51
|
Kimpston-Burkgren K, Correas I, Osorio FA, Steffen D, Pattnaik AK, Fang Y, Vu HL. Relative contribution of porcine reproductive and respiratory syndrome virus open reading frames 2–4 to the induction of protective immunity. Vaccine 2017; 35:4408-4413. [DOI: 10.1016/j.vaccine.2017.06.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
52
|
Wang H, Liu R, Zhang W, Sun L, Ning Z, Ji F, Cui J, Zhang G. Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology. Virus Genes 2017; 53:623-635. [PMID: 28597195 DOI: 10.1007/s11262-017-1472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Nonstructural protein 7 (nsp7) of porcine reproductive and respiratory syndrome virus (PRRSV) is considered to be a suitable reagent for the development of serological diagnostic assays. It can be expressed as a soluble recombinant protein in Escherichia coli, and its antibody response may continue up to 202 days post-infection. Furthermore, the region encoded by nsp7 is highly homologous among various strains within the genotype, and the results of nsp7-based enzyme-linked immunosorbent assay (ELISA) showed high agreement with previous Idexx ELISA results. All these evidences suggest the existence of important epitopes on nsp7, though the characteristics of these epitopes remain unclear. In the present study, we prepared three monoclonal antibodies against nsp7 protein and used them to screen the epitope-distribution characteristics of PRRSV nsp7 protein by phage-display technology. We identified a linear epitope NAWGDEDRLN at amino acids 153-162 type II PRRSV nsp7β subunit. This newly defined epitope showed excellent reactivity with PRSSV-positive serum samples. These results further our understanding of the antigenic structure of nsp7 protein, and provide efficient reagents for PRRSV serological tests.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian Province, China
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Lingshuang Sun
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Fangxiao Ji
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China
| | - Jin Cui
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China.
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
53
|
Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol J 2017; 14:125. [PMID: 28693575 PMCID: PMC5504599 DOI: 10.1186/s12985-017-0794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. Methods The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. Results The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. Conclusion Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0794-5) contains supplementary material, which is available to authorized users.
Collapse
|
54
|
Seo BJ, Lee JH, Kang IJ, Shabir N, Khatun A, Yang MS, Park C, Kim B, Kim WI. Effects of high molecular weight poly-γ-glutamic acid on PIGS with porcine preproductive and respiratory syndrome virus (PRRSV) infection. ACTA VET-BEOGRAD 2017. [DOI: 10.1515/acve-2017-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Bacillus subtilis sups. chungkookjang produces a higher molecular mass poly-γ-glutamic acid (γ-PGA). Recently, previous studies have demonstrated immune stimulation and an antitumor effect of the high molecular mass γ-PGA using various mouse models although these effects have not been shown in other species of animals. Therefore, the current study was conducted to determine the effect of γ-PGA in pigs with and without PRRSV infection. PRRS-negative pigs were intramuscularly injected with 1, 3, or 5 ml of 20 mg/mll γ-PGA, and one group of pigs served as a non-treatment (NT) group. All groups treated with γ-PGA had significantly higher weight gains, and pigs treated with 5 ml of γ-PGA exhibited higher tumor necrosis factor (TNF)-α, interferon (IFN)-α and IFN-β expression levels compared with the NT group. According to the preliminary results, an animal challenge study was conducted with a highly virulent PRRSV strain, MN184, along with γ-PGA treatment at different time points. Pigs treated with γ-PGA had lower levels of viral loads in the sera and in lungs and gained significantly more weight (p<0.05) compared with the NT group after being challenged with MN184. Moreover, γ-PGA-treatment groups had higher levels of neutralizing antibodies and cytokines related to proinflammatory, humoral and cell-mediated responses than the control group after the PRRSV challenge. Therefore, it was concluded that γ-PGA induces higher levels of immune responses and increases resistance to PRRSV infection in pigs.
Collapse
Affiliation(s)
- Byoung-Joo Seo
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Jee-Hoon Lee
- Corporate Research and Development Center , Dong Bang Co., Ltd , Suwon 16679 , Korea (Republic of)
| | - Ick-Jae Kang
- Corporate Research and Development Center , Dong Bang Co., Ltd , Suwon 16679 , Korea (Republic of)
| | - Nadeem Shabir
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Amina Khatun
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Myeon-Sik Yang
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Chul Park
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Bumseok Kim
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| | - Won-Il Kim
- College of Veterinary Medicine , Chonbuk National University , Iksan 54596 , Korea (Republic of)
| |
Collapse
|
55
|
Prediction and in vitro verification of potential CTL epitopes conserved among PRRSV-2 strains. Immunogenetics 2017; 69:689-702. [PMID: 28589207 PMCID: PMC5597684 DOI: 10.1007/s00251-017-1004-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/22/2017] [Indexed: 10/26/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the causative agent of one of the most important porcine diseases with a high impact on animal health, welfare, and production economy. PRRSV exhibits a multitude of immunoevasive strategies that, in combination with a very high mutation rate, has hampered the development of safe and broadly protective vaccines. Aiming at a vaccine inducing an effective cytotoxic T cell response, a bioinformatics approach was taken to identify conserved PRRSV-derived peptides predicted to react broadly with common swine leukocyte antigen (SLA) class I alleles. Briefly, all possible 9- and 10-mer peptides were generated from 104 complete PRRSV type 2 genomes of confirmed high quality, and peptides with high binding affinity to five common SLAs were identified combining the NetMHCpan and positional scanning combinatorial peptide libraries binding predictions. Predicted binders were prioritized according to genomic conservation and SLA coverage using the PopCover algorithm. From this, 53 peptides were acquired for further analysis. Binding affinity and stability of a subset of 101 peptide-SLA combinations were validated in vitro for 4 of the 5 SLAs. Eventually, 23% of the predicted peptide-SLA combinations showed to form complexes with a dissociation half-life ≥30 min. Additionally, combining the two prediction methods proved to be more robust across alleles than either method used alone in terms of predicted-to-observed correlations. In summary, our approach represents a finely tuned epitope prediction pipeline providing a rationally selected ensemble of peptides for future in vivo experiments with pigs expressing the included SLAs.
Collapse
|
56
|
Antigenic and Biological Characterization of ORF2-6 Variants at Early Times Following PRRSV Infection. Viruses 2017; 9:v9050113. [PMID: 28509878 PMCID: PMC5454425 DOI: 10.3390/v9050113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) challenges efforts to develop effective and broadly acting vaccines. Although genetic variation in PRRSV has been extensively documented, the effects of this variation on virus phenotype are less well understood. In the present study, PRRSV open reading frame (ORF)2-6 variants predominant during the first six weeks following experimental infection were characterized for antigenic and replication phenotype. There was limited genetic variation during these early times after infection; however, distinct ORF2-6 haplotypes that differed from the NVSL97-7895 inoculum were identified in each of the five pigs examined. Chimeric viruses containing all or part of predominant ORF2-6 haplotypes were constructed and tested in virus neutralization and in vitro replication assays. In two pigs, genetic variation in ORF2-6 resulted in increased resistance to neutralization by autologous sera. Mapping studies indicated that variation in either ORF2-4 or ORF5-6 could confer increased neutralization resistance, but there was no single amino acid substitution that was predictive of neutralization phenotype. Detailed analyses of the early steps in PRRSV replication in the presence and absence of neutralizing antibody revealed both significant inhibition of virion attachment and, independently, a significant delay in the appearance of newly synthesized viral RNA. In all pigs, genetic variation in ORF2-6 also resulted in significant reduction in infectivity on MARC-145 cells, suggesting variation in ORF2-6 may also be important for virus replication in vivo. Together, these data reveal that variation appearing early after infection, though limited, alters important virus phenotypes and contributes to antigenic and biologic diversity of PRRSV.
Collapse
|
57
|
GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) as a target for homologous and broadly neutralizing antibodies. Vet Microbiol 2017; 209:90-96. [PMID: 28528961 DOI: 10.1016/j.vetmic.2017.04.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/04/2017] [Accepted: 04/20/2017] [Indexed: 01/07/2023]
Abstract
Virus neutralization (VN) responses range from narrowly focused antibodies with only homologous neutralizing activity against the virus used for infection, to antibodies that can neutralize both Type 1 and Type 2 viruses, referred to as broadly neutralizing antibody (bnAb). Even though neutralizing epitopes are likely distributed among several structural glycoproteins, this paper focuses on the ectodomain region of GP5 as a model system for investigating the role for neutralizing and non-neutralizing antibodies in protection and disease. Epitope B within GP5 possesses several features common to broadly neutralizing epitopes. In the proposed model, accessibility of antibody to Epitope B is blocked by homologous neutralizing and non-neutralizing antibodies, which bind flanking hypervariable domains. Additional mechanisms for blocking the accessibility of bnAb include conformational alterations within the GP5-M heterodimer and glycan shielding. This model explains how the continuous escape from homologous neutralization provides a mechanism for persistence. The proposed mechanism for immune evasion is not unique to PRRSV, but can be found in other persistent viruses, such as hepatitis C virus (HCV).
