51
|
Abstract
The entorhinal cortex (EC) is a part of the hippocampal complex that is essential to learning and memory, and nicotine affects memory by activating nicotinic acetylcholine receptors (nAChRs) in the hippocampal complex. However, it is not clear what types of neurons in the EC are sensitive to nicotine and whether they play a role in nicotine-induced memory functions. Here, we have used voltage-sensitive dye imaging methods to locate the neuronal populations responsive to nicotine in entorhino-hippocampal slices and to clarify which nAChR subtypes are involved. In combination with patch-clamp methods, we found that a concentration of nicotine comparable to exposure during smoking depolarized neurons in layer VI of the EC (ECVI) by acting through the non-alpha7 subtype of nAChRs. Neurons in the subiculum (Sb; close to the deep EC layers) also contain nicotine-sensitive neurons, and it is known that Sb neurons project to the ECVI. When we recorded evoked EPSCs (eEPSCs) from ECVI neurons while stimulating the Sb near the CA1 region, a low dose of nicotine not only enhanced synaptic transmission (by increasing eEPSC amplitude) but also enhanced plasticity by converting tetanus stimulation-induced short-term potentiation to long-term potentiation; nicotine enhanced synaptic transmission and plasticity of ECVI synapses by acting on both the alpha7 and non-alpha7 subtypes of nAChRs. Our data suggest that ECVI neurons are important regulators of hippocampal function and plasticity during smoking.
Collapse
|
52
|
Chang WC, Sretavan DW. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls. Biosens Bioelectron 2009; 24:3600-7. [PMID: 19535240 DOI: 10.1016/j.bios.2009.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 11/25/2022]
Abstract
As biomedical research has moved increasingly towards experimentation on single cells and subcellular structures, there has been a need for microscale devices that can perform manipulation and stimulation at a correspondingly small scale. We propose a microelectrode array (MEA) featuring thickened microelectrodes with vertical sidewalls (VSW) to focus electrical fields horizontally on targets positioned in between paired electrodes. These microelectrodes were fabricated using gold electroplating that was molded by photolithographically patterned SU-8 photoresist. Finite element modeling showed that paired VSW electrodes produce more uniform electrical fields compared to conventional planar microelectrodes. Using paired microelectrodes, 3 microm thick and spaced 10 microm apart, we were able to perform local electroporation of individual axonal processes, as demonstrated by entry of EGTA to locally chelate intra-axonal calcium, quenching the fluorescence of a pre-loaded calcium indicator dye. The same electrode configuration was used to electroporate individual cells, resulting in the targeted transfection of a transgene expressing a cytoplasmically soluble green fluorescent protein (GFP). In addition to electroporation, our electrode configuration was also capable of precisely targeted field stimulation on individual neurons, resulting in action potentials that could be tracked by optical means. With its ability to deliver well-characterized electrical fields and its versatility, our configuration of paired VSW electrodes may provide the basis for a new tool for high-throughput and high-content experimentation in broad areas of neuroscience and biomedical research.
Collapse
Affiliation(s)
- Wesley C Chang
- Department of Ophthalmology, University of California, K110, Box 0730, UC San Francisco, 10 Koret Way, K-110, San Francisco, CA 94143, USA.
| | | |
Collapse
|
53
|
Combining voltage and calcium imaging from neuronal dendrites. Cell Mol Neurobiol 2008; 28:1079-93. [PMID: 18500551 DOI: 10.1007/s10571-008-9285-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
The ability to monitor membrane potential (V(m)) and calcium (Ca(2+)) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V(m) and Ca(2+) imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca(2+) indicators. In all cases V(m) optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca(2+) optical signals depends on the indicator Ca(2+) buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 microM Bis-Fura-2, V(m) optical signals cannot be calibrated and the physiological Ca(2+) dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in V (m) and Ca(2+) fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, V(m) optical signals can be calibrated in terms of mV and Ca(2+) optical signals quantitatively reveal the physiological changes in free Ca(2+). Using these two examples, the method is explained in detail.
Collapse
|
54
|
Zecevic D, Djurisic M, Cohen LB, Antic S, Wachowiak M, Falk CX, Zochowski MR. Imaging nervous system activity with voltage-sensitive dyes. ACTA ACUST UNITED AC 2008; Chapter 6:Unit 6.17. [PMID: 18428582 DOI: 10.1002/0471142301.ns0617s23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Optical recording with a voltage-sensitive dye is advantageous where membrane potential must be recorded in many sites at once. This unit describes methods for making voltage-sensitive dye measurements on different preparations to study (1) how a neuron integrates its synaptic input into its action potential output by measuring membrane potential everywhere synaptic input occurs and where spikes are initiated; (2) how a nervous system generates a behavior in Aplysia abdominal ganglion; and (3) responses to sensory stimuli and generation of motor output in the vertebrate brain by simultaneous measurement of population signals from many areas. The approach is three-pronged: (1) find the dye with the largest signal-to-noise ratio; (2) reduce extraneous sources of noise; and (3) maximize the number of photons measured to reduce the relative shot noise. A discussion of optical recording methods including the choice of dyes, light sources, optics, cameras, and minimizing noise is also provided.
Collapse
Affiliation(s)
- Dejan Zecevic
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
The input-output transform performed by mitral cells, the principal projection neurons of the olfactory bulb, is one of the key factors in understanding olfaction. We used combined calcium and voltage imaging from the same neuron and computer modeling to investigate signal processing in the mitral cells, focusing on the glomerular dendritic tuft. The main finding was that the dendritic tuft functions as a single electrical compartment for subthreshold signals within the range of amplitudes detectable by voltage-sensitive dye recording. These evoked EPSPs had uniform characteristics throughout the glomerular tuft. The Ca(2+) transients associated with spatially uniform subthreshold synaptic potentials were comparable but not equal in amplitude in all regions. The average range of normalized amplitudes of the EPSP-driven Ca(2+) signals from different locations on dendritic branches in the glomerular tuft was relatively narrow and appeared to be independent of the dendritic surface-to-volume ratio. The computer simulations constrained by the imaging data indicated that a synchronized activation of approximately 100 synapses randomly distributed on tuft branches was sufficient to generate spatially homogenous EPSPs. This number of activated synapses is consistent with the data from anatomical studies. Furthermore, voltage attenuation of the EPSP along the primary dendrite at physiological temperature was weak compared with other cell types. In the model, weak attenuation of the EPSP along the primary dendrite could be accounted for by passive electrical properties of the mitral cell.
Collapse
|
56
|
Juffermans LJM, Kamp O, Dijkmans PA, Visser CA, Musters RJP. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:502-8. [PMID: 17993242 DOI: 10.1016/j.ultrasmedbio.2007.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/29/2007] [Accepted: 09/10/2007] [Indexed: 05/19/2023]
Abstract
Ultrasound (US) contrast agents have gained wide interest in gene therapy as many researchers reported increased membrane permeability and transfection efficiency by sonoporation in the presence of US contrast agents. We recently demonstrated an increase in cell membrane permeability for Ca2+ in rat cardiomyoblast (H9c2) cells insonified in the presence of microbubbles. In the present study, we specifically investigated whether US-exposed microbubbles have an effect on the cell membrane potential and whether Ca2+-dependent potassium (BK(Ca)) channels are involved. We particularly focused on local events where the microbubble was in contact with the cell membrane. H9c2 cells were cultured on US transparent membranes. US exposure consisted of bursts with a frequency of 1 MHz with a peak-to-peak pressure of 0.1 or 0.5 MPa. Pulse repetition frequency was set to 20 Hz, with a duty cycle of 0.2%. Cells were insonified during 30 s in the presence of Sonovue(trade mark) microbubbles. The membrane potential was monitored during US exposure using the fluorescent dye di-4-aminonaphtylethenylpyridinium (di-4-ANEPPS). The experiments were repeated in the presence of iberiotoxin (100 nM), a specific inhibitor of BK(Ca) channels. Surprisingly, despite the previously reported Ca(2+) influx, we found patches of hyperpolarization of the cell membrane, as reflected by local increases in di-4-ANEPPS mean intensity of fluorescence (MIF) to 118.6 +/- 2.5% (p < 0.001, n = 267) at 0.1 MPa and 125.7 +/- 5.9% (p < 0.001, n = 161) at 0.5 MPa at t = 74 s, respectively, compared with "no US" (100.3 +/- 3.4%, n = 52). This hyperpolarization was caused by the activation of BK(Ca) channels, as iberiotoxin completely prevented hyperpolarization. (MIF(t74) = 100.6 +/- 1.4%; p < 0.001, n = 267) and 0.5 MPa (MIF(t74) = 88.8 +/- 2.0%; p< 0.001, n = 193), compared with 0.1 and 0.5 MPa microbubbles without iberiotoxin. In conclusion, US-exposed microbubbles elicit a Ca2+ influx, which leads to activation of BK(Ca) channels and a subsequent, local hyperpolarization of the cell membrane. This local hyperpolarization of the cell membrane may facilitate uptake of macromolecules through endocytosis and macropinocytosis. (E-mail: ljm.juffermans@vumc.nl).
