51
|
Herrick KA, Rossen LM, Nielsen SJ, Branum AM, Ogden CL. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008. [PMID: 26391940 DOI: 10.1542/peds] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes monocyte/macrophage-activation responses by increasing the expression of Toll-like receptors and inhibiting activation-induced apoptosis. On the basis of results of previous genetic linkage studies and reported altered innate immune response in autism spectrum disorder, we hypothesized that MIF could represent a candidate gene for autism spectrum disorder or its diagnostic components. METHODS Genetic association between autism spectrum disorder and MIF was investigated in 2 independent sets of families of probands with autism spectrum disorder, from the United States (527 participants from 152 families) and Holland (532 participants from 183 families). Probands and their siblings, when available, were evaluated with clinical instruments used for autism spectrum disorder diagnoses. Genotyping was performed for 2 polymorphisms in the promoter region of the MIF gene in both samples sequentially. In addition, MIF plasma analyses were conducted in a subset of Dutch patients from whom plasma was available. RESULTS There were genetic associations between known functional polymorphisms in the promoter for MIF and autism spectrum disorder-related behaviors. Also, probands with autism spectrum disorder exhibited higher circulating MIF levels than did their unaffected siblings, and plasma MIF concentrations correlated with the severity of multiple autism spectrum disorder symptoms. CONCLUSIONS These results identify MIF as a possible susceptibility gene for autism spectrum disorder. Additional research is warranted on the precise relationship between MIF and the behavioral components of autism spectrum disorder, the mechanism by which MIF contributes to autism spectrum disorder pathogenesis, and the clinical use of MIF genotyping.
Collapse
Affiliation(s)
| | - Lauren M Rossen
- Infant, Child, and Women's Health Statistics Branch, Office of Analysis and Epidemiology, and
| | | | - Amy M Branum
- Reproductive Statistics Branch, Division of Vital Statistics, National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, Maryland
| | | |
Collapse
|
52
|
Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, Amaral DG. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun 2008; 22:806-16. [PMID: 18262386 PMCID: PMC3779644 DOI: 10.1016/j.bbi.2007.12.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 12/16/2007] [Accepted: 12/22/2007] [Indexed: 01/04/2023] Open
Abstract
Autism together with Asperger syndrome and pervasive developmental disorder not otherwise specified form a spectrum of conditions (autism spectrum disorders or ASD) that is characterized by disturbances in social behavior, impaired communication and the presence of stereotyped behaviors or circumscribed interests. Recent estimates indicate a prevalence of ASD of 1 per 150 (Kuehn, 2007). The cause(s) of most cases of ASD are unknown but there is an emerging consensus that ASD have multiple etiologies. One proposed cause of ASD is exposure of the fetal brain to maternal autoantibodies during pregnancy [Dalton, P., Deacon, R., Blamire, A., Pike, M., McKinlay, I., Stein, J., Styles, P., Vincent, A., 2003. Maternal neuronal antibodies associated with autism and a language disorder. Ann. Neurol. 53, 533-537]. To provide evidence for this hypothesis, four rhesus monkeys were exposed prenatally to human IgG collected from mothers of multiple children diagnosed with ASD. Four control rhesus monkeys were exposed to human IgG collected from mothers of multiple typically developing children. Five additional monkeys were untreated controls. Monkeys were observed in a variety of behavioral paradigms involving unique social situations. Behaviors were scored by trained observers and overall activity was monitored with actimeters. Rhesus monkeys gestationally exposed to IgG class antibodies from mothers of children with ASD consistently demonstrated increased whole-body stereotypies across multiple testing paradigms. These monkeys were also hyperactive compared to controls. Treatment with IgG purified from mothers of typically developing children did not induce stereotypical or hyperactive behaviors. These findings support the potential for an autoimmune etiology in a subgroup of patients with neurodevelopmental disorders. This research raises the prospect of prenatal evaluation for neurodevelopmental risk factors and the potential for preventative therapeutics.