Collapse
|
58
|
Expression and diagnostic use of recombinant M protein of the porcine reproductive and respiratory syndrome virus. ACTA VET BRNO 2017. [DOI: 10.2754/avb201786010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix M protein combined with nucleocapsid N protein could be a promising combination of virus antigens for diagnosing the porcine reproductive and respiratory syndrome. The goal of this work was to express the recombinant M protein of the porcine reproductive and respiratory syndrome virus inEscherichia colicells and compare its serological reactivity with the N protein of the virus. The gene coding for the M protein was cloned into the pDest17 vector. The resulting protein was purified by metalochelating affinity chromatography. Recombinant M protein was applied as an antigen in immunoblot test and compared on a panel of porcine sera with N protein based IDEXX test. Of 120 examined samples, the majority (78.3%) gave identical results using both compared tests. From the group of discrepant results, IDEXX test identified considerably more positive sera (17.5%) than M protein based test (4.2%). The main contribution of the work is finding that although IDEXX test proved to be more sensitive than M protein based test, 4.2% of sera would escape detection by serological test based on N protein. Further development and purification of the M protein for the use in Enzyme Linked Immunosorbent Assay format test could increase the performance of serological testing.
Collapse
|
59
|
Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 2017; 13:e1006206. [PMID: 28231264 PMCID: PMC5322883 DOI: 10.1371/journal.ppat.1006206] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages. Porcine Reproductive and Respiratory Syndrome is an endemic infectious disease of pigs, manifesting differently in pigs of different ages but primarily causing late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV only infects a specific subset of cells of the innate immune system of the monocyte/macrophage lineage. Previous research found that the virus needs a specific receptor, CD163, in order to make its own membrane fuse with the host cell membrane in an uptake vesicle to release the viral genetic information into the cytosol and achieve a successful infection. CD163 has a pearl-on-a-string structure, whereby the “pearl”/ domain number 5 was found to interact with the virus and allow it to infect a cell. Here we describe how we generated pigs lacking the CD163 subdomain 5 using so-called CRISPR/Cas9 gene editing in zygotes. The pigs were healthy under normal husbandry conditions and other biological functions conducted by the CD163 were found to be intact. We isolated a variety of monocyte and macrophage cells from these pigs and found them to be completely resistant to PRRSV infection.
Collapse
Affiliation(s)
- Christine Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Simon G. Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Elizabeth Reid
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | | | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
King SJ, Ooi PT, Phang LY, Allaudin ZNB, Loh WH, Tee CY, How SP, Yip LS, Choo PY, Lim BK. Phylogenetic characterization of genes encoding for viral envelope glycoprotein (ORF5) and nucleocapsid protein (ORF7) of porcine reproductive & respiratory syndrome virus found in Malaysia in 2013 and 2014. BMC Vet Res 2017; 13:3. [PMID: 28056965 PMCID: PMC5217455 DOI: 10.1186/s12917-016-0933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/17/2016] [Indexed: 11/30/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome (PRRS) is one of the most expensive diseases of modern swine production & results in annual economic losses and cost the industry over 600 million USD in U.S. alone and billions of dollars worldwide. Two atypical PRRS cases were observed in 2013 and 2014 characterized by late-term abortion, fever and sudden increase in sow mortality which persisted for a prolonged period of time. Methods Lungs, lymph nodes and other samples were collected for disease investigation. Sequencing of the viral envelope glycoprotein (ORF5) and nucleocapsid protein (ORF7) of PRRSV was done using the BigDye Terminator v3.1 cycle sequencing kit chemistry. The phylogenetic tree was constructed by using the Maximum Likelihood method, generated by Mega 6.06®. Results Analysis of the ORF5 and ORF7 showed high degree of sequence homology to PRRSV parent vaccine strain VR-2332, RespPRRSV and other mutant/chimeric virus strains. Conclusions Our study suggests that recombination events between vaccine strains and field isolates may contribute to PRRSV virulence in the field.
Collapse
Affiliation(s)
- Seetha Jaganathan King
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, 43400, Malaysia.,Asia-Pacific Special Nutrients Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Peck Toung Ooi
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Selangor, 43400, Malaysia.
| | - Lai Yee Phang
- Department of Biotechnology, Faculty of Biotechnology & Molecular Science, Universiti Putra Malaysia, UPM, Serdang, Selangor, 43400, Malaysia
| | | | - Wei Hoong Loh
- Vet Food Agro Diagnostic (M) Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Chiou Yan Tee
- Vet Food Agro Diagnostic (M) Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Shiao Pau How
- Vet Food Agro Diagnostic Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Lai Siong Yip
- Vet Food Agro Diagnostic (M) Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Pow Yoon Choo
- Vet Food Agro Diagnostic (M) Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| | - Ban Keong Lim
- Vet Food Agro Diagnostic (M) Sdn. Bhd, Lot 18B, Jalan 241, Section 51A, Petaling Jaya, Selangor, 46100, Malaysia
| |
Collapse
|
61
|
Correas I, Osorio FA, Steffen D, Pattnaik AK, Vu HLX. Cross reactivity of immune responses to porcine reproductive and respiratory syndrome virus infection. Vaccine 2017; 35:782-788. [PMID: 28062126 DOI: 10.1016/j.vaccine.2016.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/18/2016] [Indexed: 01/19/2023]
Abstract
Because porcine reproductive and respiratory syndrome virus (PRRSV) exhibits extensive genetic variation among field isolates, characterizing the extent of cross reactivity of immune responses, and most importantly cell-mediated immunity (CMI), could help in the development of broadly cross-protective vaccines. We infected 12 PRRSV-naïve pigs with PRRSV strain FL12 and determined the number of interferon (IFN)-γ secreting cells (SC) by ELISpot assay using ten type 2 and one type 1 PRRSV isolates as recall antigens. The number of IFN-γ SC was extremely variable among animals, and with exceptions, late to appear. Cross reactivity of IFN-γ SC among type 2 isolates was broad, and we found no evidence of an association between increased genetic distance among isolates and the intensity of the CMI response. Comparable to IFN-γ SC, total antibodies evaluated by indirect immunofluorescence assay (IFA) were cross reactive, however, neutralizing antibody titers could only be detected against the strain used for infection. Finally, we observed a moderate association between homologous IFN-γ SC and neutralizing antibodies.
Collapse
Affiliation(s)
- Ignacio Correas
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Fernando A Osorio
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Asit K Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States
| | - Hiep L X Vu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, United States; Nebraska Center for Virology, University of Nebraska-Lincoln, United States.
| |
Collapse
|
62
|
Chung CJ, Cha SH, Grimm AL, Chung G, Gibson KA, Yoon KJ, Parish SM, Ho CS, Lee SS. Recognition of Highly Diverse Type-1 and -2 Porcine Reproductive and Respiratory Syndrome Viruses (PRRSVs) by T-Lymphocytes Induced in Pigs after Experimental Infection with a Type-2 PRRSV Strain. PLoS One 2016; 11:e0165450. [PMID: 27798650 PMCID: PMC5087905 DOI: 10.1371/journal.pone.0165450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background/Aim Live attenuated vaccines confer partial protection in pigs before the appearance of neutralizing antibodies, suggesting the contribution of cell-mediated immunity (CMI). However, PRRSV-specific T-lymphocyte responses and protective mechanisms need to be further defined. To this end, the hypothesis was tested that PRRSV-specific T-lymphocytes induced by exposure to type-2 PRRSV can recognize diverse isolates. Methods An IFN-gamma ELISpot assay was used to enumerate PRRSV-specific T-lymphocytes from PRRSVSD23983-infected gilts and piglets born after in utero infection against 12 serologically and genetically distinct type-1 and -2 PRRSV isolates. The IFN-gamma ELISpot assay using synthetic peptides spanning all open reading frames of PRRSVSD23983 was utilized to localize epitopes recognized by T-lymphocytes. Virus neutralization tests were carried out using the challenge strain (type-2 PRRSVSD23983) and another strain (type-2 PRRSVVR2332) with high genetic similarity to evaluate cross-reactivity of neutralizing antibodies in gilts after PRRSVSD23983 infection. Results At 72 days post infection, T-lymphocytes from one of three PRRSVSD23983-infected gilts recognized all 12 diverse PRRSV isolates, while T-lymphocytes from the other two gilts recognized all but one isolate. Furthermore, five of nine 14-day-old piglets infected in utero with PRRSVSD23983 had broadly reactive T-lymphocytes, including one piglet that recognized all 12 isolates. Overlapping peptides encompassing all open reading frames of PRRSVSD23983 were used to identify ≥28 peptides with T-lymphocyte epitopes from 10 viral proteins. This included one peptide from the M protein that was recognized by T-lymphocytes from all three gilts representing two completely mismatched MHC haplotypes. In contrast to the broadly reactive T-lymphocytes, neutralizing antibody responses were specific to the infecting PRRSVSD23983 isolate. Conclusion These results demonstrated that T-lymphocytes recognizing antigenically and genetically diverse isolates were induced by infection with a type 2 PRRSV strain (SD23983). If these reponses have cytotoxic or other protective functions, they may help overcome the suboptimal heterologous protection conferred by conventional vaccines.
