51
|
Dümmler A, Lawrence AM, de Marco A. Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 2005; 4:34. [PMID: 16351710 PMCID: PMC1326211 DOI: 10.1186/1475-2859-4-34] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/13/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The solubility of recombinant proteins expressed in bacteria is often disappointingly low. Several strategies have been developed to improve the yield and one of the most common strategies is the fusion of the target protein with a suitable partner. Despite several reports on the successful use of each of these carriers to increase the solubility of some recombinant proteins, none of them was always successful and a combinatorial approach seems more efficient to identify the optimal combination for a specific protein. Therefore, the efficiency of an expression system critically depends on the speed in the identification of the optimal combination for the suitable fusion candidate in a screening process. This paper describes a set of expression vectors (pETM) designed for rapid subcloning, expression and subsequent purification using immobilized metal affinity chromatography (IMAC). RESULTS A single PCR product of two Yellow Fluorescent Proteins (EYFPs) was cloned into 18 vectors comprising identical restriction sites and varying fusion partners as well as differing protease recognition sites. After a small-scale expression, the yields of the different constructs were compared using a Coomassie stained SDS-polyacrylamide gel and the results of this preliminary screening were then confirmed by large-scale purification. The yields were calculated and the stability of the different constructs determined using three independent conditions. The results indicated a significant correlation between the length and composition of non-native amino acid tails and stability. Furthermore, the buffer specificity of TEV and 3C proteases was tested using fusion proteins differing only in their protease recognition sequence, and a His-GST-EYFP construct was employed to compare the efficiency of the two alternative affinity purification methods. CONCLUSION The experiments showed that the set of pETM vectors could be used for the rapid production of a large array of different constructs with specific yield, stability, and cleavage features. Their comparison allowed the identification of the optimal constructs to use for the large-scale expression. We expect that the approach outlined in this paper, i.e. the possibility to obtain in parallel fusion products of the target protein with different partners for a preliminary evaluation, would be highly beneficial for all them who are interested in the rapid identification of the optimal conditions for protein expression.
Collapse
Affiliation(s)
- Annett Dümmler
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| | - Ann-Marie Lawrence
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| | - Ario de Marco
- Protein Expression and Purification Facility, EMBL, Meyerhofstr. 1, D-69117, Heidelberg, Germany
| |
Collapse
|
52
|
Hazlett KRO, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 2005; 187:6499-508. [PMID: 16159783 PMCID: PMC1236642 DOI: 10.1128/jb.187.18.6499-6508.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.
Collapse
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Ave., Farmington, Connecticut 06030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Schrödel A, Volz J, de Marco A. Fusion tags and chaperone co-expression modulate both the solubility and the inclusion body features of the recombinant CLIPB14 serine protease. J Biotechnol 2005; 120:2-10. [PMID: 16023240 DOI: 10.1016/j.jbiotec.2005.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/16/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Chaperone co-expression and the fusion to different tags were used to modify the aggregation pattern of the putative serine protease CLIPB14 precipitated in Escherichia coli inclusion bodies. A set of common tags used in expression vectors has been selected, as well as two bacterial strains over-expressing the chaperones GroELS and ibpA/B, respectively. The presence of the fused tags resulted in an improved solubility of CLIPB14 but also in a higher presence of contaminants in the inclusion bodies, while chaperone co-expression promoted the binding of all the chaperone machinery involved into the disaggregation to the CLIPB14. Furthermore, each tag influenced in a specific manner the re-aggregation of the denatured CLIPB14 constructs during urea dilution and the preliminary trials indicated that the CLIPB14 fusions with higher homogeneity and lower re-aggregation rate were the optimal candidates for refolding assays. In conclusion, it is possible to tune the quality of the inclusion bodies by choosing the suitable combination of tag and chaperone co-expression that minimize the non-productive side reactions during refolding.
