DOI: 10.1039/b418561g] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
|
95
|
Chitta RK, Gross ML. Electrospray ionization-mass spectrometry and tandem mass spectrometry reveal self-association and metal-ion binding of hydrophobic peptides: a study of the gramicidin dimer. Biophys J 2004; 86:473-9. [PMID: 14695291 PMCID: PMC1303814 DOI: 10.1016/s0006-3495(04)74125-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gramicidin is a membrane pentadecapeptide that acts as a channel, allowing the passage of monovalent metal ions and assisting in bacterial cell death. The active form is a noncovalently bound dimer. One means to study the self-assembly of this peptide has been to compare the state of the peptide in various solvents ranging from hydrophilic (e.g., trifluoroethanol) to hydrophobic (e.g., n-propanol). In this article, we report the use of electrospray mass spectrometry to study the self-association of gramicidin in various organic and mixed solvents that are introduced directly into the mass spectrometer. The dimer (both homo and hetero) can survive the introduction into the gas phase, and the amount in the gas phase increases with the decreasing dielectric constant of the solvent, reflecting solution-phase behavior. Tandem mass spectrometry data reveal that the stability of dimer in the gas phase decreases with increasing metal ion size, strongly suggesting that the metal ion binds inside the dimer between the monomers.
Collapse
Affiliation(s)
- Raghu K Chitta
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
96
|
Abstract
Gramicidin A was studied by continuous wave electron spin resonance (CW-ESR) and by double-quantum coherence electron spin resonance (DQC-ESR) in several lipid membranes (using samples that were macroscopically aligned by isopotential spin-dry ultracentrifugation) and vesicles. As a reporter group, the nitroxide spin-label was attached at the C-terminus yielding the spin-labeled product (GAsl). ESR spectra of aligned membranes containing GAsl show strong orientation dependence. In DPPC and DSPC membranes at room temperature the spectral shape is consistent with high ordering, which, in conjunction with the observed high polarity of the environment of the nitroxide, is interpreted in terms of the nitroxide moiety being close to the membrane surface. In contrast, spectra of GAsl in DMPC membranes indicate deeper embedding and tilt of the NO group. The GAsl spectrum in the DPPC membrane at 35 degrees C (the gel to Pbeta phase transition) exhibits sharp changes, and above this temperature becomes similar to that of DMPC. The dipolar spectrum from DQC-ESR clearly indicates the presence of pairs in DMPC membranes. This is not the case for DPPC, rapidly frozen from the gel phase; however, there are hints of aggregation. The interspin distance in the pairs is 30.9 A, in good agreement with estimates for the head-to-head GAsl dimer (the channel-forming conformation), which matches the hydrophobic thickness of the DMPC bilayer. Both DPPC and DSPC, apparently as a result of hydrophobic mismatch between the dimer length and bilayer thickness, do not favor the channel formation in the gel phase. In the Pbeta and Lalpha phases of DPPC (above 35 degrees C) the channel dimer forms, as evidenced by the DQC-ESR dipolar spectrum after rapid freezing. It is associated with a lateral expansion of lipid molecules and a concomitant decrease in bilayer thickness, which reduces the hydrophobic mismatch. A comparison with studies of dimer formation by other physical techniques indicates the desirability of using low concentrations of GA (approximately 0.4-1 mol %) accessible to the ESR methods employed in the study, since this yields non-interacting dimer channels.
Collapse
Affiliation(s)
- Boris G Dzikovski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14583-1301, USA
| | | | | |
Collapse
|
97
|
Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T, Saito T. Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol 2004; 70:2906-11. [PMID: 15128550 PMCID: PMC404377 DOI: 10.1128/aem.70.5.2906-2911.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus gasseri LA39 and L. reuteri LA6 isolated from feces of the same human infant were found to produce similar cyclic bacteriocins (named gassericin A and reutericin 6, respectively) that cannot be distinguished by molecular weights or primary amino acid sequences. However, reutericin 6 has a narrower spectrum than gassericin A. In this study, gassericin A inhibited the growth of L. reuteri LA6, but reutericin 6 did not inhibit the growth of L. gasseri LA39. Both bacteriocins caused potassium ion efflux from indicator cells and liposomes, but the amounts of efflux and patterns of action were different. Although circular dichroism spectra of purified bacteriocins revealed that both antibacterial peptides are composed mainly of alpha-helices, the spectra of the bacteriocins did not coincide. The results of D- and L-amino acid composition analysis showed that two residues and one residue of D-Ala were detected among 18 Ala residues of gassericin A and reutericin 6, respectively. These findings suggest that the different D-alanine contents of the bacteriocins may cause the differences in modes of action, amounts of potassium ion efflux, and secondary structures. This is the first report that characteristics of native bacteriocins produced by wild lactobacillus strains having the same structural genes are influenced by a difference in D-amino acid contents in the molecules.
