51
|
Bagheri S, Yousefi M, Safaie Qamsari E, Riazi-Rad F, Abolhassani M, Younesi V, Dorostkar R, Movassaghpour AA, Sharifzadeh Z. Selection of single chain antibody fragments binding to the extracellular domain of 4-1BB receptor by phage display technology. Tumour Biol 2017; 39:1010428317695924. [PMID: 28347235 DOI: 10.1177/1010428317695924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.
Collapse
Affiliation(s)
- Salman Bagheri
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Yousefi
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Safaie Qamsari
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- 4 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Abolhassani
- 3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ruhollah Dorostkar
- 6 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Movassaghpour
- 2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sharifzadeh
- 3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
52
|
Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J Diabetes Res 2017; 2017:6494795. [PMID: 28251163 PMCID: PMC5307004 DOI: 10.1155/2017/6494795] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Although a critical role of adaptive immune system has been confirmed in driving local and systemic inflammation in type 2 diabetes and promoting insulin resistance, the underlying mechanism is not completely understood. Inflammatory regulation has been focused on innate immunity especially macrophage for a long time, while increasing evidence suggests T cells are crucial for the development of metabolic inflammation and insulin resistance since 2009. There was growing evidence supporting the critical implication of T cells in the pathogenesis of type 2 diabetes. We will discuss the available effect of T cells subsets in adaptive immune system associated with the procession of T2DM, which may unveil several potential strategies that could provide successful therapies in the future.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
- *Jixin Zhong:
| |
Collapse
|
53
|
Generating Peripheral Blood Derived Lymphocytes Reacting Against Autologous Primary AML Blasts. J Immunother 2016; 39:71-80. [PMID: 26849076 DOI: 10.1097/cji.0000000000000107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expanding on our prior studies with cord blood T cells, we hypothesized that primary acute myeloid leukemia (AML)-reactive autologous T cells could be generated ex vivo under immunomodulatory conditions. We purified AML and T cells from 8 newly diagnosed high-risk patients. After 2 weeks expansion, T cells were stimulated with interferon-γ-treated autologous AML weekly × 3, interleukin-15, and agonistic anti-CD28 antibody. Cytotoxic T cells and ELISpot assays tested functionality; reverse transcriptase quantitative polymerase chain reaction tested AML and T-cell gene expression profiles. On the basis of combined positive ELIspot and cytotoxic T cells assays, T cells reactive against AML were generated in 5 of 8 patients. Treg proportion declined after cocultures in reactive T-cell samples. AML-reactive T cells displayed an activated gene expression profile. "Resistant" AML blasts displayed genes associated with immunosuppressive myeloid-derived suppressor cells. We discuss our approach to creating primary AML-reactive autologous T cell and limitations that require further work. Our study provides a platform for future research targeting on generating autologous leukemia-reactive T cells.
Collapse
|
54
|
Park JC, Hahn NM. Emerging role of immunotherapy in urothelial carcinoma-Future directions and novel therapies. Urol Oncol 2016; 34:566-576. [PMID: 27773553 DOI: 10.1016/j.urolonc.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023]
Abstract
Tremendous advances in our understanding of the tumor immunology and molecular biology of urothelial carcinoma (UC) have led to the recent approval of immunotherapy as a novel option for patients with UC with advanced disease. Despite the promising data of novel immune checkpoint inhibitors, only a small subset of patients with UC achieves durable remissions. Because an optimal antitumor response requires coordination of multiple immune, tumor, and microenvironment effector cells, novel approaches targeting distinct mechanisms of action likely in combination are needed. In addition, discovery of reliable immune biomarkers, understanding of mechanisms of resistance, and novel clinical trial designs are warranted for maximum benefit of UC immunotherapy.
Collapse
Affiliation(s)
- Jong Chul Park
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD
| | - Noah M Hahn
- Departments of Oncology and Urology at Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University in Baltimore, Baltimore, MD.
| |
Collapse
|
55
|
Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother 2016; 65:1243-8. [PMID: 27034234 PMCID: PMC5035667 DOI: 10.1007/s00262-016-1829-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/21/2016] [Indexed: 01/06/2023]
Abstract
The success of checkpoint inhibitors has validated immunomodulatory agents as a valuable class of anticancer therapeutics. A promising co-stimulatory immunologic target is 4-1BB, or CD137, a member of the tumor necrosis factor receptor superfamily. Ligation of 4-1BB induces an activating signal in CD8(+) T cells and natural killer cells, resulting in increased pro-inflammatory cytokine secretion, cytolytic function, and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB with agonistic monoclonal antibody (mAb) therapy demonstrated potent antitumor effects in murine tumor models. While anti-4-1BB mAbs have entered clinical trials, optimal efficacy of 4-1BB-targeted agents will inevitably come from combination therapeutic strategies. Checkpoint blockade is a compelling combination partner for 4-1BB agonism. This novel immunotherapeutic approach has the potential to active antitumor immune effectors by a complementary mechanism: simultaneously "removing the brakes" via blocking inhibitory signaling and "stepping on the accelerator" via co-stimulation. While important considerations should be given to 4-1BB-mediated toxicities, the current understanding of 4-1BB biology suggests it may play a key role in advancing the capabilities of cancer combination therapy.
Collapse
Affiliation(s)
- Cariad Chester
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA.
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Siddhant Ambulkar
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA
| | - Holbrook E Kohrt
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford University, 269 Campus Drive, CCSR 1140, Stanford, CA, 94305-5151, USA
| |
Collapse
|
56
|
Anti-4-1BB monoclonal antibodies attenuate concanavalin A-induced immune-mediated liver injury in mice. Exp Ther Med 2016; 12:1263-1268. [PMID: 27588047 PMCID: PMC4998111 DOI: 10.3892/etm.2016.3503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/22/2016] [Indexed: 01/29/2023] Open
Abstract
Effective therapies for the treatment of immune-mediated liver disease are currently lacking. As a member of the tumor necrosis factor receptor superfamily, 4-1BB has a key role in T-cell activation and has been implicated in the development of autoimmune disorders. The purpose of the present study was to evaluate the potential therapeutic or preventive function of an anti-4-1BB monoclonal antibody (mAb) in a mouse model of concanavalin (Con) A-induced immune-mediated liver injury. A mouse model of immune-mediated liver injury was established by tail vein injection of Con A (20 mg/kg). 4-1BB mAb (100 µg), with or without methylprednisolone (MEP; 3 mg/kg), was intraperitoneally injected into the tail vein 2 h prior to or 2 h following Con A injection. Con A induced marked hepatocyte necrosis, significantly reduced CD 4+/CD25+ T-cell levels, and increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), in addition to the percentage of 4-1BB+ T-cells, compared with the control (all P<0.05). The administration of 4-1BB mAb prior to or following Con A injection was able to attenuate Con A-induced liver tissue damage and significantly reduce serum AST and ALT levels (P<0.05). A combination of MEP and 4-1BB mAb further reduced serum AST and ALT levels, compared with either treatment alone. In addition, administration of 4-1BB mAb and MEP alone or in combination significantly increased CD4+/CD25+ T-cell levels, compared with the control (P<0.05). These results suggested that 4-1BB mAb was able to attenuate liver injury and preserve liver function in a mouse model of Con A-induced immune-mediated liver injury by promoting the expansion of CD4+/CD25+ T-cells. Furthermore, a combination of 4-1BB mAb with MEP was associated with greater beneficial effects than either treatment alone. The clinical significance of 4-1BB mAb in immune-mediated liver disease remains to be elucidated in future studies.
Collapse
|
57
|
Cho M, Myoung J. OX40 and 4-1BB downregulate Kaposi’s sarcoma-associated herpesvirus replication in lymphatic endothelial cells, but 4-1BB and not OX40 inhibits viral replication in B-cells. J Gen Virol 2016; 96:3635-3645. [PMID: 26467721 DOI: 10.1099/jgv.0.000312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) belongs to the human gammaherpesvirus subfamily and is associated with malignancies of endothelial origin (Kaposi’s sarcoma, KS) and B-cell origin [primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD)]. Viral lytic replication is known to be required for KS and MCD. As KSHV-related tumours mostly develop in human subjects when the immune system is compromised by immunosuppressive regimen, human immunodeficiency virus infection or some genetic deficiencies, KSHV-specific immune responses are believed to be important in the control of KSHV replication. However, analysis of the roles of immune cells in viral pathogenesis has been difficult due to the lack of an adequate animal model. Recently, congenital OX40 deficiency, as determined by genome-wide exome sequencing, was shown to be associated with aggressive childhood KS in a patient, suggesting that disrupted OX40–OX40L interactions might be implicated in disease development. Here, we report that interaction of recombinant OX40 protein with OX40L expressed on endothelial cells severely impaired KSHV lytic replication. Furthermore, 4-1BB–4-1BBL interactions were also capable of efficiently inhibiting viral replication in B-cells and endothelial cells. To the best of our knowledge, this is the first direct evidence that ligation of tumour necrosis factor superfamily members and their cognate receptors is important for the control of viral lytic replication. These data are likely to pave the way for the development of KSHV-specific therapies for KS and MCD, in which viral lytic replication is a disease-determining factor.