Collapse
Affiliation(s)
- Lynda J M Juffermans
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
57
|
Brown NH, Dobrovolny HM, Gauthier DJ, Wolf PD. A fiber-based ratiometric optical cardiac mapping channel using a diffraction grating and split detector. Biophys J 2007; 93:254-63. [PMID: 17416627 PMCID: PMC1914424 DOI: 10.1529/biophysj.106.101154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Optical fiber-based mapping systems are used to record the cardiac action potential (AP) throughout the myocardium. The optical AP contains a contraction-induced motion artifact (MA), which makes it difficult to accurately measure the action potential duration (APD). MA is removed by preventing contraction with electrical-mechanical uncoupling drugs, such as 2,3-butanedione monoxime (BDM). We designed a novel fiber-based ratiometric optical channel using a blue light emitting diode, a diffraction grating, and a split photodetector that can accurately measure the cardiac AP without the need for BDM. The channel was designed based on simulations using the optical design software ZEMAX. The channel has an electrical bandwidth of 150 Hz and an root mean-square dark noise of 742 muV. The channel successfully recorded the cardiac AP from the wall of five rabbit heart preparations without the use of BDM. After 20-point median filtering, the mean signal/noise ratio was 25.3 V/V. The APD measured from the base of a rabbit heart was 134 +/- 8.4 ms, compared to 137.6 +/- 3.3 ms from simultaneous microelectrode recordings. This difference was not statistically significant (p-value = 0.3). The quantity of MA removed was also measured using the motion ratio. The reduction in MA was significant (p-value = 0.0001). This fiber-based system is the first of its kind to enable optical APD measurements in the beating heart wall without the use of BDM.
Collapse
Affiliation(s)
- Ninita H Brown
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | |
Collapse
|
58
|
Nanthakumar K, Jalife J, Massé S, Downar E, Pop M, Asta J, Ross H, Rao V, Mironov S, Sevaptsidis E, Rogers J, Wright G, Dhopeshwarkar R. Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. Am J Physiol Heart Circ Physiol 2007; 293:H875-80. [PMID: 17369453 DOI: 10.1152/ajpheart.01415.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
Collapse
Affiliation(s)
- Kumaraswamy Nanthakumar
- Division of Cardiology, University Health Network, Toronto General Hospital, 150 Gerrard Street W., Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Canepari M, Djurisic M, Zecevic D. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study. J Physiol 2007; 580:463-84. [PMID: 17272348 PMCID: PMC2075540 DOI: 10.1113/jphysiol.2006.125005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The non-linear and spatially inhomogeneous interactions of dendritic membrane potential signals that represent the first step in the induction of activity-dependent long-term synaptic plasticity are not fully understood, particularly in dendritic regions which are beyond the reach of electrode measurements. We combined voltage-sensitive-dye recordings and Ca(2+) imaging of hippocampal CA1 pyramidal neurons to study large regions of the dendritic arbor, including branches of small diameter (distal apical and oblique dendrites). Dendritic membrane potential transients were monitored at high spatial resolution and correlated with supra-linear [Ca(2+)](i) changes during one cycle of a repetitive patterned stimulation protocol that typically results in the induction of long-term potentiation (LTP). While the increase in the peak membrane depolarization during coincident pre- and post-synaptic activity was required for the induction of supra-linear [Ca(2+)](i) signals shown to be necessary for LTP, the change in the baseline-to-peak amplitude of the backpropagating dendritic action potential (bAP) was not critical in this process. At different dendritic locations, the baseline-to-peak amplitude of the bAP could be either increased, decreased or unaltered at sites where EPSP-AP pairing evoked supra-linear summation of [Ca(2+)](i) transients. We suggest that modulations in the bAP baseline-to-peak amplitude by local EPSPs act as a mechanism that brings the membrane potential into the optimal range for Ca(2+) influx through NMDA receptors (0 to -15 mV); this may require either boosting or the reduction of the bAP, depending on the initial size of both signals.
Collapse
Affiliation(s)
- Marco Canepari
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
60
|
Salama G, Choi BR, Azour G, Lavasani M, Tumbev V, Salzberg BM, Patrick MJ, Ernst LA, Waggoner AS. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol 2006; 208:125-40. [PMID: 16645742 PMCID: PMC3018276 DOI: 10.1007/s00232-005-0826-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Membrane potential measurements using voltage-sensitive dyes (VSDs) have made important contributions to our understanding of electrophysiological properties of multi-cellular systems. Here, we report the development of long wavelength VSDs designed to record cardiac action potentials (APs) from deeper layers in the heart. The emission spectrum of styryl VSDs was red-shifted by incorporating a thienyl group in the polymethine bridge to lengthen and retain the rigidity of the chromophore. Seven dyes, Pittsburgh I to IV and VI to VIII (PGH I-VIII) were synthesized and characterized with respect to their spectral properties in organic solvents and heart muscles. PGH VSDs exhibited 2 absorption, 2 excitation and 2 voltage-sensitive emission peaks, with large Stokes shifts (> 100 nm). Hearts (rabbit, guinea pig and Rana pipiens) and neurohypophyses (CD-1 mice) were effectively stained by injecting a bolus (10-50 microl) of stock solution of VSD (2-5 mM) dissolved in in dimethylsulfoxide plus low molecular weight Pluronic (16% of L64). Other preparations were better stained with a bolus of VSD (2-5 mM) Tyrode's solution at pH 6.0. Action spectra measured with a fast CCD camera showed that PGH I exhibited an increase in fractional fluorescence, DeltaF/F = 17.5 % per AP at 720 nm with 550 nm excitation and DeltaF/F = - 6% per AP at 830 nm with 670 nm excitation. In frog hearts, PGH1 was stable with approximately 30% decrease in fluorescence and AP amplitude during 3 h of intermittent excitation or 1 h of continuous high intensity excitation (300 W Xe-Hg Arc lamp), which was attributed to a combination of dye wash out > photobleaching > dynamic damage > run down of the preparation. The long wavelengths, large Stokes shifts, high DeltaF/F and low baseline fluorescence make PGH dyes a valuable tool in optical mapping and for simultaneous mapping of APs and intracellular Ca(2+).
Collapse
Affiliation(s)
- G Salama
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, S314 Biomedical Science Tower, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Milojkovic B, Wuskell J, Loew L, Antic S. Initiation of sodium spikelets in basal dendrites of neocortical pyramidal neurons. J Membr Biol 2006; 208:155-69. [PMID: 16645744 PMCID: PMC5652330 DOI: 10.1007/s00232-005-0827-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Cortical information processing relies critically on the processing of electrical signals in pyramidal neurons. Electrical transients mainly arise when excitatory synaptic inputs impinge upon distal dendritic regions. To study the dendritic aspect of synaptic integration one must record electrical signals in distal dendrites. Since thin dendritic branches, such as oblique and basal dendrites, do not support routine glass electrode measurements, we turned our effort towards voltage-sensitive dye recordings. Using the optical imaging approach we found and reported previously that basal dendrites of neocortical pyramidal neurons show an elaborate repertoire of electrical signals, including backpropagating action potentials and glutamate-evoked plateau potentials. Here we report a novel form of electrical signal, qualitatively and quantitatively different from backpropagating action potentials and dendritic plateau potentials. Strong glutamatergic stimulation of an individual basal dendrite is capable of triggering a fast spike, which precedes the dendritic plateau potential. The amplitude of the fast initial spikelet was actually smaller that the amplitude of the backpropagating action potential in the same dendritic segment. Therefore, the fast initial spike was dubbed "spikelet". Both the basal spikelet and plateau potential propagate decrementally towards the cell body, where they are reflected in the somatic whole-cell recordings. The low incidence of basal spikelets in the somatic intracellular recordings and the impact of basal spikelets on soma-axon action potential initiation are discussed.