Collapse
Affiliation(s)
- Chungwon J. Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
- * E-mail:
| | - Sang-Ho Cha
- Department of Virology, Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | | | - Grace Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
| | - Kathleen A. Gibson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Steven M. Parish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, United States of America
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, MI 48108, United States of America
| | - Stephen S. Lee
- Department of Statistics, University of Idaho, Moscow, ID 83844, United States of America
| |
Collapse
|
63
|
Wang X, Yang X, Zhou R, Zhou L, Ge X, Guo X, Yang H. Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Res 2016; 225:40-49. [DOI: 10.1016/j.virusres.2016.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 02/08/2023]
|
64
|
Stankevicius A, Buitkuviene J, Sutkiene V, Spancerniene U, Pampariene I, Pautienius A, Oberauskas V, Zilinskas H, Zymantiene J. Detection and molecular characterization of porcine reproductive and respiratory syndrome virus in Lithuanian wild boar populations. Acta Vet Scand 2016; 58:51. [PMID: 27608974 PMCID: PMC5016999 DOI: 10.1186/s13028-016-0232-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/25/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is recognized worldwide as an important and economically devastating pathogen in pig production. Although PRRSV is widespread in domestic swine, there is a lack of information regarding PRRSV infection in European wild boars (Sus scrofa). Currently available information does not provide conclusive evidence that wild boars are a reservoir of PRRSV. Nevertheless, wild boars may be likely to become infected by domestic swine through occasional direct or indirect contact. Furthermore, wild boars can act as a reservoir for infectious diseases of domestic pigs. Therefore, the objectives of the present study were to determine the virus prevalence and further explore the epidemiology and diversity of PRRSV strains present in Lithuanian wild boars over a 5-year period. A total of 1597 tissue and serum samples from wild boars inhabiting 44 districts and ten counties in Lithuania were analysed using conventional nested reverse transcription polymerase chain reaction (RT-PCR) and real-time Taqman RT-PCR for the detection of PRRSV-specific open reading frame (ORF) 1 and 6 sequences. RESULTS PRRSV was highly prevalent in Lithuanian wild boar populations, with an average rate of 18.66 % using conventional RT-PCR and 19.54 % using real-time RT-PCR. PRRSV was detected in 36.71 and 41.77 % of 237 hunting grounds tested by conventional RT-nPCR and real-time RT-PCR, respectively. No statistically significant differences in PRRSV prevalence were observed by geographic area in the ten Lithuanian counties. Animals infected with PRRSV were identified in all age groups; however, significantly higher prevalence rates were identified in subadult and adult wild boars than in juveniles up to 12 months old. No positive results were obtained using conventional PCR with Type 2 specific primers. Phylogenetic analysis of the partial ORF5 region revealed that ten wild boars harboured virus sequences belonging to genetic subtypes 3 and 4 and may therefore pose a serious threat to Lithuanian pig farms in which only subtype two strains are circulating. CONCLUSIONS The results of virus prevalence and phylogenetic analyses strongly support the role of wild boars as a possible natural reservoir for PRRSV in Lithuania.
Collapse
Affiliation(s)
- Arunas Stankevicius
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Jurate Buitkuviene
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
- National Food and Veterinary Risk Assessment Institute, J. Kairiukscio st. 10, LT-08409 Vilnius, Lithuania
| | - Virginija Sutkiene
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Ugne Spancerniene
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Ina Pampariene
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Arnoldas Pautienius
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Vaidas Oberauskas
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Henrikas Zilinskas
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| | - Judita Zymantiene
- Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Tilzes st. 18, LT-47182 Kaunas, Lithuania
| |
Collapse
|
65
|
Evaluation of the Cross-Protective Efficacy of a Chimeric Porcine Reproductive and Respiratory Syndrome Virus Constructed Based on Two Field Strains. Viruses 2016; 8:v8080240. [PMID: 27556483 PMCID: PMC4997602 DOI: 10.3390/v8080240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/17/2022] Open
Abstract
One of the major hurdles to porcine reproductive and respiratory syndrome (PRRS) vaccinology is the limited or no cross-protection conferred by current vaccines. To overcome this challenge, a PRRS chimeric virus (CV) was constructed using an FL12-based cDNA infectious clone in which open reading frames (ORFs) 3-4 and ORFs 5-6 were replaced with the two Korean field isolates K08-1054 and K07-2273,respectively. This virus was evaluated as a vaccine candidate to provide simultaneous protection against two genetically distinct PRRS virus (PRRSV) strains. Thirty PRRS-negative three-week-old pigs were divided into five groups and vaccinated with CV, K08-1054, K07-2273, VR-2332, or a mock inoculum. At 25 days post-vaccination (dpv), the pigs in each group were divided further into two groups and challenged with either K08-1054 or K07-2273. All of the pigs were observed until 42 dpv and were euthanized for pathological evaluation. Overall, the CV-vaccinated group exhibited higher levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12) expression and of serum virus-neutralizing antibodies compared with the other groups after vaccination and also demonstrated better protection levels against both viruses compared with the challenge control group. Based on these results, it was concluded that CV might be an effective vaccine model that can confer a broader range of cross-protection to various PRRSV strains.
Collapse
|
66
|
Efficacy of Fostera® PRRS modified live virus (MLV) vaccination strategy against a Thai highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection. Trop Anim Health Prod 2016; 48:1351-9. [PMID: 27315207 DOI: 10.1007/s11250-016-1099-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Recently, the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) (HP-PRRSV) belonging to lineage 8 causes severe symptom with high morbidity and high mortality rates to the Asian pig industry. A recent study showed that pigs immunized with Fostera® PRRS modified live virus (MLV) of lineage 8 could provide a degree of protection against a Vietnamese HP-PRRSV infection. It should be noted that PRRSV commonly found after weaning causes porcine respiratory disease complex (PRDC). Vaccination strategy should be evaluated in each farm scenario. Eighty-one PRRSV-free piglets obtained from a PRRS-free herd were divided into two experiments with the major difference of infection timing after vaccination, 42 days in experiment 1 (n = 42) and 28 days in experiment 2 (n = 39). Each experiment had similar protocol containing three groups including a negative control, unvaccinated challenged, and vaccinated challenged groups. Pigs in vaccination groups were immunized with Fostera® PRRS MLV vaccine at 3 weeks of age. Then, unvaccinated challenged and vaccinated challenged groups were intranasally inoculated with a Thai HP-PRRSV (10PL01). Vaccinated challenged pigs showed significantly lower levels of mean rectal temperatures, clinical severity, lung lesion scores, and viral titers in serum and lung tissue compared to the unvaccinated challenged pigs (p < 0.05). Vaccinated challenged pigs had higher survival rate than those of unvaccinated challenged pigs in both experiments. It should be noted that pigs challenged 42 days after vaccination showed a better performance than pigs challenged 28 days after vaccination. In conclusion, Fostera® PRRS MLV vaccine was able to improve the survival rate against the Thai HP-PRRSV infection in both 42- and 28-day vaccination-to-infection protocols.
Collapse
|
67
|
Song T, Fang L, Wang D, Zhang R, Zeng S, An K, Chen H, Xiao S. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin. J Proteomics 2016; 142:70-81. [PMID: 27180283 DOI: 10.1016/j.jprot.2016.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/17/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has heavily impacted the global swine industry. The PRRSV nonstructural protein 2 (nsp2) plays crucial roles in viral replication and host immune regulation, most likely by interacting with viral or cellular proteins that have not yet been identified. In this study, a quantitative interactome approach based on immunoprecipitation and stable isotope labeling with amino acids in cell culture (SILAC) was performed to identify nsp2-interacting proteins in PRRSV-infected cells with an nsp2-specific monoclonal antibody. Nine viral proteins and 62 cellular proteins were identified as potential nsp2-interacting partners. Our data demonstrate that the PRRSV nsp1α, nsp1β, and nucleocapsid proteins all interact directly with nsp2. Nsp2-interacting cellular proteins were classified into different functional groups and an interactome network of nsp2 was generated. Interestingly, cellular vimentin, a known receptor for PRRSV, forms a complex with nsp2 by using viral nucleocapsid protein as an intermediate. Taken together, the nsp2 interactome under the condition of virus infection clarifies a role of nsp2 in PRRSV replication and immune evasion. BIOLOGICAL SIGNIFICANCE Viral proteins must interact with other virus-encoded proteins and/or host cellular proteins to function, and interactome analysis is an ideal approach for identifying such interacting proteins. In this study, we used the quantitative interactome methodology to identify the viral and cellular proteins that potentially interact with the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) under virus infection conditions, thus providing a rich source of potential viral and cellular interaction partners for PRRSV nsp2. Based on the interactome data, we further demonstrated that PRRSV nsp2 and nucleocapsid protein together with cellular vimentin, form a complex that may be essential for viral attachment and replication, which partly explains the role of nsp2 in PRRSV replication and immune evasion.