Collapse
Affiliation(s)
- Min Cho
- Korea Zoonosis Research Institute and Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute and Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bioactive Material Sciences, New Drug Development Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
58
|
Gacerez AT, Arellano B, Sentman CL. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy. J Cell Physiol 2016; 231:2590-8. [PMID: 27163336 DOI: 10.1002/jcp.25419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Albert T Gacerez
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Benjamine Arellano
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| | - Charles L Sentman
- Department of Microbiology and Immunology, Center for Synthetic Immunity, The Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, New Hampshire
| |
Collapse
|
59
|
Kim B, Kim J, Kim E, Lee J, Joo D, Huh K, Kim M, Kim Y. Role of Thalidomide on the Expression of OX40, 4-1BB, and GITR in T Cell Subsets. Transplant Proc 2016; 48:1270-4. [DOI: 10.1016/j.transproceed.2015.12.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/30/2015] [Indexed: 11/25/2022]
|
60
|
Abstract
INTRODUCTION 4-1BB (CD137) is an important T-cell stimulating molecule. The 4-1BB mAb or its variants have shown remarkable therapeutic activity against autoimmunity, viral infections, and cancer. Antibodies to 4-1BB have recently entered clinical trials for the treatment of cancer with favorable toxicity profile. In this article, we present a review documenting the efficacy and pitfalls of 4-1BB therapy. AREAS COVERED An extensive literature search has been made on 4-1BB, spanning two decades, and a comprehensive report is presented here highlighting the origins, biological effects, therapeutic potential, and mechanistic basis of targeting 4-1BB as well as the side effects associated with such therapy. EXPERT OPINION Research so far indicates that 4-1BB is highly protective against various pathological conditions including cancer. However, a few important side effects of 4-1BB therapy such as liver toxicity, thrombocytopenia, anemia, and suppressive effects on certain immune competent cells should be taken into consideration before it is used for human therapy.
Collapse
Affiliation(s)
- Dass S Vinay
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA
| | - Byoung S Kwon
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA.,b 2 Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center , Goyang 410-769, Korea ;
| |
Collapse
|
61
|
Lucido CT, Vermeer PD, Wieking BG, Vermeer DW, Lee JH. CD137 enhancement of HPV positive head and neck squamous cell carcinoma tumor clearance. Vaccines (Basel) 2015; 2:841-53. [PMID: 25984365 PMCID: PMC4429800 DOI: 10.3390/vaccines2040841] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Standard-of-care cisplatin and radiation therapy (CRT) provides significant tumor control of human papillomavirus (HPV)-mediated head and neck squamous cell carcinomas (HNSCCs); this effectiveness depends on CRT-mediated activation of the patient's own immune system. However, despite good survival, patients suffer significant morbidity necessitating on-going studies to define novel therapies that alleviate this burden. Given the role of the immune system in tumor clearance, immune modulation may further potentiate the CRT-activated response while potentially decreasing morbidity. CD137, an inducible cell surface receptor found on activated T cells, is involved in differentiation and survival signaling in T cells upon binding of its natural partner (CD137L). A number of studies have shown the effectiveness of targeting this immune-stimulatory pathway in regards to tumor clearance. Here we test its role in HPV+ HNSCC tumor clearance using a previously characterized mouse model. We show that amplification of this stimulatory pathway synergizes with CRT for enhanced tumor clearance. Interestingly, tumor clearance is further potentiated by local tumor cell expression of CD137L.
Collapse
Affiliation(s)
- Christopher T. Lucido
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; E-Mails: (C.T.L.); (P.D.V.); (B.G.W.); (D.W.V.)
| | - Paola D. Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; E-Mails: (C.T.L.); (P.D.V.); (B.G.W.); (D.W.V.)
| | - Bryant G. Wieking
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; E-Mails: (C.T.L.); (P.D.V.); (B.G.W.); (D.W.V.)
| | - Daniel W. Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; E-Mails: (C.T.L.); (P.D.V.); (B.G.W.); (D.W.V.)
| | - John H. Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA; E-Mails: (C.T.L.); (P.D.V.); (B.G.W.); (D.W.V.)
- Sanford Health, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-605-312-6103; Fax: +1-605-312-6201
| |
Collapse
|
62
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
63
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
64
|
Oh HS, Choi BK, Kim YH, Lee DG, Hwang S, Lee MJ, Park SH, Bae YS, Kwon BS. 4-1BB Signaling Enhances Primary and Secondary Population Expansion of CD8+ T Cells by Maximizing Autocrine IL-2/IL-2 Receptor Signaling. PLoS One 2015; 10:e0126765. [PMID: 25962156 PMCID: PMC4427336 DOI: 10.1371/journal.pone.0126765] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/07/2015] [Indexed: 11/29/2022] Open
Abstract
4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily (TNFRSF), is primarily expressed on activated T cells and is known to enhance proliferation of T cells, prevent activation-induced cell death, and promote memory formation of CD8+ T cells. In particular, it is well acknowledged that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells rather than CD4+ T cells, but the underlying mechanism remains unclear. Here we found that 4-1BB triggering markedly increased IL-2Rα (CD25) and IL-2 expressions of CD8+ T cells but minimally for CD4+ T cells. Proliferation of CD8+ T cells was moderately enhanced by direct 4-1BB triggering in the absence of signaling through IL-2Rα/IL-2 interactions, but further promoted in the presence of IL-2Rα/IL-2 interactions. Among the TNFRSF members including OX40, GITR, CD30, and CD27, 4-1BB was superior in the ability to induce IL-2Rα expression on CD8+ T cells. When the primary and secondary expansions of CD8+ T cells in vivo were examined by adoptively transferring OVA-specific CD8+ T cells along with the treatment with agonistic anti-4-1BB and/or antagonistic anti-CD25 F(ab’)2 mAb, 4-1BB triggering enhanced both primary and secondary expansion of CD8+ T cells in vivo, and the 4-1BB effects were moderately suppressed in primary expansion while completely abolished in secondary expansion of OVA-specific CD8+ T cells by blocking IL-2Rα. These results suggest that 4-1BB-mediated increases of IL-2Rα and IL-2 prolong the effects of transient TCR- and 4-1BB-mediated signaling in CD8+ T cells, and that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells through the amplification of autocrine IL-2/IL-2R signaling loop.
Collapse
Affiliation(s)
- Ho S. Oh
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Beom K. Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Young H. Kim
- Immune Cell Production Unit, Program for Immunotherapeutic Research, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Don G. Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Sunhee Hwang
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Myoung J. Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Sang H. Park
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi, Korea
| | - Byoung S. Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Ilsan, Goyang, Gyeonggi, Korea
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
65
|
Choi BK, Kim YH, Lee DG, Oh HS, Kim KH, Park SH, Lee J, Vinay DS, Kwon BS. In vivo 4-1BB deficiency in myeloid cells enhances peripheral T cell proliferation by increasing IL-15. THE JOURNAL OF IMMUNOLOGY 2015; 194:1580-90. [PMID: 25601928 DOI: 10.4049/jimmunol.1303439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
4-1BB signals are considered positive regulators of T cell responses against viruses and tumors, but recent studies suggest that they have more complex roles in modulating T cell responses. Although dual roles of 4-1BB signaling in T cell responses have been suggested, the underlying mechanisms are still not fully understood. In this study, we tested whether 4-1BB expression affected T cell responses differently when expressed in myeloid versus lymphoid cells in vivo. By assessing the proliferation of 4-1BB(+/+) and 4-1BB(-/-) T cells in lymphocyte-deficient RAG2(-/-) and RAG2(-/-)4-1BB(-/-) mice, we were able to compare the effects on T cell responses of 4-1BB expression on myeloid versus T cells. Surprisingly, adoptively transferred T cells were more responsive in tumor-bearing RAG2(-/-)4-1BB(-/-) mice than in RAG2(-/-) mice, and this enhanced T cell proliferation was further enhanced if the T cells were 4-1BB deficient. Dendritic cells (DCs) rather than NK or tissue cells were the myeloid lineage cells primarily responsible for the enhanced T cell proliferation. However, individual 4-1BB(-/-) DCs were less effective in T cell priming in vivo than 4-1BB(+/+) DCs; instead, more DCs in the secondary lymphoid organs of RAG2(-/-)4-1BB(-/-) mice appeared to induce the enhanced T cell proliferation by producing and transpresenting more IL-15. Therefore, we conclude that in vivo 4-1BB signaling of myeloid cells negatively regulates peripheral T cell responses by limiting the differentiation of DCs and their accumulation in secondary lymphoid organs.