Collapse
Affiliation(s)
- Yasushi Kawai
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Miloshevsky GV, Jordan PC. Gating gramicidin channels in lipid bilayers: reaction coordinates and the mechanism of dissociation. Biophys J 2004; 86:92-104. [PMID: 14695253 PMCID: PMC1303840 DOI: 10.1016/s0006-3495(04)74087-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 09/17/2003] [Indexed: 11/26/2022] Open
Abstract
The dissociation of gramicidin A (gA) channels into monomers is the simplest example of a channel gating process. The initial steps in this process are studied via a computational model that simulates the reaction coordinate for dimer-monomer dissociation. The nonbonded interaction energy between the monomers is determined, allowing for their free relative translational and rotational motion. Lowest energy pathways and reaction coordinates of the gating process are determined. Partial rupture of the six hydrogen bonds (6HB) at the dimer junction takes place by coupling monomer rotation and lateral displacement. Coupling rotation with axial separation is far more expensive energetically. The transition state for channel dissociation occurs when monomers are displaced laterally by approximately 4-6 A, separated by approximately 1.6-2 A, and rotated by approximately 120 degrees, breaking two hydrogen bonds. In membranes with significant hydrophobic mismatch there is a much greater likelihood of forming 4HB and possibly even 2HB states. In the 4HB state the pore remains fully open and conductive. However, transitions from the 6HB to 4HB and 4HB to 2HB states take place via intermediates in which the gA pore is closed and nonconductive. These lateral monomer displacements give rise to transitory pore occlusion at the dimer junction, which provides a rationale for fast closure events (flickers). Local dynamics of gA monomers also leads to lateral and rotational diffusion of the whole gA dimer, giving rise to diffusional rotation of the dimer about the channel axis.
Collapse
Affiliation(s)
- Gennady V Miloshevsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
99
|
Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 2003; 279:7413-9. [PMID: 14670971 DOI: 10.1074/jbc.m309658200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linear gramicidin is a membrane channel forming pentadecapeptide that is produced via the nonribosomal pathway. It consists of 15 hydrophobic amino acids with alternating l- and d-configuration forming a beta-helix-like structure. It has an N-formylated valine and a C-terminal ethanolamine. Here we report cloning and sequencing of the entire biosynthetic gene cluster as well as initial biochemical analysis of a new reductase domain. The biosynthetic gene cluster was identified on two nonoverlapping fosmids and a 13-kilobase pair (kbp) interbridge fragment covering a region of 74 kbp. Four very large open reading frames, lgrA, lgrB, lgrC, and lgrD with 6.8, 15.5, 23.3, and 15.3 kbp, were identified and shown to encode nonribosomal peptide synthetases with two, four, six, and four modules, respectively. Within the 16 modules identified, seven epimerization domains in alternating positions were detected as well as a putative formylation domain fused to the first module LgrA and a putative reductase domain attached to the C-terminal module of LgrD. Analysis of the substrate specificity by phylogenetic studies using the residues of the substrate-binding pockets of all 16 adenylation domains revealed a good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. Additional biochemical analysis of the three adenylation domains of modules 1, 2, and 3 confirmed the colinearity of this nonribosomal peptide synthetase assembly line. Module 16 was predicted to activate glycine, which would then, being the C-terminal residue of the peptide chain, be reduced by the adjacent reductase domain to give ethanolamine, thereby releasing the final product N-formyl-pentadecapeptide-ethanolamine. However, initial biochemical analysis of this reductase showed only a one-step reduction yielding the corresponding aldehyde in vitro.
Collapse
Affiliation(s)
- Nadine Kessler
- FB Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
100
|
Vescovi A, Knoll A, Koert U. Synthesis and functional studies of THF-gramicidin hybrid ion channels. Org Biomol Chem 2003; 1:2983-97. [PMID: 12968351 DOI: 10.1039/b303249n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
THF-gramicidin hybrids 2-4 with the L-THF amino acid 1 in positions 11 and 12 and compounds 5-8 with the D-THF amino acid ent-1 in positions 10 and 11 were synthesized and their ion channel properties were studied by single-channel-current analysis. The replacement of positions 11 and 12 by the L-THF amino acid 1 gave a strongly reduced channel performance. In contrast, replacement of positions 10 and 11 by the D-THF amino acid ent-1 gave rise to new and interesting channel properties. For the permeability ratios, the ion selectivity shifts from Eisenman I towards Eisenman III selectivity and the channels display ms-dynamics. Most remarkable is the asymmetric compound 8, which inserts selectively into a DPhPC membrane and displays voltage-directed gating dynamics.
Collapse
Affiliation(s)
- Andrea Vescovi
- Institut für Chemie, Humboldt-Universität Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | | | | |
Collapse
|