Collapse
|
54
|
Idicula-Thomas S, Balaji PV. Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 2005; 14:582-92. [PMID: 15689506 PMCID: PMC2279285 DOI: 10.1110/ps.041009005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Solubility of proteins on overexpression in Escherichia coli is a manifestation of the net effect of several sequence-dependent and sequence-independent factors. This study aims to delineate the relationship between the primary structure and solubility on overexpression. The amino acid sequences of proteins reported to be soluble or to form inclusion bodies on overexpression in E. coli under normal growth conditions were analyzed. The results show a positive correlation between thermostability and solubility of proteins, and an inverse correlation between the in vivo half-life of proteins and solubility. The amino acid (Asn, Thr, Tyr) composition and the tripeptide frequency of the protein were also found to influence its solubility on overexpression. The amino acids that were seen to be present in a comparatively higher frequency in inclusion body-forming proteins have a higher sheet propensity, whereas those that are seen more in soluble proteins have a higher helix propensity; this is indicative of a possible correlation between sheet propensity and inclusion body formation. Thus, the present analysis shows that thermostability, in vivo half-life, Asn, Thr, and Tyr content, and tripeptide composition of a protein are correlated to the propensity of a protein to be soluble on overexpression in E. coli. The precise mechanism by which these properties affect the solubility status of the overexpressed protein remains to be understood.
Collapse
Affiliation(s)
- Susan Idicula-Thomas
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | |
Collapse
|
55
|
Philibert P, Martineau P. Directed evolution of single-chain Fv for cytoplasmic expression using the beta-galactosidase complementation assay results in proteins highly susceptible to protease degradation and aggregation. Microb Cell Fact 2004; 3:16. [PMID: 15606918 PMCID: PMC544847 DOI: 10.1186/1475-2859-3-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 12/17/2004] [Indexed: 12/20/2022] Open
Abstract
Background Antibody fragments are molecules widely used for diagnosis and therapy. A large amount of protein is frequently required for such applications. New approaches using folding reporter enzymes have recently been proposed to increase soluble expression of foreign proteins in Escherichia coli. To date, these methods have only been used to screen for proteins with better folding properties but have never been used to select from a large library of mutants. In this paper we apply one of these methods to select mutations that increase the soluble expression of two antibody fragments in the cytoplasm of E. coli. Results We used the β-galactosidase α-complementation system to monitor and evolve two antibody fragments for high expression levels in E. coli cytoplasm. After four rounds of mutagenesis and selection from large library repertoires (>107 clones), clones exhibiting high levels of β-galactosidase activity were isolated. These clones expressed a higher amount of soluble fusion protein than the wild type in the cytoplasm, particularly in a strain deficient in the cytoplasmic Lon protease. The increase in the soluble expression level of the unfused scFv was, however, much less pronounced, and the unfused proteins proved to be more aggregation prone than the wild type. In addition, the soluble expression levels were not correlated with the β-galactosidase activity present in the cells. Conclusion This is the first report of a selection for soluble protein expression using a fusion reporter method. Contrary to anticipated results, high enzymatic activity did not correlate with the soluble protein expression level. This was presumably due to free α-peptide released from the protein fusion by the host proteases. This means that the α-complementation assay does not sense the fusion expression level, as hypothesized, but rather the amount of free released α-peptide. Thus, the system does not select, in our case, for higher soluble protein expression level but rather for higher protease susceptibility of the fusion protein.
Collapse
Affiliation(s)
- Pascal Philibert
- CNRS UMR 5160, Faculté de Pharmacie, 15, av. Charles Flahault, BP14491, 34093. Montpellier Cedex 5, France
| | - Pierre Martineau
- CNRS UMR 5160, Faculté de Pharmacie, 15, av. Charles Flahault, BP14491, 34093. Montpellier Cedex 5, France
| |
Collapse
|
56
|
Mayer MR, Dailey TA, Baucom CM, Supernak JL, Grady MC, Hawk HE, Dailey HA. Expression of human proteins at the Southeast Collaboratory for Structural Genomics. ACTA ACUST UNITED AC 2004; 5:159-65. [PMID: 15263854 DOI: 10.1023/b:jsfg.0000029202.77832.34] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The human protein production group at the Southeast Collaboratory for Structural Genomics is charged with producing human proteins for both X-ray crystallography and NMR structural studies. Eukaryotic, and human proteins in particular, are notoriously difficult to express in bacterial systems. For various reasons, T7-based expression often results in protein expressed in an insoluble form. Overcoming this requires either introduction of a step to screen expression conditions or inclusion of a troublesome refolding step during purification. Our laboratory uses a trc-based expression vector that addresses many of the difficulties of the commonly used T7-based expression systems. Proteins expressed under the trc promoter, a weak promoter compared to the strong T7 promoter, are produced in a soluble form and include necessary cofactors. The details of this system will be discussed.