Collapse
Affiliation(s)
- Tao Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, PR China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ruoxi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Songlin Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, PR China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, PR China.
| |
Collapse
|
68
|
Li L, Zheng Q, Zhang Y, Li P, Fu Y, Hou J, Xiao X. Antiviral activity of recombinant porcine surfactant protein A against porcine reproductive and respiratory syndrome virus in vitro. Arch Virol 2016; 161:1883-90. [PMID: 27101074 PMCID: PMC7086670 DOI: 10.1007/s00705-016-2838-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/18/2016] [Indexed: 02/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has caused significant economic losses in the swine industry worldwide. However, there is not an ideal vaccine to provide complete protection against PRRSV. Thus, the need for new antiviral strategies to control PRRSV still remains. Surfactant protein A (SP-A) belongs to the family of C-type lectins, which can exert antiviral activities. In this present study, we assessed the antiviral properties of recombinant porcine SP-A (RpSP-A) on PRRSV infection in Marc 145 cells and revealed its antiviral mechanism using a plaque assay, real-time qPCR, western blotting analysis and an attachment and penetration assay. Our results showed that RpSP-A could inhibit the infectivity of PRRSV in Marc 145 cells and could reduce the total RNA and protein level. The attachment assay indicated that RpSP-A in the presence of Ca2+ could largely inhibit Marc 145 cell attachment; however, in the penetration assay, it was relatively inactive. Furthermore, our study suggested that virus progeny released from infected Marc145 cells were blocked by RpSP-A from infecting other cells. We conclude that RpSP-A has antiviral activity against PRRSV, most probably by blocking viral attachment and the cell-to-cell transmission pathway, and therefore, RpSP-A holds promise as a novel antiviral agent against PRRSV.
Collapse
Affiliation(s)
- Lan Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qisheng Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yuanpeng Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Pengcheng Li
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, People's Republic of China.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
69
|
Pujhari S, Zakhartchouk AN. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis. Arch Virol 2016; 161:1821-30. [DOI: 10.1007/s00705-016-2845-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/26/2016] [Indexed: 12/15/2022]
|
70
|
Mutations in a Highly Conserved Motif of nsp1β Protein Attenuate the Innate Immune Suppression Function of Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2016; 90:3584-99. [PMID: 26792733 DOI: 10.1128/jvi.03069-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/11/2016] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique -2/-1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif ((123)GKYLQRRLQ(131)) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotype in vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animals. IMPORTANCE PRRSV infection induces poor antiviral innate IFN and cytokine responses, which results in weak adaptive immunity. One of the strategies in next-generation vaccine construction is to manipulate viral proteins/genetic elements involved in antagonizing the host immune response. PRRSV nsp1β was identified to be a strong innate immune antagonist. In this study, two basic amino acids, R128 and R129, in a highly conserved GKYLQRRLQ motif were determined to be critical for nsp1β function. Mutations introduced into these two residues attenuated virus growth and improved the innate and adaptive immune responses of infected animals. Technologies developed in this study could be broadly applied to current commercial PRRSV modified live-virus (MLV) vaccines and other candidate vaccines.
Collapse
|
71
|
Inhibition of highly pathogenic porcine reproductive and respiratory syndrome virus replication by recombinant pseudorabies virus-mediated RNA interference in piglets. Vet Microbiol 2015; 181:212-20. [DOI: 10.1016/j.vetmic.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 11/20/2022]
|
72
|
Li Z, Wang G, Wang Y, Zhang C, Wang X, Huang B, Li Q, Li L, Xue B, Ding P, Syed SF, Wang C, Cai X, Zhou EM. Rescue and evaluation of a recombinant PRRSV expressing porcine Interleukin-4. Virol J 2015; 12:185. [PMID: 26573719 PMCID: PMC4647277 DOI: 10.1186/s12985-015-0380-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current vaccines for porcine reproductive and respiratory syndrome virus (PRRSV) have failed to provide broad protection against infection by various strains of PRRSV. Porcine Interleukin-4 (pIL-4) plays an important role in the regulation of the immune response and has been used previously as an immunological adjuvant. The objective of this study was to construct a recombinant PRRSV expressing pIL-4 and to evaluate the immune response of the recombinant virus in piglets. METHODS The pIL-4 gene was inserted in the PRRSV (CH-1R strain) infectious clone by overlap PCR. Indirect immunofluorescence assay (IFA) and Western blotting were used to confirm the recombinant virus. The stability of the recombinant virus was assessed by DNA sequencing and IFA after 15 passages in vitro. Recombinant virus was injected into pigs and efficacy of immune protection was evaluated in comparison with the parental virus. RESULTS The recombinant virus (CH-1R/pIL-4) was successfully rescued and shown to have similar growth kinetics as the parental virus. The recombinant virus was stable for 15 passages in cell culture. Pigs vaccinated with CH-1R/pIL-4 produced a similar humoral response to the response elicited by parental virus, but IL-4 level in the supernatant of PBMCs from pigs vaccinated with CH-1R/pIL-4 was significantly higher than the parent virus at 28 days post-immunization (DPI). Flow cytometric (FCM) analysis showed that the percentage of CD4(+)CD8(+) double positive T (DPT) cells in the CH-1R/pIL-4 vaccinated group was significantly higher than the parental virus at 3 and 7 Days Post-Challenge (DPC), and the IL-4 level in the blood significantly increased at 7 DPC. However, the viral load and histopathology did not show significant difference between the two groups. CONCLUSIONS A recombinant PRRSV expressing porcine IL-4 was rescued and it remained genetically stable in vitro. The recombinant virus induced higher DPT ratios and IL-4 levels in the blood after HP-PRRSV challenge compared to the parental virus in piglets. However, it did not significantly improve protection efficacy of PRRSV vaccine.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - Xinglong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Shahid Faraz Syed
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, 150001, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
73
|
Uribe-Campero L, Monroy-García A, Durán-Meza AL, Villagrana-Escareño MV, Ruíz-García J, Hernández J, Núñez-Palenius HG, Gómez-Lim MA. Plant-based porcine reproductive and respiratory syndrome virus VLPs induce an immune response in mice. Res Vet Sci 2015; 102:59-66. [PMID: 26412521 DOI: 10.1016/j.rvsc.2015.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/10/2015] [Accepted: 07/19/2015] [Indexed: 01/14/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) significantly affects the swine industry worldwide. An efficient, protective vaccine is still lacking. Here, we report for the first time the generation and purification of PRRSV virus like particles (VLPs) by expressing GP5, M and N genes in Nicotiana silvestris plants. The particles were clearly visible by transmission electron microscopy (TEM) with a size of 60-70 nm. Hydrodynamic diameter of the particles was obtained and it was confirmed that the VLPs had the appropriate size for PRRS virions and that the VLPs were highly pure. By measuring the Z potential we described the electrophoretic mobility behavior of VLPs and the best conditions for stability of the VLPs were determined. The particles were immunogenic in mice. A western blot of purified particles allowed detection of three coexpressed genes. These VLPs may serve as a platform to develop efficient PRRSV vaccines.
Collapse
Affiliation(s)
- Laura Uribe-Campero
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| | - Alberto Monroy-García
- Unidad de Investigación Médica en Enfermedades Oncológicas, IMSS, CMN SXXI, México, D.F., México; Laboratorio de Inmunobiología, Lab, 3PB, Unidad de Investigación en Diferenciación Celular y Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Campus II, UNAM, Batalla 5 de mayo s/n, Col. E. Oriente, Esquina Fuerte Loreto, Iztapalapa, CP 09230 México, D.F., México.
| | - Ana L Durán-Meza
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - María V Villagrana-Escareño
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jaime Ruíz-García
- Laboratorio de Física Biológica, Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP 78000, México.
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a La Victoria km 0.6, Hermosillo, Sonora C.P. 83304, México.
| | - Héctor G Núñez-Palenius
- División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Exhacienda El Copal s/n, A.P. 311, Irapuato, Gto. C.P. 36500, México.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV-IPN, Km 9.6 Carretera Irapuato-León, C.P. 36821 Irapuato, Guanajuato, México.
| |
Collapse
|
74
|
A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection. J Virol 2015; 89:12070-83. [PMID: 26401031 DOI: 10.1128/jvi.01657-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine. IMPORTANCE The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.
