51
|
Maiorino L, Farke AA, Kotsakis T, Teresi L, Piras P. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia). J Anat 2015; 227:631-46. [PMID: 26467240 DOI: 10.1111/joa.12374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins.
Collapse
Affiliation(s)
- Leonardo Maiorino
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| | - Andrew A Farke
- Raymond M. Alf Museum of Paleontology, Claremont, CA, USA
| | - Tassos Kotsakis
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| | - Luciano Teresi
- Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
| | - Paolo Piras
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy.,Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Università di Roma, Rome, Italy.,Dipartimento di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesiologiche e Geriatriche, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
52
|
Contrasting Phylogenetic and Diversity Patterns in Octodontoid Rodents and a New Definition of the Family Abrocomidae. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9301-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
53
|
Maiorino L, Farke AA, Kotsakis T, Piras P. Males Resemble Females: Re-Evaluating Sexual Dimorphism in Protoceratops andrewsi (Neoceratopsia, Protoceratopsidae). PLoS One 2015; 10:e0126464. [PMID: 25951329 PMCID: PMC4423778 DOI: 10.1371/journal.pone.0126464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022] Open
Abstract
Background Protoceratops andrewsi (Neoceratopsia, Protoceratopsidae) is a well-known dinosaur from the Upper Cretaceous of Mongolia. Some previous workers hypothesized sexual dimorphism in the cranial shape of this taxon, using qualitative and quantitative observations. In particular, width and height of the frill as well as the development of a nasal horn have been hypothesized as potentially sexually dimorphic. Methodology/Principal Findings Here, we reassess potential sexual dimorphism in skulls of Protoceratops andrewsi by applying two-dimensional geometric morphometrics to 29 skulls in lateral and dorsal views. Principal Component Analyses and nonparametric MANOVAs recover no clear separation between hypothetical “males” and “females” within the overall morphospace. Males and females thus possess similar overall cranial morphologies. No differences in size between “males” and “females” are recovered using nonparametric ANOVAs. Conclusions/Significance Sexual dimorphism within Protoceratops andrewsi is not strongly supported by our results, as previously proposed by several authors. Anatomical traits such as height and width of the frill, and skull size thus may not be sexually dimorphic. Based on PCA for a data set focusing on the rostrum and associated ANOVA results, nasal horn height is the only feature with potential dimorphism. As a whole, most purported dimorphic variation is probably primarily the result of ontogenetic cranial shape changes as well as intraspecific cranial variation independent of sex.
Collapse
Affiliation(s)
- Leonardo Maiorino
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
- * E-mail:
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology, Claremont, California, United States of America
| | - Tassos Kotsakis
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
| | - Paolo Piras
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
| |
Collapse
|
54
|
Hulvershorn LA, Schroeder KM, Wink LK, Erickson CA, McDougle CJ. Psychopharmacologic treatment of children prenatally exposed to drugs of abuse. Hum Psychopharmacol 2015; 30:164-72. [PMID: 25737371 DOI: 10.1002/hup.2467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This pilot study compared the pharmacologic treatment history and clinical outcomes observed in pediatric outpatients with psychiatric disorders exposed to drugs of abuse in utero to those of an age-matched, sex-matched and psychiatric disorder-matched, non-drug-exposed group. METHODS In this matched cohort study, medical records of children treated at an academic, child and adolescent psychiatry outpatient clinic were reviewed. Children with caregiver-reported history of prenatal drug exposure were compared with a non-drug-exposed control group being cared for by the same providers. Patients were rated with the Clinical Global Impressions-Severity scale (CGI-S) throughout treatment. The changes in pre-treatment and post-treatment CGI-S scores and the total number of medication trials were determined between groups. RESULTS The drug-exposed group (n = 30) had a higher total number of lifetime medication trials compared with the non-drug-exposed group (n = 28) and were taking significantly more total medications, at their final assessment. Unlike the non-drug-exposed group, the drug-exposed group demonstrated a lack of clinical improvement. CONCLUSIONS These results suggest that in utero drug-exposed children may be more treatment-refractory to or experience greater side effects from the pharmacologic treatment of psychiatric disorders than controls, although we cannot determine if early environment or drugs exposure drives these findings.
Collapse
Affiliation(s)
- Leslie A Hulvershorn
- Section of Child and Adolescent Psychiatry, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
55
|
Bookstein FL. Integration, Disintegration, and Self-Similarity: Characterizing the Scales of Shape Variation in Landmark Data. Evol Biol 2015; 42:395-426. [PMID: 26586921 PMCID: PMC4642606 DOI: 10.1007/s11692-015-9317-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
The biologist examining samples of multicellular organisms in anatomical detail must already have an intuitive concept of morphological integration. But quantifying that intuition has always been fraught with difficulties and paradoxes, especially for the anatomically labelled Cartesian coordinate data that drive today’s toolkits of geometric morphometrics. Covariance analyses of interpoint distances, such as the Olson–Miller factor approach of the 1950’s, cannot validly be extended to handle the spatial structure of complete morphometric descriptions; neither can analyses of shape coordinates that ignore the mean form. This paper introduces a formal parametric quantification of integration by analogy with how time series are approached in modern paleobiology. Over there, a finding of trend falls under one tail of a distribution for which stasis comprises the other tail. The null hypothesis separating these two classes of finding is the random walks, which are self-similar, meaning that they show no interpretable structure at any temporal scale. Trend and stasis are the two contrasting ways of deviating from this null. The present manuscript introduces an analogous maneuver for the spatial aspects of ontogenetic or phylogenetic organismal studies: a subspace within the space of shape covariance structures for which the standard isotropic (Procrustes) model lies at one extreme of a characteristic parameter and the strongest growth-gradient models at the other. In-between lies the suggested new construct, the spatially self-similar processes that can be generated within the standard morphometric toolkit by a startlingly simple algebraic manipulation of partial warp scores. In this view, integration and “disintegration” as in the Procrustes model are two modes of organismal variation according to which morphometric data can deviate from this common null, which, as in the temporal domain, is formally featureless, incapable of supporting any summary beyond a single parameter for amplitude. In practice the classification can proceed by examining the regression coefficient for log partial warp variance against log bending energy in the standard thin-plate spline setup. The self-similarity model, for which the regression slope is precisely \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-1,$$\end{document}-1, corresponds well to the background against which the evolutionist’s or systematist’s a-priori notion of “local shape features” can be delineated. Integration as detected by the regression slope can be visualized by the first relative intrinsic warp (first relative eigenvector of the nonaffine part of a shape coordinate configuration with respect to bending energy) and may be summarized by the corresponding quadratic growth gradient. The paper begins with a seemingly innocent toy example, uncovers an unexpected invariance as an example of the general manipulation proposed, then applies the new modeling tactic to three data sets from the existing morphometric literature. Conclusions follow regarding findings and methodology alike.