Collapse
Affiliation(s)
- Loren A. Martin
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center and The M.I.N.D. Institute, University of California-Davis, 2825 50th Street, Sacramento, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, University of California, Davis, CA, USA
- NIEHS Center for Children’s Environmental Health, University of California, Davis, CA, USA
| | - Daniel Braunschweig
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Maricel Cabanlit
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Judy Van de Water
- NIEHS Center for Children’s Environmental Health, University of California, Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center and The M.I.N.D. Institute, University of California-Davis, 2825 50th Street, Sacramento, CA 95817, USA
- NIEHS Center for Children’s Environmental Health, University of California, Davis, CA, USA
| |
Collapse
|
53
|
Grigorenko EL, Han SS, Yrigollen CM, Leng L, McDonald C, Mizue Y, Anderson GM, Mulder EJ, de Bildt A, Minderaa RB, Volkmar FR, Chang JT, Bucala R. Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 2008; 122:e438-45. [PMID: 18676531 PMCID: PMC3816765 DOI: 10.1542/peds.2007-3604] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes monocyte/macrophage-activation responses by increasing the expression of Toll-like receptors and inhibiting activation-induced apoptosis. On the basis of results of previous genetic linkage studies and reported altered innate immune response in autism spectrum disorder, we hypothesized that MIF could represent a candidate gene for autism spectrum disorder or its diagnostic components. METHODS Genetic association between autism spectrum disorder and MIF was investigated in 2 independent sets of families of probands with autism spectrum disorder, from the United States (527 participants from 152 families) and Holland (532 participants from 183 families). Probands and their siblings, when available, were evaluated with clinical instruments used for autism spectrum disorder diagnoses. Genotyping was performed for 2 polymorphisms in the promoter region of the MIF gene in both samples sequentially. In addition, MIF plasma analyses were conducted in a subset of Dutch patients from whom plasma was available. RESULTS There were genetic associations between known functional polymorphisms in the promoter for MIF and autism spectrum disorder-related behaviors. Also, probands with autism spectrum disorder exhibited higher circulating MIF levels than did their unaffected siblings, and plasma MIF concentrations correlated with the severity of multiple autism spectrum disorder symptoms. CONCLUSIONS These results identify MIF as a possible susceptibility gene for autism spectrum disorder. Additional research is warranted on the precise relationship between MIF and the behavioral components of autism spectrum disorder, the mechanism by which MIF contributes to autism spectrum disorder pathogenesis, and the clinical use of MIF genotyping.
Collapse
Affiliation(s)
- Elena L. Grigorenko
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA,Department of Psychology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, USA,Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia,To whom correspondence should be addressed: Telephone: 203-737-1453, 203-737-2316, Fax: 203-785-7053, 203-785-3002, ,
| | - Summer S. Han
- Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia
| | - Carolyn M. Yrigollen
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA
| | - Lin Leng
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520
| | - Courtney McDonald
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520
| | - Yuka Mizue
- Sapporo Immuno Diagnostic Laboratory, 12-20, Shinkawa 2-2, Kita-ku, Sapporo 001-0922, Japan
| | - George M. Anderson
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA
| | - Erik J. Mulder
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Annelies de Bildt
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Ruud B. Minderaa
- Accare/University Medical Center Groningen, University Center for Child and Adolescent Psychiatry, P.O. Box 660, 9700 AR Groningen, the Netherlands
| | - Fred R. Volkmar
- Child Study Center, Yale University, 230 South Frontage Rd, New Haven, CT 06519, USA,Department of Psychology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, USA
| | - Joseph T. Chang
- Department of Psychology, Moscow State University, 11/5 Mokhovaia St, Moscow 125009, Russia
| | - Richard Bucala
- Department of Epidemiology and Public Health, Yale University, 300 Cedar St, New Haven, CT 06520,Departments of Internal Medicine and Pathology, Yale University, 300 Cedar St, New Haven, CT 06520,To whom correspondence should be addressed: Telephone: 203-737-1453, 203-737-2316, Fax: 203-785-7053, 203-785-3002, ,
| |
Collapse
|
54
|
Schneider T, Roman A, Basta-Kaim A, Kubera M, Budziszewska B, Schneider K, Przewłocki R. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 2008; 33:728-40. [PMID: 18396377 DOI: 10.1016/j.psyneuen.2008.02.011] [Citation(s) in RCA: 244] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/16/2008] [Accepted: 02/20/2008] [Indexed: 12/31/2022]
Abstract
Autism is a severe behavioral disorder characterized by pervasive impairments in social interactions, deficits in verbal and non-verbal communication, and stereotyped behaviors, with a four times higher incidence in boys than in girls. The core symptoms are frequently accompanied by a spectrum of neurobehavioral and immunological derangements, including: aberrant sensitivity to sensory stimulation, anxiety, and decreased cellular immune capacity. Recently, a new potential rodent model of autism induced by prenatal exposure to valproic acid (VPA rats) has been proposed. In order to determine if gender has an influence on alterations observed in VPA rats, male and female rats have been evaluated in a battery of behavioral, immunological, and endocrinological tests. A plethora of aberrations has been found in male VPA rats: lower sensitivity to pain, increased repetitive/stereotypic-like activity, higher anxiety, decreased level of social interaction, increased basal level of corticosterone, decreased weight of the thymus, decreased splenocytes proliferative response to concanavaline A, lower IFN-gamma/IL-10 ratio, and increased production of NO by peritoneal macrophages. Female VPA rats exhibited only increased repetitive/stereotypic-like activity and decreased IFN-gamma/IL-10 ratio. Sexual dimorphism characteristics for measured parameters have been observed in both groups of animals, except social interaction in VPA rats. Our results confirm existence of similarities between the observed pattern of aberrations in VPA rats and features of disturbed behavior and immune function in autistic patients, and suggest that they are gender-specific, which is intriguing in light of disproportion in boys to girls ratio in autism.