Collapse
|
75
|
Li Z, Wang G, Wang Y, Zhang C, Huang B, Li Q, Li L, Xue B, Ding P, Cai X, Wang C, Zhou EM. Immune responses of pigs immunized with a recombinant porcine reproductive and respiratory syndrome virus expressing porcine GM-CSF. Vet Immunol Immunopathol 2015; 168:40-8. [PMID: 26300317 DOI: 10.1016/j.vetimm.2015.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has spread worldwide, causing huge economic losses to the swine industry. The current PRRSV vaccines have failed to provide broad protection against various strains. Granulocyte macrophage colony-stimulating factor (GM-CSF), an efficacious adjuvant, has been shown to enhance the immunogenicity of various vaccines. The purpose of this study was to construct a recombinant live attenuated PRRSV that expresses porcine GM-CSF (pGM-CSF) and evaluate the immune responses of pigs immunized with the recombinant virus. The results showed that the recombinant PRRSV was successfully rescued and had similar growth properties to parental virus grown in Marc-145 cells. The recombinant virus was stable for 10 passages in cell culture. Pigs intramuscularly immunized with the recombinant virus produced a similar humoral response to that elicited using parental virus. With regard to cell-mediated immunity assessed in peripheral blood, the recombinant virus induced higher proportion of CD4(+)CD8(+) double-positive T cells (DPT), higher IFN-γ level at 0 and 7 days post-challenge (DPC), and lower viremia at 21 DPC than pigs immunized with parental virus. These results indicate that recombinant PRRSV expressing pGM-CSF can induce a significant higher cellular immune response and reduce the persistent infection compared pigs vaccinated with the parental virus. This is first report of evaluation of immune response in pigs elicited by a recombinant live attenuated PRRSV expressing porcine GM-CSF. It may represent a novel strategy for future development of genetic engineered vaccines against PRRSV infection.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Yan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chong Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Baicheng Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiongyi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Liangliang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Biyun Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peiyang Ding
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agriculture Science, Harbin, Heilongjiang Province 150001, China
| | - Chengbao Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, China Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
76
|
Deng MC, Chang CY, Huang TS, Tsai HJ, Chang C, Wang FI, Huang YL. Molecular epidemiology of porcine reproductive and respiratory syndrome viruses isolated from 1991 to 2013 in Taiwan. Arch Virol 2015; 160:2709-18. [PMID: 26246243 DOI: 10.1007/s00705-015-2554-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) was first identified in Taiwan in 1991, but the genetic diversity and evolution of PRRSV has not been thoroughly investigated over the past 20 years. The aim of this study was to bridge the gap in understanding of its molecular epidemiology. A total of 31 PRRSV strains were collected and sequenced. The sequences were aligned using the MUSCLE program, and phylogenetic analysis were performed by the maximum-likelihood method and the neighbor-joining method using MEGA 5.2 software. In the early 1990s, two prototype strains, WSV and MD001 of the North American genotype, were first identified. Over the years, both viruses evolved separately. The population dynamics of PRRSV revealed that the strains of the MD001 group were predominant in Taiwan. Evolution was manifested in changes in the nsp2 and ORF5 genes. In addition, a suspected newly invading exotic strain was recovered in 2013, suggesting that international spread is still taking place and that it is affecting the population dynamics. Overall, the results provide an important basis for vaccine development for the control and prevention of PRRS.
Collapse
Affiliation(s)
- Ming-Chung Deng
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan
| | - Chia-Yi Chang
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan.
| | - Tien-Shine Huang
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan
| | - Hsiang-Jung Tsai
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan.,School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chieh Chang
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Liang Huang
- Animal Health Research Institute, Council of Agriculture, 376 Chung-Cheng Road, Tansui, New Taipei, 25158, Taiwan.
| |
Collapse
|
77
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
78
|
An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porcine Health Manag 2015; 1:9. [PMID: 28405416 PMCID: PMC5382523 DOI: 10.1186/s40813-015-0003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/16/2015] [Indexed: 11/30/2022] Open
Abstract
Background Contaminated complete feed and porcine plasma are risk factors for
PEDV introduction to farms and a liquid antimicrobial has been proven useful for
reducing risk. This study provides information on the survivability of PEDV
across common swine feed ingredients in the presence or absence of the liquid
antimicrobial. Results Eighteen ingredients commonly included in commercial swine diets
were selected, including 3 grain sources (corn, soybean meal (SBM), dried
distillers grains with solubles (DDGS)), 5 porcine by-products (spray-dried
plasma, purified plasma, intestinal mucosa, meat and bone meal and red blood
cells (RBCs)), 3 vitamin/trace mineral (VTM) mixes (sow, nursery, finishing), 2
fat sources (choice white grease and soy oil), 3 synthetic amino acids (lysine
HCL, D/L methionine, threonine), as well as limestone and dry choline chloride.
Complete feed and stock PEDV served as controls. Thirty grams of each ingredient
were inoculated with 2 mL PEDV. A matched set of samples were treated with the
formaldehyde-based liquid antimicrobial SalCURB® (LA). All samples (n = 320) were stored outdoors under winter time
ambient conditions for 30 days. Samples were submitted on 1, 7, 14 and 30 days
post-inoculation (DPI) and tested by PCR and virus isolation (VI). All
VI-negative samples were tested by swine bioassay. Viable PEDV was detected by
VI or swine bioassay at 1, 7, 14 and 30 DPI from SBM, DDGS, meat & bone
meal, RBCs, lysine HCL, D/L methionine, choice white grease, choline chloride,
complete feed and stock virus control and at 7 DPI in limestone and at 14 DPI in
threonine. Supplementary testing of complete feed and SBM indicated viable virus
out to 45 and 180 DPI, respectively. All other samples were negative by VI and
bioassay. In contrast, treatment with LA inactivated PEDV across all ingredients
on 1 DPI and induced RNA reduction over time. Conclusions Under the conditions of this study, PEDV viability in feed was
influenced by ingredient with extended survival in SBM. Furthermore, LA
treatment rendered virus inactive, independent of ingredient type.
Collapse
|
79
|
Wang FX, Qin LT, Liu Y, Liu X, Sun N, Yang Y, Chen T, Zhu HW, Ren JQ, Sun YJ, Cheng SP, Wen YJ. Novel Nsp2 deletion based on molecular epidemiology and evolution of porcine reproductive and respiratory syndrome virus in Shandong Province from 2013 to 2014. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:219-226. [PMID: 25958135 DOI: 10.1016/j.meegid.2015.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/31/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important swine disease affecting swine worldwide. In this study, a total of 385 samples were collected from Shandong pig farms during 2013 and 2014, when pigs were not inoculated with any vaccine. Results indicated that, out of 385 samples, 47 (12.21%) were PRRSV-RNA-positive. The gene sequence analysis of 12 ORF5, 12 ORF7, and 8 Nsp2 of these samples was used to determine the molecular epidemiology of PRRSV in different parts of China's Shandong Province. The phylogenetic tree based on these 3 genes indicated that the Chinese PRRSV strains could be divided into five subgroups and two large groups. The 8 study strains were clustered into subgroup IV, another 4 strains into subgroup I. The first 8 strains shared considerable homology with VR-2332 in ORF5 (96-97.5%), the other 4 strains shared considerable homology with JXA1 (94-98%). Phylogenetic tree of GP5 showed that the eight isolates formed a tightly novel clustered branch, subgroup V, which resembled but differed from isolate VR-2332. When examined using Nsp2 alone, the first 8 strains showed considerable homology with a U.S. vaccine strain, Ingelvac MLV (89.6-98.4%). One novel pattern of deletion was observed in Nsp2. The genetic diversity of genotype 2 PRRSV tended to vary in the field. The emergence of novel variants will probably be the next significant branch of PRRSV study.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Li-Ting Qin
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong 266000, China
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Xing Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yong Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Ting Chen
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong 266000, China
| | - Hong-Wei Zhu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Jing-Qiang Ren
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Ying-Jun Sun
- Shandong New Hope Liuhe Co., Ltd., Qingdao, Shandong 266000, China
| | - Shi-Peng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yong-Jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China.
| |
Collapse
|
80
|
Glycoprotein 5 of porcine reproductive and respiratory syndrome virus strain SD16 inhibits viral replication and causes G2/M cell cycle arrest, but does not induce cellular apoptosis in Marc-145 cells. Virology 2015; 484:136-145. [PMID: 26093497 DOI: 10.1016/j.virol.2015.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 05/30/2015] [Indexed: 11/24/2022]
Abstract
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5(Δ84-96) (aa 84-96 deletion), and GP5(Δ97-119) (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5(Δ97-119), but not full-length or GP5(Δ84-96), induced a cell cycle arrest at the G2/M phase resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5(Δ84-96) inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology.