Collapse
Affiliation(s)
- Fred L Bookstein
- Faculty of Life Sciences, University of Vienna, Vienna, Austria ; Department of Statistics, University of Washington, Seattle, WA USA
| |
Collapse
|
56
|
|
57
|
Boyer DM, Puente J, Gladman JT, Glynn C, Mukherjee S, Yapuncich GS, Daubechies I. A New Fully Automated Approach for Aligning and Comparing Shapes. Anat Rec (Hoboken) 2014; 298:249-76. [DOI: 10.1002/ar.23084] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/11/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Doug M. Boyer
- Department of Evolutionary Anthropology; Duke University; Durham North Carolina
| | - Jesus Puente
- Program in Applied and Computational Mathematics; Princeton University; Princeton New Jersey
| | - Justin T. Gladman
- NYCEP, New York Consortium in Evolutionary Primatology; New York New York
- PhD Program in Anthropology; Graduate Center, CUNY; New York New York
| | - Chris Glynn
- Department of Statistical Science; Duke University; Durham North Carolina
| | - Sayan Mukherjee
- Department of Statistical Science; Duke University; Durham North Carolina
- Department of Computer Science; Duke University; Durham North Carolina
- Department of Mathematics; Duke University; Durham North Carolina
| | | | | |
Collapse
|
58
|
Abstract
OBJECTIVE Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD) and associated neurodevelopmental impairments. It is uncertain which types of fine motor skills are most likely to be affected after PAE or which assessment tools are most appropriate to use in FASD diagnostic assessments. This systematic review examined which types of fine motor skills are impaired in children with PAE or FASD; which fine motor assessments are appropriate for FASD diagnosis; and whether fine motor impairments are evident at both "low" and "high" PAE levels. METHODS A systematic review of relevant databases was undertaken using key terms. Relevant studies were extracted using a standardized form, and methodological quality was rated using a critical appraisal tool. RESULTS Twenty-four studies met inclusion criteria. Complex fine motor skills, such as visual-motor integration, were more frequently impaired than basic fine motor skills, such as grip strength. Assessment tools that specifically assessed fine motor skills more consistently identified impairments than those which assessed fine motor skills as part of a generalized neurodevelopmental assessment. Fine motor impairments were associated with "moderate" to "high" PAE levels. Few studies reported fine motor skills of children with "low" PAE levels, so the effect of lower PAE levels on fine motor skills remains uncertain. CONCLUSIONS Comprehensive assessment of a range of fine motor skills in children with PAE is important to ensure an accurate FASD diagnosis and develop appropriate therapeutic interventions for children with PAE-related fine motor impairments.
Collapse
|
59
|
Wade BSC, Joshi SH, Reuter M, Blumenthal JD, Toga AW, Thompson PM, Giedd JN. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies. Biol Sex Differ 2014; 5:16. [PMID: 25780557 PMCID: PMC4360142 DOI: 10.1186/s13293-014-0016-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
Collapse
Affiliation(s)
- Benjamin S C Wade
- Imaging Genetics Center, Institute for Neuro Imaging and Informatics, USC, 4676 Admiralty Way, Marina del Rey, Los Angeles 90292, CA, USA
| | - Shantanu H Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, UCLA, Los Angeles 90095, CA, USA
| | - Martin Reuter
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown 02129, MA, USA
| | - Jonathan D Blumenthal
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda 20892-1600, MD, USA
| | - Arthur W Toga
- Institute for Neuro Imaging and Informatics, Keck School of Medicine, USC, Los Angeles 90032, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuro Imaging and Informatics, USC, 4676 Admiralty Way, Marina del Rey, Los Angeles 90292, CA, USA
| | - Jay N Giedd
- Child Psychiatry Branch, National Institute of Mental Health, Bethesda 20892-1600, MD, USA
| |
Collapse
|
60
|
Abstract
Prenatal alcohol exposure (PAE) is one of the most prevalent and modifiable risk factors for somatic, behavioral, and neurological abnormalities. Affected individuals exhibit a wide range of such features referred to as fetal alcohol spectrum disorders (FASD). These are characterized by a more or less specific pattern of minor facial dysmorphic features, growth deficiency and central nervous system symptoms. Nevertheless, whereas the diagnosis of the full-blown fetal alcohol syndrome does not pose a major challenge, only a tentative diagnosis of FASD can be reached if only mild features are present and/or maternal alcohol consumption during pregnancy cannot be verified. The respective disorders have lifelong implications. The teratogenic mechanisms induced by PAE can lead to various additional somatic findings and structural abnormalities of cerebrum and cerebellum. At the functional level, cognition, motor coordination, attention, language development, executive functions, memory, social perception and emotion processing are impaired to a variable extent. The long-term development is characterized by disruption and failure in many domains; an age-adequate independency is frequently not achieved. In addition to primary prevention, individual therapeutic interventions and tertiary prevention are warranted; provision of extensive education to affected subjects and their caregivers is crucial. Protective environments are often required to prevent negative consequences such as delinquency, indebtedness or experience of physical/sexual abuse.
Collapse
|
61
|
Taylor PA, Jacobson SW, van der Kouwe A, Molteno CD, Chen G, Wintermark P, Alhamud A, Jacobson JL, Meintjes EM. A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Hum Brain Mapp 2014; 36:170-86. [PMID: 25182535 DOI: 10.1002/hbm.22620] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/05/2014] [Accepted: 08/18/2014] [Indexed: 11/11/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is known to have severe, long-term consequences for brain and behavioral development already detectable in infancy and childhood. Resulting features of fetal alcohol spectrum disorders include cognitive and behavioral effects, as well as facial anomalies and growth deficits. Diffusion tensor imaging (DTI) and tractography were used to analyze white matter (WM) development in 11 newborns (age since conception <45 weeks) whose mothers were recruited during pregnancy. Comparisons were made with nine age-matched controls born to abstainers or light drinkers from the same Cape Coloured (mixed ancestry) community near Cape Town, South Africa. DTI parameters, T1 relaxation time, proton density and volumes were used to quantify and investigate group differences in WM in the newborn brains. Probabilistic tractography was used to estimate and to delineate similar tract locations among the subjects for transcallosal pathways, cortico-spinal projection fibers, and cortico-cortical association fibers. In each of these WM networks, the axial diffusivity was the parameter that showed the strongest association with maternal drinking. The strongest relations were observed in medial and inferior WM, regions in which the myelination process typically begins. In contrast to studies of older individuals with PAE, fractional anisotropy did not exhibit a consistent and significant relation with alcohol exposure. To our knowledge, this is the first DTI-tractography study of prenatally alcohol exposed newborns.
Collapse
Affiliation(s)
- Paul A Taylor
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa; MRC/UCT Medical Imaging Research Unit, Faculty of Health Sciences, University of Cape Town, South Africa; African Institute for Mathematical Sciences, Muizenberg, Western Cape, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Giri F, Collins P. Clinal variation in carapace shape in the South American freshwater crab,Aegla uruguayana(Anomura: Aeglidae). Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Federico Giri
- Instituto Nacional de Limnología (CONICET-UNL); Pje El Pozo s/n CP3000 Santa Fe Argentina
- Facultad de Humanidades y Ciencias; Universidad Nacional del Litoral; Pje El Pozo s/n CP3000 Santa Fe Argentina
| | - Pablo Collins
- Instituto Nacional de Limnología (CONICET-UNL); Pje El Pozo s/n CP3000 Santa Fe Argentina
- Facultad de Bioquímica y Ciencias Biológicas; Universidad Nacional del Litoral; Pje El Pozo s/n CP3000 Santa Fe Argentina
| |
Collapse
|
63
|
Brachetta Aporta N, Martinez-Maza C, Gonzalez PN, Bernal V. Bone Modeling Patterns and Morphometric Craniofacial Variation in Individuals From Two Prehistoric Human Populations From Argentina. Anat Rec (Hoboken) 2014; 297:1829-38. [DOI: 10.1002/ar.22999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 01/24/2014] [Accepted: 06/03/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Natalia Brachetta Aporta
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
- Consejo Interuniversitario Nacional (CIN); Argentina
| | - Cayetana Martinez-Maza
- Department of Paleobiology; Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2; 28006 Madrid Spain
| | - Paula N. Gonzalez
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
- CONICET; Instituto de Genetica Veterinaria, Facultad de Ciencias Veterinarias; UNLP-CCT La Plata 1900 Argentina
| | - Valeria Bernal
- División Antropología; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata; La Plata Argentina CONICET
| |
Collapse
|
64
|
Moore EM, Migliorini R, Infante MA, Riley EP. Fetal Alcohol Spectrum Disorders: Recent Neuroimaging Findings. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014; 1:161-172. [PMID: 25346882 DOI: 10.1007/s40474-014-0020-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Since the identification of Fetal Alcohol Syndrome over 40 years ago, much has been learned about the detrimental effects of prenatal alcohol exposure on the developing brain. This review highlights recent neuroimaging studies, within the context of previous work. Structural magnetic resonance imaging has described morphological differences in the brain and their relationships to cognitive deficits and measures of facial dysmorphology. Diffusion tensor imaging has elaborated on the relationship between white matter microstructure and behavior. Atypical neuromaturation across childhood and adolescence has been observed in longitudinal neuroimaging studies. Functional imaging has revealed differences in neural activation patterns underlying sensory processing, cognition and behavioral deficits. A recent functional connectivity analysis demonstrates reductions in global network efficiency. Despite this progress much remains unknown about the impact of prenatal alcohol exposure on the brain, and continued research efforts are essential.