Collapse
Affiliation(s)
- B.A. Milojkovic
- Department of Neuroscience, Erasmus MC Dr. Molewaterplein 50, 3015 GE, Rotterdam, Netherlands
| | - J.P. Wuskell
- Department of Cell Biology, UConn Health Center, 263 Farmington Ave., CT 06030, USA
| | - L.M. Loew
- Department of Cell Biology, UConn Health Center, 263 Farmington Ave., CT 06030, USA
| | - S.D. Antic
- Department of Neuroscience, L-4000, UConn Health Center, 263 Farmington Ave., Farmington, CT 06030-3401, USA
| |
Collapse
|
62
|
Furman MD, Simonotto JD, Beaver TM, Spano ML, Ditto WL. Using recurrence quantification analysis determinism for noise removal in cardiac optical mapping. IEEE Trans Biomed Eng 2006; 53:767-70. [PMID: 16602587 DOI: 10.1109/tbme.2006.870195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selecting signal processing parameters in optical imaging by utilizing the change in Determinism, a measure introduced in Recurrence Quantification Analysis, provides a novel method using the change in residual noise Determinism for improving noise quantification and removal across signals exhibiting disparate underlying tissue pathologies. The method illustrates an improved process for selecting filtering parameters and how using measured signal-to-noise ratio alone can lead to improper parameter selection.
Collapse
Affiliation(s)
- Michael D Furman
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6161, USA.
| | | | | | | | | |
Collapse
|
63
|
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 2006; 103:4753-8. [PMID: 16537386 PMCID: PMC1450242 DOI: 10.1073/pnas.0509378103] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca(2+) sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca(2+) transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca(2+) waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo.
Collapse
Affiliation(s)
- Yvonne N. Tallini
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Masamichi Ohkura
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka 882-8508, Japan; Departments of
| | | | - Guangju Ji
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Keiji Imoto
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Robert Doran
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jane Lee
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | | | - Jason Wilson
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Hong-Bo Xin
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Atsushi Sanbe
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - James Gulick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - John Mathai
- **Medicine, University of Pittsburgh School of Medicine, Room S 314 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | | | - Junichi Nakai
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Michael I. Kotlikoff
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
64
|
Wuskell JP, Boudreau D, Wei MD, Jin L, Engl R, Chebolu R, Bullen A, Hoffacker KD, Kerimo J, Cohen LB, Zochowski MR, Loew LM. Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges. J Neurosci Methods 2006; 151:200-15. [PMID: 16253342 DOI: 10.1016/j.jneumeth.2005.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 07/18/2005] [Indexed: 11/25/2022]
Abstract
Styryl dyes have been among the most widely used probes for mapping membrane potential changes in excitable cells. However, their utility has been somewhat limited because their excitation wavelengths have been restricted to the 450-550 nm range. Longer wavelength probes can minimize interference from endogenous chromophores and, because of decreased light scattering, improve recording from deep within tissue. In this paper we report on our efforts to develop new potentiometric styryl dyes that have excitation wavelengths ranging above 700 nm and emission spectra out to 900 nm. We have prepared and characterized dyes based on 47 variants of the styryl chromophores. Voltage-dependent spectral changes have been recorded for these dyes in a model lipid bilayer and from lobster nerves. The voltage sensitivities of the fluorescence of many of these new potentiometric indicators are as good as those of the widely used ANEP series of probes. In addition, because some of the dyes are often poorly water soluble, we have developed cyclodextrin complexes of the dyes to serve as efficient delivery vehicles. These dyes promise to enable new experimental paradigms for in vivo imaging of membrane potential.
Collapse
Affiliation(s)
- Joseph P Wuskell
- Department of Cell Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, MC-1507, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Mironov SF, Vetter FJ, Pertsov AM. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol 2006; 291:H327-35. [PMID: 16428336 DOI: 10.1152/ajpheart.01003.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescence imaging using voltage-sensitive dyes is an important tool for studying electrical propagation in the heart. Yet, the low amplitude of the voltage-sensitive component in the fluorescence signal and high acquisition rates dictated by the rapid propagation of the excitation wave front make it difficult to achieve recordings with high signal-to-noise ratios. Although spatially and temporally filtering the acquired signals has become de facto one of the key elements of optical mapping, there is no consensus regarding their use. Here we characterize the spatiotemporal spectra of optically recorded action potentials and determine the distortion produced by conical filters of different sizes. On the basis of these findings, we formulate the criteria for rational selection of filter characteristics. We studied the evolution of the spatial spectra of the propagating wave front after epicardial point stimulation of the isolated, perfused right ventricular free wall of the pig heart stained with di-4-ANEPPS. We found that short-wavelength (<3 mm) spectral components represent primarily noise and surface features of the preparation (coronary vessels, fat, and connective tissue). The time domain of the optical action potential spectrum also lacks high-frequency components (>100 Hz). Both findings are consistent with the reported effect of intrinsic blurring caused by light scattering inside the myocardial wall. The absence of high-frequency spectral components allows the use of aggressive low-pass spatial and temporal filters without affecting the optical action potential morphology. We show examples where the signal-to-noise ratio increased up to 150 with <3% distortion. A generalization of our approach to the rational filter selection in various applications is discussed.
Collapse
Affiliation(s)
- Sergey F Mironov
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
66
|
Matiukas A, Mitrea BG, Pertsov AM, Wuskell JP, Wei MD, Watras J, Millard AC, Loew LM. New near-infrared optical probes of cardiac electrical activity. Am J Physiol Heart Circ Physiol 2006; 290:H2633-43. [PMID: 16399869 DOI: 10.1152/ajpheart.00884.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Styryl voltage-sensitive dyes (e.g., di-4-ANEPPS) have been widely and successfully used as probes for mapping membrane potential changes in cardiac cells and tissues. However, their utility has been somewhat limited because their excitation wavelengths have been restricted to the 450- to 550-nm range. Longer excitation/emission wavelength probes can minimize interference from endogenous chromophores and, because of decreased light scattering and lower absorption by endogenous chromophores, improve recording from deeper tissue layers. In this article, we report efforts to develop new potentiometric styryl dyes that have excitation wavelengths ranging above 700 nm and emission spectra extending to 900 nm. Three dyes for cardiac optical mapping were investigated in depth from several hundred dyes containing 47 variants of the styryl chromophores. Absorbance and emission spectra in ethanol and multilamellar vesicles, as well as voltage-dependent spectral changes in a model lipid bilayer, have been recorded for these dyes. Optical action potentials were recorded in typical cardiac tissues (rat, guinea pig, pig) and compared with those of di-4-ANEPPS. The voltage sensitivities of the fluorescence of these new potentiometric indicators are as good as those of the widely used ANEP series of probes. In addition, because of molecular engineering of the chromophore, the new dyes provide a wide range of dye loading and washout time constants. These dyes will enable a series of new experiments requiring the optical probing of thick and/or blood-perfused cardiac tissues.
Collapse
Affiliation(s)
- Arvydas Matiukas
- Department of Pharmacology, State University of New York-Upstate Medical University, 750 E Adams St., Syracuse, NY 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Entcheva E, Bien H. Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 92:232-57. [PMID: 16330086 DOI: 10.1016/j.pbiomolbio.2005.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optical mapping of cardiac excitation using voltage- and calcium-sensitive dyes has allowed a unique view into excitation wave dynamics, and facilitated scientific discovery in the cardiovascular field. At the same time, the structural complexity of the native heart has prompted the design of simplified experimental models of cardiac tissue using cultured cell networks. Such reduced experimental models form a natural bridge between single cells and tissue/organ level experimental systems to validate and advance theoretical concepts of cardiac propagation and arrhythmias. Macroscopic mapping (over >1cm(2) areas) of transmembrane potentials and intracellular calcium in these cultured cardiomyocyte networks is a relatively new development and lags behind whole heart imaging due to technical challenges. In this paper, we review the state-of-the-art technology in the field, examine specific aspects of such measurements and outline a rational system design approach. Particular attention is given to recent developments of sensitive detectors allowing mapping with ultra-high spatiotemporal resolution (>5 megapixels/s). Their interfacing with computer platforms to match the high data throughput, unique for this new generation of detectors, is discussed here. This critical review is intended to guide basic science researchers in assembling optical mapping systems for optimized macroscopic imaging with high resolution in a cultured cell setting. The tools and analysis are not limited to cardiac preparations, but are applicable for dynamic fluorescence imaging in networks of any excitable media.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, HSC T18-030, Stony Brook, NY 11794-8181, USA.
| | | |
Collapse
|
68
|
Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat Neurosci 2005; 8:1619-26. [PMID: 16205716 DOI: 10.1038/nn1558] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 09/02/2005] [Indexed: 11/09/2022]
Abstract
The development of genetically encoded fluorescent voltage probes is essential to image electrical activity from neuronal populations. Previous green fluorescent protein (GFP)-based probes have had limited success in recording electrical activity of neurons because of their low sensitivity and poor temporal resolution. Here we describe a hybrid approach that combines a genetically encoded fluorescent probe (membrane-anchored enhanced GFP) with dipicrylamine, a synthetic voltage-sensing molecule that partitions into the plasma membrane. The movement of the synthetic voltage sensor is translated via fluorescence resonance energy transfer (FRET) into a large fluorescence signal (up to 34% change per 100 mV) with a fast response and recovery time (0.5 ms). Using this two-component approach, we were able to optically record action potentials from neuronal cell lines and trains of action potentials from primary cultured neurons. This hybrid approach may form the basis for a new generation of protein-based voltage probes.
