51
|
Pu J, McCaig CD, Cao L, Zhao Z, Segall JE, Zhao M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 2008; 120:3395-403. [PMID: 17881501 DOI: 10.1242/jcs.002774] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanisms by which cancer cells migrate to metastasise are not fully understood. Breast cancers are accompanied by electrical depolarisation of tumour epithelial cells. The electrical changes can be detected on the skin and are used to differentiate malignant from benign breast tumours. Could the electrical signals play a role in metastasis by promoting tumour cell migration? We report that electric fields stimulate and direct migration of human breast cancer cells. Importantly, these effects were more significant in highly metastatic tumour cells than in low metastatic tumour cells. Electric-field-enhanced directional migration correlates well with the expression level of EGF receptor (EGFR/ErbB1). To confirm this, we transfected low metastatic clone MTC cells with human ErbB1, which significantly increased the electrotactic response. Inhibition of ErbB1 completely abolished the directional response of MTLn3 cells to an electric field. Transfection of MTLn3 cells and MDA-MB-435 cells with expression vectors for ErbB family members ErbB1, ErbB2 and ErbB3 also significantly enhanced EF-induced migration. These results suggest that electric signals might play a role in metastasis of breast cancers by enhancing cell migration through the ErbB-signalling pathway.
Collapse
Affiliation(s)
- Jin Pu
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
52
|
Zigmond SH, Foxman EF, Segall JE. Chemotaxis assays for eukaryotic cells. ACTA ACUST UNITED AC 2008; Chapter 12:Unit 12.1. [PMID: 18228315 DOI: 10.1002/0471143030.cb1201s00] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemotaxis is a complex response of a cell to an external stimulus. It involves detecting and measuring the concentration of the chemoattractant, biochemical transmission of the information, and the motility and adhesive changes associated with the response. This unit describes a number of chemotaxis assays that can be used to identify chemoattractants individually and in large-scale screenings, to distinguish chemotaxis from chemokinesis, and to analyze cellular behavioral and biochemical responses. Some of these assays such as the filter, under agarose, and small population assays, can be used to monitor the behavior of large groups of cells; the bridge, pipet, and upshift assays can be used to analyze the responses of single cells.
Collapse
Affiliation(s)
- S H Zigmond
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
53
|
Wang Z, Zhang L, Sagotsky J, Deisboeck TS. Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 2007; 4:50. [PMID: 18154660 PMCID: PMC2259313 DOI: 10.1186/1742-4682-4-50] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/21/2007] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is frequently overexpressed in many cancers, including non-small cell lung cancer (NSCLC). In silico modeling is considered to be an increasingly promising tool to add useful insights into the dynamics of the EGFR signal transduction pathway. However, most of the previous modeling work focused on the molecular or the cellular level only, neglecting the crucial feedback between these scales as well as the interaction with the heterogeneous biochemical microenvironment. RESULTS We developed a multiscale model for investigating expansion dynamics of NSCLC within a two-dimensional in silico microenvironment. At the molecular level, a specific EGFR-ERK intracellular signal transduction pathway was implemented. Dynamical alterations of these molecules were used to trigger phenotypic changes at the cellular level. Examining the relationship between extrinsic ligand concentrations, intrinsic molecular profiles and microscopic patterns, the results confirmed that increasing the amount of available growth factor leads to a spatially more aggressive cancer system. Moreover, for the cell closest to nutrient abundance, a phase-transition emerges where a minimal increase in extrinsic ligand abolishes the proliferative phenotype altogether. CONCLUSION Our in silico results indicate that in NSCLC, in the presence of a strong extrinsic chemotactic stimulus (and depending on the cell's location) downstream EGFR-ERK signaling may be processed more efficiently, thereby yielding a migration-dominant cell phenotype and overall, an accelerated spatio-temporal expansion rate.
Collapse
Affiliation(s)
- Zhihui Wang
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Le Zhang
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jonathan Sagotsky
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Thomas S Deisboeck
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
54
|
Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM, Eddy R, Soll D, Condeelis J. Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. ACTA ACUST UNITED AC 2007; 179:777-91. [PMID: 18025308 PMCID: PMC2080932 DOI: 10.1083/jcb.200707009] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.
Collapse
Affiliation(s)
- Mazen Sidani
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Lapidus K, Wyckoff J, Mouneimne G, Lorenz M, Soon L, Condeelis JS, Singer RH. ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 2007; 120:3173-8. [PMID: 17878234 PMCID: PMC4956933 DOI: 10.1242/jcs.000638] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of beta-actin mRNA with zipcode-binding protein 1 (ZBP1) is necessary for its localization to the lamellipod of fibroblasts and plays a crucial role in cell polarity and motility. Recently, we have shown that low ZBP1 levels correlate with tumor-cell invasion and metastasis. In order to establish a cause and effect relationship, we expressed ZBP1 in a metastatic rat mammary adenocarcinoma cell line (MTLn3) that has low endogenous ZBP1 levels and delocalized beta-actin mRNA. This leads to localization of beta-actin mRNA, and eventually reduces the chemotactic potential of the cells as well as their ability to move and orient towards vessels in tumors. To determine how ZBP1 leads to these two apparently contradictory aspects of cell behavior--increased cell motility but decreased chemotaxis--we examined cell motility in detail, both in cell culture and in vivo in tumors. We found that ZBP1 expression resulted in tumor cells with a stable polarized phenotype, and reduced their ability to move in response to a gradient in culture. To connect these results on cultured cells to the reduced metastatic ability of these cells, we used multiphoton imaging in vivo to examine tumor cell behavior in primary tumors. We found that ZBP1 expression actually reduced tumor cell motility and chemotaxis, presumably mediating their decreased metastatic potential by reducing their ability to respond to signals necessary for invasion.
Collapse
|
56
|
El-Sibai M, Nalbant P, Pang H, Flinn RJ, Sarmiento C, Macaluso F, Cammer M, Condeelis JS, Hahn KM, Backer JM. Cdc42 is required for EGF-stimulated protrusion and motility in MTLn3 carcinoma cells. J Cell Sci 2007; 120:3465-74. [PMID: 17855387 PMCID: PMC4066376 DOI: 10.1242/jcs.005942] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cdc42 plays a central role in regulating the actin cytoskeleton and maintaining cell polarity. Here, we show that Cdc42 is crucial for epidermal growth factor (EGF)-stimulated protrusion in MTLn3 carcinoma cells. When stimulated with EGF, carcinoma cells showed a rapid increase in activated Cdc42 that is primarily localized to the protruding edge of the cells. siRNA-mediated knockdown of Cdc42 expression caused a decrease in EGF-stimulated protrusion and reduced cell motility in time-lapse studies. These changes were correlated with a decrease in barbed-end formation and Arp2/3 localization at the cell edge, and a marked defect in actin filament branching, as revealed by rotary-shadowing scanning electron microscopy. Upstream of Arp2/3, Cdc42 knockdown inhibited EGF-stimulated activation of PI 3-kinase at early (within 1 minute) but not late (within 3 minutes) time points. Membrane targeting of N-WASP, WAVE2 and IRSp53 were also inhibited. Effects on WAVE2 were not owing to Rac1 inhibition, because WAVE2 recruitment is unaffected by Rac1 knockdown. Our data suggest that Cdc42 activation is crucial for the regulation of actin polymerization in carcinoma cells, and required for both EGF-stimulated protrusion and cell motility independently of effects on Rac.