Collapse
Affiliation(s)
- Tomasz Schneider
- Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str, 31-343 Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
55
|
JOHNSON CHRISPLAUCHÉ, MYERS SCOTTM. Autism Spectrum Disorders. DEVELOPMENTAL-BEHAVIORAL PEDIATRICS 2008:519-577. [DOI: 10.1016/b978-0-323-04025-9.50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
56
|
|
57
|
Abstract
The neurobiology and neuropathology of the autism spectrum disorders (ASD) remain poorly defined. Brain imaging studies suggest that the deficits in social cognition, language, communication and stereotypical patterns of behaviour that are manifest in individuals with ASD, are related to functional disturbance and 'disconnectivity', affecting multiple brain regions. These impairments are considered to arise as a consequence of abnormal pre- and postnatal development of a distributed neural network. Examination of the brain post mortem continues to provide fundamental information concerning the cellular and subcellular alterations that take place in the brain of autistic individuals. Neuropathological observations that have emerged over the past decade also point towards early pre- and postnatal developmental abnormalities that involve multiple regions of the brain, including the cerebral cortex, cortical white matter, amygdala, brainstem and cerebellum. However, the neuropathology of autism is yet to be clearly defined, and there are several areas that remain open to further investigation. In this respect, more concerted efforts are required to examine the various aspects of cellular pathology affecting the brain in autism. This paper briefly highlights four key areas that warrant further evaluation.
Collapse
Affiliation(s)
- C Schmitz
- Department of Psychiatry and Neuropsychology, Division of Cellular Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | |
Collapse
|
58
|
Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J. Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann N Y Acad Sci 2007; 1107:92-103. [PMID: 17804536 DOI: 10.1196/annals.1381.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although autism spectrum disorder (ASD) is diagnosed on the basis of behavioral parameters, several studies have reported immune system abnormalities and suggest the possible role of autoimmunity in the pathogenesis of ASD. In this study we sought to assess the incidence of brain-specific autoantibodies in the plasma of children with autism (AU) compared to age-matched controls including, siblings without ASD, typically developing (TD) controls, and children with other developmental disabilities, but not autism (DD). Plasma from 172 individuals (AU, n = 63, median age: 43 months; TD controls, n = 63, median age: 48 months; siblings, n = 25, median age: 61 months; and DD controls, n = 21, median age: 38 months) was analyzed by Western blot for the presence of IgG antibodies against protein extracts from specific regions of the human adult brain including the hypothalamus and thalamus. The presence of a approximately 52 kDa MW band, in the plasma of subjects with AU, was detected with a significantly higher incidence when compared to plasma from TD controls (29% vs. 8%, P = 0.0027 and 30% vs. 11%, P = 0.01, in the thalamus and hypothalamus, respectively). Reactivity to three brain proteins (42-48 kDa MW), in particular in the hypothalamus, were observed with increased incidence in 37% of subjects with AU compared to 13% TD controls (P = 0.004). Multiple brain-specific autoantibodies are present at significantly higher frequency in children with AU. While the potential role of these autoantibodies in AU is currently unknown, their presence suggests a loss of self-tolerance to one or more neural antigens during early childhood.
Collapse
Affiliation(s)
- Maricel Cabanlit
- Division of Rheumatology, Allergy and Clinical Immunology, UC Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
59
|
|
60
|
Schechtman MA. Scientifically unsupported therapies in the treatment of young children with autism spectrum disorders. Pediatr Ann 2007; 36:497-8, 500-2, 504-5. [PMID: 17849608 DOI: 10.3928/0090-4481-20070801-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our understanding of ASD has changed over the past decades, and diagnostic tools have assisted in earlier identification and referral for intervention. Appropriate intervention appears to impact positively on overall outcome for a pervasive developmental disorder for which there is currently no known cure. Novel and controversial therapies will come and go, and therefore physicians should familiarize themselves with these interventions, as advice about these alternative approaches will be sought. Discussions of nontraditional therapies should include the placebo effect, possibly undesirable, or potentially dangerous outcomes of a treatment, and the importance of scientifically sound research studies of that treatment. Addressing the use of complementary and alternative therapies in families with medically-compromised or developmentally disabled children is crucial to providing complete care to the patient and in the maintenance of a medical home.