Collapse
Affiliation(s)
- Beom K Choi
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young H Kim
- Biomedicine Production Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea; and
| | - Don G Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Ho S Oh
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Kwang H Kim
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang H Park
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Jinsun Lee
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Dass S Vinay
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112
| | - Byoung S Kwon
- Cancer Immunology Branch, Division of Cancer Biology, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112
| |
Collapse
|
66
|
Weinstock M, McDermott DF. Emerging role for novel immunotherapy agents in metastatic renal cell carcinoma: from bench to bedside. Am Soc Clin Oncol Educ Book 2015:e291-e297. [PMID: 25993188 DOI: 10.14694/edbook_am.2015.35.e291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Therapies that augment the antitumor immune response have been an established treatment modality for metastatic renal cell carcinoma (mRCC) since the 1980s. An improved understanding of the factors that limit the immune response to cancer have led to the development of novel therapeutic agents. Most notably, monoclonal antibodies that block the programmed death (PD)-1 immune checkpoint pathway have demonstrated encouraging antitumor activity against mRCC in phase I and II clinical trials. However, as monotherapy these agents are unlikely to offer substantial clinical benefit for the majority of patients with mRCC. Combination approaches and improvements in patient selection will be essential to enhance their efficacy and ensure the rational application of immunotherapy. This review summarizes the clinical and preclinical data that support the use of novel immunotherapies for mRCC and looks forward to future directions for this promising therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Weinstock
- From the Beth Israel Deaconess Medical Center, Boston, MA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA
| | - David F McDermott
- From the Beth Israel Deaconess Medical Center, Boston, MA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA
| |
Collapse
|
67
|
Kim EC, Moon JH, Kang SW, Kwon B, Lee HW. TMEM126A, a CD137 ligand binding protein, couples with the TLR4 signal transduction pathway in macrophages. Mol Immunol 2014; 64:244-51. [PMID: 25549946 DOI: 10.1016/j.molimm.2014.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/08/2023]
Abstract
We showed previously that a novel protein, transmembrane protein 126A (TMEM126A), binds to CD137 ligand (CD137L, 4-1BBL) and couples with its reverse signals in macrophages. Here, we present data showing that TMEM126A relays TLR4 signaling. Thus, up-regulation of CD54 (ICAM-1), MHC II, CD86 and CD40 expression in response to TLR4 activation was diminished in TMEM126A-deficient macrophages. Moreover in TMEM126A-deficient RAW264.7 cells, LPS/TLR4-induced late-phase JNK/SAPK and IRF-3 phosphorylation was abolished. These findings indicate that TMEM126A contributes to the TLR4 signal up-regulating the expression of genes whose products are involved in antigen presentation.
Collapse
Affiliation(s)
- Eun-Cheol Kim
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji-Hoi Moon
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang W Kang
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea.
| |
Collapse
|
68
|
Seijkens T, Kusters P, Chatzigeorgiou A, Chavakis T, Lutgens E. Immune cell crosstalk in obesity: a key role for costimulation? Diabetes 2014; 63:3982-91. [PMID: 25414012 DOI: 10.2337/db14-0272] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past two decades, numerous experimental and clinical studies have established the importance of inflammation and immunity in the development of obesity and its metabolic complications, including insulin resistance and type 2 diabetes mellitus. In this context, T cells orchestrate inflammatory processes in metabolic organs, such as the adipose tissue (AT) and liver, thereby mediating obesity-related metabolic deterioration. Costimulatory molecules, which are present on antigen-presenting cells and naïve T cells in the AT, are known to mediate the crosstalk between the adaptive and innate immune system and to direct T-cell responses in inflammation. In this Perspectives in Diabetes article, we highlight the newest insights in immune cell interactions in obesity and discuss the role of costimulatory dyads in its pathogenesis. Moreover, the potential of therapeutic strategies that target costimulatory molecules in the metabolic syndrome is explored.
Collapse
Affiliation(s)
- Tom Seijkens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Kusters
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, and Paul-Langerhans-Institute, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Department of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, and Paul-Langerhans-Institute, Technische Universität Dresden, Dresden, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
69
|
Gros A, Robbins PF, Yao X, Li YF, Turcotte S, Tran E, Wunderlich JR, Mixon A, Farid S, Dudley ME, Hanada KI, Almeida JR, Darko S, Douek DC, Yang JC, Rosenberg SA. PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014; 124:2246-59. [PMID: 24667641 DOI: 10.1172/jci73639] [Citation(s) in RCA: 825] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
Collapse
MESH Headings
- Adoptive Transfer
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Female
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Male
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/pathology
- Melanoma/therapy
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Lymphocyte Activation Gene 3 Protein
Collapse
|
70
|
Blockade of 4-1BB and 4-1BBL interaction reduces obesity-induced skeletal muscle inflammation. Mediators Inflamm 2013; 2013:865159. [PMID: 24453430 PMCID: PMC3880756 DOI: 10.1155/2013/865159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 01/21/2023] Open
Abstract
Obesity-induced skeletal muscle inflammation is characterized by increased macrophage infiltration and inflammatory cytokine production. In this study, we investigated whether 4-1BB, a member of the TNF receptor superfamily (TNFRSF9) that provides inflammatory signals, participates in obesity-induced skeletal muscle inflammation. Expression of the 4-1BB gene, accompanied by increased levels of inflammatory cytokines, was markedly upregulated in the skeletal muscle of obese mice fed a high-fat diet, in muscle cells treated with obesity factors, and in cocultured muscle cells/macrophages. In vitro stimulation of 4-1BB with agonistic antibody increased inflammatory cytokine levels in TNFα-pretreated muscle cells, and this effect was absent in cells derived from 4-1BB-deficient mice. Conversely, disruption of the interaction between 4-1BB and its ligand (4-1BBL) with blocking antibody decreased the release of inflammatory cytokines from cocultured muscle cells/macrophages. Moreover, deficiency of 4-1BB markedly reduced macrophage infiltration and inflammatory cytokine production in the skeletal muscle of mice fed a high-fat diet. These findings indicate that 4-1BB mediates the inflammatory responses in obese skeletal muscle by interacting with its ligand 4-1BBL on macrophages. Therefore, 4-1BB and 4-1BBL may be useful targets for prevention of obesity-induced inflammation in skeletal muscle.
Collapse
|
71
|
Kachapati K, Bednar KJ, Adams DE, Wu Y, Mittler RS, Jordan MB, Hinerman JM, Herr AB, Ridgway WM. Recombinant soluble CD137 prevents type one diabetes in nonobese diabetic mice. J Autoimmun 2013; 47:94-103. [DOI: 10.1016/j.jaut.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 11/28/2022]
|
72
|
Ibarrondo FJ, Yang OO, Chodon T, Avramis E, Lee Y, Sazegar H, Jalil J, Chmielowski B, Koya RC, Schmid I, Gomez-Navarro J, Jamieson BD, Ribas A, Comin-Anduix B. Natural killer T cells in advanced melanoma patients treated with tremelimumab. PLoS One 2013; 8:e76829. [PMID: 24167550 PMCID: PMC3805549 DOI: 10.1371/journal.pone.0076829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
A significant barrier to effective immune clearance of cancer is loss of antitumor cytotoxic T cell activity. Antibodies to block pro-apoptotic/downmodulatory signals to T cells are currently being tested. Because invariant natural killer T cells (iNKT) can regulate the balance of Th1/Th2 cellular immune responses, we characterized the frequencies of circulating iNKT cell subsets in 21 patients with melanoma who received the anti-CTLA4 monoclonal antibody tremelimumab alone and 8 patients who received the antibody in combination with MART-126–35 peptide-pulsed dendritic cells (MART-1/DC). Blood T cell phenotypes and functionality were characterized by flow cytometry before and after treatment. iNKT cells exhibited the central memory phenotype and showed polyfunctional cytokine production. In the combination treatment group, high frequencies of pro-inflammatory Th1 iNKT CD8+ cells correlated with positive clinical responses. These results indicate that iNKT cells play a critical role in regulating effective antitumor T cell activity.