Collapse
Affiliation(s)
- Mirvat El-Sibai
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Peri Nalbant
- Pharmacology, University of North Carolina School of Medicine CB7365, Chapel Hill, NC 27599, USA
| | - Huan Pang
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rory J. Flinn
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Corina Sarmiento
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Frank Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael Cammer
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Klaus M. Hahn
- Pharmacology, University of North Carolina School of Medicine CB7365, Chapel Hill, NC 27599, USA
| | - Jonathan M. Backer
- Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Author for correspondence ()
| |
Collapse
|
57
|
Yip SC, El-Sibai M, Coniglio SJ, Mouneimne G, Eddy RJ, Drees BE, Neilsen PO, Goswami S, Symons M, Condeelis JS, Backer JM. The distinct roles of Ras and Rac in PI 3-kinase-dependent protrusion during EGF-stimulated cell migration. J Cell Sci 2007; 120:3138-46. [PMID: 17698922 PMCID: PMC4267689 DOI: 10.1242/jcs.005298] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cell migration involves the localized extension of actin-rich protrusions, a process that requires Class I phosphoinositide 3-kinases (PI 3-kinases). Both Rac and Ras have been shown to regulate actin polymerization and activate PI 3-kinase. However, the coordination of Rac, Ras and PI 3-kinase activation during epidermal growth factor (EGF)-stimulated protrusion has not been analyzed. We examined PI 3-kinase-dependent protrusion in MTLn3 rat adenocarcinoma cells. EGF-stimulated phosphatidyl-inositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] levels showed a rapid and persistent response, as PI 3-kinase activity remained elevated up to 3 minutes. The activation kinetics of Ras, but not Rac, coincided with those of leading-edge PtdIns(3,4,5)P(3) production. Small interfering RNA (siRNA) knockdown of K-Ras but not Rac1 abolished PtdIns(3,4,5)P(3) production at the leading edge and inhibited EGF-stimulated protrusion. However, Rac1 knockdown did inhibit cell migration, because of the inhibition of focal adhesion formation in Rac1 siRNA-treated cells. Our data show that in EGF-stimulated MTLn3 carcinoma cells, Ras is required for both PtdIns(3,4,5)P(3) production and lamellipod extension, whereas Rac1 is required for formation of adhesive structures. These data suggest an unappreciated role for Ras during protrusion, and a crucial role for Rac in the stabilization of protrusions required for cell motility.
Collapse
Affiliation(s)
- Shu-Chin Yip
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirvat El-Sibai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Ghassan Mouneimne
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert J. Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Marc Symons
- Center for Oncology and Cell Biology, Institute for Medical Research at North Shore-LIJ, Manhasset, NY, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan M. Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Author for correspondence ()
| |
Collapse
|
58
|
Dulyaninova NG, House RP, Betapudi V, Bresnick AR. Myosin-IIA heavy-chain phosphorylation regulates the motility of MDA-MB-231 carcinoma cells. Mol Biol Cell 2007; 18:3144-55. [PMID: 17567956 PMCID: PMC1949358 DOI: 10.1091/mbc.e06-11-1056] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammalian nonmuscle cells, the mechanisms controlling the localized formation of myosin-II filaments are not well defined. To investigate the mechanisms mediating filament assembly and disassembly during generalized motility and chemotaxis, we examined the EGF-dependent phosphorylation of the myosin-IIA heavy chain in human breast cancer cells. EGF stimulation of MDA-MB-231 cells resulted in transient increases in both the assembly and phosphorylation of the myosin-IIA heavy chains. In EGF-stimulated cells, the myosin-IIA heavy chain is phosphorylated on the casein kinase 2 site (S1943). Cells expressing green fluorescent protein-myosin-IIA heavy-chain S1943E and S1943D mutants displayed increased migration into a wound and enhanced EGF-stimulated lamellipod extension compared with cells expressing wild-type myosin-IIA. In contrast, cells expressing the S1943A mutant exhibited reduced migration and lamellipod extension. These observations support a direct role for myosin-IIA heavy-chain phosphorylation in mediating motility and chemotaxis.
Collapse
Affiliation(s)
| | - Reniqua P. House
- *Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Venkaiah Betapudi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970
| | - Anne R. Bresnick
- *Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; and
| |
Collapse
|
59
|
Abstract
A cell responds to a chemotactic signal by activating actin polymerization and forming a protrusion oriented towards the source. Recent work shows that the activity of cofilin, a protein that creates new barbed ends for actin filament elongation, amplifies and specifies the direction of the response in carcinoma cells.
Collapse
Affiliation(s)
- Sarah E Hitchcock-Degregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, New Jersey 08854-8021, USA.
| |
Collapse
|
60
|
Abstract
Integrins are cell-surface adhesion receptors that play a central role in regulating cell migration by mediating interactions between the extracellular matrix and the actin cytoskeleton. Substantial progress has been made in understanding the mechanisms by which the formation and breakdown of adhesions are regulated. Here we describe general methods used to study integrin-mediated cell migration. Furthermore, we outline detailed procedures to examine focal adhesion assembly and disassembly using time-lapse fluorescent microscopy. Finally, we provide methods for the analysis of podosomes, which are highly dynamic adhesive structures that form in immune cells and invasive cancer cells.
Collapse
Affiliation(s)
- Keefe T Chan
- Department of Molecular and Cellular Pharmacology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | |
Collapse
|
61
|
Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, Zhang ZY, Sahai E, Condeelis J, Segall JE. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 2006; 66:192-7. [PMID: 16397232 DOI: 10.1158/0008-5472.can-05-1242] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although overexpression of the epidermal growth factor receptor (EGFR; ErbB1) has been correlated with poor prognosis in breast and other cancers, clinical trials of ErbB1 inhibitors have shown limited efficacy in inhibiting tumor proliferation. To evaluate other possible roles of ErbB1 in tumor malignancy besides proliferation, we have developed a series of tools for analysis of intravasation. Overexpression of ErbB1 in MTLn3 mammary adenocarcinoma cells results in increased intravasation and lung metastasis from tumors formed by injection of cells in the mammary fat pad. However, increased ErbB1 expression has no effect on primary tumor growth and lung seeding efficiency of cells injected i.v. Chemotactic responses to low concentrations of EGF in vitro and cell motility in vivo in the primary tumor measured using intravital imaging are significantly increased by ErbB1 overexpression. The increased cell motility is restricted to ErbB1-overexpressing cells in tumors containing mixtures of cells expressing different ErbB1 levels, arguing for a cell-autonomous effect of increased ErbB1 expression rather than alteration of the tumor microenvironment. In summary, we propose that ErbB1 overexpression makes more significant contributions to intravasation than growth in some tumors and present a novel model for studying ErbB1 contributions to tumor metastasis via chemotaxis and intravasation.
Collapse
Affiliation(s)
- Chengsen Xue
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Condeelis J, Singer RH, Segall JE. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2006; 21:695-718. [PMID: 16212512 DOI: 10.1146/annurev.cellbio.21.122303.120306] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The combined use of the new technologies of multiphoton-based intravital imaging, the chemotaxis-mediated collection of invasive cells, and high sensitivity expression profiling has allowed the correlation of the behavior of invasive tumor cells in vivo with their gene expression patterns. New insights have resulted including a gene expression signature for invasive cells and the tumor microenvironment invasion model. This model proposes that tumor invasion and metastasis can be studied as a problem resembling normal morphogenesis. We discuss how these new insights may lead to a better understanding of the molecular basis of the invasive behavior of tumor cells in vivo, which may result in new strategies for the diagnosis and treatment of metastasis.
Collapse
Affiliation(s)
- John Condeelis
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461-1975, USA.
| | | | | |
Collapse
|
63
|
Yin X, Knecht DA, Lynes MA. Metallothionein mediates leukocyte chemotaxis. BMC Immunol 2005; 6:21. [PMID: 16164753 PMCID: PMC1262721 DOI: 10.1186/1471-2172-6-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Accepted: 09/15/2005] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Metallothionein (MT) is a cysteine-rich, metal-binding protein that can be induced by a variety of agents. Modulation of MT levels has also been shown to alter specific immune functions. We have noticed that the MT genes map close to the chemokines Ccl17 and Cx3cl1. Cysteine motifs that characterize these chemokines are also found in the MT sequence suggesting that MT might also act as a chemotactic factor. RESULTS In the experiments reported here, we show that immune cells migrate chemotactically in the presence of a gradient of MT. This response can be specifically blocked by two different monoclonal anti-MT antibodies. Exposure of cells to MT also leads to a rapid increase in F-actin content. Incubation of Jurkat T cells with cholera toxin or pertussis toxin completely abrogates the chemotactic response to MT. Thus MT may act via G-protein coupled receptors and through the cyclic AMP signaling pathway to initiate chemotaxis. CONCLUSION These results suggest that, under inflammatory conditions, metallothionein in the extracellular environment may support the beneficial movement of leukocytes to the site of inflammation. MT may therefore represent a "danger signal"; modifying the character of the immune response when cells sense cellular stress. Elevated metallothionein produced in the context of exposure to environmental toxicants, or as a result of chronic inflammatory disease, may alter the normal chemotactic responses that regulate leukocyte trafficking. Thus, MT synthesis may represent an important factor in immunomodulation that is associated with autoimmune disease and toxicant exposure.