Collapse
Affiliation(s)
- Merryl A Schechtman
- Albert Einstein College of Medicine, Infant Preschool Unit, Children's Evaluation and Rehabilitation Center, Rose F. Kennedy Center, USA
| |
Collapse
|
61
|
Boris M, Kaiser CC, Goldblatt A, Elice MW, Edelson SM, Adams JB, Feinstein DL. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation 2007; 4:3. [PMID: 17207275 PMCID: PMC1781426 DOI: 10.1186/1742-2094-4-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/05/2007] [Indexed: 02/07/2023] Open
Abstract
Introduction Autism is complex neuro-developmental disorder which has a symptomatic diagnosis in patients characterized by disorders in language/communication, behavior, and social interactions. The exact causes for autism are largely unknown, but is has been speculated that immune and inflammatory responses, particularly those of Th2 type, may be involved. Thiazolidinediones (TZDs) are agonists of the peroxisome proliferator activated receptor gamma (PPARγ), a nuclear hormone receptor which modulates insulin sensitivity, and have been shown to induce apoptosis in activated T-lymphocytes and exert anti-inflammatory effects in glial cells. The TZD pioglitazone (Actos) is an FDA-approved PPARγ agonist used to treat type 2 diabetes, with a good safety profile, currently being tested in clinical trials of other neurological diseases including AD and MS. We therefore tested the safety and therapeutic potential of oral pioglitazone in a small cohort of children with diagnosed autism. Case description The rationale and risks of taking pioglitazone were explained to the parents, consent was obtained, and treatment was initiated at either 30 or 60 mg per day p.o. A total of 25 children (average age 7.9 ± 0.7 year old) were enrolled. Safety was assessed by measurements of metabolic profiles and blood pressure; effects on behavioral symptoms were assessed by the Aberrant Behavior Checklist (ABC), which measures hyperactivity, inappropriate speech, irritability, lethargy, and stereotypy, done at baseline and after 3–4 months of treatment. Discussion and evaluation In a small cohort of autistic children, daily treatment with 30 or 60 mg p.o. pioglitazone for 3–4 months induced apparent clinical improvement without adverse events. There were no adverse effects noted and behavioral measurements revealed a significant decrease in 4 out of 5 subcategories (irritability, lethargy, stereotypy, and hyperactivity). Improved behaviors were inversely correlated with patient age, indicating stronger effects on the younger patients. Conclusion Pioglitazone should be considered for further testing of therapeutic potential in autistic patients.
Collapse
Affiliation(s)
- Marvin Boris
- 77 Froehlich Farm Blvd Woodbury, New York 11797, USA
| | - Claudia C Kaiser
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| | | | | | | | - James B Adams
- Arizona State University, PO Box 876006, Tempe, AZ 85287-6006, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, 60612, USA
| |
Collapse
|
62
|
Rossignol DA. Hyperbaric oxygen therapy might improve certain pathophysiological findings in autism. Med Hypotheses 2007; 68:1208-27. [PMID: 17141962 DOI: 10.1016/j.mehy.2006.09.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 12/18/2022]
Abstract
Autism is a neurodevelopmental disorder currently affecting as many as 1 out of 166 children in the United States. Numerous studies of autistic individuals have revealed evidence of cerebral hypoperfusion, neuroinflammation and gastrointestinal inflammation, immune dysregulation, oxidative stress, relative mitochondrial dysfunction, neurotransmitter abnormalities, impaired detoxification of toxins, dysbiosis, and impaired production of porphyrins. Many of these findings have been correlated with core autistic symptoms. For example, cerebral hypoperfusion in autistic children has been correlated with repetitive, self-stimulatory and stereotypical behaviors, and impairments in communication, sensory perception, and social interaction. Hyperbaric oxygen therapy (HBOT) might be able to improve each of these problems in autistic individuals. Specifically, HBOT has been used with clinical success in several cerebral hypoperfusion conditions and can compensate for decreased blood flow by increasing the oxygen content of plasma and body tissues. HBOT has been reported to possess strong anti-inflammatory properties and has been shown to improve immune function. There is evidence that oxidative stress can be reduced with HBOT through the upregulation of antioxidant enzymes. HBOT can also increase the function and production of mitochondria and improve neurotransmitter abnormalities. In addition, HBOT upregulates enzymes that can help with detoxification problems specifically found in autistic children. Dysbiosis is common in autistic children and HBOT can improve this. Impaired production of porphyrins in autistic children might affect the production of heme, and HBOT might help overcome the effects of this problem. Finally, HBOT has been shown to mobilize stem cells from the bone marrow to the systemic circulation. Recent studies in humans have shown that stem cells can enter the brain and form new neurons, astrocytes, and microglia. It is expected that amelioration of these underlying pathophysiological problems through the use of HBOT will lead to improvements in autistic symptoms. Several studies on the use of HBOT in autistic children are currently underway and early results are promising.