Collapse
Affiliation(s)
- Eileen M Moore
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120
| | - Robyn Migliorini
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - M Alejandra Infante
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; SDSU/UCSD Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120 ; Department of Psychology, San Diego State University, San Diego, CA 92182
| |
Collapse
|
65
|
Anderson PSL, Renaud S, Rayfield EJ. Adaptive plasticity in the mouse mandible. BMC Evol Biol 2014; 14:85. [PMID: 24742055 PMCID: PMC4002541 DOI: 10.1186/1471-2148-14-85] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/09/2014] [Indexed: 11/16/2022] Open
Abstract
Background Plasticity, i.e. non-heritable morphological variation, enables organisms to modify the shape of their skeletal tissues in response to varying environmental stimuli. Plastic variation may also allow individuals to survive in the face of new environmental conditions, enabling the evolution of heritable adaptive traits. However, it is uncertain whether such a plastic response of morphology constitutes an evolutionary adaption itself. Here we investigate whether shape differences due to plastic bone remodelling have functionally advantageous biomechanical consequences in mouse mandibles. Shape characteristics of mandibles from two groups of inbred laboratory mice fed either rodent pellets or ground pellets mixed with jelly were assessed using geometric morphometrics and mechanical advantage measurements of jaw adductor musculature. Results Mandibles raised on diets with differing food consistency showed significant differences in shape, which in turn altered their biomechanical profile. Mice raised on a soft food diet show a reduction in mechanical advantage relative to mice of the same inbred strain raised on a typical hard food diet. Further, the soft food eaters showed lower levels of integration between jaw regions, particularly between the molar and angular region relative to hard food eaters. Conclusions Bone remodelling in mouse mandibles allows for significant shifts in biomechanical ability. Food consistency significantly influences this process in an adaptive direction, as mice raised on hard food develop jaws better suited to handle hard foods. This remodelling also affects the organisation of the mandible, as mice raised on soft food appear to be released from developmental constraints showing less overall integration than those raised on hard foods, but with a shift of integration towards the most solicited regions of the mandible facing such a food, namely the incisors. Our results illustrate how environmentally driven plasticity can lead to adaptive functional changes that increase biomechanical efficiency of food processing in the face of an increased solicitation. In contrast, decreased demand in terms of food processing seems to release developmental interactions between jaw parts involved in mastication, and may generate new patterns of co-variation, possibly opening new directions to subsequent selection. Overall, our results emphasize that mandible shape and integration evolved as parts of a complex system including mechanical loading food resource utilization and possibly foraging behaviour.
Collapse
|
66
|
Bernal V, Béguelin M, Gordón F, Cobos VA, Gonzalez PN, Lotto FP. Craniofacial variation, body size and ecological factors in aboriginal populations from central Patagonia (2000–200 years B.P.). HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2014; 65:101-14. [DOI: 10.1016/j.jchb.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/17/2013] [Indexed: 01/08/2023]
|
67
|
Glass L, Ware AL, Mattson SN. Neurobehavioral, neurologic, and neuroimaging characteristics of fetal alcohol spectrum disorders. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:435-462. [PMID: 25307589 DOI: 10.1016/b978-0-444-62619-6.00025-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Alcohol consumption during pregnancy can have deleterious consequences for the fetus, including changes in central nervous system development leading to permanent neurologic alterations and cognitive and behavioral deficits. Individuals affected by prenatal alcohol exposure, including those with and without fetal alcohol syndrome, are identified under the umbrella of fetal alcohol spectrum disorders (FASD). While studies of humans and animal models confirm that even low to moderate levels of exposure can have detrimental effects, critical doses of such exposure have yet to be specified and the most clinically significant and consistent consequences occur following heavy exposure. These consequences are pervasive, devastating, and can result in long-term dysfunction. This chapter summarizes the neurobehavioral, neurologic, and neuroimaging characteristics of FASD, focusing primarily on clinical research of individuals with histories of heavy prenatal alcohol exposure, although studies of lower levels of exposure, particularly prospective, longitudinal studies, will be discussed where relevant.
Collapse
Affiliation(s)
- Leila Glass
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Ashley L Ware
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Sarah N Mattson
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
68
|
Maiorino L, Farke AA, Kotsakis T, Piras P. Is torosaurus triceratops? Geometric morphometric evidence of late maastrichtian ceratopsid dinosaurs. PLoS One 2013; 8:e81608. [PMID: 24303058 PMCID: PMC3841114 DOI: 10.1371/journal.pone.0081608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/14/2013] [Indexed: 12/30/2022] Open
Abstract
Background Recent assessments of morphological changes in the frill during ontogeny hypothesized that the late Maastrichtian horned dinosaur Torosaurus represents the “old adult” of Triceratops, although acceptance of this finding has been disputed on several lines of evidence. Methodology/Principal Findings Examining the cranial morphology of 28 skulls in lateral view and 36 squamosals of Nedoceratops hatcheri, Triceratops spp. and Torosaurus spp. by means of landmark-based geometric morphometrics, we compared ontogenetic trajectories among these taxa. Principal Component Analysis and cluster analysis confirmed different cranial morphologies. Torosaurus shape space is well separated from Triceratops, whereas Triceratops horridus and Triceratops prorsus partially overlap within Triceratops shape space. Linear regressions between shape and size suggest different ontogenetic trajectories among these taxa. Results support the “traditional” taxonomic status of Torosaurus. We hypothesize that ontogeny drives cranial morphology with different patterns between Torosaurus and Triceratops. Conclusions/Significance Torosaurus is a distinct and valid taxon. Whether looking at entire skulls, skulls without the frill, frills alone, or squamosals, Torosaurus has different morphologies and distinct allometric trajectories compared to Triceratops. This new approach confirms the taxonomic status of Torosaurus as well as the comparatively low diversity of ceratopsids at the end of the Maastrichtian in North America.