Collapse
Affiliation(s)
- Xiuyun Yin
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| | - David A Knecht
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| | - Michael A Lynes
- Department of Molecular and Cell Biology, 91 North Eagleville Rd., U-3125, University of Connecticut, Storrs, CT USA 06269-3125
| |
Collapse
|
64
|
Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005; 65:5278-83. [PMID: 15958574 DOI: 10.1158/0008-5472.can-04-1853] [Citation(s) in RCA: 555] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.
Collapse
Affiliation(s)
- Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Harms BD, Bassi GM, Horwitz AR, Lauffenburger DA. Directional persistence of EGF-induced cell migration is associated with stabilization of lamellipodial protrusions. Biophys J 2005; 88:1479-88. [PMID: 15713602 PMCID: PMC1305149 DOI: 10.1529/biophysj.104.047365] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Migrating cells can sustain a relatively constant direction of lamellipodial protrusion and locomotion over timescales ranging from minutes to hours. However, individual waves of lamellipodial extension occur over much shorter characteristic times. Little understanding exists regarding how cells might integrate biophysical processes across these disparate timescales to control the directional persistence of locomotion. We address this issue by examining the effects of epidermal growth factor (EGF) stimulation on long-timescale directional persistence and short-timescale lamellipodial dynamics of EGF receptor-transfected Chinese hamster ovary cells migrating on fibronectin-coated substrata. Addition of EGF increased persistence, with the magnitude of increase correlating with fibronectin coating concentration. Kymographic analysis of EGF-stimulated lamellipodial dynamics revealed that the temporal stability of lamellipodial protrusions similarly increased with fibronectin concentration. A soluble RGD peptide competitor reduced both the persistence of long-timescale cell paths and the stability of short-timescale membrane protrusions, indicating that cell-substratum adhesion concomitantly influences lamellipodial dynamics and directional persistence. These results reveal the importance of adhesion strength in regulating the directional motility of cells and suggest that the short-timescale kinetics of adhesion complex formation may play a key role in modulating directional persistence over much longer timescales.
Collapse
Affiliation(s)
- Brian D Harms
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
66
|
Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, Segall J, Eddy R, Miki H, Takenawa T, Condeelis J. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. ACTA ACUST UNITED AC 2005; 168:441-52. [PMID: 15684033 PMCID: PMC2171731 DOI: 10.1083/jcb.200407076] [Citation(s) in RCA: 529] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invadopodia are actin-rich membrane protrusions with a matrix degradation activity formed by invasive cancer cells. We have studied the molecular mechanisms of invadopodium formation in metastatic carcinoma cells. Epidermal growth factor (EGF) receptor kinase inhibitors blocked invadopodium formation in the presence of serum, and EGF stimulation of serum-starved cells induced invadopodium formation. RNA interference and dominant-negative mutant expression analyses revealed that neural WASP (N-WASP), Arp2/3 complex, and their upstream regulators, Nck1, Cdc42, and WIP, are necessary for invadopodium formation. Time-lapse analysis revealed that invadopodia are formed de novo at the cell periphery and their lifetime varies from minutes to several hours. Invadopodia with short lifetimes are motile, whereas long-lived invadopodia tend to be stationary. Interestingly, suppression of cofilin expression by RNA interference inhibited the formation of long-lived invadopodia, resulting in formation of only short-lived invadopodia with less matrix degradation activity. These results indicate that EGF receptor signaling regulates invadopodium formation through the N-WASP-Arp2/3 pathway and cofilin is necessary for the stabilization and maturation of invadopodia.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
DesMarais V, Macaluso F, Condeelis J, Bailly M. Synergistic interaction between the Arp2/3 complex and cofilin drives stimulated lamellipod extension. J Cell Sci 2005; 117:3499-510. [PMID: 15252126 PMCID: PMC1351153 DOI: 10.1242/jcs.01211] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both the Arp2/3 complex and cofilin are believed to be important for the generation of protrusive force at the leading edge; however, their relative contributions have not been explored in vivo. Our results with living cells show that cofilin enters the leading edge immediately before the start of lamellipod extension, slightly earlier than Arp2/3, which begins to be recruited slightly later as the lamellipod is extended. Blocking either the Arp2/3 complex or cofilin function in cells results in failure to extend broad lamellipods and inhibits free barbed ends, suggesting that neither factor on its own can support actin polymerization-mediated protrusion in response to growth factor stimulation. High-resolution analysis of the actin network at the leading edge supports the idea that both the severing activity of cofilin and the specific branching activity of the Arp2/3 complex are essential for lamellipod protrusion. These results are the first to document the relative contributions of cofilin and Arp2/3 complex in vivo and indicate that cofilin begins to initiate the generation of free barbed ends that act in synergy with the Arp2/3 complex to create a large burst in nucleation activity.
Collapse
Affiliation(s)
- Vera DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
68
|
Fuchs M, Hutzler P, Handschuh G, Hermannstädter C, Brunner I, Höfler H, Luber B. Dynamics of cell adhesion and motility in living cells is altered by a single amino acid change in E-cadherin fused to enhanced green fluorescent protein. ACTA ACUST UNITED AC 2005; 59:50-61. [PMID: 15259055 DOI: 10.1002/cm.20019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
E-Cadherin regulates epithelial cell adhesion and is critical for the maintenance of tissue integrity. In sporadic diffuse-type gastric carcinoma, mutations of the E-cadherin gene are frequently observed that predominantly affect putative calcium binding motifs located in the linker region between the second and third extracellular domains. A single amino acid change (D370A) as found in a gastric carcinoma patient reduces cell adhesion and up-regulates cell motility. To study the effect of this mutation on the dynamics of cell adhesion and motility in living cells, enhanced green fluorescent protein (EGFP) was C-terminally fused to E-cadherin. The resulting mutant E-cadherin-EGFP fusion protein with a point mutation in exon 8 (p8-EcadEGFP) and a wild-type E-cadherin-EGFP fusion construct (wt-EcadEGFP) were expressed in human MDA-MB-435S cells. Fluorescent images were acquired by time-lapse laser scanning microscopy and E-cadherin was visualized during contact formation and in moving cells. Spatial and temporal localization of p8- and wt-EcadEGFP differed significantly. While wt-EcadEGFP was mainly localized at lateral membranes of contacting cells and formed E-cadherin puncta and plaques, p8-EcadEGFP-expressing cells frequently formed transient cell-cell contacts. During random cell migration, p8-EcadEGFP was found in lamellipodia. In contrast, wt-EcadEGFP localized at lateral cell-cell contact sites in low or non-motile cells. Inhibition of the epidermal growth factor (EGF) receptor, which plays a major role in lamellipodia formation and cell migration, reduced the motility of p8-EcadEGFP-expressing cells and caused lateral membrane staining of p8-EcadEGFP. Conversely, EGF induced cell motility and caused formation of lamellipodia that were E-cadherin positive. In conclusion, our data show that mutant E-cadherin significantly alters the dynamics of cell adhesion and motility in living cells and interferes with the formation of stable cell-cell contacts.
Collapse
Affiliation(s)
- Margit Fuchs
- Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, München, Germany
| | | | | | | | | | | | | |
Collapse
|
69
|
Sukumvanich P, DesMarais V, Sarmiento CV, Wang Y, Ichetovkin I, Mouneimne G, Almo S, Condeelis J. Cellular localization of activated N-WASP using a conformation-sensitive antibody. ACTA ACUST UNITED AC 2005; 59:141-52. [PMID: 15362118 DOI: 10.1002/cm.20030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The main regulators of Arp2/3 activity appear to be N-WASP and the other members of the Scar/WAVE family of proteins. We show here that after EGF stimulation, N-WASP is recruited to the nucleation zone of the dynamic leading edge compartment of carcinoma cells, with maximal recruitment of N-WASP within 1 min after EGF stimulation. The timing of N-WASP recruitment mirrors the timing of barbed-end formation at the leading edge. To determine the cellular activation of N-WASP after EGF stimulation, we made a conformation-sensitive antibody (CSA) against the CRIB domain of N-WASP that is predicted to recognize N-WASP in its open, active conformation, but not in its closed, inactive conformation. The ability of CSA to detect only active N-WASP was demonstrated by in vitro experiments using immunoprecipitation of active N-WASP from EGF-stimulated cells and Cdc42 activation of N-WASP activity. In cell staining experiments, N-WASP is maximally accessible to CSA 40 sec after EGF stimulation and this activated N-WASP is in the nucleation zone. These results indicate that active N-WASP is present at the leading edge of lamellipods, an unexpected finding given its reported involvement in filopod formation. This work establishes the feasibility of using antibodies directed against specific conformations or epitopes with changing accessibilities as a window on the status and localization of activity.