Collapse
Affiliation(s)
- Baron Chanda
- Department of Physiology and Anesthesiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
69
|
Wandelt B, Cywinski P, Darling GD, Stranix BR. Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosens Bioelectron 2005; 20:1728-36. [PMID: 15681187 DOI: 10.1016/j.bios.2004.06.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/17/2004] [Accepted: 06/25/2004] [Indexed: 11/22/2022]
Abstract
In aqueous solution, compounds containing the styrylpyridinium group showed dual fluorescence, in which excitation at either 469 or 360 nm each produced an emission band around 600 nm. The ratio of fluorescence intensities of the two bands (R = I469/I360) was sensitive to local viscosity. The N-carboxymethyl butyl ester of DMASP was found to be able to irreversibly load into a living cell; presumably by hydrolysis involving cellular lipases it was transformed to a membrane-impermeable fluorescent carboxylate. A map of the ratio, R, from a single cell was generated using fluorescence imaging microscopy with a spectrofluorimeter in dual-excitation single-emission mode. After calibrating the ratio for the probe in water/glycerol solutions, the intracellular viscosities were obtained for a single cell of smooth muscle of a rat embryonic thoracic aorta. The intracellular viscosity is differentiated inside the cell and the obtained values 18-7 cP obey all the values reported by other laboratories. Fluorescence emission of the probe (500-650 nm) is in a very favourable region for its use with visible fluorescence microscopy, without interferences from cell or tissue auto-fluorescence. The results present ability to detect and follow small changes in the ratio of fluorescence intensities, and apparently of the micro-viscosity.
Collapse
Affiliation(s)
- Barbara Wandelt
- Department of Molecular Physics, Faculty of Chemistry, Technical University, Zeromskiego 116, Lodz 90 924, Poland.
| | | | | | | |
Collapse
|
70
|
Baker BJ, Kosmidis EK, Vucinic D, Falk CX, Cohen LB, Djurisic M, Zecevic D. Imaging brain activity with voltage- and calcium-sensitive dyes. Cell Mol Neurobiol 2005; 25:245-82. [PMID: 16050036 DOI: 10.1007/s10571-005-3059-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents three examples of imaging brain activity with voltage- or calcium-sensitive dyes and then discusses the methodological aspects of the measurements that are needed to achieve an optimal signal-to-noise ratio. Internally injected voltage-sensitive dye can be used to monitor membrane potential in the dendrites of invertebrate and vertebrate neurons in in vitro preparations. Both invertebrate and vertebrate ganglia can be bathed in voltage-sensitive dyes to stain all of the cell bodies in the preparation. These dyes can then be used to follow the spike activity of many neurons simultaneously while the preparations are generating behaviors. Calcium-sensitive dyes that are internalized into olfactory receptor neurons in the nose will, after several days, be transported to the nerve terminals of these cells in the olfactory bulb. There they can be used to measure the input from the nose to the bulb. Three kinds of noise are discussed. a. Shot noise from the random emission of photons from the preparation. b. Vibrational noise from external sources. c. Noise that occurs in the absence of light, the dark noise. Three different parts of the light measuring apparatus are discussed: the light sources, the optics, and the cameras. The major effort presently underway to improve the usefulness of optical recordings of brain activity are to find methods for staining individual cell types in the brain. Most of these efforts center around fluorescent protein sensors of activity.
Collapse
Affiliation(s)
- Bradley J Baker
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
71
|
O'Shea P. Physical landscapes in biological membranes: physico-chemical terrains for spatio-temporal control of biomolecular interactions and behaviour. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:575-588. [PMID: 15664900 DOI: 10.1098/rsta.2004.1509] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The evolving complexities of biological membranes are discussed from the point of view of potential roles of the physical constitution of the membrane. These include features of the surface and dipole potentials and membrane 'rafts'. These properties are outlined; they emphasize that protein-lipid and specific lipid environments are influential parameters in how biomolecular interactions may take place with and within membranes. Several fluorescence detection technologies directed towards measurement of these properties are also outlined that permit high-resolution experimental determination of intermolecular interactions with membranes by measuring small changes of these potentials. These point to the possibility that the membrane dipole potential in particular is enormously influential in determining the behaviour of receptor and signalling systems within membrane rafts, and offers the means of a novel mechanism for biological control.
Collapse
Affiliation(s)
- Paul O'Shea
- Cell Biophysics Group, The School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
72
|
Miller E, Wandelt B, Wysocki S, Jóźwik D, Mielniczak A. The fluorescence studies of the sol–gel transition by styrylpyridine derivative. Biosens Bioelectron 2004; 20:1196-202. [PMID: 15556367 DOI: 10.1016/j.bios.2004.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/27/2004] [Accepted: 05/05/2004] [Indexed: 12/01/2022]
Abstract
The gelation process of tetraethylorthosilanes in acid environment was monitored with the trans-4-(p-N,N-dimethylaminostyryl)-N-vinylbenzylopyridinium chloride (vbDMASP) fluorescent probe. The fluorescence steady-state and anisotropy measurements of material during sol-gel transition are reported. The results are compared with fluorescence studies of the probe in a modeled viscous system of water-glycerol mixtures. A strong increase of anisotropy, from 0.1 to 0.9, with gelation time as well with wavelength, was observed. Although the increase of anisotropy with wavelength is due to specificity of the compounds exhibiting charge transfer properties, the increase of the anisotropy with gelation time is due to an increase of microviscosity. On this basis, suitability of the applied fluorophore in recording of viscosity changes during sol-gel transition is discussed. The molecular structure of vbDMASP in the excited states in dependence on environmental polarity was optimized using the HyperChem and Amsol program. The dynamics of torsional angle C35-C34-N31-C28 of the multichromophore dye in correlation with micropolarity and microviscosity of the network formation during the sol-gel transition is discussed.
Collapse
Affiliation(s)
- Ewa Miller
- Institute of General Food Chemistry, Technical University of Łódź, ul. Stefanowskiego 4/10, Łódź 90-924, Poland.
| | | | | | | | | |
Collapse
|
73
|
Millard AC, Jin L, Wei MD, Wuskell JP, Lewis A, Loew LM. Sensitivity of second harmonic generation from styryl dyes to transmembrane potential. Biophys J 2004; 86:1169-76. [PMID: 14747351 PMCID: PMC1303909 DOI: 10.1016/s0006-3495(04)74191-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this article we present results from the simultaneous nonlinear (second harmonic generation and two-photon excitation fluorescence) imaging and voltage clamping of living cells. Specifically, we determine the sensitivity to transmembrane potential of second harmonic generation by ANEP-chromophore styryl dyes as a function of excitation wavelength and dye structure. We have measured second harmonic sensitivities of up to 43% per 100 mV, more than a factor of four better than the nominal voltage sensitivity of the dyes under "one-photon" fluorescence. We find a dependence of voltage sensitivity on excitation wavelength that is consistent with a two-photon resonance, and there is a significant dependence of voltage sensitivity on the structure of the nonchromophore portion of the dyes.
Collapse
Affiliation(s)
- Andrew C Millard
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06030-1507, USA
| | | | | | | | | | | |
Collapse
|
74
|
Kuhn B, Fromherz P, Denk W. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 2004; 87:631-9. [PMID: 15240496 PMCID: PMC1304385 DOI: 10.1529/biophysj.104.040477] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/01/2004] [Indexed: 11/18/2022] Open
Abstract
Sensitivity spectra of Stark-shift voltage sensitive dyes, such as ANNINE-6, suggest the use of the extreme red edges of the excitation spectrum to achieve large fractional fluorescence changes with membrane voltage. This was tested in cultured HEK293 cells. Cells were illuminated with light at the very red edge of the dye's excitation spectrum, where the absorption cross section is as much as 100 times smaller than at its peak. The small-signal fractional fluorescence changes were -0.17%/mV, -0.28%/mV, and -0.35%/mV for one-photon excitation at 458 nm, 488 nm, and 514 nm, respectively, and -0.29%/mV, -0.43%/mV, and -0.52%/mV for two-photon excitation at 960 nm, 1000 nm, and 1040 nm, respectively. For large voltage swings the fluorescence changes became nonlinear, reaching 50% and -28% for 100 mV hyper- and depolarization, respectively, at 514 nm and 70% and -40% at 1040 nm. Such fractional sensitivities are approximately 5 times larger than what is commonly found with other voltage-sensing dyes and approach the theoretical limit given by the spectral Boltzmann tail.