Collapse
Affiliation(s)
- Michael R Mayer
- Southeast Collaboratory for Structural Genomics, A222 Life Sciences, Athens, GA 30602-7229, USA.
| | | | | | | | | | | | | |
Collapse
|
57
|
Cabrita LD, Bottomley SP. Protein expression and refolding--a practical guide to getting the most out of inclusion bodies. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:31-50. [PMID: 15504702 DOI: 10.1016/s1387-2656(04)10002-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The release of sequence data, particularly from a number of medically and biotechnologically important genomes, is increasing in an exponential fashion. In light of this, elucidating the structure and function of proteins, particularly in a "high throughput" manner, is an important quest. The production of recombinant proteins however is not always straightforward, with a number of proteins falling prey to low expression problems, a high susceptibility to proteolysis and the often despised production of inclusion bodies. Whilst expression as inclusion bodies can often be advantageous, their solubilization and renaturation is often a time consuming and empirical process. In this review, we aim to outline some of the more common approaches that have been applied to a variety of proteins and address issues associated with their handling.
Collapse
Affiliation(s)
- Lisa D Cabrita
- Monash University, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, P.O. Box 13D, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
58
|
Boeggeman EE, Ramakrishnan B, Qasba PK. The N-terminal stem region of bovine and human beta1,4-galactosyltransferase I increases the in vitro folding efficiency of their catalytic domain from inclusion bodies. Protein Expr Purif 2003; 30:219-29. [PMID: 12880771 DOI: 10.1016/s1046-5928(03)00093-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many recombinant proteins overexpressed in Escherichia coli are generally misfolded, which then aggregate and accumulate as inclusion bodies. The catalytic domain (CD) of bovine and human beta1,4-galactosyltransferase (beta4Gal-T), expressed in E. coli, it also accumulates as inclusion bodies. We studied the effect of the fusion of the stem region (SR), as an N-terminal extension of the catalytic domain, on the in vitro folding efficiencies of the inclusion bodies. The stem region fused to the catalytic domain (SRCD) increases the folding efficiency of recombinant protein with native fold compared to the protein that contains only the CD. During in vitro folding, also promotes considerably the solubility of the misfolded proteins, which do not bind to UDP-agarose columns and exhibit no galactosyltransferase activity. In contrast, the misfolded proteins that consist of only the CD are insoluble and precipitate out of solution. It is concluded that a protein domain that is produced in a soluble form does not guarantee the presence of the protein molecules in a properly folded and active form. The stem domain has a positive effect on the in vitro folding efficiency of the catalytic domain of both human and bovine beta4Gal-T1, suggesting that the stem region acts as a chaperone during protein folding. Furthermore, investigation of the folding conditions of the sulphonated inclusion bodies resulted in identifying a condition in which the presence of PEG-4000 and L-arginine, compared to their absence, increased the yields of native CD and SRCD 7- and 3-fold, respectively.
Collapse
Affiliation(s)
- Elizabeth E Boeggeman
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Bldg. 469, Rm 221, Frederick, MD 21702, USA
| | | | | |
Collapse
|
59
|
Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B. Crystal structures of fusion proteins with large-affinity tags. Protein Sci 2003; 12:1313-22. [PMID: 12824478 PMCID: PMC2323919 DOI: 10.1110/ps.0243403] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.