Collapse
Affiliation(s)
- F. Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (FJI); (BC-A)
| | - Otto O. Yang
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Thinle Chodon
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Earl Avramis
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Yohan Lee
- Department of Child Psychiatry Branch, NIH/NIMH, Bethesda, Maryland, Untied States of America
| | - Hooman Sazegar
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jason Jalil
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bartosz Chmielowski
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Richard C. Koya
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Ingrid Schmid
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jesus Gomez-Navarro
- Department of Clinical Research, Pfizer Global Research and Development (PGRD), New London, Connecticut, United States of America
| | - Beth D. Jamieson
- UCLA AIDS Institute, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Surgical Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Surgical Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (FJI); (BC-A)
| |
Collapse
|
73
|
Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res 2013; 20:44-55. [PMID: 24045181 DOI: 10.1158/1078-0432.ccr-13-0945] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Upregulation of CD137 (4-1BB) on recently activated CD8(+) T cells has been used to identify rare viral or tumor antigen-specific T cells from peripheral blood. Here, we evaluated the immunobiology of CD137 in human cancer and the utility of a CD137-positive separation methodology for the identification and enrichment of fresh tumor-reactive tumor-infiltrating lymphocytes (TIL) or tumor-associated lymphocytes (TAL) from ascites for use in adoptive immunotherapy. EXPERIMENTAL DESIGN TILs from resected ovarian cancer or melanoma were measured for surface CD137 expression directly or after overnight incubation in the presence of tumor cells and homeostatic cytokines. CD137(pos) TILs were sorted and evaluated for antitumor activity in vitro and in vivo. RESULTS Fresh ovarian TILs and TALs naturally expressed higher levels of CD137 than circulating T cells. An HLA-dependent increase in CD137 expression was observed following incubation of fresh enzyme-digested tumor or ascites in IL-7 and IL-15 cytokines, but not IL-2. Enriched CD137(pos) TILs, but not PD-1(pos) or PD-1(neg) CD137(neg) cells, possessed autologous tumor reactivity in vitro and in vivo. In melanoma studies, all MART-1-specific CD8(+) TILs upregulated CD137 expression after incubation with HLA-matched, MART-expressing cancer cells and antigen-specific effector function was restricted to the CD137(pos) subset in vitro. CD137(pos) TILs also mediated superior antitumor effects in vivo, compared with CD137(neg) TILs. CONCLUSIONS Our findings reveal a role for the TNFR-family member CD137 in the immunobiology of human cancer where it is preferentially expressed on tumor-reactive subset of TILs, thus rationalizing its agonistic engagement in vivo and its use in TIL selection for adoptive immunotherapy trials.
Collapse
Affiliation(s)
- Qunrui Ye
- Authors' Affiliations: Department of Obstetrics and Gynecology, Ovarian Cancer Research Center; and Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Escuin-Ordinas H, Elliott MW, Atefi M, Lee M, Ng C, Wei L, Comin-Anduix B, Montecino-Rodriguez E, Avramis E, Radu C, Sharp LL, Ribas A. PET imaging to non-invasively study immune activation leading to antitumor responses with a 4-1BB agonistic antibody. J Immunother Cancer 2013; 1:14. [PMID: 24829750 PMCID: PMC4019904 DOI: 10.1186/2051-1426-1-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/07/2013] [Indexed: 11/20/2022] Open
Abstract
Background Molecular imaging with positron emission tomography (PET) may allow the non-invasive study of the pharmacodynamic effects of agonistic monoclonal antibodies (mAb) to 4-1BB (CD137). 4-1BB is a member of the tumor necrosis factor family expressed on activated T cells and other immune cells, and activating 4-1BB antibodies are being tested for the treatment of patients with advanced cancers. Methods We studied the antitumor activity of 4-1BB mAb therapy using [18 F]-labeled fluoro-2-deoxy-2-D-glucose ([18 F]FDG) microPET scanning in a mouse model of colon cancer. Results of microPET imaging were correlated with morphological changes in tumors, draining lymph nodes as well as cell subset uptake of the metabolic PET tracer in vitro. Results The administration of 4-1BB mAb to Balb/c mice induced reproducible CT26 tumor regressions and improved survival; complete tumor shrinkage was achieved in the majority of mice. There was markedly increased [18 F]FDG signal at the tumor site and draining lymph nodes. In a metabolic probe in vitro uptake assay, there was an 8-fold increase in uptake of [3H]DDG in leukocytes extracted from tumors and draining lymph nodes of mice treated with 4-1BB mAb compared to untreated mice, supporting the in vivo PET data. Conclusion Increased uptake of [18 F]FDG by PET scans visualizes 4-1BB agonistic antibody-induced antitumor immune responses and can be used as a pharmacodynamic readout to guide the development of this class of antibodies in the clinic.
Collapse
Affiliation(s)
- Helena Escuin-Ordinas
- Department of Medicine (Division of Hematology-Oncology) at David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Mark W Elliott
- Pfizer Worldwide Research and Development, Oncology Research Unit, San Diego, CA, USA
| | - Mohammad Atefi
- Department of Medicine (Division of Hematology-Oncology) at David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Michelle Lee
- Pfizer Worldwide Research and Development, Oncology Research Unit, San Diego, CA, USA
| | - Charles Ng
- Department of Medicine (Division of Hematology-Oncology) at David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Liu Wei
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA
| | - Begoña Comin-Anduix
- Department of Surgery (Division of Surgical-Oncology), UCLA, Los Angeles, USA ; Jonsson Comprehensive Cancer Center (JCCC), Los Angeles, USA
| | | | - Earl Avramis
- Department of Surgery (Division of Surgical-Oncology), UCLA, Los Angeles, USA
| | - Caius Radu
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA ; Jonsson Comprehensive Cancer Center (JCCC), Los Angeles, USA
| | - Leslie L Sharp
- Pfizer Worldwide Research and Development, Oncology Research Unit, San Diego, CA, USA ; Current address: Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr., San Diego, CA 92121, USA
| | - Antoni Ribas
- Department of Medicine (Division of Hematology-Oncology) at David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA ; Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, USA ; Jonsson Comprehensive Cancer Center (JCCC), Los Angeles, USA ; Department of Medicine, Division of Hematology-Oncology, 11-934 Factor Building, Jonsson Comprehensive Cancer Center at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, USA
| |
Collapse
|
75
|
Lee CS, Cragg M, Glennie M, Johnson P. Novel antibodies targeting immune regulatory checkpoints for cancer therapy. Br J Clin Pharmacol 2013; 76:233-47. [PMID: 23701301 PMCID: PMC3731598 DOI: 10.1111/bcp.12164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 04/17/2013] [Indexed: 12/13/2022] Open
Abstract
Cancers must evade or suppress the immune system in order to develop. Better understanding of the molecular regulation governing tumour detection and effective activation of the immune system (so called immune regulatory checkpoints) has provided new targets for cancer immunotherapy. Therapeutic monoclonal antibodies against these targets are currently undergoing clinical evaluation with more in pre-clinical development; buoyed by the recent licence approval of the anti-CTLA-4 antibody, ipilumumab, for use in melanoma. This article will review the current status of the various antibodies and target molecules being investigated.