Collapse
Affiliation(s)
- Bernd Kuhn
- Department for Biomedical Optics, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | | | | |
Collapse
|
75
|
Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, Jalife J, Pertsov AM. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J 2004; 85:2673-83. [PMID: 14507730 PMCID: PMC1303491 DOI: 10.1016/s0006-3495(03)74690-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Voltage-sensitive fluorescent dyes are commonly used to measure cardiac electrical activity. Recent studies indicate, however, that optical action potentials (OAPs) recorded from the myocardial surface originate from a widely distributed volume beneath the surface and may contain useful information regarding intramural activation. The first step toward obtaining this information is to predict OAPs from known patterns of three-dimensional (3-D) electrical activity. To achieve this goal, we developed a two-stage model in which the output of a 3-D ionic model of electrical excitation serves as the input to an optical model of light scattering and absorption inside heart tissue. The two-stage model permits unique optical signatures to be obtained for given 3-D patterns of electrical activity for direct comparison with experimental data, thus yielding information about intramural electrical activity. To illustrate applications of the model, we simulated surface fluorescence signals produced by 3-D electrical activity during epicardial and endocardial pacing. We discovered that OAP upstroke morphology was highly sensitive to the transmural component of wave front velocity and could be used to predict wave front orientation with respect to the surface. These findings demonstrate the potential of the model for obtaining useful 3-D information about intramural propagation.
Collapse
Affiliation(s)
- Christopher J Hyatt
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Tai DCS, Caldwell BJ, LeGrice IJ, Hooks DA, Pullan AJ, Smaill BH. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts. Am J Physiol Heart Circ Physiol 2004; 287:H985-93. [PMID: 15130885 DOI: 10.1152/ajpheart.00574.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fast voltage-sensitive dyes are widely used to image cardiac electrical activity. Typically, the emission spectrum of these fluorochromes is wavelength shifted with altered membrane potential, but the optical signals obtained also decay with time and are affected by contraction. Ratiometry reduces, but may not fully remove, these artifacts. An alternate approach has been developed in which the time decay in simultaneously acquired short- and long-wavelength signals is characterized nonparametrically and removed. Motion artifact is then identified as the time-varying signal component common to both decay-corrected signals and subtracted. Performance of this subtraction technique was compared with ratiometry for intramural optical signals acquired with a fiber-optic probe in an isolated, Langendorff-perfused pig heart preparation (n = 4) stained with di-4-ANEPPS. Perfusate concentration of 2,3-butanedione monoxime was adjusted (7.5-12.5 mM) to alter contractile activity. Short-wavelength (520-600 nm) and long-wavelength (>600 nm) signals were recorded over 8-16 cardiac cycles at 6 sites across the left ventricular free wall in sinus rhythm and during pacing. A total of 451 such data sets were acquired. Appreciable wall motion was observed in 225 cases, with motion artifact classed as moderate (less than modulation due to action potential) in 187 and substantial (more than modulation due to action potential) in 38. In all cases, subtraction performed as well as, or better than, ratiometry in removing motion artifact and decay. Action potential morphology was recovered more faithfully by subtraction than by ratiometry in 58 of 187 and 31 of 38 cases with moderate and substantial motion artifact, respectively. This novel subtraction approach may therefore provide a means of reducing the concentration of uncoupling agents used in cardiac optical mapping studies.
Collapse
Affiliation(s)
- Dean C-S Tai
- Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
77
|
Dombeck DA, Blanchard-Desce M, Webb WW. Optical recording of action potentials with second-harmonic generation microscopy. J Neurosci 2004; 24:999-1003. [PMID: 14749445 PMCID: PMC6729824 DOI: 10.1523/jneurosci.4840-03.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonlinear microscopy has proven to be essential for neuroscience investigations of thick tissue preparations. However, the optical recording of fast (approximately 1 msec) cellular electrical activity has never until now been successfully combined with this imaging modality. Through the use of second-harmonic generation microscopy of primary Aplysia neurons in culture labeled with 4-[4-(dihexylamino)phenyl][ethynyl]-1-(4-sulfobutyl)pyridinium (inner salt), we optically recorded action potentials with 0.833 msec temporal and 0.6 microm spatial resolution on soma and neurite membranes. Second-harmonic generation response as a function of change in membrane potential was found to be linear with a signal change of approximately 6%/100 mV. The signal-to-noise ratio was approximately 1 for single-trace action potential recordings but was readily increased to approximately 6-7 with temporal averaging of approximately 50 scans. Photodamage was determined to be negligible by observing action potential characteristics, cellular resting potential, and gross cellular morphology during and after laser illumination. High-resolution (micrometer scale) optical recording of membrane potential activity by previous techniques has been limited to imaging depths an order of magnitude less than nonlinear methods. Because second-harmonic generation is capable of imaging up to approximately 400 microm deep into intact tissue with submicron resolution and little out-of-focus photodamage or bleaching, its ability to record fast electrical activity should prove valuable to future electrophysiology studies.
Collapse
Affiliation(s)
- Daniel A Dombeck
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
78
|
Millard AC, Jin L, Lewis A, Loew LM. Direct measurement of the voltage sensitivity of second-harmonic generation from a membrane dye in patch-clamped cells. OPTICS LETTERS 2003; 28:1221-1223. [PMID: 12885027 DOI: 10.1364/ol.28.001221] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report what is to our knowledge the first optical imaging of voltage-clamped cells by second-harmonic generation. For the membrane-staining styryl dye di-4-ANEPPS, we determined the sensitivity of second-harmonic generation to be 18%/100 mV at an excitation wavelength of 850 ns. This sensitivity is significantly better than the optimal 10%/100 mV under fluorescence and further establishes the importance of second-harmonic generation for the functional imaging of membrane potential in living cells.
Collapse
Affiliation(s)
- Andrew C Millard
- Center for Biomedical Imaging Technology, University of Connecticut Health Center, MC-1507, 263 Farmington Avenue, Farmington, Connecticut 06030-1507, USA.
| | | | | | | |
Collapse
|
79
|
Abstract
Basal and oblique dendrites comprise ~2/3 of the total excitable membrane in the mammalian cerebral cortex, yet they have never been probed with glass electrodes, and therefore their electrical properties and overall impact on synaptic processing are unknown. In the present study, fast multi-site voltage-sensitive dye imaging combined with somatic recording was used to provide a detailed description of the membrane potential transients in basal and oblique dendrites of pyramidal neurons during single and trains of action potentials (APs). The optical method allowed simultaneous measurements from several dendrites in the visual field up to 200 microm from the soma, thus providing a unique report on how an AP invades the entire dendritic tree. In contrast to apical dendrites, basal and oblique branches: (1) impose very little amplitude and time course modulation on backpropagating APs; (2) are strongly invaded by the somatic spike even when somatic firing rates reach 40 Hz (activity-independent backpropagation); and (3) do not exhibit signs of a 'calcium shoulder' on the falling phase of the AP. A compartmental model incorporating AP peak latencies and half-widths obtained from the apical, oblique and basal dendrites indicates that the specific intracellular resistance (Ri) is less than 100 omicron cm. The combined experimental and modelling results also provide evidence that all synaptic locations along basal and oblique dendrites, situated within 200 microm from the soma, experience strong and near-simultaneous (latency < 1 ms) voltage transients during somatic firing. The cell body, axon hillock and basal dendritic compartments achieve unique synchronization during each AP. Therefore, with respect to a retrograde signal (AP), basal and proximal oblique dendrites should be considered as an integral part of the axo-somatic compartment.
Collapse
Affiliation(s)
- Srdjan D Antic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
80
|
Loew LM, Campagnola P, Lewis A, Wuskell JP. Confocal and nonlinear optical imaging of potentiometric dyes. Methods Cell Biol 2003; 70:429-52. [PMID: 12512332 DOI: 10.1016/s0091-679x(02)70013-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Leslie M Loew
- Department of Physiology, Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
81
|
Djurisic M, Zochowski M, Wachowiak M, Falk CX, Cohen LB, Zecevic D. Optical monitoring of neural activity using voltage-sensitive dyes. Methods Enzymol 2003; 361:423-51. [PMID: 12624923 DOI: 10.1016/s0076-6879(03)61022-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maja Djurisic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
82
|
Wandelt B, Mielniczak A, Turkewitsch P, Darling GD, Stranix BR. Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity. Biosens Bioelectron 2003; 18:465-71. [PMID: 12604264 DOI: 10.1016/s0956-5663(02)00156-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In aqueous solution, 4-[4-(dimethylamino)styryl]pyridine (DMASP) derivatives displayed dual fluorescence, in which excitation at either 469 or 360 nm produced an emission band near 600 nm. Increasing the viscosity of the environment intensified the fluorescence emission obtained at the longer wavelength of excitation, whereas the emission at the lower wavelength of excitation showed little change in intensity. Thus, using the ratio of the 600 nm emission obtained by exciting at 469 nm to that obtained with 360 nm excitation, it is possible to obtain a value related to the local viscosity that does not depend on the system parameters. The fluorescence emission of the dye in aqueous solution, as well as in living cells, is well suited for use with visible fluorescence spectroscopy. The N-carboxymethyl butyl ester DMASP derivative (1) was found to be irreversibly loaded into living smooth muscle cells, presumably because it is hydrolyzed by cellular esterases, transforming it into a membrane-impermeable fluorescent carboxylate DMASP derivative. (2) After calibrating 2 against glycerol/water and sucrose/water mixtures of known viscosity, the fluorescence ratio generated from cultured smooth muscle cells in dual-excitation mode gave an average intracellular viscosity of 4.5 cP. This value corresponds to those reported in the literature.