Collapse
Affiliation(s)
- Leonardo Maiorino
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
- * E-mail:
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology, Claremont, California, United States of America
| | - Tassos Kotsakis
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
| | - Paolo Piras
- Dipartimento di Scienze, Università Roma Tre, Rome, Italy
- Center for Evolutionary Ecology, Rome, Italy
| |
Collapse
|
69
|
Bookstein FL, Mitteroecker P. Comparing Covariance Matrices by Relative Eigenanalysis, with Applications to Organismal Biology. Evol Biol 2013. [DOI: 10.1007/s11692-013-9260-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
70
|
Romero-Martínez Á, Lila M, Catalá-Miñana A, Williams RK, Moya-Albiol L. The contribution of childhood parental rejection and early androgen exposure to impairments in socio-cognitive skills in intimate partner violence perpetrators with high alcohol consumption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3753-70. [PMID: 23965927 PMCID: PMC3774467 DOI: 10.3390/ijerph10083753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022]
Abstract
Alcohol consumption, a larger history of childhood parental rejection, and high prenatal androgen exposure have been linked with facilitation and high risk of recidivism in intimate partner violence (IPV) perpetrators. Participants were distributed into two groups according to their alcohol consumption scores as high (HA) and low (LA). HA presented a higher history of childhood parental rejection, prenatal masculinization (smaller 2D:4D ratio), and violence-related scores than LA IPV perpetrators. Nonetheless, the former showed poor socio-cognitive skills performance (cognitive flexibility, emotional recognition and cognitive empathy). Particularly in HA IPV perpetrators, the history of childhood parental rejection was associated with high hostile sexism and low cognitive empathy. Moreover, a masculinized 2D:4D ratio was associated with high anger expression and low cognitive empathy. Parental rejection during childhood and early androgen exposure are relevant factors for the development of violence and the lack of adequate empathy in adulthood. Furthermore, alcohol abuse plays a key role in the development of socio-cognitive impairments and in the proneness to violence and its recidivism. These findings contribute to new coadjutant violence intervention programs, focused on the rehabilitation of basic executive functions and emotional decoding processes and on the treatment of alcohol dependence.
Collapse
Affiliation(s)
| | - Marisol Lila
- Department of Social Psychology, University of Valencia, Valencia 46010, Spain; E-Mails: (M.L.); (A.C.-M.)
| | - Alba Catalá-Miñana
- Department of Social Psychology, University of Valencia, Valencia 46010, Spain; E-Mails: (M.L.); (A.C.-M.)
| | - Ryan K. Williams
- Criminal Justice Department, University of Illinois Springfield, Springfield, IL 62703, USA; E-Mail:
| | - Luis Moya-Albiol
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-96-386-4635; Fax: +34-96-386-4668
| |
Collapse
|
71
|
Piras P, Maiorino L, Teresi L, Meloro C, Lucci F, Kotsakis T, Raia P. Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Syst Biol 2013; 62:878-900. [PMID: 23925509 DOI: 10.1093/sysbio/syt053] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cat-like carnivorous mammals represent a relatively homogeneous group of species whose morphology appears constrained by exclusive adaptations for meat eating. We present the most comprehensive data set of extant and extinct cat-like species to test for evolutionary transformations in size, shape and mechanical performance, that is, von Mises stress and surface traction, of the mandible. Size and shape were both quantified by means of geometric morphometrics, whereas mechanical performance was assessed applying finite element models to 2D geometry of the mandible. Additionally, we present the first almost complete composite phylogeny of cat-like carnivorans for which well-preserved mandibles are known, including representatives of 35 extant and 59 extinct species of Felidae, Nimravidae, and Barbourofelidae. This phylogeny was used to test morphological differentiation, allometry, and covariation of mandible parts within and among clades. After taking phylogeny into account, we found that both allometry and mechanical variables exhibit a significant impact on mandible shape. We also tested whether mechanical performance was linked to morphological integration. Mechanical stress at the coronoid process is higher in sabertoothed cats than in any other clade. This is strongly related to the high degree of covariation within modules of sabertooths mandibles. We found significant correlation between integration at the clade level and per-clade averaged stress values, on both original data and by partialling out interclade allometry from shapes when calculating integration. This suggests a strong interaction between natural selection and the evolution of developmental and functional modules at the clade level.
Collapse
Affiliation(s)
- Paolo Piras
- Center for Evolutionary Ecology, Largo San Leonardo Murialdo 1, 00146, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Mardia K, Bookstein F, Kent J. Alcohol, babies and the death penalty: Saving lives by analysing the shape of the brain. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1740-9713.2013.00659.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kanti Mardia
- Senior Research Professor at the University of Leeds, Visiting Professor at the University of Oxford, and Adjunct Faculty at the Indian Institute of Management Ahmedabad
| | - Fred Bookstein
- Professor of Statistics at the University of Washington, Seattle, and Professor of Morphometrics at the University of Vienna
| | - John Kent
- Professor and Head of the Statistics Department at the University of Leeds
| |
Collapse
|
73
|
Williams SE, Slice DE. Influence of edentulism on human orbit and zygomatic arch shape. Clin Anat 2013; 27:408-16. [PMID: 23338936 DOI: 10.1002/ca.22194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 11/09/2022]
Abstract
Edentulism, or tooth loss, seriously alters the appearance of the lower facial skeleton. The aim of this study was to determine if complete maxillary edentulism also impacts the curvature shape of the orbits and zygomatic arches in elderly adults. The study was conducted on 80 crania comprising two cross-sectional populations of elderly African- and European-Americans (60-80 years old). Forty of the crania possessed intact dentition; the remaining 40 exhibited complete edentulism with tooth socket resorption. Three-dimensional semilandmarks representing the curvature of the orbits and zygomatic arches were collected using a hand-held digitizer. Each craniofacial region's semilandmarks were aligned into a common coordinate system via generalized Procrustes superimposition. Regional variation in shape was explored via principal component analysis, multivariate analysis of variance, discriminant function analysis, cross-validation, and vector plots. Shape differences between the edentulous and dentate groups were detected in both the orbits (P = 0.0022) and zygomatic arches (P = 0.0026). Ancestry and sex differences were also identified in both regions. Orbit data correctly classified dentate crania 65% of the time and edentulous crania 72.5% of the time. Zygomatic arch data correctly classified 75% dentate and 60% of edentulous crania. The individual curves constituting each region also exhibited shape alteration with tooth loss, with the exception of the inferior zygomatic curve. Vector plots revealed patterns of superoinferior expansion, and medial and lateral recession depending on the region examined. These results suggest a relationship exists between maxillary edentulism and changes in the surrounding craniofacial structures.
Collapse
Affiliation(s)
- Shanna E Williams
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina
| | | |
Collapse
|
74
|
Ecological and functional correlates of molar shape variation in European populations of Arvicola (Arvicolinae, Rodentia). ZOOL ANZ 2012. [DOI: 10.1016/j.jcz.2011.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
Huang C, Titus JA, Bell RL, Kapros T, Chen J, Huang R. A mouse model for adolescent alcohol abuse: stunted growth and effects in brain. Alcohol Clin Exp Res 2012; 36:1728-37. [PMID: 22433022 PMCID: PMC7723750 DOI: 10.1111/j.1530-0277.2012.01759.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/14/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Adolescent alcohol abuse remains a serious public health concern, with nearly a third of high school seniors reporting heavy drinking in the previous month. METHODS Using the high ethanol-consuming C57BL/6J mouse strain, we examined the effects of ethanol (3.75 g/kg, IP, daily for 45 days) on body weight and brain region mass (cerebral cortex, cerebellum, corpus callosum) during peri-adolescence (postnatal day [P]25 to 70) or adulthood (P180 to 225) of both males and females. RESULTS In control peri-adolescent animals, body weight gain was greater in males compared with females. In the peri-adolescent exposure group, ethanol significantly reduced body weight gain to a similar extent in both male and female mice (82 and 84% of controls, respectively). In adult animals, body weight gain was much less than that of the peri-adolescent mice, with ethanol having a small but significant effect in males but not females. Between the control peri-adolescent and adult cohorts (measurements taken at P70 and 225, respectively), there were no significant differences in the mass of the cerebral cortex or the cerebellum from either male or female mice, although the rostro-caudal length of the corpus callosum increased slightly but significantly (6.1%) between these time points. CONCLUSIONS Ethanol treatment significantly reduced the mass of the cerebral cortex in peri-adolescent (-3.1%), but not adult, treated mice. By contrast, ethanol significantly reduced the length of the corpus callosum in adult (-5.4%), but not peri-adolescent, treated mice. Future studies at the histological level may yield additional details concerning ethanol and the peri-adolescent brain.