Collapse
Affiliation(s)
- Chern Siang Lee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | |
Collapse
|
76
|
Lee SJ, Kim YH, Hwang SH, Kim YI, Han IS, Vinay DS, Kwon BS. 4-1BB signal stimulates the activation, expansion, and effector functions of γδ T cells in mice and humans. Eur J Immunol 2013; 43:1839-48. [DOI: 10.1002/eji.201242842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 03/13/2013] [Accepted: 04/26/2013] [Indexed: 01/07/2023]
Affiliation(s)
| | - Young H. Kim
- Immune & Cell Therapy Branch; National Cancer Center; Ilsan; Gyeonggi-do; Korea
| | - Sun H. Hwang
- Immune & Cell Therapy Branch; National Cancer Center; Ilsan; Gyeonggi-do; Korea
| | - Yu. I. Kim
- Immune & Cell Therapy Branch; National Cancer Center; Ilsan; Gyeonggi-do; Korea
| | - In S. Han
- Department of Biological Sciences; University of Ulsan; Ulsan; Korea
| | - Dass S. Vinay
- Section of Clinical Immunology; Department of Medicine, Tulane University Health Sciences Center; New Orleans; LA; USA
| | | |
Collapse
|
77
|
Chacon JA, Wu RC, Sukhumalchandra P, Molldrem JJ, Sarnaik A, Pilon-Thomas S, Weber J, Hwu P, Radvanyi L. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS One 2013; 8:e60031. [PMID: 23560068 PMCID: PMC3613355 DOI: 10.1371/journal.pone.0060031] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/20/2013] [Indexed: 12/21/2022] Open
Abstract
Adoptive T-cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) can induce tumor regression in up to 50% or more of patients with unresectable metastatic melanoma. However, current methods to expand melanoma TIL, especially the “rapid expansion protocol” (REP) were not designed to enhance the generation of optimal effector-memory CD8+ T cells for infusion. One approach to this problem is to manipulate specific co-stimulatory signaling pathways to enhance CD8+ effector-memory T-cell expansion. In this study, we determined the effects of activating the TNF-R family member 4-1BB/CD137, specifically induced in activated CD8+ T cells, on the yield, phenotype, and functional activity of expanded CD8+ T cells during the REP. We found that CD8+ TIL up-regulate 4-1BB expression early during the REP after initial TCR stimulation, but neither the PBMC feeder cells in the REP or the activated TIL expressed 4-1BB ligand. However, addition of an exogenous agonistic anti-4-1BB IgG4 (BMS 663513) to the REP significantly enhanced the frequency and total yield of CD8+ T cells as well as their maintenance of CD28 and increased their anti-tumor CTL activity. Gene expression analysis found an increase in bcl-2 and survivin expression induced by 4-1BB that was associated with an enhanced survival capability of CD8+ post-REP TIL when re-cultured in the absence or presence of cytokines. Our findings suggest that adding an agonistic anti-4-1BB antibody during the time of TIL REP initiation produces a CD8+ T cell population capable of improved effector function and survival. This may greatly improve TIL persistence and anti-tumor activity in vivo after adoptive transfer into patients.
Collapse
Affiliation(s)
- Jessica Ann Chacon
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The Immunology Program of the University of Texas Health Science Center, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Richard C. Wu
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The Immunology Program of the University of Texas Health Science Center, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation, University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jeffrey J. Molldrem
- The Immunology Program of the University of Texas Health Science Center, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Stem Cell Transplantation, University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Amod Sarnaik
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Shari Pilon-Thomas
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jeffrey Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The Immunology Program of the University of Texas Health Science Center, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Laszlo Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- The Immunology Program of the University of Texas Health Science Center, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
78
|
Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse. Clin Dev Immunol 2013; 2013:450291. [PMID: 23533456 PMCID: PMC3606757 DOI: 10.1155/2013/450291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
Abstract
To circumvent pathology caused by infectious microbes and tumor growth, the host immune system must constantly clear harmful microorganisms and potentially malignant transformed cells. This task is accomplished in part by T-cells, which can directly kill infected or tumorigenic cells. A crucial event determining the recognition and elimination of detrimental cells is antigen recognition by the T cell receptor (TCR) expressed on the surface of T cells. Upon binding of the TCR to cognate peptide-MHC complexes presented on the surface of antigen presenting cells (APCs), a specialized supramolecular structure known as the immunological synapse (IS) assembles at the T cell-APC interface. Such a structure involves massive redistribution of membrane proteins, including TCR/pMHC complexes, modulatory receptor pairs, and adhesion molecules. Furthermore, assembly of the immunological synapse leads to intracellular events that modulate and define the magnitude and characteristics of the T cell response. Here, we discuss recent literature on the regulation and assembly of IS and the mechanisms evolved by tumors to modulate its function to escape T cell cytotoxicity, as well as novel strategies targeting the IS for therapy.
Collapse
|
79
|
Abstract
HIV-specific cytotoxic T lymphocytes (CTL) are preferentially primed for apoptosis, and this may represent a viral escape mechanism. We hypothesized that HIV-infected individuals that control virus to undetectable levels without antiretroviral therapy (ART) (elite controllers [EC]) have the capacity to upregulate survival factors that allow them to resist apoptosis. To address this, we performed cross-sectional and longitudinal analysis of proapoptotic (cleaved caspase-3) and antiapoptotic (Bcl-2) markers of cytomegalovirus (CMV) and HIV-specific CD8 T cells in a cohort of HIV-infected subjects with various degrees of viral control on and off ART. We demonstrated that HIV-specific CTL from EC are more resistant to apoptosis than those with pharmacologic control (successfully treated patients [ST]), despite similar in vivo conditions. Longitudinal analysis of chronically infected persons starting ART revealed that the frequency of HIV-specific T cells prone to death decreased, suggesting that this phenotype is partially reversible even though it never achieves the levels present in EC. Elucidating the apoptotic factors contributing to the survival of CTL in EC is paramount to our development of effective HIV-1 vaccines. Furthermore, a better understanding of cellular markers that can be utilized to predict response durability in disease- or vaccine-elicited responses will advance the field.
Collapse
|
80
|
Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol 2013; 4:53. [PMID: 23450201 PMCID: PMC3584294 DOI: 10.3389/fimmu.2013.00053] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are central in maintaining the intricate balance between immunity and tolerance by orchestrating adaptive immune responses. Being the most potent antigen presenting cells, DCs are capable of educating naïve T cells into a wide variety of effector cells ranging from immunogenic CD4+ T helper cells and cytotoxic CD8+ T cells to tolerogenic regulatory T cells. This education is based on three fundamental signals. Signal I, which is mediated by antigen/major histocompatibility complexes binding to antigen-specific T cell receptors, guarantees antigen specificity. The co-stimulatory signal II, mediated by B7 family molecules, is crucial for the expansion of the antigen-specific T cells. The final step is T cell polarization by signal III, which is conveyed by DC-derived cytokines and determines the effector functions of the emerging T cell. Although co-stimulation is widely recognized to result from the engagement of T cell-derived CD28 with DC-expressed B7 molecules (CD80/CD86), other co-stimulatory pathways have been identified. These pathways can be divided into two groups based on their impact on primed T cells. Whereas pathways delivering activatory signals to T cells are termed co-stimulatory pathways, pathways delivering tolerogenic signals to T cells are termed co-inhibitory pathways. In this review, we discuss how the nature of DC-derived signal II determines the quality of ensuing T cell responses and eventually promoting either immunity or tolerance. A thorough understanding of this process is instrumental in determining the underlying mechanism of disorders demonstrating distorted immunity/tolerance balance, and would help innovating new therapeutic approaches for such disorders.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre Nijmegen, Netherlands
| | | | | | | | | |
Collapse
|
81
|
Bae JS, Choi JK, Moon JH, Kim EC, Croft M, Lee HW. Novel transmembrane protein 126A (TMEM126A) couples with CD137L reverse signals in myeloid cells. Cell Signal 2012; 24:2227-36. [PMID: 22885069 DOI: 10.1016/j.cellsig.2012.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022]
Abstract
Members of the TNF family can promote signals in myeloid cells and both positively and negatively regulate the production of pro-inflammatory cytokines depending on the target myeloid cell type. Using the yeast-two hybrid system, we identified transmembrane protein 126A (TMEM126A) as a binding partner for CD137L (4-1BB ligand). We found that TMEM126A associated and co-localized with CD137L in a mouse macrophage cell line and knockdown of TMEM126A with siRNA abolished the CD137L-induced tyrosine phosphorylation as well as the up-regulation of M-CSF, IL-1β and TN-C expressions. Knockdown of TMEM126A also blocked the down-regulation of IL-1β and IL-6 expressions induced by CD137L in thioglycollate-elicited primary peritoneal macrophages. Knockdown of TMEM126A by stable retroviral TMEM126A shRNA transduction also abolished CD137L-induced tyrosine phosphorylation and cell adherence. These findings identify a novel molecule that bridges TNF family cytokines and pro-inflammatory cytokine secretion in myeloid cells.