Collapse
Affiliation(s)
- P Sukumvanich
- Department of Obstetrics, Gynecology, and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2005; 64:8585-94. [PMID: 15574765 DOI: 10.1158/0008-5472.can-04-1136] [Citation(s) in RCA: 336] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We subjected cells collected using an in vivo invasion assay to cDNA microarray analysis to identify the gene expression profile of invasive carcinoma cells in primary mammary tumors. Expression of genes involved in cell division, survival, and cell motility were most dramatically changed in invasive cells indicating a population that is neither dividing nor apoptotic but intensely motile. In particular, the genes coding for the minimum motility machine that regulates beta-actin polymerization at the leading edge and, therefore, the motility and chemotaxis of carcinoma cells, were dramatically up-regulated. However, ZBP1, which restricts the localization of beta-actin, the substrate for the minimum motility machine, was down-regulated. This pattern of expression implicated ZBP1 as a suppressor of invasion. Reexpression of ZBP1 in metastatic cells with otherwise low levels of ZBP1 reestablished normal patterns of beta-actin mRNA targeting and suppressed chemotaxis and invasion in primary tumors. ZBP1 reexpression also inhibited metastasis from tumors. These experiments support the involvement in metastasis of the pathways identified in invasive cells, which are regulated by ZBP1.
Collapse
Affiliation(s)
- Weigang Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Lorenz M, DesMarais V, Macaluso F, Singer RH, Condeelis J. Measurement of barbed ends, actin polymerization, and motility in live carcinoma cells after growth factor stimulation. ACTA ACUST UNITED AC 2005; 57:207-17. [PMID: 14752805 DOI: 10.1002/cm.10171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motility is associated with the ability to extend F-actin-rich protrusions and depends on free barbed ends as new actin polymerization sites. To understand the function and regulation of different proteins involved in the process of generating barbed ends, e.g., cofilin and Arp2/3, fixed cell approaches have been used to determine the relative barbed end concentration in cells. The major disadvantages of these approaches are permeabilization and fixation of cells. In this work, we describe a new live-cell time-lapse microscopy assay to determine the increase of barbed ends after cell stimulation that does not use permeabilization and provides a better time resolution. We established a metastatic carcinoma cell line (MTLn3) stably expressing GFP-beta-actin at physiological levels. Stimulation of MTLn3 cells with epidermal growth factor (EGF) causes rapid and transient lamellipod protrusion along with an increase in actin polymerization at the leading edge, which can be followed in live cell experiments. By measuring the increase of F-actin at the leading edge vs. time, we were able to determine the relative increase of barbed ends after stimulation with a high temporal resolution. The F-actin as well as the barbed end concentration agrees well with published data for this cell line. Using this newly developed assay, a decrease in lamellipod extension and a large reduction of barbed ends was documented after microinjecting an anti-cofilin function blocking antibody. This assay has a high potential for applications where rapid changes in the dynamic filament population are to be measured.
Collapse
Affiliation(s)
- Mike Lorenz
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
72
|
Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T. Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 2004; 24:1309-19. [PMID: 15608687 DOI: 10.1038/sj.onc.1208177] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
WAVEs (WASP-family verprolin-homologous proteins) regulate the actin cytoskeleton through activation of Arp2/3 complex. As cell motility is regulated by actin cytoskeleton rearrangement and is required for tumor invasion and metastasis, blocking actin polymerization may be an effective strategy to prevent tumor dissemination. We show that WAVEs, especially WAVE2, are essential for invasion and metastasis of melanoma cells. Malignant B16F10 mouse melanoma cells expressed more WAVE1 and WAVE2 proteins and showed higher Rac activity than B16 parental cells, which are neither invasive nor metastatic. The effect of WAVE2 silencing by RNA interference (RNAi) on the highly invasive nature of B16F10 cells was more dramatic than that of WAVE1 RNAi. Membrane ruffling, cell motility, invasion into the extracellular matrix, and pulmonary metastasis of B16F10 cells were suppressed by WAVE2 RNAi. WAVE2 RNAi also had a profound effect on invasion induced by a constitutively active form of Rac (RacCA). In addition, ectopic expression of both RacCA and WAVE2 in B16 cells resulted in further increase in the invasiveness than that observed in B16 cells expressing only RacCA. Thus, WAVE2 acts as the primary effector downstream of Rac to achieve invasion and metastasis, suggesting that suppression of WAVE2 activity holds a promise for preventing cancer invasion and metastasis.
Collapse
Affiliation(s)
- Shusaku Kurisu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
73
|
Kempiak SJ, Yamaguchi H, Sarmiento C, Sidani M, Ghosh M, Eddy RJ, Desmarais V, Way M, Condeelis J, Segall JE. A neural Wiskott-Aldrich Syndrome protein-mediated pathway for localized activation of actin polymerization that is regulated by cortactin. J Biol Chem 2004; 280:5836-42. [PMID: 15579908 DOI: 10.1074/jbc.m410713200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the epidermal growth factor (EGF) receptor can stimulate actin polymerization via the Arp2/3 complex using a number of signaling pathways, and specific stimulation conditions may control which pathways are activated. We have previously shown that localized stimulation of EGF receptor with EGF bound to beads results in localized actin polymerization and protrusion. Here we show that the actin polymerization is dependent upon activation of the Arp2/3 complex by neural Wiskott-Aldrich Syndrome protein (N-WASP) via Grb2 and Nck2. Suppression of Grb2 or Nck2 results in loss of localization of N-WASP at the activation site and reduced actin polymerization. Although cortactin has been found to synergize with N-WASP for Arp2/3-dependent actin polymerization in vitro, we find that cortactin can restrict N-WASP localization around EGF-bead-induced protrusions. In addition, cortactin-deficient cells have increased lamellipod dynamics but show reduced net translocation, suggesting that cortactin can contribute to cell polarity by controlling the extent of Arp2/3 activation by WASP family members and the stability of the F-actin network.
Collapse
Affiliation(s)
- Stephan J Kempiak
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wang SJ, Saadi W, Lin F, Minh-Canh Nguyen C, Li Jeon N. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp Cell Res 2004; 300:180-9. [PMID: 15383325 DOI: 10.1016/j.yexcr.2004.06.030] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/29/2004] [Indexed: 12/31/2022]
Abstract
Chemotaxis, directed cell migration in a gradient of chemoattractant, is an important biological phenomenon that plays pivotal roles in cancer metastasis. Newly developed microfluidic chemotaxis chambers (MCC) were used to study chemotaxis of metastatic breast cancer cells, MDA-MB-231, in EGF gradients of well-defined profiles. Migration behaviors of MDA-MB-231 cells in uniform concentrations of EGF (0, 25, 50, and 100 ng/ml) and EGF (0-25, 0-50, and 0-100 ng/ml) with linear and nonlinear polynomial profiles were investigated. MDA-MB-231 cells exhibited increased speed and directionality upon stimulation with uniform concentrations of EGF. The cells were viable and motile for over 24 h, confirming the compatibility of MCC with cancer cells. Linear concentration gradients of different ranges were not effective in inducing chemotactic movement as compared to nonlinear gradients. MDA-MB-231 cells migrating in EGF gradient of 0-50 ng/ml nonlinear polynomial profile exhibited marked directional movement toward higher EGF concentration. This result suggests that MDA-MB-231 cancer cell chemotaxis depends on the shape of gradient profile as well as on the range of EGF concentrations.