Collapse
|
81
|
Li J, Murtaugh MP. Functional analysis of porcine reproductive and respiratory syndrome virus N-glycans in infection of permissive cells. Virology 2015; 477:82-88. [PMID: 25662311 DOI: 10.1016/j.virol.2015.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
Abstract
The role of envelope protein-linked N-glycans in porcine reproductive and respiratory syndrome virus (PRRSV) infection of permissive cells was examined. N-acetylglucosamine (GlcNAc) and N-acetyllactosamine (LacNAc) oligomer-specific lectins bound to PRRSV and blocked virus attachment, resulting in reduced viral infection. However, addition of GlcNAc oligomers and LacNAc to cell culture together with PRRSV did not block infection. Removal or alteration of envelope protein-linked N-glycans also did not affect virus infection, indicating that PRRSV N-glycans are not required for virus infection. These findings show that steric hindrance of glycans on the PRRSV envelope by lectins or, presumably, other space-filling molecules, may interfere nonspecifically with infection by blocking protein interactions with cell surface receptors. Glycans themselves appear not to be required for infection of permissive cells, but may have important roles in avoidance of host immunity and in protein structure, intracellular virion growth and assembly.
Collapse
Affiliation(s)
- Juan Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
82
|
Chaikhumwang P, Tantituvanont A, Tripipat T, Tipsombatboon P, Piriyapongsa J, Nilubol D. Dynamics and evolution of highly pathogenic porcine reproductive and respiratory syndrome virus following its introduction into a herd concurrently infected with both types 1 and 2. INFECTION GENETICS AND EVOLUTION 2014; 30:164-174. [PMID: 25557456 DOI: 10.1016/j.meegid.2014.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/28/2022]
Abstract
Since its first emergence in Thailand in late 2010, highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused sporadic outbreaks on Thai swine farms. The objective of this study was to investigate the dynamics and evolution of PRRSV in a herd experiencing an HP-PRRSV outbreak. Following its introduction, HP-PRRSV caused severe outbreaks and subsequently established persistent infection in the herd, resulting in the emergence of a novel cluster of type 2 (North American, NA) isolates. HP-PRRSV co-existed with type 1 (European, EU) isolates without influencing their development. In contrast, HP-PRRSV influenced the evolution of the type 2 (NA) isolates by increasing diversity through the addition of a novel cluster and influencing the evolution of other viral clusters previously existing in the herd. Recombination between the endemic and emerging isolates was observed. The recombinants, however, disappeared and were not able to survive in the herd. The results of this study suggest that the introduction of HP-PRRSV to a herd results in an increased diversity of genetically related isolates and persistent HP-PRRSV infection.
Collapse
Affiliation(s)
- Puwich Chaikhumwang
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thitima Tripipat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Bangkok 10330, Thailand
| | - Pavita Tipsombatboon
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Jittima Piriyapongsa
- Genome Institute, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Bangkok 10330, Thailand.
| |
Collapse
|
83
|
The gene expression profile of porcine alveolar macrophages infected with a highly pathogenic porcine reproductive and respiratory syndrome virus indicates overstimulation of the innate immune system by the virus. Arch Virol 2014; 160:649-62. [PMID: 25504361 DOI: 10.1007/s00705-014-2309-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Since the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) variant emerged in 2006, it has caused death in more than 20 million pigs in China and other Southeast Asian countries, making it the most destructive swine pathogen currently in existence. To characterize the cellular responses to HP-PRRSV infection, the gene expression profile of porcine alveolar macrophage (PAM) cells, the primary target cells of PRRSV, was analyzed in HP-PRRSV-infected and uninfected PAMs by suppression subtractive hybridization. After confirmation by Southern blot, genes that were differentially expressed in the HP-PRRSV-infected and uninfected PAMs were sequenced and annotated. Genes that were upregulated mainly in HP-PRRSV-infected PAM cells were related to immunity and cell signaling. Among the differentially expressed genes, Mx1 and HSP70 protein expression was confirmed by western blotting, and IL-8 expression was confirmed by ELISA. In PAM cells isolated from HP-PRRSV-infected piglets, the differential expression of 21 genes, including IL-16, TGF-beta type 1 receptor, epidermal growth factor, MHC-I SLA, Toll-like receptor, hepatoma-derived growth factor, FTH1, and MHC-II SLA-DRB1, was confirmed by real-time PCR. To our knowledge, this is the first study to demonstrate differential gene expression between HP-PRRSV-infected and uninfected PAMs in vivo. The results indicate that HP-PRRSV infection excessively stimulates genes involved in the innate immune response, including proinflammatory cytokines and chemokines.
Collapse
|
84
|
An overview of live attenuated recombinant pseudorabies viruses for use as novel vaccines. J Immunol Res 2014; 2014:824630. [PMID: 24995348 PMCID: PMC4068083 DOI: 10.1155/2014/824630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Pseudorabies virus (PRV) is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.
Collapse
|
85
|
Genetic diversity and phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates in East China. INFECTION GENETICS AND EVOLUTION 2014; 24:193-201. [DOI: 10.1016/j.meegid.2014.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 11/24/2022]
|
86
|
A new porcine reproductive and respiratory syndrome virus strain with highly conserved molecular characteristics in its parental and attenuated strains. Virus Genes 2014; 49:259-68. [PMID: 24859421 DOI: 10.1007/s11262-014-1086-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses to many swine-producing regions. In this study, PRRSV strain NT0801-F80 was derived from its parental isolate NT0801 by 80 passages in Marc-145 cells. Experimental infection of piglets clearly demonstrated that strain NT0801-F80 is less virulent than NT0801. However, whole genome sequencing showed that the genomes of the parental and attenuated strains are highly conserved compared with those of four other pairs of virulent parental/attenuated vaccine strains (VR2332 and RespPRRS MLV, JA142 and Ingelvac(®) ATP MLV, CH-1a and CH-1R, and JXA1 and JXAR). The attenuated strain NT0801-F80 has only 21 nucleotide changes, producing only 14 amino acid changes in NSP2, GP2, GP3, and GP5, compared with those aa sequences of the virulent parental strain. These mutated aa in the attenuated virus may be involved in virulence. These data provide valuable information on the attenuation mechanism of PRRSV that should be useful in future research.
Collapse
|
87
|
Preparation of North American type II PRRSV infectious clone expressing green fluorescent protein. BIOMED RESEARCH INTERNATIONAL 2014; 2014:368581. [PMID: 24895571 PMCID: PMC4034427 DOI: 10.1155/2014/368581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is still one of the most important infectious diseases threatening the swine industry. To construct North American type II PRRSV infectious clone containing green fluorescent protein (GFP) gene, we amplify gfp gene, flanked by PRRSV Nsp2 gene fragments upstream and downstream, using overlap PCR method from pcDNA-EF1-GFP plasmid and FL12 plasmid containing PRRSV infectious genome as the templates. The Nsp2 fragment-flanked gfp gene was inserted into Nsp2 gene of the FL12 plasmid by Spe I and Xho I sites to generate PRRSV infectious recombinant plasmid (FL12-GFP) containing gfp gene. The recombinant PRRSV expressing GFP (PRRSV-GFP) was rescued in baby hamster kidney-21 (BHK-21) cells by transfecting PRRSV mRNA synthesized in vitro and amplified in Marc-145 cells. The PRRSV-GFP infectivity and replication capacity were identified. Results showed that, by adopting overlap PCR strategy, the gfp gene was successfully inserted into and fused with PRRSV Nsp2 gene in the PRRSV infectious clone plasmid FL-12 to generate FL12-GFP plasmid. The recombinant PRRSV-GFP was generated through transfecting PRRSV mRNA in BHK-2 cells. Like its parental virus, the recombinant PRRSV-GFP maintains its infectivity to Marc-145 cells and porcine alveolar macrophages (PAMs). This study provides essential conditions for further investigation on PRRSV.
Collapse
|
88
|
Piron R, De Koker S, De Paepe A, Goossens J, Grooten J, Nauwynck H, Depicker A. Boosting in planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity. PLoS One 2014; 9:e91386. [PMID: 24614617 PMCID: PMC3948849 DOI: 10.1371/journal.pone.0091386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease of swine, caused by an arterivirus, the PRRS virus (PRRSV). This virus infects pigs worldwide and causes huge economic losses. Due to genetic drift, current vaccines are losing their power. Adaptable vaccines could provide a solution to this problem. This study aims at producing in planta a set of antigens derived from the PRRSV glycoproteins (GPs) to be included in a subunit vaccine. We selected the GP3, GP4 and GP5 and optimized these for production in an Arabidopsis seed platform by removing transmembrane domains (Tm) and/or adding stabilizing protein domains, such as the green fluorescent protein (GFP) and immunoglobulin (IgG) ‘Fragment crystallizable’ (Fc) chains. Accumulation of the GPs with and without Tm was low, reaching no more than 0.10% of total soluble protein (TSP) in homozygous seed. However, addition of stabilizing domains boosted accumulation up to a maximum of 2.74% of TSP when GFP was used, and albeit less effectively, also the Fc chains of the porcine IgG3 and murine IgG2a increased antigen accumulation, to 0.96% and 1.81% of TSP respectively, while the murine IgG3 Fc chain did not. Antigens with Tm were less susceptible to these manipulations to increase yield. All antigens were produced in the endoplasmic reticulum and accordingly, they carried high-mannose N-glycans. The immunogenicity of several of those antigens was assessed and we show that vaccination with purified antigens did elicit the production of antibodies with virus neutralizing activity in mice but not in pigs.