Collapse
Affiliation(s)
- Jun-Sang Bae
- Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
82
|
Behrendt AK, Meyer-Bahlburg A, Hansen G. CD137 deficiency does not affect development of airway inflammation or respiratory tolerance induction in murine models. Clin Exp Immunol 2012; 168:308-17. [PMID: 22519594 DOI: 10.1111/j.1365-2249.2012.04572.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The co-stimulatory molecule CD137 (4-1BB) plays a crucial role in the development and persistence of asthma, characterized by eosinophilic airway inflammation, mucus hypersecretion, airway hyperreactivity, increased T helper type 2 (Th2) cytokine production and serum immunoglobulin (Ig)E levels. We have shown previously that application of an agonistic CD137 monoclonal antibody (mAb) prevented and even reversed an already established asthma phenotype. In the current study we investigated whether deficiency of the CD137/CD137L pathway affects the development of allergic airway inflammation or the opposite immune reaction of respiratory tolerance. CD137⁻/⁻ and wild-type (WT) mice were sensitized and challenged with the model allergen ovalbumin (OVA) and analysed for the presence of allergic disease parameters (allergy protocol). Some animals were tolerized by mucosal application of OVA prior to transferring the animals to the allergy protocol to analyse the effect of CD137 loss on tolerance induction (tolerance protocol). Eosinophilic airway inflammation, mucus hypersecretion, Th2 cytokine production and elevated allergen-specific serum IgE levels were increased equally in CD137⁻/⁻ and WT mice. Induction of tolerance resulted in comparable protection from the development of an allergic phenotype in both mouse strains. In addition, no significant differences could be identified in CD4⁺, CD8⁺ and forkhead box protein 3 (FoxP3⁺) regulatory T cells, supporting the conclusion that CD137⁻/⁻ mice show equal Th2-mediated immune responses compared to WT mice. Taken together, CD137⁻/⁻ mice and WT mice develop the same phenotype in a murine model of Th2-mediated allergic airway inflammation and respiratory tolerance.
Collapse
Affiliation(s)
- A-K Behrendt
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
83
|
Abstract
4-1BB (CD137), a member of the TNF receptor superfamily, is an activation-induced T-cell costimulatory molecule. Signaling via 4-1BB upregulates survival genes, enhances cell division, induces cytokine production, and prevents activation-induced cell death in T cells. The importance of the 4-1BB pathway has been underscored in a number of diseases, including cancer. Growing evidence indicates that anti-4-1BB monoclonal antibodies possess strong antitumor properties, which in turn are the result of their powerful CD8+ T-cell activating, IFN-γ producing, and cytolytic marker-inducing capabilities. In addition, combination therapy of anti-4-1BB with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Furthermore, the adoptive transfer of ex vivo anti-4-1BB-activated CD8+ T cells from previously tumor-treated animals efficiently inhibits progression of tumors in recipient mice that have been inoculated with fresh tumors. In addition, targeting of tumors with variants of 4-1BBL directed against 4-1BB also have potent antitumor effects. Currently, a humanized anti-4-1BB is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, and ovarian cancer, and so far seems to have a favorable toxicity profile. In this review, we discuss the basis of the therapeutic potential of targeting the 4-1BB-4-1BBL pathway in cancer treatment.
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
84
|
Augmented lymphocyte expansion from solid tumors with engineered cells for costimulatory enhancement. J Immunother 2012; 34:651-61. [PMID: 21989413 DOI: 10.1097/cji.0b013e31823284c3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Treatment of patients with adoptive T-cell therapy requires expansion of unique tumor-infiltrating lymphocyte (TIL) cultures from single-cell suspensions processed from melanoma biopsies. Strategies which increase the expansion and reliability of TIL generation from tumor digests are necessary to improve access to TIL therapy. Previous studies have evaluated artificial antigen presenting cells for their antigen-specific and costimulatory properties. We investigated engineered cells for costimulatory enhancement (ECCE) consisting of K562 cells that express 4-1BBL in the absence of artificial antigen stimulation. ECCE accelerated TIL expansion and significantly improved TIL numbers (P=0.001) from single-cell melanoma suspensions. TIL generated with ECCE contain significantly more CD8CD62L and CD8CD27 T cells then comparable interleukin-2-expanded TIL and maintained antitumor reactivity. Moreover, ECCE improved TIL expansion from nonmelanoma-cell suspensions similar to that seen with melanoma tumors. These data demonstrate that the addition of ECCE to TIL production will enable the treatment of patients that are ineligible using current methods.
Collapse
|
85
|
Abstract
The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.
Collapse
|
86
|
Tohyama M, Watanabe H, Murakami S, Shirakata Y, Sayama K, Iijima M, Hashimoto K. Possible involvement of CD14+ CD16+ monocyte lineage cells in the epidermal damage of Stevens-Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol 2011; 166:322-30. [PMID: 21936856 DOI: 10.1111/j.1365-2133.2011.10649.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are characterized by keratinocyte apoptosis and necrosis, resulting in epidermal detachment. Although monocytes abundantly infiltrate the epidermis in SJS/TEN skin lesions, the properties and functions of these cells have not been fully examined. OBJECTIVES To determine the properties of monocytes infiltrating into the epidermis in SJS/TEN. METHODS Immunostaining of skin sections was performed to examine the membrane markers of monocytes infiltrating into skin lesions. RESULTS Immunostaining of cryosections from 11 SJS/TEN skin lesions revealed numerous CD14+ monocytes located along the dermoepidermal junction and throughout the epidermis. The cells coexpressed CD16, CD11c and HLA-DR. CD14+ CD16+ cells were identified in very early lesions without epidermal damage, suggesting that their infiltration is a cause, rather than a result, of epidermal damage. Moreover, these cells expressed CD80, CD86 and CD137 ligand, indicative of their ability to facilitate the proliferation and cytotoxicity of CD8+ T cells. CD16+ cells infiltrating the epidermis and detected at the dermoepidermal junction were immunostained and counted in paraffin-embedded skin sections obtained from 47 patients with drug rash manifested as TEN, SJS, maculopapular-type rash or erythema multiform-type rash. The number of CD16+ monocytes infiltrating the epidermis increased significantly, depending on the grade of epidermal damage. CONCLUSIONS These findings suggest that the appearance of CD14+ CD16+ cells of monocyte lineage plays an important role in the epidermal damage associated with SJS/TEN, most probably by enhancing the cytotoxicity of CD8+ T cells.
Collapse
Affiliation(s)
- M Tohyama
- Department of Dermatology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295, Japan.
| | | | | | | | | | | | | |
Collapse
|
87
|
Kim CS, Kim JG, Lee BJ, Choi MS, Choi HS, Kawada T, Lee KU, Yu R. Deficiency for costimulatory receptor 4-1BB protects against obesity-induced inflammation and metabolic disorders. Diabetes 2011; 60:3159-68. [PMID: 21998397 PMCID: PMC3219944 DOI: 10.2337/db10-1805] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Inflammation is an important factor in the development of insulin resistance, type 2 diabetes, and fatty liver disease. As a member of the tumor necrosis factor receptor superfamily (TNFRSF9) expressed on immune cells, 4-1BB/CD137 provides a bidirectional inflammatory signal through binding to its ligand 4-1BBL. Both 4-1BB and 4-1BBL have been shown to play an important role in the pathogenesis of various inflammatory diseases. RESEARCH DESIGN AND METHODS Eight-week-old male 4-1BB-deficient and wild-type (WT) mice were fed a high-fat diet (HFD) or a regular diet for 9 weeks. RESULTS We demonstrate that 4-1BB deficiency protects against HFD-induced obesity, glucose intolerance, and fatty liver disease. The 4-1BB-deficient mice fed an HFD showed less body weight gain, adiposity, adipose infiltration of macrophages/T cells, and tissue levels of inflammatory cytokines (e.g., TNF-α, interleukin-6, and monocyte chemoattractant protein-1 [MCP-1]) compared with HFD-fed control mice. HFD-induced glucose intolerance/insulin resistance and fatty liver were also markedly attenuated in the 4-1BB-deficient mice. CONCLUSIONS These findings suggest that 4-1BB and 4-1BBL may be useful therapeutic targets for combating obesity-induced inflammation and metabolic disorders.
Collapse
Affiliation(s)
- Chu-Sook Kim
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
| | - Jae Geun Kim
- Department of Biological Science, University of Ulsan, Ulsan, South Korea
| | - Byung-Ju Lee
- Department of Biological Science, University of Ulsan, Ulsan, South Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, South Korea
| | - Hye-Sun Choi
- Department of Biological Science, University of Ulsan, Ulsan, South Korea
| | - Teruo Kawada
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan, South Korea
- Corresponding author: Rina Yu,
| |
Collapse
|
88
|
Pastor F, Kolonias D, McNamara JO, Gilboa E. Targeting 4-1BB costimulation to disseminated tumor lesions with bi-specific oligonucleotide aptamers. Mol Ther 2011; 19:1878-86. [PMID: 21829171 DOI: 10.1038/mt.2011.145] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The paucity of costimulation at the tumor site compromises the ability of tumor-specific T cells to eliminate the tumor. Here, we show that bi-specific oligonucleotide aptamer conjugates can deliver costimulatory ligands to tumor cells in situ and enhance antitumor immunity. In poorly immunogenic subcutaneously implanted tumor and lung metastasis models, systemic delivery of an agonistic 4-1BB aptamer ligand conjugated to a prostate specific membrane antigen (PSMA)-binding tumor-targeting aptamer led to inhibition of tumor growth, was more effective than, and synergized with, vaccination, and exhibited a superior therapeutic index compared to costimulation with 4-1BB antibodies. Tumor inhibition was dependent on homing to PSMA-expressing tumor cells and 4-1BB costimulation. Aptamer targeted costimulation is a broadly applicable and clinically feasible approach to enhance the costimulatory environment of disseminated tumor lesions. This study suggests that potentiating naturally occurring antitumor immunity via tumor-targeted costimulation could be an effective approach to elicit protective immunity to control tumor progression in cancer patients.