Collapse
Affiliation(s)
- Shur-Jen Wang
- Department of Biomedical Engineering, University of California, Irvine, CA 92612, USA
| | | | | | | | | |
Collapse
|
75
|
Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004; 64:7022-9. [PMID: 15466195 DOI: 10.1158/0008-5472.can-04-1449] [Citation(s) in RCA: 836] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Invasion of tumor cells into the surrounding connective tissue and blood vessels is a key step in the metastatic spread of breast tumors. Although the presence of macrophages in primary tumors is associated with increased metastatic potential, the mechanistic basis for this observation is unknown. Using a chemotaxis-based in vivo invasion assay and multiphoton-based intravital imaging, we show that the interaction between macrophages and tumor cells facilitates the migration of carcinoma cells in the primary tumor. Gradients of either epidermal growth factor (EGF) or colony-stimulating factor 1 (CSF-1) stimulate collection into microneedles of tumor cells and macrophages even though tumor cells express only EGF receptor and macrophages express only CSF-1 receptor. Intravital imaging shows that macrophages and tumor cells migrate toward microneedles containing either EGF or CSF-1. Inhibition of either CSF-1- or EGF-stimulated signaling reduces the migration of both cell types. This work provides the first direct evidence for a synergistic interaction between macrophages and tumor cells during cell migration in vivo and indicates a mechanism for how macrophages may contribute to metastasis.
Collapse
Affiliation(s)
- Jeffrey Wyckoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 2004; 280:3541-7. [PMID: 15504729 DOI: 10.1074/jbc.m409040200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of a cell to move requires the asymmetrical organization of cellular activities. To investigate polarized cellular activity in moving endothelial cells, human endothelial cells were incubated in a Dunn chamber to allow migration toward vascular endothelial growth factor. Immunofluorescent staining with a specific antibody against caveolin-1 revealed that caveolin-1 was concentrated at the rear of moving cells. Similarly, monolayer scraping to induce random cell walk resulted in relocation of caveolin-1 to the cell rear. These results suggest that posterior polarization of caveolin-1 is a common feature both for chemotaxis and chemokinesis. Dual immunofluorescent labeling showed that, during cell spreading, caveolin-1 was compacted in the cell center and excluded from nascent focal contacts along the circular lamellipodium, as revealed by integrin beta1 and FAK staining. When cells were migrating, integrin beta1 and FAK appeared at polarized lamellipodia, whereas caveolin-1 was found at the posterior of moving cells. Notably, wherever caveolin-1 was polarized, there was a conspicuous absence of lamellipod protrusion. Transmission electron microscopy showed that caveolae, similar to their marker caveolin-1, were located at the cell center during cell spreading or at the cell rear during cell migration. In contrast to its unphosphorylated form, tyrosine-phosphorylated caveolin-1, upon fibronectin stimulation, was associated with the focal complex molecule phosphopaxillin along the lamellipodia of moving cells. Thus, unphosphorylated and phosphorylated caveolin-1 were located at opposite poles during cell migration. Importantly, loss of caveolin-1 polarity by targeted down-regulation of the protein prevented cell polarization and directional movement. Our present results suggest a potential role of caveolin polarity in lamellipod extension and cell migration.
Collapse
Affiliation(s)
- Andrew Beardsley
- Mary Babb Randolph Cancer Center and Departments of Physiology and Pharmacology, and Obstetrics and Gynecology, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
77
|
Lorenz M, Yamaguchi H, Wang Y, Singer RH, Condeelis J. Imaging sites of N-wasp activity in lamellipodia and invadopodia of carcinoma cells. Curr Biol 2004; 14:697-703. [PMID: 15084285 DOI: 10.1016/j.cub.2004.04.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 02/02/2004] [Accepted: 02/27/2004] [Indexed: 12/21/2022]
Abstract
Cell migration is crucial for many biological and pathological processes such as chemotaxis of immune cells, fibroblast migration during wound healing, and tumor cell invasion and metastasis. Cells migrate forward by extending membrane protrusions. The formation of these protrusions is driven by assembly of actin filaments at the leading edge. Neural Wiskott-Aldrich syndrome protein (N-WASP), a ubiquitous member of the WASP family, induces actin polymerization by activating Arp2/3 complex and is thought to regulate the formation of membrane protrusions. However, it is totally unclear how N-WASP activity is spatially and temporally regulated inside migrating cells. To detect and image sites of N-WASP activity during cell motility and invasion in carcinoma cells, we designed an N-WASP fluorescence resonance energy transfer (FRET) biosensor that distinguishes between the active and inactive conformations and mimics the function of endogenous N-WASP. Our data show that N-WASP is involved in lamellipodia extension, where it is activated at the leading edge, as well as in invadopodia formation of invasive carcinoma cells, where it is activated at the base. This is the first time that the activity of full-length N-WASP has been visualized in vivo, and this has lead to new insights for N-WASP function.
Collapse
Affiliation(s)
- Mike Lorenz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
78
|
Shan S, Robson ND, Cao Y, Qiao T, Li CY, Kontos CD, Garcia-Blanco M, Dewhirst MW. Responses of vascular endothelial cells to angiogenic signaling are important for tumor cell survival. FASEB J 2003; 18:326-8. [PMID: 14688196 DOI: 10.1096/fj.03-0765fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neoplastic cells overexpress several angiogenic cytokines, which stimulate neovascularization. Whether the responses of the host endothelial cells to these signaling molecules affect tumor cells during early tumorigenesis has not been investigated. We investigated pre-angiogenic tumor cell survival and angiogenesis initiation by two murine tumor lines (4T1 mammary carcinoma and B16 melanoma), which constitutively expressed GFP, in dorsal skin-fold window chambers of mice treated with extracellular domain of Tie-2 (ExTek) or bFGF. ExTek reduced tumor cell survival, retarded tumor growth, and inhibited angiogenesis onset compared with controls. bFGF increased tumor cell survival and promoted earlier angiogenesis and tumor growth. Neither bFGF nor ExTek affected cell proliferation in vitro. RT-PCR showed mRNA expression of bFGF receptor 2 (FGFR2) IIIb, which does not bind bFGF efficiently, by 4T1 cells and B16 cells express FGFR1 but not FGFR2. B16 cells expressed angiopoietin (Ang) 2, but neither cell line expresses Ang1. Both tumor lines express VEGF. These findings suggested that effects of bFGF and ExTek on tumor cell survival and angiogenesis were not due to direct action but were instead a result of paracrine factors secreted by endothelial cells. These subsequent signals from endothelial cells promote early survival and proliferation of disseminated tumor cells before onset of angiogenesis.
Collapse
MESH Headings
- Angiogenesis Inducing Agents/chemistry
- Angiogenesis Inducing Agents/pharmacology
- Animals
- Breast Neoplasms/pathology
- Cell Division/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Fibroblast Growth Factor 2/pharmacology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Biological
- Neovascularization, Pathologic
- Paracrine Communication/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Macrophage Colony-Stimulating Factor/chemistry
- Receptor, TIE-2/chemistry
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/drug effects
- Solubility
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Siqing Shan
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710-3455, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Differing spatial scales of signaling cascades are critical for cell orientation during chemotactic responses. We used biotin EGF bound to streptavidin-coupled magnetic beads to locally stimulate cells overexpressing the EGF receptor. We have found that EGF-induced actin polymerization remains localized even under conditions of receptor overexpression. Conversely, EGF-induced ERK activation spreads throughout the cell body after EGF bead stimulation. The localized actin polymerization is independent of PI3-kinase and rho protein activity and requires Arp2/3 complex and cofilin function. Thus, we find differing spatial scales of signaling from the EGF receptor, supporting models of chemotaxis that integrate short- and long-range signaling.
Collapse
Affiliation(s)
- Stephan J Kempiak
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | | | | |
Collapse
|
80
|
DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115:4649-60. [PMID: 12415009 DOI: 10.1242/jcs.00147] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid polymerization of a network of short, branched actin filaments takes place at the leading edge of migrating cells, a compartment enriched in activators of actin polymerization such as the Arp2/3 complex and cofilin. Actin filaments elsewhere in the cell are long and unbranched. Results reported here show that the presence or absence of tropomyosin in these different actin-containing regions helps establish functionally distinct actin-containing compartments in the cell. Tropomyosin, an inhibitor of the Arp2/3 complex and cofilin function, was localized in relation to actin filaments, the Arp2/3 complex, and free barbed ends of actin filaments in MTLn3 cells, which rapidly extend flat lamellipodia following EGF stimulation. All tropomyosin isoforms examined using indirect immunofluorescence were relatively absent from the dynamic leading edge compartment, but did colocalize with actin structures deeper in the lamellipodium and in stress fibers. An in vitro light microscopy assay revealed that tropomyosin protects actin filaments from cofilin severing. The results suggest that tropomyosin-free actin filaments under the membrane can participate in rapid, dynamic processes that depend on interactions between the activities of the Arp2/3 complex and ADF/cofilin that tropomyosin inhibits elsewhere in the cell.