Collapse
Affiliation(s)
- Barbara Wandelt
- Department of Molecular Physics, Faculty of Chemistry, Technical University of Łodź, Zeromskiego 116, Łódź 90 924, Poland.
| | | | | | | | | |
Collapse
|
83
|
Asamoah OK, Wuskell JP, Loew LM, Bezanilla F. A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron 2003; 37:85-97. [PMID: 12526775 DOI: 10.1016/s0896-6273(02)01126-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Site-specific electrostatic measurements have been limited to soluble proteins purified for in vitro spectroscopic characterization or proteins of known structure; however, comparable measurements have not been made for functional membrane bound proteins. Here, using an electrochromic fluorophore, we describe a method to monitor localized electric field changes in a voltage-gated potassium channel. By coupling the novel probe Di-1-ANEPIA to cysteines in Shaker and tracking field-induced optical changes, in vivo electrostatic measurements were recorded with submillisecond resolution. This technique reports dynamic changes in the electric field during the gating process and elucidates the electric field profile within Shaker. The extension of this method to other membrane bound proteins, including transporters, will yield insight into the role of electrical forces on protein function.
Collapse
Affiliation(s)
- Osei Kwame Asamoah
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
84
|
Tominaga T, Tominaga Y, Ichikawa M. Optical imaging of long-lasting depolarization on burst stimulation in area CA1 of rat hippocampal slices. J Neurophysiol 2002; 88:1523-32. [PMID: 12205172 DOI: 10.1152/jn.2002.88.3.1523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postsynaptic depolarization of dendrites paired with spike generation at the soma is considered to be a central mechanism of long-term potentiation (LTP) induction and a prime example of a Hebbian synapse. This pairing, however, has never been actually demonstrated on tetanic stimulation. Optical imaging of neural activity with a voltage-sensitive dye (VSD) is one potentially suitable method for examining this pairing. It is possible with optical recording to examine simultaneously the excitation of postsynaptic neurons at multiple sites. Thus the pairing of spike generation at the soma and dendritic depolarization can be examined with population level optical recording in highly laminar structures such as the hippocampal slice preparation. For example, one can correlate the optical signals obtained from cell layers with the activity of the soma, and, similarly, optical signals from stratum radiatum can be correlated with the activity of the apical dendrite, even though one cannot calibrate the optical signals in terms of actual membrane potential. Using the VSD aminonaphthylethenylpyridinium in rat hippocampal slices, we aimed to examine the pairing. Standard tetanic stimulation (100 Hz, 1 s) that elicited LTP in the field excitatory postsynaptic potential (fEPSP) resulted in a long-lasting depolarizing optical signal (about 2 s) that spread progressively along the known input pathway of CA1. The time course of this long-lasting depolarization was similar to that recorded intracellularly and to that reflected in the fEPSP. The long-lasting depolarization was insensitive to D,L-2-amino-5-phosphonovaleric acid (D,L-APV, 50 microM), but D,L-APV inhibited the induction of LTP; this allowed us to increase the signal-to-noise ratio of the optical signal by averaging several trials. Using this improved optical signal, we confirmed that postsynaptic cells practically "missed" spikes during tetanic stimulation in most parts of CA1, which had been suggested in the intracellular recordings. Intracellular recordings revealed a 23% reduction in input resistance, which might explain the failed spike generation at the soma via shunting. A steep spatial convergence of the depolarization along the transverse axis of area CA1 was observed. In contrast to the response resulting from a standard 100-Hz tetanus, broader activation, and paired depolarization with somatic spikes was observed on theta-burst stimulation. Overall we concluded that postsynaptic spike generation, at least in synchronous form, has less effect on LTP induction with standard tetanic stimulation, while theta-burst tetanic stimulation can elicit pairing of dendritic depolarization and somatic discharge.
Collapse
Affiliation(s)
- Takashi Tominaga
- Laboratory for Brain-Operative Devices, The Institute of Physical and Chemical Research Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
85
|
Jin W, Zhang RJ, Wu JY. Voltage-sensitive dye imaging of population neuronal activity in cortical tissue. J Neurosci Methods 2002; 115:13-27. [PMID: 11897360 DOI: 10.1016/s0165-0270(01)00511-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Voltage-sensitive dyes (VSDs) and optical imaging are useful for studying spatiotemporal patterns of population neuronal activity in cortical tissue. Using a photodiode array and absorption dyes we were able to detect neuronal activity in single trials before it could be detected by local field potential (LFP) recordings. Simultaneous electrical and optical recordings from the same tissue also showed that VSD and LFP signals have different waveforms during different activities, suggesting that they are sensitive to different aspects of the synchronization across the population. Noise, dye bleaching, phototoxicity and optical filter selection are important to the quality of the VSD signal and are discussed in this report. With optimized signal-to-noise ratio (S/N) and total recording time, we can optically monitor approximately 500 locations in an area of 1 mm(2) of cortical tissue with a sensitivity comparable to that of LFP electrodes. The total recording time and S/N of fluorescence and absorption dyes are also compared. At S/N of 8-10, absorption dye NK3630 allows a total recording time of 15-30 min, which can be divided into hundreds of 4-8 s recording trials over several hours, long enough for many kinds of experiments. In conclusion, the VSD method provides a reliable way for examining neuronal activity and pharmacological properties of synapses in brain slices.
Collapse
Affiliation(s)
- Wenjun Jin
- Department of Physiology and Biophysics, Georgetown University Medical Center, The Research Building, WP-26, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
86
|
Abstract
Formation of neurofibrillary tangles (NFTs) is a common neuropathological feature found in several neurodegenerative diseases, including Alzheimer's disease. We have developed a transgenic (Tg) mouse expressing mutant human tau (V337M), derived from frontotemporal dementia parkinsonism-17. V337M Tg mice revealed tau aggregations in the hippocampus, which fulfills the histological criteria for NFTs in human neurodegenerative diseases. Concurrent with the accumulation of RNA and phosphorylated tau, neurons exhibited morphological characteristics of degenerating neurons, which include a loss of microtubules, accumulation of ribosomes, plasma and nuclear membrane ruffling, and swelling of the Golgi network. Thus, mutant tau induces neuronal degeneration associated with the accumulation of RNA and phosphorylated tau. The functional consequences of this neuronal degeneration was evidenced by the reduction of hippocampal neural activity and behavioral abnormality in Tg mice.
Collapse
|
87
|
Kao WY, Davis CE, Kim YI, Beach JM. Fluorescence emission spectral shift measurements of membrane potential in single cells. Biophys J 2001; 81:1163-70. [PMID: 11463657 PMCID: PMC1301585 DOI: 10.1016/s0006-3495(01)75773-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Previous measurements of transmembrane potential using the electrochromic probe di-8-ANEPPS have used the excitation spectral shift response by alternating excitation between two wavelengths centered at voltage-sensitive portions of the excitation spectrum and recording at a single wavelength near the peak of the emission spectrum. Recently, the emission spectral shift associated with the change in transmembrane potential has been used for continuous membrane potential monitoring. To characterize this form of the electrochromic response from di-8-ANEPPS, we have obtained fluorescence signals from single cells in response to step changes in transmembrane potentials set with a patch electrode, using single wavelength excitation near the peak of the dye absorption spectrum. Fluorescence changes at two wavelengths near voltage-sensitive portions of the emission spectrum and shifts in the complete emission spectrum were determined for emission from plasma membrane and internal membrane. We found that the fluorescence ratio from either dual-wavelength recordings, or from opposite sides of the emission spectrum, varied linearly with the amplitude of the transmembrane potential step between -80 and +60 mV. Voltage dependence of difference spectra exhibit a crossover point near the peak of the emission spectra with approximately equal gain and loss of fluorescence intensity on each side of the spectrum and equal response amplitude for depolarization and hyperpolarization. These results are consistent with an electrochromic mechanism of action and demonstrate how the emission spectral shift response can be used to measure the transmembrane potential in single cells.