Collapse
Affiliation(s)
- Fernando Pastor
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | |
Collapse
|
89
|
Pathogenesis of Takayasu's arteritis: a 2011 update. Autoimmun Rev 2011; 11:61-7. [PMID: 21855656 DOI: 10.1016/j.autrev.2011.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
Abstract
While our knowledge of the pathogenesis of Takayasu's arteritis (TA) has considerably improved during the last decade, the exact pathogenic sequence remains to be elucidated. It is now hypothesised that an unknown stimulus triggers the expression of the 65kDa Heat-shock protein in the aortic tissue which, in turn, induces the Major Histocompatibility Class I Chain-Related A (MICA) on vascular cells. The γδ T cells and NK cells expressing NKG2D receptors recognize MICA on vascular smooth muscle cells and release perforin, resulting in acute vascular inflammation. Pro-inflammatory cytokines are released and increase the recruitment of mononuclear cells within the vascular wall. T cells infiltrate and recognize one or a few antigens presented by a shared epitope, which is associated with specific major Histocompatibility Complex alleles on the dendritic cells, these latter being activated through Toll-like receptors. Th1 lymphocytes drive the formation of giant cells through the production of interferon-γ, and activate macrophages with release of VEGF resulting in increased neovascularisation and PDGF, resulting in smooth muscle migration and intimal proliferation. Th17 cells induced by the IL-23 microenvironnement also contribute to vascular lesions through activation of infiltrating neutrophils. Although still controversial, dendritic cells may cooperate with B lymphocytes and trigger the production of anti-endothelial cell auto-antibodies resulting in complement-dependent cytotoxicity against endothelial cells. In a near future, novel drugs specifically designed to target some of the pathogenic mechanisms described above could be expanding the physician's therapeutic arsenal in Takayasu's arteritis.
Collapse
|
90
|
Abstract
Secondary, so-called costimulatory, signals are critically required for the process of T cell activation. Since landmark studies defined that T cells receiving a T cell receptor signal without a costimulatory signal, are tolerized in vitro, the investigation of T cell costimulation has attracted intense interest. Early studies demonstrated that interrupting T cell costimulation allows attenuation of the alloresponse, which is particularly difficult to modulate due to the clone size of alloreactive T cells. The understanding of costimulation has since evolved substantially and now encompasses not only positive signals involved in T cell activation but also negative signals inhibiting T cell activation and promoting T cell tolerance. Costimulation blockade has been used effectively for the induction of tolerance in rodent models of transplantation, but turned out to be less potent in large animals and humans. In this overview we will discuss the evolution of the concept of T cell costimulation, the potential of 'classical' and newly identified costimulation pathways as therapeutic targets for organ transplantation as well as progress towards clinical application of the first costimulation blocking compound.
Collapse
Affiliation(s)
- Nina Pilat
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| | - Mohamed H. Sayegh
- Brigham and Women's Hospital & Children's Hospital Boston, Harvard Medical School, Boston, USA
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
91
|
T cell costimulatory molecules in anti-viral immunity: Potential role in immunotherapeutic vaccines. Can J Infect Dis 2011; 14:221-9. [PMID: 18159461 DOI: 10.1155/2003/214034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Accepted: 04/24/2003] [Indexed: 01/22/2023] Open
Abstract
T lymphocyte activation is required to eliminate or control intracellular viruses. The activation of T cells requires both an antigen specific signal, involving the recognition of a peptide/major histocompatibility protein complex by the T cell receptor, as well as additional costimulatory signals. In chronic viral diseases, T cell responses, although present, are unable to eliminate the infection. By providing antigens and costimulatory molecules together, investigators may be able to increase and broaden the immune response, resulting in better immunological control or even elimination of the infection. Recent progress in understanding the function of costimulatory molecules suggests that different costimulatory molecules are involved in initial immune responses than are involved in recall responses. These new developments have important implications for therapeutic vaccine design. In this review the authors discuss the function of T cell costimulatory molecules in immune system activation and their potential for enhancing the efficacy of therapeutic vaccines.
Collapse
|
92
|
Choi BK, Kim YH, Choi JH, Kim CH, Kim KS, Sung YC, Lee YM, Moffett JR, Kwon BS. Unified immune modulation by 4-1BB triggering leads to diverse effects on disease progression in vivo. Cytokine 2011; 55:420-8. [PMID: 21700476 DOI: 10.1016/j.cyto.2011.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
4-1BB (CD137) is a powerful T-cell costimulatory molecule in the treatment of virus infections and tumors, but recent studies have also uncovered regulatory functions of 4-1BB signaling. Since 4-1BB triggering suppresses autoimmunity by accumulating indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) in an interferon (IFN)-γ-dependent manner, we asked whether similar molecular and cellular changes were induced by 4-1BB triggering in virus-infected mice. 4-1BB triggering increased IFN-γ and IDO, and suppressed CD4(+) T cells, in C57BL/6 mice infected with the type 1 KOS strain of Herpes simplex virus (HSV-1), as it does in an autoimmune disease model. Detailed analysis of the CD4(+) T suppression showed that freshly activated CD62L(high) T cells underwent apoptosis in the early phase of suppression, and CD62L(low) effector/memory T cells in the later phase. Although 4-1BB triggering resulted in similar cellular changes - increased CD8(+) T and decreased CD4(+) T cells, it had different effects on mortality in mice infected with HSV-1 RE, influenza, and Japanese encephalitis virus (JEV); it increased mortality in influenza-infected mice but decreased it in JEV-infected mice. Since the dominant type of immune cell generated to protect the host was different for each virus - CD4(+) T cells and neutrophils in HSV-1 RE infection, both CD4(+) T and CD8(+) T cells in influenza infection, and a crucial role for B cells in JEV infection, 4-1BB triggering resulted in different therapeutic outcomes. We conclude that the therapeutic outcome of 4-1BB triggering is determined by whether the protective immunity generated against the virus was beneficially altered by the 4-1BB triggering.
Collapse
Affiliation(s)
- Beom K Choi
- Immune and Cell Therapy Branch, Division of Cancer Biology, R&D Center for Cancer Therapeutics, National Cancer Center, 809 Madu, Ilsan, Goyang, Kyeonggi-do 411-769, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Role of CD137 signaling in dengue virus-mediated apoptosis. Biochem Biophys Res Commun 2011; 410:428-33. [PMID: 21669186 DOI: 10.1016/j.bbrc.2011.05.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022]
Abstract
Hepatic dysfunction is a well recognized feature of dengue virus (DENV) infection. However, molecular mechanisms of hepatic injury are still poorly understood. A complex interaction between DENV and the host immune response contributes to DENV-mediated tissue injury. DENV capsid protein (DENV C) physically interacts with the human death domain-associated protein Daxx. A double substitution mutation in DENV C (R85A/K86A) abrogates Daxx interaction, nuclear localization and apoptosis. Therefore we compared the expression of cell death genes between HepG2 cells expressing DENV C and DENV C (R85A/K86A) using a real-time PCR array. Expression of CD137, which is a member of the tumor necrosis factor receptor family, increased significantly in HepG2 cells expressing DENV C compared to HepG2 cells expressing DENV C (R85A/K86A). In addition, CD137-mediated apoptotic activity in HepG2 cells expressing DENV C was significantly increased by anti-CD137 antibody compared to that of HepG2 cells expressing DENV C (R85A/K86A). In DENV-infected HepG2 cells, CD137 mRNA and CD137 positive cells significantly increased and CD137-mediated apoptotic activity was increased by anti-CD137 antibody. This work is the first to demonstrate the contribution of CD137 signaling to DENV-mediated apoptosis.