Collapse
Affiliation(s)
- Chiming Huang
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | | | | | | | | | | |
Collapse
|
76
|
Joshi SH, Narr KL, Philips OR, Nuechterlein KH, Asarnow RF, Toga AW, Woods RP. Statistical shape analysis of the corpus callosum in Schizophrenia. Neuroimage 2012; 64:547-59. [PMID: 23000788 DOI: 10.1016/j.neuroimage.2012.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/13/2012] [Accepted: 09/05/2012] [Indexed: 11/27/2022] Open
Abstract
We present a statistical shape-analysis framework for characterizing and comparing morphological variation of the corpus callosum. The midsagittal boundary of the corpus callosum is represented by a closed curve and analyzed using an invariant shape representation. The shape space of callosal curves is endowed with a Riemannian metric. Shape distances are given by the length of shortest paths (geodesics) that are invariant to shape-confounding transformations. The statistical framework enables computation of shape averages and covariances on the shape space in an intrinsic manner (unique to the shape space). The statistical framework makes use of the tangent principal component approach to achieve dimension reduction on the space of corpus callosum shapes. The advantages of this approach are - it is fully automatic, invariant, and avoids the use of landmarks to define shapes. We applied our method to determine the effects of sex, age, schizophrenia and schizophrenia-related genetic liability on callosal shape in a large sample of patients and controls and their first-degree relatives (N=218). Results showed significant age, sex, and schizophrenia effects on both global and local callosal shape structure.
Collapse
Affiliation(s)
- Shantanu H Joshi
- Laboratory of Neuro Imaging, University of California, Los Angeles, CA 90095-7334, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Kane CJM, Phelan KD, Drew PD. Neuroimmune mechanisms in fetal alcohol spectrum disorder. Dev Neurobiol 2012; 72:1302-16. [PMID: 22623427 DOI: 10.1002/dneu.22035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/15/2012] [Indexed: 12/24/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is a major health concern worldwide and results from maternal consumption of alcohol during pregnancy. It produces tremendous individual, social, and economic losses. This review will first summarize the structural, functional, and behavior changes seen in FASD. The development of the neuroimmune system will be then be described with particular emphasis on the role of microglial cells in the normal regulation of homeostatic function in the central nervous system (CNS) including synaptic transmission. The impact of alcohol on the neuroimmune system in the developing CNS will be discussed in the context of several key immune molecules and signaling pathways involved in neuroimmune mechanisms that contribute to FASD. This review concludes with a summary of the development of early therapeutic approaches utilizing immunosuppressive drugs to target alcohol-induced pathologies. The significant role played by neuroimmune mechanisms in alcohol addiction and pathology provides a focus for future research aimed at understanding and treating the consequences of FASD.
Collapse
Affiliation(s)
- Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
78
|
Fryer SL. Another step forward in relating facial and brain dysmorphologies associated with prenatal alcohol exposure. Alcohol Clin Exp Res 2012; 36:1131-3. [PMID: 22780985 DOI: 10.1111/j.1530-0277.2012.01849.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Susanna L Fryer
- Department of Psychiatry, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
79
|
Narasimhan M, Rathinam M, Riar A, Patel D, Mummidi S, Yang HS, Colburn NH, Henderson GI, Mahimainathan L. Programmed cell death 4 (PDCD4): a novel player in ethanol-mediated suppression of protein translation in primary cortical neurons and developing cerebral cortex. Alcohol Clin Exp Res 2012; 37:96-109. [PMID: 22757755 DOI: 10.1111/j.1530-0277.2012.01850.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/03/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Prenatal exposure to ethanol (EtOH) elicits a range of neuro-developmental abnormalities, microcephaly to behavioral deficits. Impaired protein synthesis has been connected to pathogenesis of EtOH-induced brain damage and abnormal neuron development. However, mechanisms underlying these impairments of protein synthesis are not known. In this study, we illustrate the effects of EtOH on programmed cell death protein 4 (PDCD4), a tumor and translation repressor. METHODS Primary cortical neurons (PCNs) were treated with 2.5 and 4 mg/ml EtOH for different time points (4 to 24 hours), and PDCD4 expression was detected by Western blotting. Protein synthesis was determined using [(35) S] methionine incorporation assay. Methyl cap pull-down assay was performed to establish the effect of EtOH on association of eukaryotic initiation factor 4A (eIF4A) with capped mRNA. Luciferase assay was performed to determine the in vivo translation. A 2-day acute 5-dose binge model with EtOH (4 g/kg body wt, 25% v/v) was performed in Sprague-Dawley rats at 12-hour intervals and analyzed for PDCD4, eIF4A, and eIF4A-methyl cap association. RESULTS EtOH increased PDCD4 expression in a time- and dose-dependent manner in PCNs, which inhibited the association of eIF4A with methyl cap. EtOH and ectopic PDCD4 expression suppressed in vivo translation in PCNs and RNAi targeting of PDCD4 blocked the inhibitory effect of EtOH on protein synthesis. In utero exposure of pregnant rats to EtOH resulted in a significant increase in PDCD4 in fetal cerebral cortex along with the inhibition of methyl cap-associated eIF4A, compared with isocaloric controls. Increased PDCD4 also occurred in pooled fractions of remaining brain regions. CONCLUSIONS Our data, for the first time, illustrate that PDCD4 mediates inhibitory effects of EtOH on protein synthesis in PCNs and developing brain.
Collapse
Affiliation(s)
- Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Eckstrand KL, Ding Z, Dodge NC, Cowan RL, Jacobson JL, Jacobson SW, Avison MJ. Persistent dose-dependent changes in brain structure in young adults with low-to-moderate alcohol exposure in utero. Alcohol Clin Exp Res 2012; 36:1892-902. [PMID: 22594302 DOI: 10.1111/j.1530-0277.2012.01819.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/09/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many children with heavy exposure to alcohol in utero display characteristic alterations in brain size and structure. However, the long-term effects of low-to-moderate alcohol exposure on these outcomes are unknown. METHODS Using voxel-based morphometry and region-of-interest analyses, we examined the influence of lower doses of alcohol on gray and white matter composition in a prospectively recruited, homogeneous, well-characterized cohort of alcohol-exposed (n = 11, age 19.5 ± 0.3 years) and control (n = 9, age 19.6 ± 0.5 years) young adults. A large proportion of the exposed individuals were born to mothers whose alcohol consumption during pregnancy was in the low-to-moderate range. RESULTS There were no differences in total brain volume or total gray or white matter volume between the exposed and control groups. However, gray matter volume was reduced in alcohol-exposed individuals in several areas previously reported to be affected by high levels of exposure, including the left cingulate gyrus, bilateral middle frontal gyri, right middle temporal gyrus, and right caudate nucleus. Notably, this gray matter loss was dose dependent, with higher exposure producing more substantial losses. CONCLUSIONS These results indicate that even at low doses, alcohol exposure during pregnancy impacts brain development and that these effects persist into young adulthood.