Collapse
Affiliation(s)
- W Y Kao
- Department of Biomedical Engineering, University of Virginia Health Sciences Center, Charlottesville, Virginia 22906, USA
| | | | | | | |
Collapse
|
88
|
Teuber M, Rögner M, Berry S. Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:31-46. [PMID: 11418095 DOI: 10.1016/s0005-2728(01)00178-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent DeltapH and DeltaPsi indicators have been screened for the non-invasive monitoring of bioenergetic processes in whole cells of the cyanobacterium Synechocystis sp. PCC 6803. Acridine yellow and Acridine orange proved to be the best DeltapH indicators for the investigation of thylakoid and cytoplasmic membrane energization: While Acridine yellow indicated only cytosolic energization, Acridine orange showed signals from both the thylakoid lumen and the cytosol that could be separated kinetically. Both indicators were applied successfully to monitor cellular energetics, such as the interplay of linear and cyclic photosynthetic electron transport, osmotic adaptation and solute transport across the cytoplasmic membrane. In contrast, useful membrane potential indicators were more difficult to find, with Di-4-ANEPPS and Brilliant cresyl blue being the only promising candidates for further studies. Finally, Acridine yellow and Acridine orange could also be applied successfully for the thermophilic cyanobacterium Synechococcus elongatus. Different from Synechocystis sp. PCC 6803, where both respiration and ATP hydrolysis could be utilized for cytoplasmic membrane energization, proton extrusion at the cytoplasmic membrane in Synechococcus elongatus was preferentially driven by ATP hydrolysis.
Collapse
Affiliation(s)
- M Teuber
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | | | | |
Collapse
|
89
|
Laurita KR, Singal A. Mapping action potentials and calcium transients simultaneously from the intact heart. Am J Physiol Heart Circ Physiol 2001; 280:H2053-60. [PMID: 11299206 DOI: 10.1152/ajpheart.2001.280.5.h2053] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium handling plays an important role in cardiac electrophysiology. Using two fluorescent indicators, we developed an optical mapping system that is capable of measuring calcium transients and action potentials at 256 recording sites simultaneously from the intact guinea pig heart. On the basis of in vitro measurements of dye excitation and emission spectra, excitation and emission filters at 515 +/- 5 and >695 nm, respectively, were used to measure action potentials with di-4-ANEPPS, and excitation and emission filters at 365 +/- 25 and 485 +/- 5 nm, respectively, were used to measure calcium transients with indo 1. The percent error due to spectral overlap was small when action potentials were measured (1.7 +/- 1.0%, n = 3) and negligible when calcium transients were measured (0%, n = 3). Recordings of calcium transients, action potentials, and isochrone maps of depolarization time and the time of calcium transient onset indicated negligible error due to fluorescence emission overlap. These data demonstrate that the error due to spectral overlap of indo 1 and di-4-ANEPPS is sufficiently small, such that optical mapping techniques can be used to measure calcium transients and action potentials simultaneously in the intact heart.
Collapse
Affiliation(s)
- K R Laurita
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109, USA.
| | | |
Collapse
|
90
|
Tominaga T, Tominaga Y, Yamada H, Matsumoto G, Ichikawa M. Quantification of optical signals with electrophysiological signals in neural activities of Di-4-ANEPPS stained rat hippocampal slices. J Neurosci Methods 2000; 102:11-23. [PMID: 11000407 DOI: 10.1016/s0165-0270(00)00270-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have quantified the optical signals of synaptically induced neural activities in an in vitro brain slice preparation in terms of electrophysiological signals. The qualification was done using electrophysiologically well known neural activities in the CA1 area of rat hippocampal slices stained with externally applied fluorescent voltage-sensitive dye (VSD; Di-4-ANEPPS). Together with a newly designed CCD-based digital high-speed camera system and epi-fluorescent optics, our improvements were made on a protocol for staining using a newly designed chamber system. These improvements enabled us to make stable and reliable recordings of optical signals and electrophysiological measurements without affecting the physiological status and to make a quantitative comparison between them. The time course and amplitude of the optical signal showed fair agreement with intracellular and extracellular recordings, and was stable over 2 h. The optical signal followed synaptically induced long-term potentiation (LTP) as monitored by the electrophysiological signals. A regional difference in the amount of LTP was found in optical signals and was confirmed in the electrophysiological signals. These results demonstrate the capabilities of our improved method as an alternative but more potent tool to measure the neuronal activities of brain slice in addition to electrophysiological method.
Collapse
Affiliation(s)
- T Tominaga
- Laboratory for Brain-Operative Devices, Brain Science Institute, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
91
|
Total internal reflection fluorescence and electrocapillary investigations of adsorption at a H2O-dichloroethane electrochemical interface. 1. Low-frequency behavior. Anal Chem 2000; 72:3776-83. [PMID: 10959963 DOI: 10.1021/ac000262j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Total internal reflection fluorescence and electrocapillary measurements are employed to provide complementary potential-dependent information about the mechanical and photophysical properties of the interface between two immiscible electrolyte solutions, 1,2-dichloroethane-H2O. Adsorption of the zwitterionic amphiphile, di-N-butylaminonaphthylethenylpyridiniumpropylsulfonate (I) produces an interface with mechanical (interfacial tension) and charge transport properties qualitatively like the unmodified interface. Addition of dilauroylphosphatidylcholine (DLPC) to the organic phase produces an interface dominated by DLPC adsorption and drastically alters the potential dependence of the interfacial tension, gamma, the interfacial excess populations, GammaI, the charge transport, and the fluorescence response from I. This result is explained in terms of a potential-dependent protonation of the DLPC at the interface, which causes it to desorb, and a competition for interfacial sites between DLPC and protonated and unprotonated dye I. Protonation of DLPC results in a rise in gamma, which is correlated with an increase in transport of the organic-phase anion tetraphenylborate, TPB-, and an increase in interfacially excited fluorescence from I. Both results are explained by a model in which the mechanical properties of the interface, as determined by the interfacial DLPC population, direct the ability of other species to transfer across TPB- or adsorb to I the interface.
Collapse
|
92
|
Baker LC, London B, Choi BR, Koren G, Salama G. Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Circ Res 2000; 86:396-407. [PMID: 10700444 DOI: 10.1161/01.res.86.4.396] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heterogeneous distribution of ion channels in ventricular muscle gives rise to spatial variations in action potential (AP) duration (APD) and contributes to the repolarization sequence in healthy hearts. It has been proposed that enhanced dispersion of repolarization may underlie arrhythmias in diseases with markedly different causes. We engineered dominant negative transgenic mice that have prolonged QT intervals and arrhythmias due to the loss of a slowly inactivating K(+) current. Optical techniques are now applied to map APs and investigate the mechanisms underlying these arrhythmias. Hearts from transgenic and control mice were isolated, perfused, stained with di-4-ANEPPS, and paced at multiple sites to optically map APs, activation, and repolarization sequences at baseline and during arrhythmias. Transgenic hearts exhibited a 2-fold prolongation of APD, less shortening (8% versus 40%) of APDs with decreasing cycle length, altered restitution kinetics, and greater gradients of refractoriness from apex to base compared with control hearts. A premature impulse applied at the apex of transgenic hearts produced sustained reentrant ventricular tachycardia (n=14 of 15 hearts) that did not occur with stimulation at the base (n=8) or at any location in control hearts (n=12). In transgenic hearts, premature impulses initiated reentry by encountering functional lines of conduction block caused by enhanced dispersion of refractoriness. Reentrant VT had stable (>30 minutes) alternating long/short APDs associated with long/short cycle lengths and T wave alternans. Thus, optical mapping of genetically engineered mice may help elucidate some electrophysiological mechanisms that underlie arrhythmias and sudden death in human cardiac disorders.
Collapse
Affiliation(s)
- L C Baker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
93
|
Salama G, Choi BR. Images of Action Potential Propagation in Heart. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2000; 15:33-41. [PMID: 11390873 DOI: 10.1152/physiologyonline.2000.15.1.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation and repolarization across mammalian hearts follow complex three-dimensional pathways that are governed by fiber structure, intercellular coupling, and action potentials (APs) with spatially heterogeneous properties. Voltage-sensitive dyes and imaging techniques offer new insights on how spatiotemporal heterogeneities of APs govern propagation, repolarization, and AV node conduction and help us visualize arrhythmias with previously unattainable details.