Collapse
Affiliation(s)
- Robin Piron
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stefaan De Koker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Annelies De Paepe
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Julie Goossens
- Department of Bioscience Engineering, VUB, Brussels, Belgium
| | - Johan Grooten
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hans Nauwynck
- Department of Virology, Parasitology and Immunology, Ghent University, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
89
|
Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea. Vet Microbiol 2014; 170:232-45. [PMID: 24646599 DOI: 10.1016/j.vetmic.2014.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/06/2014] [Accepted: 02/17/2014] [Indexed: 11/20/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally ubiquitous swine virus that exhibits genetic and pathogenic heterogeneity among isolates. The present study was conducted to determine the complete genome sequence and pathogenicity of two Korean type 2 PRRSV nonstructural protein 2 (nsp2) deletion mutants, CA-2 and KNU-12-KJ4. The full-length genomes of CA-2 and KNU-12-KJ4 were determined to be 15,018 and 15,019 nucleotides in length, excluding the poly(A) tail, respectively, which were 393- or 392-nucleotide shorter than that of the type 2 NA prototype strain VR-2332 due to the presence of notable large deletions within the nsp2 gene. The genomes of CA-2 and KNU-12-KJ4 consisted of a 189- or 190-nucleotide 5' untranslated region (UTR), a 14,677-nucleotide protein-coding region, and a 151-nucleotide 3' UTR. Whole genome evaluation revealed that the nucleotide sequences of CA-2 and KNU-12-KJ4 are most similar to each other (10.7% sequence divergence), and then to the Korean strain CA-1 (11.3% sequence divergence) and the US strain MN184C (13.1% sequence divergence), respectively. To evaluate the in vitro immunity of nsp2 deletion variants, we sought to explore alteration of inflammatory cytokine and chemokine expression in PAM-pCD163 cells infected with each virus strain using quantitative real-time RT-PCR. Cytokine genes including IL-8, IL-10, and TNF-α, and chemokines such as MCP-1 and RANTES were found to be significantly elevated in nsp2 deletion virus-infected PAM cells. In contrast, expression of interferons (IFN-β, γ, and λ) and antiviral genes including ISG-15, -54, and -56 were unchanged or down-regulated in PAM cells infected with the nsp2 deletion mutants. Animal studies to assess the pathogenicity of nsp2 deletion PRRSVs demonstrated that both CA-2 and KNU-12-KJ4 strains notably produce weight loss in infected pigs. Furthermore, the nsp2 deletion mutants replicated well in pigs with significantly increased and prolonged viremia kinetics. Taken together, our results indicate that, among the three isolates, the outcome of in vitro and in vivo infection by CA-2 and KNU-12-KJ4 is comparable, suggesting that the large nsp2 deletion may be one of the viral genetic determinants contributing to PRRSV pathogenicity.
Collapse
|
90
|
Genetic diversity analysis of genotype 2 porcine reproductive and respiratory syndrome viruses emerging in recent years in China. BIOMED RESEARCH INTERNATIONAL 2014; 2014:748068. [PMID: 24719885 PMCID: PMC3955690 DOI: 10.1155/2014/748068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is characterized by its extensive genetic diversity. Here we analyzed 101 sequences of NSP2 hypervariable region, 123 ORF3 sequences, and 118 ORF5 sequences from 128 PRRSV-positive clinical samples collected in different areas of China during 2008–early 2012. The results indicated that the amino acid identities of the three genes among these sequences were 87.6%–100%, 92.5%–100%, and 77%–100%, respectively. Meanwhile, 4 novel patterns of deletion and insertion in NSP2 region or GP5 were first found. The phylogenetic analysis on these 3 genes revealed that the Chinese PRRSV strains could be divided into three subgroups; majority of genes analyzed here were clustered in subgroup 3 with multiple branches; the strains with 30-aa deletion in NSP2-coding region were still the dominant virus in the field. Further phylogenetic analysis on four obtained complete genomic sequences showed that they were clustered into different branches with the Chinese corresponding representative strains. Our analyses suggest that the genetic diversity of genotype 2 PRRSV in the field displays a tendency of increasing in recent years in China, and the 30-aa deletion in NSP2-coding region should be no longer defined as the molecular marker of the Chinese HP-PRRSV.
Collapse
|
91
|
Genetic manipulation of a transcription-regulating sequence of porcine reproductive and respiratory syndrome virus reveals key nucleotides determining its activity. Arch Virol 2014; 159:1927-40. [PMID: 24562427 DOI: 10.1007/s00705-014-2018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/16/2013] [Indexed: 10/25/2022]
Abstract
The factors that determine the transcription-regulating sequence (TRS) activity of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unclear. In this study, the effect of mutagenesis of conserved C nucleotides at positions 5 and 6 in the leader TRS (TRS-L) and/or canonical body TRS7 (TRS-B7) on the synthesis of subgenomic (sg) mRNA and virus infectivity was investigated in the context of a type 2 PRRSV infectious cDNA clone. The results showed that a double C mutation in the leader TRS completely abolished sg mRNAs synthesis and virus infectivity, but a single C mutation did not. A single C or double C mutation in TRS-B7.1 or/and TRS-B7.2 impaired or abolished the corresponding sg mRNA synthesis. Introduction of identical mutations in the leader and body TRSs partially restored sg mRNA7.1 and/or sg mRNA7.2 transcription, indicating that the base-pairing interaction between sense TRS-L and cTRS-B is a crucial factor influencing sg mRNA synthesis. Analysis of the mRNA leader-body junctions of mutants provided evidence for a mechanism of discontinuous minus-strand transcription. This study also showed that mutational inactivation of TRS-B7.1 or TRS-B7.2 did not affect the production of infectious progeny virus, and the sg mRNA formed from each of them could express N protein. However, TRS-B7.1 plays more important roles than TRS-B7.2 in maintaining the growth characteristic of type 2 PRRSV. These results provide more insight into the molecular mechanism of genome expression and subgenomic mRNA transcription of PRRSV.
Collapse
|
92
|
A novel isolate with deletion in GP3 gene of porcine reproductive and respiratory syndrome virus from mid-eastern China. BIOMED RESEARCH INTERNATIONAL 2014; 2014:306130. [PMID: 24693538 PMCID: PMC3944904 DOI: 10.1155/2014/306130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
PRRSV strain SH1211 was isolated from the lung tissue of a piglet on a large-scale pig farm with approximately 30% morbidity and 50% mortality in mid-eastern China in 2012. The full-length genome of SH1211 was 15 313 nt in size, excluding the polyadenylated sequences, and shared 94.9% nucleotide sequence identity with the HP-PRRSV strain, JXA1. The GP2 and GP5 proteins of SH1211 shared only 91.5% and 85.1% amino acid sequence identities with those of the JXA1, respectively. A deletion at amino acid positions 68 and 69 was identified in the GP3 protein of SH1211, compared with the GP3 of Type-2 PRRSV isolates. A phylogenetic tree based on the nucleotide sequence of the complete genome showed that SH1211 is the most closely related to other HP-PRRSV strains isolated in China. However, phylogenetic analysis based on the GP2 and GP5 proteins showed that SH1211 is the most closely related to the QYYZ strain. A recombination analysis indicated that SH1211 might have been generated through recombination events between the JXA1 and QYYZ in which the GP2 and GP5 coding sequences were exchanged. Thus, SH1211 is a novel PRRSV strain with significant variation. Our analysis of SH1211 provides insight into the role of genetic variation in the antigenicity of PRRSVs in China.
Collapse
|
93
|
Phylogenetic analysis and molecular characteristics of 17 porcine reproductive and respiratory syndrome virus isolates in Southern China from 2010 to 2011. Microb Pathog 2013; 65:67-72. [DOI: 10.1016/j.micpath.2013.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/07/2013] [Accepted: 09/24/2013] [Indexed: 11/22/2022]
|
94
|
Zhang M, Cao Z, Xie J, Zhu W, Zhou P, Gu H, Sun L, Su S, Zhang G. Mutagenesis analysis of porcine reproductive and respiratory syndrome virus nonstructural protein 7. Virus Genes 2013; 47:467-77. [PMID: 23892545 DOI: 10.1007/s11262-013-0957-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/09/2013] [Indexed: 12/01/2022]
Abstract
Nonstructural protein 7 (nsp7), which is flanked by nsp6 and nsp8, is one of the most conserved nonstructural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). Nonstructural protein (nsp)-specific antibodies are produced in high titers in response to virus replication, especially against nsp1a, nsp1b, nsp2, and nsp7. However, many regional aspects of nsp7 are still veiled, such as its impact on viral replication and virulence or the immunological mechanism between virus and host. Based on the structure of the predicted nsp7 domain, we have constructed a series of large mutations and deletions. We ultimately demonstrated all mutations (nsp7, nsp7α/nspβ) and the majority of substitutions of nsp7 affected the PRRSV replicative cycle in some ways and were fatal for viral recovery, which indicates that these are significant to structure or function of the nsp7. What's more, the mutant vOKXH-nsp7 (F40A) indeed caused some of the variation compared with the parental virus vOKXH-GD, which shortens the amount of time needed to reach its highest viral titer, and decreases the concentration of the highest viral titer, obstructing viral mRNA and protein synthesis. Consequently, these valuable results possibly provide the first direct evidence that the nsp7 is really a critical protein domain for the RNA synthesis and the translation of viral protein of PRRSV.