Collapse
Affiliation(s)
- Vera DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
81
|
Liu G, Grant WM, Persky D, Latham VM, Singer RH, Condeelis J. Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell 2002; 13:579-92. [PMID: 11854414 PMCID: PMC65651 DOI: 10.1091/mbc.01-03-0140] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The targeting of mRNA and local protein synthesis is important for the generation and maintenance of cell polarity. As part of the translational machinery as well as an actin/microtubule-binding protein, elongation factor 1alpha (EF1alpha) is a candidate linker between the protein translation apparatus and the cytoskeleton. We demonstrate in this work that EF1alpha colocalizes with beta-actin mRNA and F-actin in protrusions of chicken embryo fibroblasts and binds directly to F-actin and beta-actin mRNA simultaneously in vitro in actin cosedimentation and enzyme-linked immunosorbent assays. To investigate the role of EF1alpha in mRNA targeting, we mapped the two actin-binding sites on EF1alpha at high resolution and defined one site at the N-terminal 49 residues of domain I and the other at the C-terminal 54 residues of domain III. In vitro actin-binding assays and localization in vivo of recombinant full-length EF1alpha and its various truncates demonstrated that the C terminus of domain III was the dominant actin-binding site both in vitro and in vivo. We propose that the EF1alpha-F-actin complex is the scaffold that is important for beta-actin mRNA anchoring. Disruption of this complex would lead to delocalization of the mRNA. This hypothesis was tested by using two dominant negative polypeptides: the actin-binding domain III of EF1alpha and the EF1alpha-binding site of yeast Bni1p, a protein that inhibits EF1alpha binding to F-actin and also is required for yeast mRNA localization. We demonstrate that either domain III of EF1alpha or the EF1alpha-binding site of Bni1p inhibits EF1alpha binding to beta-actin mRNA in vitro and causes delocalization of beta-actin mRNA in chicken embryo fibroblasts. Taken together, these results implicate EF1alpha in the anchoring of beta-actin mRNA to the protrusion in crawling cells.
Collapse
Affiliation(s)
- Gang Liu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M, Pestell RG. Rho Family GTPases Regulate Mammary Epithelium Cell Growth and Metastasis Through Distinguishable Pathways. Mol Med 2001. [DOI: 10.1007/bf03401974] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
84
|
Straussman R, Even L, Ravid S. Myosin II heavy chain isoforms are phosphorylated in an EGF-dependent manner. J Cell Sci 2001; 114:3047-57. [PMID: 11686307 DOI: 10.1242/jcs.114.16.3047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the involvement and regulation of the nonmuscle myosin II heavy chains isoforms, MHC-A and MHC-B in the chemotaxis of metastatic tumor cells,we analyzed the changes in phosphorylation and cellular localization of these isoforms upon stimulation of prostate tumor cells with epidermal growth factor(EGF). EGF stimulation of prostate tumor cells resulted in transient increases in MHC-A and MHC-B phosphorylation and subcellular localization with quite different kinetics. Furthermore, the kinetics of subcellular localization correlated with the in vivo kinetics of MHC-B phosphorylation but not of MHC-A phosphorylation, suggesting different modes of regulation for these myosin II isoforms. We further showed that protein kinase C (PKC) is involved in the EGF-dependent phosphorylation of MHC-A and MHC-B. To our knowledge, this is the first report demonstrating that MHC phosphorylation might regulate its subcellular localization and that the EGF signal is transmitted to MHC-A and MHC-B via PKC. The correlation between MHC-B phosphorylation and localization in response to EGF stimulation might suggest that MHC-B is the myosin II isoform that is involved in chemotaxis.
Collapse
Affiliation(s)
- R Straussman
- Department of Biochemistry, Hadassah Medical School The Hebrew University, Jerusalem, Israel.
| | | | | |
Collapse
|
85
|
Shestakova EA, Singer RH, Condeelis J. The physiological significance of beta -actin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 2001; 98:7045-50. [PMID: 11416185 PMCID: PMC34620 DOI: 10.1073/pnas.121146098] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
beta-actin mRNA is localized near the leading edge in several cell types, where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3' untranslated region, the "zip code." Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zip code) in the 3' untranslated region leads to delocalization of beta-actin mRNA, alteration of cell phenotype, and a decrease in cell motility. To determine the components of this process responsible for the change in cell behavior after beta-actin mRNA delocalization, the Dynamic Image Analysis System was used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zip code. It was found that net path length and average speed of antisense-treated cells were significantly lower than in sense-treated cells. Total path length and the velocity of protrusion of antisense-treated cells were not affected compared with those of control cells. These results suggest that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zip code-directed antisense oligonucleotides. To test this, direct analysis of directionality was performed on antisense-treated cells and showed a decrease in directionality (net path/total path) and persistence of movement. Less directional movement of antisense-treated cells correlated with a unpolarized and discontinuous distribution of free barbed ends of actin filaments and of beta-actin protein. These results indicate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement.
Collapse
Affiliation(s)
- E A Shestakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
86
|
Hill KM, Huang Y, Yip SC, Yu J, Segall JE, Backer JM. N-terminal domains of the class ia phosphoinositide 3-kinase regulatory subunit play a role in cytoskeletal but not mitogenic signaling. J Biol Chem 2001; 276:16374-8. [PMID: 11278326 DOI: 10.1074/jbc.m006985200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide (PI) 3-kinases are required for the acute regulation of the cytoskeleton by growth factors. We have shown previously that in the MTLn3 rat adenocarcinoma cells line, the p85/p110alpha PI 3-kinase is required for epidermal growth factor (EGF)-stimulated lamellipod extension and formation of new actin barbed ends at the leading edge of the cell. We have now examined the role of the p85alpha regulatory subunit in greater detail. Microinjection of recombinant p85alpha into MTLn3 cells blocked both EGF-stimulated mitogenic signaling and lamellipod extension. In contrast, a truncated p85(1-333), which lacks the SH2 and iSH2 domains and does not bind p110, had no effect on EGF-stimulated mitogenesis but still blocked EGF-stimulated lamellipod extension. Additional deletional analysis showed that the SH3 domain was not required for inhibition of lamellipod extension, as a construct containing only the proline-rich and breakpoint cluster region (BCR) homology domains was sufficient for inhibition. Although the BCR domain of p85 binds Rac, the effects of the p85 constructs were not because of a general inhibition of Rac signaling, because sorbitol-induced JNK activation in MTLn3 cells was not inhibited. These data show that the proline-rich and BCR homology domains of p85 are involved in the coupling of p85/p110 PI 3-kinases to regulation of the actin cytoskeleton. These data provide evidence of a distinct cellular function for the N-terminal domains of p85.
Collapse
Affiliation(s)
- K M Hill
- Departments of Molecular Pharmacology and Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | |
Collapse
|
87
|
Bailly M, Ichetovkin I, Grant W, Zebda N, Machesky LM, Segall JE, Condeelis J. The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Curr Biol 2001; 11:620-5. [PMID: 11369208 DOI: 10.1016/s0960-9822(01)00152-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most eukaryotic cells rely on localized actin polymerization to generate and sustain the protrusion activity necessary for cell movement [1, 2]. Such protrusions are often in the form of a flat lamellipod with a leading edge composed of a dense network of actin filaments [3, 4]. The Arp2/3 complex localizes within that network in vivo [3, 4] and nucleates actin polymerization and generates a branched network of actin filaments in vitro [5-7]. The complex has thus been proposed to generate the actin network at the leading edge of crawling cells in vivo [3, 4, 8]. However, the relative contributions of nucleation and branching to protrusive force are still unknown. We prepared antibodies to the p34 subunit of the Arp2/3 complex that selectively inhibit side binding of the complex to F-actin. We demonstrate that side binding is required for efficient nucleation and branching by the Arp2/3 complex in vitro. However, microinjection of these antibodies into cells specifically inhibits lamellipod extension without affecting the EGF-stimulated appearance of free barbed ends in situ. These results indicate that while the side binding activity of the Arp2/3 complex is required for nucleation in vitro and for protrusive force in vivo, it is not required for EGF-stimulated increases in free barbed ends in vivo. This suggests that the branching activity of the Arp2/3 complex is essential for lamellipod extension, while the generation of nucleation sites for actin polymerization is not sufficient.