Collapse
|
94
|
Abstract
Costimulatory factors hold great promise for development into novel anticancer biotherapeutics. An agonist to 4-1BB is ranked number 8 by National Cancer Institute on the list of 20 agents with high potential for use in treating cancer. We earlier reported on a recombinant murine 4-1BB ligand fusion protein that binds 4-1BB receptor on murine T cells and stimulates their proliferation in tumor-bearing mice. To facilitate clinical translation,we constructed a corresponding recombinant human 4-1BB ligand fusion protein (hIg-h4-1BBLs) and showed its ability to activate human T cells in vitro. Using Chinese hamster ovary cells transformed with a plasmid coexpressing hIg-h4-1BBLs and rat glutamine synthetase, we generated a high-producing clone by sequential selection with methionine sulfoximine. The hIg-h4-1BBLs was partially purified by protein A column chromatography and characterized biochemically and functionally, using human 4-1BB binding and human T-cell proliferation assays, in vitro.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western Blot confirmed that the hIg-h4-1BBLs is expressed predominantly as a functionally active multimeric protein with the ability to specifically bind to cells expressing human 4-1BB receptor and induce significant T-cell proliferation in vitro using both human and monkey peripheral blood mononuclear cells. The hIg-h4-1BBLs can be produced in large quantities from the high producer clone and developed as a novel immune costimulatory biotherapeutic to treat, alone and in combination with other modalities, various malignant diseases in patients through T-cell activation. Process development of this clinical agent has been discussed with the Food and Drug Administration in a pre-Investigational New Drug meeting and presented to the Office of Biotechnology Activities in a public hearing.
Collapse
|
95
|
Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunol 2011; 4:325-34. [PMID: 20980996 DOI: 10.1038/mi.2010.71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate immune recognition of the bacterial cell wall constituent peptidoglycan by the cytosolic nucleotide-binding oligomerization domain 2 (Nod2) receptor has a pivotal role in the maintenance of intestinal mucosal homeostasis. Whereas peptidoglycan cleavage by gut-derived lysozyme preserves the recognition motif, the N-acetylmuramoyl-L-alanine amidase activity of the peptidoglycan recognition protein 2 (PGLYRP-2) destroys the Nod2-detected muramyl dipeptide structure. PGLYRP-2 green fluorescent protein (GFP) reporter and wild-type mice were studied by flow cytometry and quantitative RT-PCR to identify Pglyrp-2 expression in cells of the intestinal mucosa and reveal a potential regulatory function on epithelial peptidoglycan recognition. CD3(+)/CD11c(+) T lymphocytes revealed significant Pglyrp-2 expression, whereas epithelial cells and intestinal myeloid cells were negative. The mucosal Pglyrp-2-expressing lymphocyte population demonstrated a mixed T-cell receptor (TCR) αβ or γδ phenotype with predominant CD8α and less so CD8β expression, as well as significant staining for the activation markers B220 and CD69, presenting a typical intraepithelial lymphocyte phenotype. Importantly, exposure of peptidoglycan to PGLYRP-2 significantly reduced Nod2/Rip2-mediated epithelial activation. Also, moderate but significant alterations of the intestinal microbiota composition were noted in Pglyrp-2-deficient animals. PGLYRP-2 might thus have a significant role in regulation of the enteric host-microbe homeostasis.
Collapse
|
96
|
Bae JS, Kim HS, Park JH, Park SH, Lee HW. Cross-linking of CD137 ligand modulates immune responses of thioglycollate-elicited mouse peritoneal macrophages. Inflamm Res 2010; 60:467-73. [DOI: 10.1007/s00011-010-0289-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/24/2010] [Indexed: 11/29/2022] Open
|
97
|
Abstract
PURPOSE OF REVIEW The nonimmune effects of currently used immunosuppressive drugs result in a high incidence of late graft loss due to nephrotoxicity and death. As an immune-specific alternative to conventional immunosuppressants, new biotechnology tools can be used to block the costimulation signal of T-cell activation. RECENT FINDINGS Many experimental studies, particularly preclinical studies in nonhuman primates, have focused on blocking 'classical' B7/CD28 and CD40/CD40L pathways, which are critical in primary T-cell activation, but also on new B7/CD28 and TNF/TNF-R pathways families of costimulatory molecules that can deliver positive or negative costimulation signals to regulate the alloimmune response. SUMMARY Belatacept is a new fusion protein derived from CTLA4-Ig that can be used to prevent acute rejection in renal transplantation instead of calcineurin inhibitors. Belatacept can also prevent acute rejection efficiently in humans and, more interestingly, can improve renal function and cardiovascular risk factors in this population.
Collapse
|
98
|
Choi BK, Kim YH, Kim CH, Kim MS, Kim KH, Oh HS, Lee MJ, Lee DK, Vinay DS, Kwon BS. Peripheral 4-1BB Signaling Negatively Regulates NK Cell Development through IFN-γ. THE JOURNAL OF IMMUNOLOGY 2010; 185:1404-11. [DOI: 10.4049/jimmunol.1000850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
99
|
Won EY, Cha K, Byun JS, Kim DU, Shin S, Ahn B, Kim YH, Rice AJ, Walz T, Kwon BS, Cho HS. The structure of the trimer of human 4-1BB ligand is unique among members of the tumor necrosis factor superfamily. J Biol Chem 2010; 285:9202-10. [PMID: 20032458 PMCID: PMC2838339 DOI: 10.1074/jbc.m109.084442] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Indexed: 12/29/2022] Open
Abstract
Binding of the 4-1BB ligand (4-1BBL) to its receptor, 4-1BB, provides the T lymphocyte with co-stimulatory signals for survival, proliferation, and differentiation. Importantly, the 4-1BB-4-1BBL pathway is a well known target for anti-cancer immunotherapy. Here we present the 2.3-A crystal structure of the extracellular domain of human 4-1BBL. The ectodomain forms a homotrimer with an extended, three-bladed propeller structure that differs from trimers formed by other members of the tumor necrosis factor (TNF) superfamily. Based on the 4-1BBL structure, we modeled its complex with 4-1BB, which was consistent with images obtained by electron microscopy, and verified the binding site by site-directed mutagenesis. This structural information will facilitate the development of immunotherapeutics targeting 4-1BB.
Collapse
Affiliation(s)
- Eun-Young Won
- From the Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Kiweon Cha
- the Department of Biochemistry and Cell Biology/Advanced Medical Technology Cluster for Diagnosis and Prediction, School of Medicine, Kyungpook National University, Daegu 700-42, Korea
| | - Jung-Sue Byun
- From the Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Dong-Uk Kim
- From the Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Sumi Shin
- the Division of Cell and Immunobiology and R & D Center for Cancer Therapeutics, National Cancer Center, Ilsan, Goyang, Gyonggi-do 410-769, Korea
| | - Byungchan Ahn
- the Department of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea, and
| | - Young Ho Kim
- the Division of Cell and Immunobiology and R & D Center for Cancer Therapeutics, National Cancer Center, Ilsan, Goyang, Gyonggi-do 410-769, Korea
| | | | - Thomas Walz
- the Department of Cell Biology and
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Byoung S. Kwon
- the Division of Cell and Immunobiology and R & D Center for Cancer Therapeutics, National Cancer Center, Ilsan, Goyang, Gyonggi-do 410-769, Korea
| | - Hyun-Soo Cho
- From the Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|
100
|
Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine 2009; 28:1300-9. [PMID: 19944789 DOI: 10.1016/j.vaccine.2009.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/21/2022]
Abstract
Plasmid DNA immunizations induce low levels but a broad spectrum of cellular and humoral immune responses. Here, we investigate the potential of co-stimulation through 4-1BB as an adjuvant for a HIV-1 DNA vaccine in mice. We designed plasmid DNAs expressing either the membrane bound or soluble form of 4-1BBL, and compared with the agonistic anti-4-1BB Ab for their ability to adjuvant the Gag DNA vaccine. Both, anti-4-1BB agonistic Ab as well as 4-1BBL DNA enhanced the Gag-specific cellular immune responses. However, in complete contrast to the agonistic Ab that suppressed humoral immunity to Gag, 4-1BBL DNA adjuvanted vaccines enhanced Gag-specific IgG responses. Importantly, the expression of Gag and 4-1BBL from the same plasmid was critical for the adjuvant activity. Collectively, our data suggest that for a HIV-1 vaccine where both antigen-specific cellular and humoral immunity are desirable, 4-1BBL expressed by a DNA vaccine is a superior adjuvant than anti-4-1BB agonistic Ab.
Collapse
|