Collapse
Affiliation(s)
- Douglas R. Smyth
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
| | - Marek K. Mrozkiewicz
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
| | - William J. McGrath
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Pawel Listwan
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Cooperative Research Centre for Chronic Inflammatory Disease, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bostjan Kobe
- Department of Biochemistry and Molecular Biology, Institute for Molecular Bioscience, and Special Research Centre for Functional and Applied Genomics and
- Cooperative Research Centre for Chronic Inflammatory Disease, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
60
|
MacDonald LM, Armson A, Thompson RCA, Reynoldson JA. Characterization of factors favoring the expression of soluble protozoan tubulin proteins in Escherichia coli. Protein Expr Purif 2003; 29:117-22. [PMID: 12729732 DOI: 10.1016/s1046-5928(03)00006-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The alpha- and beta-tubulin genes of the parasitic protozoa Giardia duodenalis, Cryptosporidium parvum, and Encephalitozoon intestinalis have been overexpressed in soluble form using Escherichia coli-based expression systems. Several expression systems were compared in terms of the amount of soluble protein produced with different fusion partners, strains of E. coli BL21, and expression temperatures. The cleavability of the fusion partner was also assessed in terms of post-expression applications of the recombinant protein. The maltose-binding protein (MBP) and glutathione S-transferase (GST) fusion partners produced the highest expression levels for all six proteins without the formation of inclusion bodies. The expression system also provided a means of purifying the soluble protein using affinity and anion-exchange chromatography while minimizing protein losses. The yield and purity were therefore very high for both the MBP and GST systems. The tubulin monomers were demonstrated to be assembly-competent using a standard dimerization assay and also retained full antigenicity with monoclonal antibodies. This study presents several methods which are suitable for producing soluble tubulin monomers and, thus, circumventing the formation of inclusion bodies which necessitates re-folding of the tubulin.
Collapse
Affiliation(s)
- Louisa M MacDonald
- Division of Veterinary and Biomedical Sciences, Murdoch University, South Street, Perth, WA 6150, Australia.
| | | | | | | |
Collapse
|
61
|
Arakawa T, Li T, Narhi LO. Recombinant production of native proteins from Escherichia coli. PHARMACEUTICAL BIOTECHNOLOGY 2002; 13:27-60. [PMID: 11987753 DOI: 10.1007/978-1-4615-0557-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA
| | | | | |
Collapse
|
62
|
Hammarström M, Hellgren N, van Den Berg S, Berglund H, Härd T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 2002; 11:313-21. [PMID: 11790841 PMCID: PMC2373440 DOI: 10.1110/ps.22102] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A prerequisite for structural genomics and related projects is to standardize the process of gene overexpression and protein solubility screening to enable automation for higher throughput. We have tested a methodology to rapidly subclone a large number of human genes and screen these for expression and protein solubility in Escherichia coli. The methodology, which can be partly automated, was used to compare the effect of six different N-terminal fusion proteins and an N-terminal 6*His tag. As a realistic test set we selected 32 potentially interesting human proteins with unknown structures and sizes suitable for NMR studies. The genes were transferred from cDNA to expression vectors using subcloning by recombination. The subcloning yield was 100% for 27 (of 32) genes for which a PCR fragment of correct size could be obtained. Of these, 26 genes (96%) could be overexpressed at detectable levels and 23 (85%) are detected in the soluble fraction with at least one fusion tag. We find large differences in the effects of fusion protein or tag on expression and solubility. In short, four of seven fusions perform very well, and much better than the 6*His tag, but individual differences motivate the inclusion of several fusions in expression and solubility screening. We also conclude that our methodology and expression vectors can be used for screening of genes for structural studies, and that it should be possible to obtain a large fraction of all NMR-sized and nonmembrane human proteins as soluble fusion proteins in E. coli.
Collapse
Affiliation(s)
- Martin Hammarström
- Department of Biotechnology, Royal Institute of Technology (KTH) Center for Physics, Astronomy and Biotechnology, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
63
|
Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Travé G. Formation of soluble inclusion bodies by hpv e6 oncoprotein fused to maltose-binding protein. Protein Expr Purif 2001; 23:22-32. [PMID: 11570842 DOI: 10.1006/prep.2001.1451] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many polypeptides overexpressed in bacteria are produced misfolded and accumulate as solid structures called inclusion bodies. Inclusion-body-prone proteins have often been reported to escape precipitation when fused to maltose-binding protein (MBP). Here, we have examined the case of HPV 16 oncoprotein E6. The unfused sequence of E6 is overexpressed as inclusion bodies in bacteria. By contrast, fusions of E6 to the C-terminus of MBP are produced soluble. We have analyzed preparations of soluble MBP-E6 fusions by using three independent approaches: dynamic light scattering, lateral turbidimetry, and sandwich ELISA. All three methods showed that MBP-E6 preparations contain highly aggregated material. The behavior of these soluble aggregates under denaturating conditions suggests that they are formed by agglomeration of misfolded E6 moieties. However, precipitation is prevented by the presence of the folded and highly soluble MBP moieties, which maintain the aggregates in solution. Therefore, the fact that a protein or protein domain is produced soluble when fused to the C-terminus of a carrier protein does not guarantee that the protein of interest is properly folded and active. We suggest that aggregation of fusion proteins should be systematically assayed, especially when these fusions are to be used for binding measurements or activity tests.