Collapse
Affiliation(s)
- M Bailly
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
88
|
Condeelis JS, Wyckoff JB, Bailly M, Pestell R, Lawrence D, Backer J, Segall JE. Lamellipodia in invasion. Semin Cancer Biol 2001; 11:119-28. [PMID: 11322831 DOI: 10.1006/scbi.2000.0363] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vivo imaging of GFP-labeled metastatic tumor cells reveals cell orientation towards blood vessels. Orientation of tumor cells during chemotactic responses to ligands such as EGF begins with lamellipod extension. Evaluation of some of the downstream events in lamellipod extension indicates: (1) plasma membrane distribution of the EGF receptor is uniform but internalized receptor accumulates on the side of the cell closest to the source of EGF; (2) the alpha p110 isoform of PI-3 kinase is required; and (3) protrusion of the lamellipod relies upon the combined actions of the Arp2/3 complex and cofilin for generation of filamentous actin.
Collapse
Affiliation(s)
- J S Condeelis
- Department of Anatomy and Structural Biology and the Intravital Imaging Program, Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Eccles SA. Cell biology of lymphatic metastasis. The potential role of c-erbB oncogene signalling. Recent Results Cancer Res 2001; 157:41-54. [PMID: 10857161 DOI: 10.1007/978-3-642-57151-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lymphatic metastases are an important indicator of the malignancy of epithelial cancers. Empirical clinical observations associating specific genetic abnormalities with tumour progression, allied with basic laboratory investigations, are providing not only improved prognostic and diagnostic opportunities, but also a detailed understanding of the molecular machinery of metastasis. One such association--between the c-erbB oncogene family and metastasis--has proved particularly instructive. Functional links between over-expression (and occasionally mutational activation) of c-erbB-1 (EGFR) and c-erbB-2 and specific phenotypes of metastatic cells have been elucidated. Activated c-erbB oncogenes potentiate tumour cell adhesion to endothelial cells and upregulate VEGF, potentially facilitating angiogenesis and vascular invasion. In addition, cells over-expressing these oncogenes frequently show aberrant cell-cell and cell-matrix interactions, mediated by changes in integrin and cadherin function. Thirdly, both EGFR and c-erbB-2 signalling can significantly upregulate specific matrix metalloproteinases, key enzymes involved in angiogenesis and invasion. Finally, c-erbB receptors linked to the actin cytoskeleton and highly expressed on invadopodia, are thought to assist cell migration. Taken together, these observations suggest that such receptors can act as "master switches" in metastasis, whose activation co-ordinately controls events normally utilised in development, now subverted by the metastatic cell. As such, they represent ideal targets for therapeutic intervention.
Collapse
Affiliation(s)
- S A Eccles
- Section of Cancer Therapeutics, Institute of Cancer Research, Sutton, Surrey, UK
| |
Collapse
|
90
|
Rotsch C, Jacobson K, Condeelis J, Radmacher M. EGF-stimulated lamellipod extension in adenocarcinoma cells. Ultramicroscopy 2001; 86:97-106. [PMID: 11215638 DOI: 10.1016/s0304-3991(00)00102-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extension of lamellipodia has been triggered by the application of epidermal growth factor (EGF). We have used an atomic force microscope (AFM) to investigate this lamellipodial extension. During extension we could detect an increase in height from about 500 nm for the stable lamellipodium to typical values of 600-800 nm for the extending lamellipodium. The AFM was also used to determine the mechanical properties of the lamellipodium where we found a decrease of the elastic modulus by a factor of 1.4 at the same location within the same cell. Both findings are consistent with the cortical expansion hypothesis, suggesting that severing of actin filaments, leading to a swelling of the cytoskeleton, generates the protrusive force during lamellipodial extension.
Collapse
Affiliation(s)
- C Rotsch
- Lehrstuhl für Angewandte Physik, Ludwig-Maximilians Universität München, Germany
| | | | | | | |
Collapse
|
91
|
Zebda N, Bernard O, Bailly M, Welti S, Lawrence DS, Condeelis JS. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J Cell Biol 2000; 151:1119-28. [PMID: 11086013 PMCID: PMC2174362 DOI: 10.1083/jcb.151.5.1119] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In metastatic rat mammary adenocarcinoma cells, cell motility can be induced by epidermal growth factor. One of the early events in this process is the massive generation of actin barbed ends, which elongate to form filaments immediately adjacent to the plasma membrane at the tip of the leading edge. As a result, the membrane moves outward and forms a protrusion. To test the involvement of ADF/cofilin in the stimulus-induced barbed end generation at the leading edge, we inhibited ADF/cofilin's activity in vivo by increasing its phosphorylation level using the kinase domain of LIM-kinase 1 (GFP-K). We report here that expression of GFP-K in rat cells results in the near total phosphorylation of ADF/cofilin, without changing either the G/F-actin ratio or signaling from the EGF receptor in vivo. Phosphorylation of ADF/cofilin is sufficient to completely inhibit the appearance of barbed ends and lamellipod protrusion, even in the continued presence of abundant G-actin. Coexpression of GFP-K, together with an active, nonphosphorylatable mutant of cofilin (S3A cofilin), rescues barbed end formation and lamellipod protrusion, indicating that the effects of kinase expression are caused by the phosphorylation of ADF/cofilin. These results indicate a direct role for ADF/cofilin in the generation of the barbed ends that are required for lamellipod extension in response to EGF stimulation.
Collapse
Affiliation(s)
- N Zebda
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
92
|
Bailly M, Wyckoff J, Bouzahzah B, Hammerman R, Sylvestre V, Cammer M, Pestell R, Segall JE. Epidermal growth factor receptor distribution during chemotactic responses. Mol Biol Cell 2000; 11:3873-83. [PMID: 11071913 PMCID: PMC15043 DOI: 10.1091/mbc.11.11.3873] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Condeelis JS, Wyckoff J, Segall JE. Imaging of cancer invasion and metastasis using green fluorescent protein. Eur J Cancer 2000; 36:1671-80. [PMID: 10959053 DOI: 10.1016/s0959-8049(00)00155-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of green fluorescent protein to fluorescently tag tumour cells has allowed investigators to open the "black box" of metastasis in order to visualise the behaviour of tumour cells in living tissues. Analysis of cells leaving the primary tumour indicates that highly metastatic cells are able to polarise more effectively towards blood vessels while poorly metastatic cells fragment more often when interacting with blood. In addition, there appear to be greater numbers of host immune system cells interacting with metastatic tumours. After arresting in target organs such as the lungs or liver, most tumour cells become dormant or apoptose. A small fraction of the arrested cells form metastases. In some target organs, migration of tumour cells may enhance the ability to form metastases.
Collapse
Affiliation(s)
- J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA
| | | | | |
Collapse
|
94
|
Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov KE, Pestell RG, Lisanti MP. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem 2000; 275:20717-25. [PMID: 10748172 DOI: 10.1074/jbc.m909895199] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Caveolin-1 is a principal component of caveolae membranes that may function as a transformation suppressor. For example, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (D7S522; 7q31.1) that is deleted in human cancers, including mammary carcinomas. However, little is known about the role of caveolins in regulating cell movement, a critical parameter in determining metastatic potential. Here, we examine the role of caveolin-1 in cell movement. For this purpose, we employed an established cellular model, MTLn3, a metastatic rat mammary adenocarcinoma cell line. In this system, epidermal growth factor (EGF) stimulation induces rapid lamellipod extension and cell migration. Interestingly, we find that MTLn3 cells fail to express detectable levels of endogenous caveolin-1. To restore caveolin-1 expression in MTLn3 cells efficiently, we employed an inducible adenoviral gene delivery system to achieve tightly controlled expression of caveolin-1. We show here that caveolin-1 expression in MTLn3 cells inhibits EGF-stimulated lamellipod extension and cell migration and blocks their anchorage-independent growth. Under these conditions, EGF-induced activation of the p42/44 mitogen-activated protein kinase cascade is also blunted. Our results suggest that caveolin-1 expression in motile MTLn3 cells induces a non-motile phenotype.