Collapse
Affiliation(s)
- Minze Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
96
|
Genetic and antigenic characterization of complete genomes of Type 1 Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) isolated in Denmark over a period of 10 years. Virus Res 2013; 178:197-205. [PMID: 24153055 DOI: 10.1016/j.virusres.2013.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/20/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) caused by the PRRS virus (PRRSV) is considered one of the most devastating swine diseases worldwide. PRRS viruses are divided into two major genotypes, Type 1 and Type 2, with pronounced diversity between and within the genotypes. In Denmark more than 50% of the herds are infected with Type 1 and/or Type 2 PRRSV. The main objective of this study was to examine the genetic diversity and drift of Type 1 viruses in a population with limited introduction of new animals and semen. A total of 43 ORF5 and 42 ORF7 nucleotide sequences were obtained from viruses collected from 2003 to February 2013. Phylogenetic analysis of ORF5 nucleotide sequences showed that the Danish isolates formed two major clusters within the subtype 1. The nucleotide identity to the subtype 1 protogenotype Lelystad virus (LV) spanned 84.9-98.8% for ORF5 and 90.7-100% for ORF7. Among the Danish viruses the pairwise nucleotide identities in ORF5 and ORF7 were 81.2-100% and 88.9-100%, respectively. Sequencing of the complete genomes, including the 5'- and 3'-end nucleotides, of 8 Danish PRRSV Type 1 showed that the genome lengths differed from 14,876 to 15,098 nucleotides and the pairwise nucleotide identity among the Danish viruses was 86.5-97.3% and the identity to LV was 88.7-97.9%. The study strongly indicated that there have been at least two independent introductions of Type 1 PRRSV in Denmark and analysis of the full genomes revealed a significant drift in several regions of the virus.
Collapse
|
97
|
Robinson SR, Abrahante JE, Johnson CR, Murtaugh MP. Purifying selection in porcine reproductive and respiratory syndrome virus ORF5a protein influences variation in envelope glycoprotein 5 glycosylation. INFECTION GENETICS AND EVOLUTION 2013; 20:362-8. [PMID: 24084290 DOI: 10.1016/j.meegid.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 09/05/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus ORF5a protein is encoded in an alternate open reading frame upstream of the major envelope glycoprotein (GP5) in subgenomic mRNA5. Bioinformatic analysis of 3466 type 2 PRRSV sequences showed that the two proteins have co-evolved through a fine balance of purifying codon usage to maintain a conserved RQ-rich motif in ORF5a protein, while eliciting a variable N-linked glycosylation motif in the alternative GP5 reading frame. Conservation of the ORF5a protein RQ-motif also explains an anomalous uracil desert in GP5 hypervariable glycosylation region. The N-terminus of the mature GP5 protein was confirmed to start with amino acid 32, the hypervariable region of the ectodomain. Since GP5 glycosylation variability is assumed to result from immunological selection against neutralizing antibodies, these findings show that an alternative possibility unrelated to immunological selection not only exists, but provides a foundation for investigating previously unsuspected aspects of PRRSV biology. Understanding functional consequences of subtle nucleotide sequence modifications in the region responsible for critical function in ORF5a protein and GP5 glycosylation is essential for rational design of new vaccines against PRRS.
Collapse
Affiliation(s)
- Sally R Robinson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
98
|
Kvisgaard LK, Hjulsager CK, Brar MS, Leung FCC, Larsen LE. Genetic dissection of complete genomes of Type 2 PRRS viruses isolated in Denmark over a period of 15 years. Vet Microbiol 2013; 167:334-44. [PMID: 24125764 DOI: 10.1016/j.vetmic.2013.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 01/19/2023]
Abstract
Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) was first detected in Europe in 1996 co-incident with the introduction of a live attenuated vaccine. Since then, only limited ORF5 and ORF7 sequences of Type 2 PRRS viruses have been reported throughout Europe. In the present study, the genetic and antigenic diversity of 11 complete genomes and 49 ORF5 and 55 ORF7 nucleotide sequences obtained from 57 viruses in Denmark from 2003 to 2012 were examined. The genetic identity of the 11 complete genomes to the vaccine strain (Ingelvac PRRS MLV) ranged between 93.6 and 99.6% while the 49 ORF5 sequences examined were 94.0-99.8% identical to the vaccine strain. Among the Danish sequences, the pairwise nucleotide identity was 90.9-100% and 93.0-100.0% for ORF5 and ORF7, respectively. Analysis of the genetic region encoding NSP2 revealed high diversity among the Danish viruses with an 86.6-98.9% range in similarity. Furthermore, several of the sequenced viruses harbored deletions in the NSP2 coding region. Phylogenetic analysis in a global Type 2 PRRSV framework classified all Danish isolates to a single cluster (sub-lineage 5.1) which comprised strains closely-related to the Type 2 prototype isolate VR2332.
Collapse
Affiliation(s)
- Lise K Kvisgaard
- National Veterinary Institute, Technical University of Denmark, DK-1870 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
99
|
Yang K, Li Y, Duan Z, Guo R, Liu Z, Zhou D, Yuan F, Tian Y. A one-step RT-PCR assay to detect and discriminate porcine reproductive and respiratory syndrome viruses in clinical specimens. Gene 2013; 531:199-204. [PMID: 24035936 DOI: 10.1016/j.gene.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022]
Abstract
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses and, subsequently, have drawn great attention to its diagnosis and prevention. To facilitate rapid discrimination of HP-PRRSV from classical PRRSV (C-PRRSV), we developed a one-step RT-PCR assay. Primer specificities were evaluated with RNA extracted from 8 viral strains and our results revealed that the primers had a high specificity for PRRSV. The assay sensitivity was 25 copies/μL for both HP-PRRSV and C-PRRSV. A total of 929 serum samples were identified, of which 20.45% were HP-PRRSV-positive and 1.51% were C-PRRSV-positive, which was completely consistent with that of immunochromatochemistry and sequencing method. The proposed assay can detect the virus 2 days prior the onset of symptoms and it can be performed in 2h, thereby providing a rapid method to discriminate HP-PRRSV from C-PRRSV for the identification and prevention of PRRSV infections.
Collapse
Affiliation(s)
- Keli Yang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nguyen VG, Kim HK, Moon HJ, Park SJ, Chung HC, Choi MK, Park BK. Evolutionary Dynamics of a Highly Pathogenic Type 2 Porcine Reproductive and Respiratory Syndrome Virus: Analyses of Envelope Protein-Coding Genes. Transbound Emerg Dis 2013; 62:411-20. [PMID: 23981823 DOI: 10.1111/tbed.12154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/30/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has long been an economically devastating swine viral disease. The recent emergence of a highly pathogenic type 2 PRRSV with high mobility and mortality in China, spreading in Vietnam, Laos, and Thailand has placed neighbouring countries at risk. This study applied a codon-based extension of the Bayesian relaxed clock model and the fixed effects maximum-likelihood method to investigate and compare the evolutionary dynamics of type 2 PRRSV for all of known structural envelope protein-coding genes. By comparing the highly pathogenic type 2 PRRSV clade against the typical type 2 PRRSV clade, this study demonstrated that the highly pathogenic clade evolved at high rates in all of the known structural genes but did not display rapid evolutionary dynamics compared with typical type 2 PRRSV. In contrast, the ORF3, ORF5 and ORF6 genes of the highly pathogenic clade evolved in a qualitatively different manner from the genes of the typical clade. At the population level, several codons of the sequence elements that were involved in viral neutralization, as well as codons that were associated with in vitro attenuation/over-attenuation, were predicted to be selected differentially between the typical clade and the highly pathogenic clade. The results of this study suggest that the multigenic factors of the envelope protein-coding genes contribute to diversifying the biological properties (virulence, antigenicity, etc.) of the highly pathogenic clade compared with the typical clade of type 2 PRRSV.
Collapse
Affiliation(s)
- V G Nguyen
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea.,Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Hanoi University of Agriculture, Hanoi, Vietnam
| | - H K Kim
- Research Evaluation Team, Institute for Basic Science, Daejeon, Korea
| | - H J Moon
- Research Unit, Green Cross Veterinary Products, Yongin, Korea
| | - S J Park
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - H C Chung
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - M K Choi
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| | - B K Park
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Korea
| |
Collapse
|