Collapse
Affiliation(s)
- Y Nominé
- Laboratoire de RMN, UPR 9003 du CNRS, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | | | | | | | | |
Collapse
|
64
|
MacDonald LM, Armson A, Thompson RC, Reynoldson JA. Expression of Giardia duodenalis beta-tubulin as a soluble protein in Escherichia coli. Protein Expr Purif 2001; 22:25-30. [PMID: 11388795 DOI: 10.1006/prep.2001.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-tubulin gene of the parasitic protozoan Giardia duodenalis has been expressed for the first time using a novel and direct method. The protein was expressed in both soluble and insoluble forms in an Escherichia coli-based expression system. The level of expression was found to be affected by several variables including the incubation temperature, length of time for which expression was carried out, and the E. coli culture volume. The protein expression system contributed no additional amino acids to the final fusion protein and the polyhistidine fusion sequence was easily removed from the beta-tubulin protein using a specific enterokinase enzyme. The expression system also provided a means of preparing a soluble protein and purifying it by a relatively straightforward affinity chromatography method to give a very high level of protein purity. This makes the protein suitable for a number of applications for characterization including beta-tubulin antibody assays, alpha-/beta-tubulin-binding regions, and beta-tubulin folding intermediates.
Collapse
Affiliation(s)
- L M MacDonald
- Division of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150.
| | | | | | | |
Collapse
|
65
|
Babé LM, Linnevers CJ, Schmidt BF. Production of active mammalian and viral proteases in bacterial expression systems. Biotechnol Genet Eng Rev 2001; 17:213-52. [PMID: 11255667 DOI: 10.1080/02648725.2000.10647993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- L M Babé
- Axys Pharmaceuticals Inc., 180 Kimball Way, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
66
|
Nominé Y, Ristriani T, Laurent C, Lefèvre JF, Travé G. A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. PROTEIN ENGINEERING 2001; 14:297-305. [PMID: 11391022 DOI: 10.1093/protein/14.4.297] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recombinant production of HPV oncoprotein E6 is notoriously difficult. The unfused sequence is produced in inclusion bodies. By contrast, fusions of E6 to the C-terminus of carrier proteins such as maltose-binding protein or glutathione-S-transferase are produced soluble. However, it has not yet been possible to purify E6 protein from such fusion constructs. Here, we show that this was due to the biophysical heterogeneity of the fusion preparations. We find that soluble MBP-E6 preparations contain two subpopulations. A major fraction is aggregated and contains exclusively misfolded E6 moieties ('soluble inclusion bodies'). A minor fraction is monodisperse and contains the properly folded E6 moieties. Using monodispersity as a screening criterion, we optimized the expression conditions, the purification process and the sequence of E6, finally obtaining stable monodisperse MBP-E6 preparations. In contrast to aggregated MBP-E6, these preparations yielded fully soluble E6 after proteolytic removal of MBP. Once purified, these E6 proteins are stable, folded and biologically active. The first biophysical measurements on pure E6 were performed. This work shows that solubility is not a sufficient criterion to check that the passenger protein in a fusion construct is properly folded and active. By contrast, monodispersity appears as a better quality criterion. The monodispersity-based strategy presented here constitutes a general method to prepare fusion proteins with optimized folding and biological activity.