Collapse
Affiliation(s)
- W Zhang
- Department of Molecular Pharmacology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Reports on the role of vasodilator-stimulated phosphoprotein (VASP) and proline-rich sequences in actin-based motility of Listeria and potentially of Shigella flexneri have led to the suggestion that vinculin might be an essential docking protein on the surface O2 motile Shigella. Therefore, whether vinculin had a functional role in Shigella actin-based motility was tested by examining Shigella infection of the vinculin-deficient F9 cell line variant 5.51. Shigella are able to form actin tails and surface protrusions in 5.51 cells that are indistinguishable from those they produce in F9 cells, and Shigella rates of intracellular movement and protrusion formation are similar in the two cell lines. These data disprove the model of Shigella actin-based motility in which vinculin is an essential docking protein for either the formation of actin tails or the acceleration of motile bacteria.
Collapse
Affiliation(s)
- M B Goldberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461-1602, USA
| |
Collapse
|
96
|
Hill K, Welti S, Yu J, Murray JT, Yip SC, Condeelis JS, Segall JE, Backer JM. Specific requirement for the p85-p110alpha phosphatidylinositol 3-kinase during epidermal growth factor-stimulated actin nucleation in breast cancer cells. J Biol Chem 2000; 275:3741-4. [PMID: 10660520 DOI: 10.1074/jbc.275.6.3741] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the role of phosphatidylinositol 3-kinases (PI 3-kinases) in the regulation of the actin cytoskeleton in MTLn3 rat adenocarcinoma cells. Stimulation of MTLn3 cells with epidermal growth factor (EGF) induced a rapid increase in actin polymerization, with production of lamellipodia within 3 min. EGF-stimulated lamellipodia were blocked by 100 nM wortmannin, suggesting the involvement of a class Ia PI 3-kinase. MTLn3 cells contain equal amounts of p110alpha and p110beta, and do not contain p110delta. Injection of specific inhibitory antibodies to p110alpha induced cell rounding and blocked EGF-stimulated lamellipod extension, whereas control or anti-p110beta antibodies had no effect. In contrast, both antibodies inhibited EGF-stimulated DNA synthesis. An in situ assay for actin nucleation showed that EGF-stimulated formation of new barbed ends was blocked by injection of anti-p110alpha antibodies. In summary, the p110alpha isoform of PI 3-kinase is specifically required for EGF-stimulated actin nucleation during lamellipod extension in breast cancer cells.
Collapse
Affiliation(s)
- K Hill
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Chan AY, Bailly M, Zebda N, Segall JE, Condeelis JS. Role of cofilin in epidermal growth factor-stimulated actin polymerization and lamellipod protrusion. J Cell Biol 2000; 148:531-42. [PMID: 10662778 PMCID: PMC2174812 DOI: 10.1083/jcb.148.3.531] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1999] [Accepted: 01/04/2000] [Indexed: 11/29/2022] Open
Abstract
Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.
Collapse
Affiliation(s)
- Amanda Y. Chan
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Maryse Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Noureddine Zebda
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jeffrey E. Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
98
|
Hinz B, Alt W, Johnen C, Herzog V, Kaiser HW. Quantifying lamella dynamics of cultured cells by SACED, a new computer-assisted motion analysis. Exp Cell Res 1999; 251:234-43. [PMID: 10438589 DOI: 10.1006/excr.1999.4541] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formation of lamellipodia and the retraction of ruffles are essential activities during motility and migration of eukaryotic cells. We have developed a computer-assisted stroboscopic method for the continuous observation of cell dynamics (stroboscopic analysis of cell dynamics, SACED) that allows one to analyze changes in lamellipodia protrusion and ruffle retraction with high resolution in space and time. To demonstrate the potential of this method we analyzed keratinocytes in culture, unstimulated or stimulated with epidermal growth factor (EGF), which is known to induce cell motility and migration. Keratinocytes stimulated with EGF exhibited a 2.6-fold increase in their migration velocity, which coincided with enhanced ruffle retraction velocity (144%) and increased ruffle frequency (135%) compared to control cells. We also recorded an enhanced frequency of lamellipodia (135%), whereas the velocity of lamellipodia protrusion remained unchanged. These results on ruffle and lamellipodia dynamics in epidermal cells show that SACED is at least equal to established methods in terms of accuracy. SACED is, however, advantageous concerning resolution in time and therefore allows one to analyze the activity of lamellipodia and ruffles in as yet unknown detail. Moreover, SACED offers two opportunities that render this technique superior to established methods: First, several parameters relevant to cell motility can be analyzed simultaneously. Second, a large number of cells can conveniently be examined, which facilitates the compilation of statistically significant data.
Collapse
Affiliation(s)
- B Hinz
- Division of Theoretical Biology, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
99
|
Maheshwari G, Wells A, Griffith LG, Lauffenburger DA. Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys J 1999; 76:2814-23. [PMID: 10233097 PMCID: PMC1300252 DOI: 10.1016/s0006-3495(99)77435-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration is regulated simultaneously by growth factors and extracellular matrix molecules. Although information is continually increasing regarding the relevant signaling pathways, there exists little understanding concerning how these pathways integrate to produce the biophysical processes that govern locomotion. Herein, we report the effects of epidermal growth factor (EGF) and fibronectin (Fn) on multiple facets of fibroblast motility: locomotion speed, membrane extension and retraction activity, and adhesion. A surprising finding is that EGF can either decrease or increase locomotion speed depending on the surface Fn concentration, despite EGF diminishing global cell adhesion at all Fn concentrations. At the same time, the effect of EGF on membrane activity varies from negative to positive to no-effect as Fn concentration and adhesion range from low to high. Taking these effects together, we find that EGF and Fn regulate fibroblast migration speed through integration of the processes of membrane extension, attachment, and detachment, with each of these processes being rate-limiting for locomotion in sequential regimes of increasing adhesivity. Thus, distinct biophysical processes are shown to integrate for overall cell migration responses to growth factor and extracellular matrix stimuli.
Collapse
Affiliation(s)
- G Maheshwari
- Division of Bioengineering & Environmental Health, Department of Chemical Engineering, and Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
100
|
Bailly M, Macaluso F, Cammer M, Chan A, Segall JE, Condeelis JS. Relationship between Arp2/3 complex and the barbed ends of actin filaments at the leading edge of carcinoma cells after epidermal growth factor stimulation. J Cell Biol 1999; 145:331-45. [PMID: 10209028 PMCID: PMC2133111 DOI: 10.1083/jcb.145.2.331] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using both light and high resolution electron microscopy, we analyzed the spatial and temporal relationships between the Arp2/3 complex and the nucleation activity that is required for lamellipod extension in mammary carcinoma cells after epidermal growth factor stimulation. A rapid two- to fourfold increase in filament barbed end number occurs transiently after stimulation and remains confined almost exclusively to the extreme outer edge of the extending lamellipod (within 100-200 nm of the plasma membrane). This is accompanied by an increase in filament density at the leading edge and a general decrease in filament length, with a specific loss of long filaments. Concomitantly, the Arp2/3 complex is recruited with a 1.5-fold increase throughout the entire cortical filament network extending 1-1.5 microm in depth from the membrane at the leading edge. The recruitment of the Arp2/3 complex at the membrane of the extending lamellipod indicates that Arp2/3 may be involved in initial generation of growing filaments. However, only a small subset of the complex present in the cortical network colocalizes near free barbed ends. This suggests that the 100-200-nm submembraneous compartment at the leading edge of the extending lamellipod constitutes a special biochemical microenvironment that favors the generation and maintenance of free barbed ends, possibly through the locally active Arp2/3 complex, severing or decreasing the on-rate of capping protein. Our results are inconsistent with the hypothesis suggesting uncapping is the dominant mechanism responsible for the generation of nucleation activity. However, they support the hypothesis of an Arp2/3-mediated capture of actin oligomers that formed close to the membrane by other mechanisms such as severing. They also support pointed-end capping by the Arp2/3 complex, accounting for its wide distribution at the leading edge.
Collapse
Affiliation(s)
- M Bailly
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|