Collapse
Affiliation(s)
- Kristen L Eckstrand
- Department of Radiology and Radiological Sciences , Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Correlation between corpus callosum shape and cognitive performance in healthy young adults. Brain Struct Funct 2012; 218:721-31. [PMID: 22581173 DOI: 10.1007/s00429-012-0424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/25/2012] [Indexed: 01/13/2023]
Abstract
Corpus callosum (CC) might be related to cognitive performance because of its role in interhemispheric communication. Previous research has focused mainly on volumetric analyses of the CC, yielding contradictory results to some extent. Shape is an approach that integrates and extends the data obtained with the volumetric methodology. Here, we analyze the relationships between midsagittal CC shape variation and several cognitive measures. 2D coordinates from 102 MRI-scanned young adult human CCs were superimposed through a Procrustes approach. The residual variation was regressed onto 21 cognitive measures completed by the participants. Most of these measures (including general intelligence, working memory, executive functioning, and mental speed) were unrelated to midsagittal CC morphology. However, attentional control did show consistent and significant correlations with CC shape variation. Slower responses in attentional control were systematically associated with more curved and thinner CC, with consequent rotation of the splenium and the genu. Although the magnitude of the correlations suggests a small relationship of midsagittal CC geometry and attention, the results provide interesting clues regarding the links between brain anatomical configuration and human cognitive function.
Collapse
|
82
|
Yang Y, Roussotte F, Kan E, Sulik KK, Mattson SN, Riley EP, Jones KL, Adnams CM, May PA, O'Connor MJ, Narr KL, Sowell ER. Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cereb Cortex 2012; 22:1170-9. [PMID: 21799209 PMCID: PMC3328347 DOI: 10.1093/cercor/bhr193] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence from structural brain imaging studies on individuals with fetal alcohol spectrum disorder (FASD) has supported links between prenatal alcohol exposure and brain morphological deficits. Although global and regional volumetric reductions appear relatively robust, the effects of alcohol exposure on cortical thickness and relationships with facial dysmorphology are not yet known. The structural magnetic resonance imaging data from 69 children and adolescents with FASD and 58 nonexposed controls collected from 3 sites were examined using FreeSurfer to detect cortical thickness changes across the entire brain in FASD and their associations with facial dysmorphology. Controlling for brain size, subjects with FASD showed significantly thicker cortices than controls in several frontal, temporal, and parietal regions. Analyses conducted within site further revealed prominent group differences in left inferior frontal cortex within all 3 sites. In addition, increased inferior frontal thickness was significantly correlated with reduced palpebral fissure length. Consistent with previous reports, findings of this study are supportive of regional increases in cortical thickness serving as a biomarker for disrupted brain development in FASD. Furthermore, the significant associations between thickness and dysmorphic measures suggest that the severity of brain anomalies may be reflected by that of the face.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of NeuroImaging (LONI), Department of Neurology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Yang Y, Phillips OR, Kan E, Sulik KK, Mattson SN, Riley EP, Jones KL, Adnams CM, May PA, O’Connor MJ, Narr KL, Sowell ER. Callosal thickness reductions relate to facial dysmorphology in fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2012; 36:798-806. [PMID: 22150665 PMCID: PMC3309126 DOI: 10.1111/j.1530-0277.2011.01679.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Structural abnormalities of the corpus callosum (CC), such as reduced size and increased shape variability, have been documented in individuals with fetal alcohol spectrum disorders (FASD). However, the regional specificity of altered CC structure, which may point to the timing of neurodevelopmental disturbances and/or relate to specific functional impairments, remains unclear. Furthermore, associations between facial dysmorphology and callosal structure remain undetermined. METHODS One hundred and fifty-three participants (age range 8 to 16) including 82 subjects with FASD and 71 nonexposed controls were included in this study. The structural magnetic resonance imaging data of these subjects was collected at 3 sites (Los Angeles and San Diego, California, and Cape Town, South Africa) and analyzed using classical parcellation schemes, as well as more refined surface-based geometrical modeling methods, to identify callosal morphological alterations in FASD at high spatial resolution. RESULTS Reductions in callosal thickness and area, specifically in the anterior third and the splenium, were observed in FASD compared with nonexposed controls. In addition, reduced CC thickness and area significantly correlated with reduced palpebral fissure length. CONCLUSIONS Consistent with previous reports, findings suggest an adverse effect of prenatal alcohol exposure on callosal growth and further indicate that fiber pathways connecting frontal and parieto-occipital regions in each hemisphere may be particularly affected. Significant associations between callosal and facial dysmorphology provide evidence for a concurrent insult to midline facial and brain structural development in FASD.
Collapse
Affiliation(s)
- Yaling Yang
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles
| | - Owen R. Phillips
- Laboratory of Neuro Imaging, Department of Neurology, University of California, Los Angeles
| | - Eric Kan
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine, University of Southern California
- Division of Research on Children, Youth, and Families, Department of Pediatrics, Children’s Hospital Los Angeles
| | - Kathleen K. Sulik
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill
| | - Sarah N. Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Edward P. Riley
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, California
| | - Kenneth L. Jones
- Department of Pediatrics, Division of Dysmorphology/ Teratology, University of California, San Diego, La Jolla, California
| | - Colleen M. Adnams
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Philip A. May
- Departments of Sociology and Family and Community Medicine and the Center on Alcoholism, Substance Abuse and Addictions, The University of New Mexico, Albuquerque
| | - Mary J. O’Connor
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Katherine L. Narr
- Corresponding Author: Elizabeth Sowell, Ph.D. Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine, University of Southern California. Tel: 323 361-7347.
| | - Elizabeth R. Sowell
- Developmental Cognitive Neuroimaging Laboratory, Department of Pediatrics, Keck School of Medicine, University of Southern California
- Division of Research on Children, Youth, and Families, Department of Pediatrics, Children’s Hospital Los Angeles
| |
Collapse
|
84
|
Piras P, Sansalone G, Teresi L, Kotsakis T, Colangelo P, Loy A. Testing convergent and parallel adaptations in talpids humeral mechanical performance by means of geometric morphometrics and finite element analysis. J Morphol 2012; 273:696-711. [DOI: 10.1002/jmor.20015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 01/29/2012] [Indexed: 11/07/2022]
|
85
|
Foltran F, Gregori D, Franchin L, Verduci E, Giovannini M. Effect of alcohol consumption in prenatal life, childhood, and adolescence on child development. Nutr Rev 2012; 69:642-59. [PMID: 22029831 DOI: 10.1111/j.1753-4887.2011.00417.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The effects of alcohol consumption in adults are well described in the literature, while knowledge about the effects of alcohol consumption in children is more limited and less systematic. The present review shows how alcohol consumption may negatively influence the neurobiological and neurobehavioral development of humans. Three different periods of life have been considered: the prenatal term, childhood, and adolescence. For each period, evidence of the short-term and long-term effects of alcohol consumption, including neurodevelopmental effects and associations with subsequent alcohol abuse or dependence, is presented.