Collapse
Affiliation(s)
- Y Nominé
- Laboratoire de RMN, UPR 9003 du CNRS and Laboratoire d'Immunotechnologie, UPRES 1329, Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France
| | | | | | | | | |
Collapse
|
67
|
Sachdev D, Chirgwin JM. Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 2001; 326:312-21. [PMID: 11036650 DOI: 10.1016/s0076-6879(00)26062-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- D Sachdev
- University of Minnesota Cancer Center, Minneapolis 55455, USA
| | | |
Collapse
|
68
|
Fox JD, Kapust RB, Waugh DS. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci 2001; 10:622-30. [PMID: 11344330 PMCID: PMC2374134 DOI: 10.1110/ps.45201] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Proteins are commonly fused to Escherichia coli maltose-binding protein (MBP) to enhance their yield and facilitate their purification. In addition, the stability and solubility of a passenger protein can often be improved by fusing it to MBP. In a previous comparison with two other highly soluble fusion partners, MBP was decidedly superior at promoting the solubility of a range of aggregation-prone proteins. To explain this observation, we proposed that MBP could function as a general molecular chaperone in the context of a fusion protein by binding to aggregation-prone folding intermediates of passenger proteins and preventing their self-association. The ligand-binding cleft in MBP was considered a likely site for peptide binding because of its hydrophobic nature. We tested this hypothesis by systematically replacing hydrophobic amino acid side chains in and around the cleft with glutamic acid. None of these mutations affected the yield or solubility of MBP in its unfused state. Each MBP was then tested for its ability to promote solubility when fused to three passenger proteins: green fluorescent protein, p16, and E6. Mutations within the maltose-binding cleft (W62E, A63E, Y155E, W230E, and W340E) had little or no effect on the solubility of the fusion proteins. In contrast, three mutations near one end of the cleft (W232E, Y242E, and I317E) dramatically reduced the solubility of the same fusion proteins. The mutations with the most profound effect on solubility were shown to reduce the global stability of MBP.
Collapse
Affiliation(s)
- J D Fox
- Protein Engineering Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
69
|
Eisenmesser EZ, Kapust RB, Nawrocki JP, Mazzulla MJ, Pannell LK, Waugh DS, Byrd RA. Expression, purification, refolding, and characterization of recombinant human interleukin-13: utilization of intracellular processing. Protein Expr Purif 2000; 20:186-95. [PMID: 11049743 DOI: 10.1006/prep.2000.1283] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-13 (IL-13) is a pleiotropic cytokine that elicits both proinflammatory and anti-inflammatory immune responses. Recent studies underscore its role in several diseases, including asthma and cancer. Solution studies of IL-13 and its soluble receptors may facilitate the design of antagonists/agonists which would require milligram quantities of specifically labeled protein. A synthetic gene encoding human IL-13 (hIL-13) was inserted into the pMAL-c2 vector with a cleavage site for the tobacco etch virus (TEV) protease. Coexpression of the fusion protein and TEV protease led to in vivo cleavage, resulting in high levels of hIL-13 production. hIL-13, localized to inclusion bodies, was purified and refolded to yield approximately 2 mg per liter of bacteria grown in minimal media. Subsequent biochemical and biophysical analysis of both the unlabeled and (15)N-labeled protein revealed a bioactive helical monomer. In addition, the two disulfide bonds were unambiguously demonstrated to be Cys29-Cys57 and Cys45-Cys71 by a combined proteolytic digestion and mass spectrometric analysis.
Collapse
Affiliation(s)
- E Z Eisenmesser
- Macromolecular NMR Section, National Cancer Institute-FCRDC, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- R C Stevens
- Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR101, La Jolla, CA 92037, USA.
| |
Collapse
|
71
|
Park JH, Lee YS, Lim YK, Kwon SH, Lee CU, Yoon BS. Specific binding of recombinant Listeria monocytogenes p60 protein to Caco-2 cells. FEMS Microbiol Lett 2000; 186:35-40. [PMID: 10779709 DOI: 10.1111/j.1574-6968.2000.tb09078.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Listeria monocytogenes p60 is a major extracellular protein, which is believed to be involved in the invasion of these bacteria into their host cells. So far the mechanism by which p60 participates in the internalization or penetration of L. monocytogenes is still veiled. To determine the possibility of a direct interaction of p60 with the host cell surface, the iap gene was recombinantly expressed in Escherichia coli and used for binding studies with the enterocyte-like Caco-2 cells. Fluorescence activated flow cytometry and confocal laser scanning microscopy revealed a cell membrane specific staining with p60, which implications in Listeria virulence are discussed.