Collapse
Affiliation(s)
- Guy Salama
- Department of Cell Biology and Physiology at the University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261
| | | |
Collapse
|
94
|
Cheng DK, Tung L, Sobie EA. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H351-62. [PMID: 10409215 DOI: 10.1152/ajpheart.1999.277.1.h351] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The response of cellular transmembrane potentials (V(m)) to applied electric fields is a critical factor during electrical pacing, cardioversion, and defibrillation, yet the coupling relationship of the cellular response to field intensity and polarity is not well documented. Isolated guinea pig ventricular myocytes were stained with a voltage-sensitive fluorescent dye, di-8-ANEPPS (10 microM). A green helium-neon laser was used to excite the fluorescent dye with a 15-micrometers-diameter focused spot, and subcellular V(m) were recorded optically during field stimulation directed along the long axis of the cell. The membrane response was measured at the cell end with the use of a 30-ms S1-S2 coupling interval and a 10-ms S2 pulse with strength of up to approximately 500-mV half-cell length potential (field strength x one-half the cell length). The general trends show that 1) the response of V(m) at the cell end occurs in two stages, the first being very rapid (<1 ms) and the second much slower in time scale, 2) the rapid response consists of hyperpolarization when the cell end faces the anode and depolarization when the cell end faces the cathode, 3) the rapid response varies nonlinearly with field strengths and polarity, being relatively larger for the hyperpolarizing responses, and 4) the slower, time-dependent response has a time course that varies in slope with field strength. Furthermore, the linearity of the dye response was confirmed over a voltage range of -280 to +140 mV by simultaneous measurements of optically and electrically recorded V(m). These experimental findings could not be reproduced by the updated, Luo-Rudy dynamic model but could be explained with the addition of two currents that activate outside the physiological range of voltages: a hypothetical outward current that activates strongly at positive potentials and a second current that represents electroporation of the cell membrane.
Collapse
Affiliation(s)
- D K Cheng
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
95
|
Clarke RJ, Lüpfert C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 1999; 76:2614-24. [PMID: 10233076 PMCID: PMC1300231 DOI: 10.1016/s0006-3495(99)77414-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Anions and cations have long been recognized to be capable of modifying the functioning of various membrane-related physiological processes. Here, a fluorescent ratio method using the styrylpyridinium dyes, RH421 and di-8-ANEPPS, was applied to determine the effect of a range of anions and cations on the intramembrane dipole potential of dimyristoylphosphatidylcholine vesicles. It was found that certain anions cause a decrease in the dipole potential. This could be explained by binding within the membrane, in support of a hypothesis originally put forward by A. L. Hodgkin and P. Horowicz [1960, J. Physiol. (Lond.) 153:404-412.] The effectiveness of the anions in reducing the dipole potential was found to be ClO4- > SCN- > I- > NO3- > Br- > Cl- > F- > SO42-. This order could be modeled by a partitioning of ions between the membrane and the aqueous phase, which is controlled predominantly by the Gibbs free energy of hydration. Cations were also found to be capable of reducing the dipole potential, although much less efficiently than can anions. The effects of the cations was found to be trivalent > divalent > monovalent. The cation effects were attributed to binding to a specific polar site on the surface of the membrane. The results presented provide a molecular basis for the interpretation of the Hofmeister effect of lyotropic anions on ion transport proteins.
Collapse
Affiliation(s)
- R J Clarke
- Department of Biophysical Chemistry, Max-Planck-Institut für Biophysik, Kennedyallee 70, D-60596 Frankfurt am Main, Germany
| | | |
Collapse
|
96
|
Bullen A, Saggau P. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys J 1999; 76:2272-87. [PMID: 10096922 PMCID: PMC1300200 DOI: 10.1016/s0006-3495(99)77383-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
An improved method for making fast quantitative determinations of membrane potential with voltage-sensitive dyes is presented. This method incorporates a high-speed, random-access, laser-scanning scheme (Bullen et al., 1997. Biophys. J. 73:477-491) with simultaneous detection at two emission wavelengths. The basis of this ratiometric approach is the voltage-dependent shift in the emission spectrum of the voltage-sensitive dye di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS). Optical measurements are made at two emission wavelengths, using secondary dichroic beamsplitting and dual photodetectors (<570 nm and >570 nm). Calibration of the ratiometric measurements between signals at these wavelengths was achieved using simultaneous optical and patch-clamp measurements from adjacent points. Data demonstrating the linearity, precision, and accuracy of this technique are presented. Records obtained with this method exhibited a voltage resolution of approximately 5 mV, without any need for temporal or spatial averaging. Ratiometric recordings of action potentials from isolated hippocampal neurons are used to illustrate the usefulness of this approach. This method is unique in that it is the first to allow quantitative determination of dynamic membrane potential changes in a manner optimized for both high spatiotemporal resolution (2 micrometers and <0.5 ms) and voltage discrimination.
Collapse
Affiliation(s)
- A Bullen
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
97
|
Veliçelebi G, Stauderman KA, Varney MA, Akong M, Hess SD, Johnson EC. Fluorescence techniques for measuring ion channel activity. Methods Enzymol 1999; 294:20-47. [PMID: 9916221 DOI: 10.1016/s0076-6879(99)94005-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- G Veliçelebi
- Neurosciences, Inc., La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
98
|
Beach JM, McGahren ED, Duling BR. Capillaries and arterioles are electrically coupled in hamster cheek pouch. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1489-96. [PMID: 9746501 DOI: 10.1152/ajpheart.1998.275.4.h1489] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report we demonstrate electrical communication in the microcirculation between arterioles and capillary networks in situ. Microvessel networks in the hamster cheek pouch, which included capillaries and their feeding arterioles, were labeled with the voltage-sensitive dye di-8-ANEPPS by intraluminal perfusion through a micropipette. Pulses of 140 mM potassium solution were applied by pressure ejection from micropipettes positioned on arterioles several hundred micrometers upstream from capillaries. Potassium caused membrane potential changes of 3-11 mV in capillary segments up to 1,200 micrometers distal to the stimulation site, with time delays of <1 s. Capillary membrane potential changes were biphasic, with initial depolarizations followed by hyperpolarizations. The size of the response decreased exponentially with the distance between the arteriole and capillary, with a 1/e distance of 590 micrometers. The time to peak depolarization of both arteriolar and capillary segments was similar. The time to peak response was significantly faster than that for responses from direct stimulation of capillaries. Capillary responses were also obtained when blood flow was either blocked or directed toward sites of stimulation. Acetylcholine (10(-4) M) and phenylephrine (10(-5) M) applied to the arterioles by iontophoresis produced monophasic hyperpolarizing and depolarizing responses, respectively, in capillaries with <1-s delay between stimulus and onset of the membrane potential change. These results provide evidence in situ of a pathway for electrical communication between arteriolar and capillary levels of the microcirculation.
Collapse
Affiliation(s)
- J M Beach
- Departments of Biomedical Engineering, Surgery, and Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
99
|
Cladera J, O'Shea P. Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide. Biophys J 1998; 74:2434-42. [PMID: 9591669 PMCID: PMC1299585 DOI: 10.1016/s0006-3495(98)77951-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The relationship between the dipole potential and the interaction of the mitochondrial amphipathic signal sequence known as p25 with model membranes has been studied using 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octyl-amino)-6-naphthyl]viny l] pyridinium betaine (di-8-ANEPPS) as a fluorescent probe. The dipole potential of phosphatidylcholine membranes was modified by incorporating into the bilayer the sterols phloretin and 6-ketocholestanol (KC), which decrease and increase the dipole potential, respectively. The results derived from the application of a dual-wavelength ratiometric fluorescence method for following the variation of the membrane dipole potential have shown that when p25 inserts into the lipidic bilayer, a decrease in the dipole potential takes place. The magnitude of this decrease depends on the initial value of the dipole potential, i.e., before interaction with the peptide. Thus, when KC was incorporated into the bilayer, the decrease caused by the membrane insertion of p25 was larger than that caused in PC membranes. Alternatively, in the presence of phloretin, the decrease in the potential caused by the peptide insertion was smaller. Complementary studies involving attenuated total reflectance-Fourier transform infrared spectroscopy of the peptide membrane interactions have shown that modification of the dipole potential affects the conformation of the peptide during the course of its interaction with the membrane. The presence of KC induces a higher amount of helicoidal structure. The presence of phloretin, however, does not appear to affect the secondary structure of the peptide. The differences observed in the dipole potential decreases caused by the presence of the peptide with the PC membranes and phloretin-PC membranes, therefore, must involve differences in the tertiary and, perhaps, quaternary conformations of p25.
Collapse
Affiliation(s)
- J Cladera
- The Welsh School of Pharmacy, Cardiff University
| | | |
Collapse
|
100
|
Abstract
The functional characteristics of fluorescent probes used for imaging and measuring dynamic processes in living cells are reviewed. Initial consideration is given to general design requirements for delivery, targeting, detectability and fluorescence readout, and current technologies for attaining them. Discussion then proceeds to the more application-specific properties of intracellular ion indicators, membrane potential sensors, probes for proteins and lipids, and cell viability markers.
Collapse
Affiliation(s)
- I Johnson
- Molecular Probes, Eugene, OR 97402-9165, USA
| |
Collapse
|