Collapse
Affiliation(s)
- Francesca Foltran
- Laboratories of Epidemiological Methods and Biostatistics, Department of Environmental Medicine and Public Health, University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
86
|
JANKOWSKI HANNA, STANBERRY LARISSA. Confidence Regions for Means of Random Sets Using Oriented Distance Functions. Scand Stat Theory Appl 2012. [DOI: 10.1111/j.1467-9469.2011.00753.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Cantlon JF, Davis SW, Libertus ME, Kahane J, Brannon EM, Pelphrey KA. Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children. LEARNING AND INDIVIDUAL DIFFERENCES 2011; 21:672-680. [PMID: 22180720 DOI: 10.1016/j.lindif.2011.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to test the link between the development of the corpus callosum and performance on symbolic and non-symbolic numerical judgment tasks. We were especially interested in the interhemispheric connections of parietal cortex in 6-year-old children, because regions of parietal cortex have been implicated in the development of numerical skills by several prior studies. Our results revealed significant structural differences between children and adults in the fibers of the corpus callosum connecting the left and right parietal lobes. Importantly, these structural differences were predictive of individual differences among children in performance on numerical judgment tasks: children with poor numerical performance relative to their peers exhibited reduced white matter coherence in the fibers passing through the isthmus of the corpus callosum, which connects the parietal hemispheres.
Collapse
|
88
|
Kully-Martens K, Denys K, Treit S, Tamana S, Rasmussen C. A Review of Social Skills Deficits in Individuals with Fetal Alcohol Spectrum Disorders and Prenatal Alcohol Exposure: Profiles, Mechanisms, and Interventions. Alcohol Clin Exp Res 2011; 36:568-76. [DOI: 10.1111/j.1530-0277.2011.01661.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Alfonso-Loeches S, Guerri C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 2011; 48:19-47. [PMID: 21657944 DOI: 10.3109/10408363.2011.580567] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The brain is one of the major target organs of alcohol actions. Alcohol abuse can lead to alterations in brain structure and functions and, in some cases, to neurodegeneration. Cognitive deficits and alcohol dependence are highly damaging consequences of alcohol abuse. Clinical and experimental studies have demonstrated that the developing brain is particularly vulnerable to alcohol, and that drinking during gestation can lead to a range of physical, learning and behavioral defects (fetal alcohol spectrum disorders), with the most dramatic presentation corresponding to fetal alcohol syndrome. Recent findings also indicate that adolescence is a stage of brain maturation and that heavy drinking at this stage can have a negative impact on brain structure and functions causing important short- and long-term cognitive and behavioral consequences. The effects of alcohol on the brain are not uniform; some brain areas or cell populations are more vulnerable than others. The prefrontal cortex, the hippocampus, the cerebellum, the white matter and glial cells are particularly susceptible to the effects of ethanol. The molecular actions of alcohol on the brain are complex and involve numerous mechanisms and signaling pathways. Some of the mechanisms involved are common for the adult brain and for the developing brain, while others depend on the developmental stage. During brain ontogeny, alcohol causes irreversible alterations to the brain structure. It also impairs several molecular, neurochemical and cellular events taking place during normal brain development, including alterations in both gene expression regulation and the molecules involved in cell-cell interactions, interference with the mitogenic and growth factor response, enhancement of free radical formation and derangements of glial cell functions. However, in both adult and adolescent brains, alcohol damages specific brain areas through mechanisms involving excitotoxicity, free radical formation and neuroinflammatory damage resulting from activation of the innate immune system mediated by TLR4 receptors. Alcohol also acts on specific membrane proteins, such as neurotransmitter receptors (e.g. NMDA, GABA-A), ion channels (e.g. L-type Ca²⁺ channels, GIRKs), and signaling pathways (e.g. PKA and PKC signaling). These effects might underlie the wide variety of behavioral effects induced by ethanol drinking. The neuroadaptive changes affecting neurotransmission systems which are more sensitive to the acute effects of alcohol occur after long-term alcohol consumption. Alcohol-induced maladaptations in the dopaminergic mesolimbic system, abnormal plastic changes in the reward-related brain areas and genetic and epigenetic factors may all contribute to alcohol reinforcement and alcohol addiction. This manuscript reviews the mechanisms by which ethanol impacts the adult and the developing brain, and causes both neural impairments and cognitive and behavioral dysfunctions. The identification and the understanding of the cellular and molecular mechanisms involved in ethanol toxicity might contribute to the development of treatments and/or therapeutic agents that could reduce or eliminate the deleterious effects of alcohol on the brain.
Collapse
|
90
|
Gonzalez PN, Perez SI, Bernal V. Ontogenetic Allometry and Cranial Shape Diversification Among Human Populations From South America. Anat Rec (Hoboken) 2011; 294:1864-74. [DOI: 10.1002/ar.21454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/07/2011] [Indexed: 12/30/2022]
|
91
|
Chen X, Coles CD, Lynch ME, Hu X. Understanding specific effects of prenatal alcohol exposure on brain structure in young adults. Hum Brain Mapp 2011; 33:1663-76. [PMID: 21692145 DOI: 10.1002/hbm.21313] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/05/2011] [Accepted: 03/02/2011] [Indexed: 11/07/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is associated with various adverse effects on human brain and behavior. Recently, neuroimaging studies have begun to identify PAE effects on specific brain structures. Investigation of such specific PAE effects is important for understanding the teratogenic mechanism of PAE on human brain, which is critical for differentiating PAE from other disorders. In this structural MRI study with young adults, PAE effects on the volumes of automatically segmented cortical and subcortical regions of interest (ROIs) were evaluated both through a group difference approach and a parametric approach. In the group difference approach (comparing among two PAE and a control groups), a disproportionate PAE effect was found in several occipital and temporal regions. This result is inconsistent with previous studies with child samples. Moreover, a gender difference in PAE effect was shown in some cortical ROIs. These findings suggest that sampling and gender may be important factors for interpreting specific PAE effects on human brain. With the parametric approach, it was demonstrated that the higher the PAE level, the smaller the entire brain, the lower the IQ. Several cortical and subcortical ROIs also exhibited a negative correlation between the PAE level and ROI volume. Furthermore, our data showed that the PAE effect on the brain could not be interpreted by the PAE effect on general physical growth until the young adult age. This study provides valuable insight into specific effects of PAE on human brain and suggests important implications for future studies in this field.
Collapse
Affiliation(s)
- Xiangchuan Chen
- Biomedical Imaging Technology Center, Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
92
|
Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. Neuroimage 2011; 56:455-75. [PMID: 20656037 DOI: 10.1016/j.neuroimage.2010.07.034] [Citation(s) in RCA: 796] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/01/2010] [Accepted: 07/19/2010] [Indexed: 11/30/2022] Open
Affiliation(s)
- Anjali Krishnan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA
| | | | | | | |
Collapse
|
93
|
La Croix S, Holekamp KE, Shivik JA, Lundrigan BL, Zelditch ML. Ontogenetic relationships between cranium and mandible in coyotes and hyenas. J Morphol 2011; 272:662-74. [DOI: 10.1002/jmor.10934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/02/2010] [Accepted: 11/12/2010] [Indexed: 11/08/2022]
|
94
|
Magnetic resonance-based imaging in animal models of fetal alcohol spectrum disorder. Neuropsychol Rev 2011; 21:167-85. [PMID: 21445552 DOI: 10.1007/s11065-011-9164-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/01/2011] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) techniques, such as magnetic resonance microscopy (MRM), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS), have recently been applied to the study of both normal and abnormal structure and neurochemistry in small animals. Herein, findings from studies in which these methods have been used for the examination of animal models of Fetal Alcohol Spectrum Disorder (FASD) are discussed. Emphasis is placed on results of imaging studies in fetal and postnatal mice that have highlighted the developmental stage dependency of prenatal ethanol exposure-induced CNS defects. Consideration is also given to the promise of methodological advances to allow in vivo studies of aberrant brain and behavior relationships in model animals and to the translational nature of this work.