Collapse
Affiliation(s)
- J H Park
- Peptide Engineering Research Unit, Korea Research Institute of Bioscience and Biotechnology, Yusong, P.O. Box 115, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
72
|
Jacquet A, Daminet V, Haumont M, Garcia L, Chaudoir S, Bollen A, Biemans R. Expression of a recombinant Toxoplasma gondii ROP2 fragment as a fusion protein in bacteria circumvents insolubility and proteolytic degradation. Protein Expr Purif 1999; 17:392-400. [PMID: 10600457 DOI: 10.1006/prep.1999.1150] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 268-amino-acid-residue carboxy-terminal antigenic fragment of the Toxoplasma gondii rhoptry protein ROP2 (recROP2(t), residues 196-464) was expressed in Escherichia coli. This recombinant fragment was produced at low concentration and in a highly insoluble form. By contrast, the level of recROP2(t) production was drastically greater when the same coding sequence was fused to the C-terminus of thioredoxin (TRX) or to the maltose-binding protein (MBP) gene. While both fusion proteins were found to be mainly insoluble, solubilization could be achieved without significant degradation. MBP was more efficient than TRX in increasing the recovery of soluble protein with more than 10% of total MBP-recROP2(t) being readily expressed in a soluble form. Moreover, the insoluble form of MBP-recROP2(t) could be correctly refolded with a recovery of more than 80%. Both forms of MBP-recROP2(t) were purified to homogeneity by amylose chromatography. In contrast, the refolding of TRX-recROP2(t) promoted aggregation of the protein, which was prevented by the use of zwitterionic detergent during the one-step purification by gel filtration. Subsequent proteolytic cleavages of purified TRX-recROP2(t) and of MBP-recROP2(t) led respectively to the complete degradation or to the truncation of the recROP2(t) moiety. However, recROP2(t), despite the presence of the fusion partners, adopted a suitable conformation recognized by human serum-derived antibodies from T. gondii-seropositive individuals. Finally, both fusion proteins were able to induce specific humoral and cell-mediated immune response to the ROP2 fragment. Such fusions could represent an alternative to study the immunogenicity of T. gondii proteins which are difficult to produce because of insolubility and degradation.
Collapse
Affiliation(s)
- A Jacquet
- Department of Applied Genetics, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, B-6041, Belgium.
| | | | | | | | | | | | | |
Collapse
|
73
|
Kapust RB, Waugh DS. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 1999; 8:1668-74. [PMID: 10452611 PMCID: PMC2144417 DOI: 10.1110/ps.8.8.1668] [Citation(s) in RCA: 728] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although it is usually possible to achieve a favorable yield of a recombinant protein in Escherichia coli, obtaining the protein in a soluble, biologically active form continues to be a major challenge. Sometimes this problem can be overcome by fusing an aggregation-prone polypeptide to a highly soluble partner. To study this phenomenon in greater detail, we compared the ability of three soluble fusion partners--maltose-binding protein (MBP), glutathione S-transferase (GST), and thioredoxin (TRX)--to inhibit the aggregation of six diverse proteins that normally accumulate in an insoluble form. Remarkably, we found that MBP is a far more effective solubilizing agent than the other two fusion partners. Moreover, we demonstrated that in some cases fusion to MBP can promote the proper folding of the attached protein into its biologically active conformation. Thus, MBP seems to be capable of functioning as a general molecular chaperone in the context of a fusion protein. A model is proposed to explain how MBP promotes the solubility and influences the folding of its fusion partners.
Collapse
Affiliation(s)
- R B Kapust
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | |
Collapse
|
74
|
Chaouk H, Hearn MT. Examination of the protein binding behaviour of immobilised copper (II)-2,6-diaminomethylpyridine and its application in the immobilised metal ion affinity chromatographic separation of several human serum proteins. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1999; 39:161-77. [PMID: 10392572 DOI: 10.1016/s0165-022x(99)00013-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new metal ion chelator has been developed for use in the immobilised metal ion affinity chromatography (IMAC) of proteins. The aromatic tridentate ligand 2,6-diaminomethylpyridine (bisampyr), 1, was prepared as the dihydrochloride salt, via a two step synthesis from 2,6-pyridinedimethanol, 2, and immobilised onto Sepharose CL-4B through an epoxide coupling procedure. The resulting sorbent was chelated with Cu2+ ions to a density of 420 micromol Cu2+ ions per g gel and then characterised by frontal analysis using the protein, horse heart myoglobin (HMYO), at pH 7.0 and 9.0. From the resulting adsorption isotherms, the adsorption capacity, qm, for HMYO at pH 7.0 and pH 9.0 with the immobilised Cu2+-bisampyr Sepharose sorbent was found to be 1.27 micromol protein/g gel and 1.43 micromol protein/g gel, whilst the corresponding dissociation constants, K(D)s, were 18.0 x 10(-6) M and 16.0 x 10(-6) M respectively. The results confirm that the HMYO-Cu2+-bisampyr complex had similar stability at these pH values. This finding is in contrast with the situation observed with some other commonly used IMAC chelating ligates such as Cu2+-iminodiacetic acid (Cu2+-IDA) or Cu2+-nitrilotriacetic acid (Cu2+-NTA). Using human serum proteins, the interactive properties of the immobilised Cu2+-bisampyr Sepharose sorbent were further characterised at pH 5.0, 7.0 and 9.0 with specific reference to the binding behaviour of albumin, transferrin, and alpha2-macroglobulin.
Collapse
Affiliation(s)
- H Chaouk
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
75
|
Sachdev D, Chirgwin JM. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:127-36. [PMID: 10071937 DOI: 10.1023/a:1020663903669] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mammalian aspartic proteinases procathepsin D and pepsinogen form insoluble inclusion bodies when expressed in bacteria. They become soluble but nonnative when synthesized as fusions to the carboxy terminus of E. coli maltose-binding protein (MBP). Since these nonnative states of the two aspartic proteinases showed no tendency to form insoluble aggregates, their biophysical properties were analyzed. The MBP portions were properly folded as shown by binding to amylose, but the aspartic proteinase moieties failed to bind pepstatin and lacked enzymatic activity, indicating that they were not correctly folded. When treated with proteinase K, only the MBP portion of the fusions was resistant to proteolysis. The fusion between MBP and cathepsin D had increased hydrophobic surface exposure compared to the two unfused partners, as determined by bis-ANS binding. Ultracentrifugal sedimentation analysis of MBP-procathepsin D and MBP-pepsinogen revealed species with very large and heterogeneous sedimentation values. Refolding of the fusions from 8 M urea generated proteins no larger than dimers. Refolded MBP-pepsinogen was proteolytically active, while only a few percent of renatured MBP-procathepsin D was obtained. The results suggest that MBP-aspartic proteinase fusions can provide a source of soluble but nonnative folding states of the mammalian polypeptides in the absence of aggregation.
Collapse
Affiliation(s)
- D Sachdev
- Audie L. Murphy Memorial Veterans Administration Hospital, Department of Biochemistry, University of Texas Health Science Center at San Antonio, 78284-7877, USA
| | | |
Collapse
|
76
|
Park JH, Na SY, Lee DG, Han BD, Kim KL. Single-step purification of proteins of interest from proteolytically cleaved recombinant maltose-binding protein (MBP) fusion proteins by selective immunoprecipitation of MBP. BIOTECHNOL BIOPROC E 1998. [DOI: 10.1007/bf02932507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
77
|
Sachdev D, Chirgwin JM. Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem Biophys Res Commun 1998; 244:933-7. [PMID: 9535771 DOI: 10.1006/bbrc.1998.8365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We made fusions between Escherichia coli maltose-binding protein (MBP) and the mammalian aspartic proteinases pepsinogen or procathepsin D. When MBP was at the N-terminus, the fusions were soluble in E. coli. When the order was reversed, the chimeric proteins formed inclusion bodies. The data suggest that the solubility of fusion proteins is controlled by whether the protein domains emerging first from the ribosome normally fold into soluble or insoluble states. The soluble MBP-aspartic proteinase fusions were stable but proteolytically inactive. MBP-pepsinogen, however, was efficiently renatured from 8 M urea in vitro, suggesting that the E. coli cytoplasm does not support folding of the mammalian partner protein to the native state. Thus, inclusion body formation may be the consequence, rather than the cause, of non-native folding in vivo, and in E. coli soluble proteins may fold into states different from those reached in vitro.
Collapse
Affiliation(s)
- D Sachdev
- Research Service, Audie L. Murphy Memorial Veterans' Administration Medical Center, San Antonio, Texas, USA
| | | |
Collapse
|