Collapse
|
95
|
Tissue plasminogen activator is required for the development of fetal alcohol syndrome in mice. Proc Natl Acad Sci U S A 2011; 108:5069-74. [PMID: 21383198 DOI: 10.1073/pnas.1017608108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ethanol exposure during developmental synaptogenesis can lead to brain defects referred to as fetal alcohol syndrome (FAS), which can include mental health problems such as cognitive deficits and mental retardation. In FAS, widespread neuronal death and brain mass loss precedes behavioral and cognitive impairments in adulthood. Because tissue plasminogen activator (tPA) has been implicated in neurodegeneration, we examined whether it mediates FAS. Neonatal WT and tPA-/- mice were injected with ethanol to mimic FAS in humans. In WT mice, ethanol elicited caspase-3 activation, significant forebrain neurodegeneration, and decreased contextual fear conditioning in adults. However, tPA-deficient mice were protected from these neurotoxicities, and this protection could be abrogated by exogenous tPA. Selective pharmacological modulators of NMDA and GABAA receptor pathways revealed that the effects of tPA were mediated by the NR2B subunit of the NMDA receptor. This study identifies tPA as a critical signaling component in FAS.
Collapse
|
96
|
Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychol Rev 2011; 21:102-18. [PMID: 21369875 PMCID: PMC3098972 DOI: 10.1007/s11065-011-9163-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Abstract
Prenatal alcohol exposure has numerous effects on the developing brain, including damage to selective brain structure. We review structural magnetic resonance imaging (MRI) studies of brain abnormalities in subjects prenatally exposed to alcohol. The most common findings include reduced brain volume and malformations of the corpus callosum. Advanced methods have been able to detect shape, thickness and displacement changes throughout multiple brain regions. The teratogenic effects of alcohol appear to be widespread, affecting almost the entire brain. The only region that appears to be relatively spared is the occipital lobe. More recent studies have linked cognition to the underlying brain structure in alcohol-exposed subjects, and several report patterns in the severity of brain damage as it relates to facial dysmorphology or to extent of alcohol exposure. Future studies exploring relationships between brain structure, cognitive measures, dysmorphology, age, and other variables will be valuable for further comprehending the vast effects of prenatal alcohol exposure and for evaluating possible interventions.
Collapse
|
97
|
Kodituwakku PW, Segall JM, Beatty GK. Cognitive and behavioral effects of prenatal alcohol exposure. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.11.4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Children exposed to substantial amounts of alcohol prenatally are known to display a range of physical and cognitive anomalies, referred to as fetal alcohol spectrum disorders (FASDs). Animal models and neuroimaging studies of FASDs have consistently demonstrated that specific regions of the brain (e.g., midline structures) are more vulnerable to the teratogenic effects of alcohol than other regions. The main aim of this article is to assess whether findings from cognitive–behavioral studies of FASDs yield a profile that maps onto the pattern of damage revealed by neuroanatomical investigations. To achieve this aim, the findings from studies that have investigated elementary functions (e.g., associative learning), general functions (e.g., intellectual abilities), specific functions (e.g., language and memory) and behavior in children and adults with FASDs are examined. The cognitive–behavioral profile emerging from the data is defined as a generalized deficit in processing and integrating complex information. It is proposed that slow processing of information mainly contributes to this deficit. The clinical implications of the above characterization of the cognitive–behavioral profile in FASDs are discussed.
Collapse
Affiliation(s)
- Piyadasa W Kodituwakku
- Departments of Pediatrics & Neurosciences, Center for Development & Disability, University of New Mexico School of Medicine, 2300 Menaul NE, Albuquerque, NM 87107, USA
| | | | - Gregory K Beatty
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
98
|
What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychol Rev 2011; 21:133-47. [PMID: 21347880 DOI: 10.1007/s11065-011-9162-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/15/2011] [Indexed: 12/29/2022]
Abstract
Over the past 5 years, Diffusion Tensor Imaging (DTI) has begun to provide new evidence about the effects of prenatal alcohol exposure on white matter development. DTI, which examines microstructural tissue integrity, is sensitive to more subtle white matter abnormalities than traditional volumetric MRI methods. Thus far, the available DTI data suggest that white matter microstructural abnormalities fall on a continuum of severity in Fetal Alcohol Spectrum Disorder (FASD). Abnormalities are prominent in the corpus callosum, but also evident in major anterior-posterior fiber bundles, corticospinal tracts, and cerebellum. These subtle abnormalities are correlated with neurocognitive deficits, especially in processing speed, non-verbal ability, and executive functioning. Future studies using larger samples, increasingly sophisticated DTI methods, and additional functional MRI connectivity measures will better characterize the full range of abnormalities in FASD. Ultimately, these measures may serve as indices of change in future longitudinal studies and in studies of interventions for FASD.
Collapse
|
99
|
Wozniak JR, Mueller BA, Muetzel RL, Bell CJ, Hoecker HL, Nelson ML, Chang PN, Lim KO. Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure. Alcohol Clin Exp Res 2011; 35:849-61. [PMID: 21303384 DOI: 10.1111/j.1530-0277.2010.01415.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of fetal alcohol spectrum disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine whether inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition. METHODS Twenty-one children with FASD and 23 matched controls underwent a 6-minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semi-automated method, we parsed the corpus callosum and delineated 7 inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs, and group comparisons were made. Correlations with facial dysmorphology, cognition, and DTI measures were computed. RESULTS A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than in controls in this region. Subgroup analyses were not possible owing to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures, and Wechsler perceptual reasoning ability. CONCLUSIONS Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions, and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning.
Collapse
Affiliation(s)
- Jeffrey R Wozniak
- Department of Psychiatry, University of Minnesota, Minneapolis, 55454, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Gonzalez PN, Hallgrímsson B, Oyhenart EE. Developmental plasticity in covariance structure of the skull: effects of prenatal stress. J Anat 2011; 218:243-57. [PMID: 21138433 PMCID: PMC3042757 DOI: 10.1111/j.1469-7580.2010.01326.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 11/27/2022] Open
Abstract
Environmental perturbations of many kinds influence growth and development. Little is known, however, about the influence of environmental factors on the patterns of phenotypic integration observed in complex morphological traits. We analyze the changes in phenotypic variance-covariance structure of the rat skull throughout the early postnatal ontogeny (from birth to weaning) and evaluate the effect of intrauterine growth retardation (IUGR) on this structure. Using 2D coordinates taken from lateral radiographs obtained every 4 days, from birth to 21 days old, we show that the pattern of covariance is temporally dynamic from birth to 21 days. The environmental perturbation provoked during pregnancy altered the skull growth, and reduced the mean size of the IUGR group. These environmental effects persisted throughout lactancy, when the mothers of both groups received a standard diet. More strikingly, the effect grew larger beyond this point. Altering environmental conditions did not affect all traits equally, as revealed by the low correlations between covariance matrices of treatments at the same age. Finally, we found that the IUGR treatment increased morphological integration as measured by the scaled variance of eigenvalues. This increase coincided and is likely related to an increase in morphological variance in this group. This result is expected if somatic growth is a major determinant of covariance structure of the skull. In summary, our findings suggest that environmental perturbations experienced in early ontogeny alter fundamental developmental processes and are an important factor in shaping the variance-covariance structure of complex phenotypic traits.
Collapse
Affiliation(s)
- Paula N Gonzalez
- CONICET, División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | |
Collapse
|