Collapse
Affiliation(s)
- Daniel A Rossignol
- University of Virginia, Department of Family Medicine, P.O. Box 800729, Charlottesville, VA 22908, USA.
| |
Collapse
|
63
|
Abstract
OBJECTIVE The purpose of this work was to investigate the association between infections in the first 2 years and subsequent diagnosis of autism spectrum disorders. METHODS We conducted a case-control study among children born at Kaiser Permanente Northern California from 1995 to 1999. Case subjects (n = 403) were children with an autism diagnosis recorded in Kaiser Permanente databases. Control subjects (n = 2100) were randomly sampled from the remaining children without autism and frequency matched to case subjects on gender, birth year, and birth hospital. Information on infections and covariates were obtained from Kaiser Permanente and birth certificate databases. RESULTS Overall, infection diagnoses in the first 2 years of life were recorded slightly less often for children with autism than control children (95.0% vs 97.5%). Among specific diagnoses, upper respiratory infections were significantly less frequently diagnosed and genitourinary infections more frequently diagnosed in children with autism. In the first 30 days of life, the frequency of having an infection was slightly higher among children with autism (22.6% vs 18.7%). CONCLUSIONS Children with subsequent diagnoses of autism do not have more overall infections in the first 2 years of life than children without autism. Data suggest that children with autism may have modestly elevated rates of infection in the first 30 days and that, during the first 2 years, children with autism may be at higher risk for certain types of infections and lower risk for others. Additional studies that explore the associations between prenatal and early childhood infections and autism may help clarify the role of infection and the immune system in the etiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Nila J Rosen
- Division of Research, Kaiser Permanente, Oakland, California, USA.
| | | | | |
Collapse
|
64
|
Bradstreet JJ, Smith S, Granpeesheh D, El-Dahr JM, Rossignol D. Spironolactone might be a desirable immunologic and hormonal intervention in autism spectrum disorders. Med Hypotheses 2006; 68:979-87. [PMID: 17150311 DOI: 10.1016/j.mehy.2006.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/05/2006] [Indexed: 01/09/2023]
Abstract
Multiple studies now demonstrate that autism is medically characterized, in part, by immune system dysregulation, including evidence of neuroglial activation and gastrointestinal inflammation. This neuroglial process has further been characterized as neuroinflammation. In addition, a subset of autistic children exhibit higher than average levels of androgens. Spironolactone is an aldosterone antagonist and potassium-sparing diuretic with a desirable safety profile. It possesses potent anti-inflammatory and immune modifying properties that might make it an excellent medical intervention for autism spectrum disorders. Furthermore, spironolactone demonstrates substantial anti-androgen properties that might further enhance its appeal in autism, particularly in a definable subset of hyperandrogenic autistic children. One case report is briefly reviewed demonstrating objective clinical improvements in an autistic child after spironolactone administration. Additional research in controlled trials is now needed to further define the risks and benefits of spironolactone use in children with autism.
Collapse
Affiliation(s)
- James Jeffrey Bradstreet
- International Child Development Resource Center, Melbourne and Florida Hospital, Celebration, 1688 West Hibiscus Boulevard, Melbourne, FL 32901, United States.
| | | | | | | | | |
Collapse
|
65
|
Baron CA, Liu SY, Hicks C, Gregg JP. Utilization of lymphoblastoid cell lines as a system for the molecular modeling of autism. J Autism Dev Disord 2006; 36:973-982. [PMID: 16845580 DOI: 10.1007/s10803-006-0134-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In order to provide an alternative approach for understanding the biology and genetics of autism, we performed statistical analysis of gene expression profiles of lymphoblastoid cell lines derived from children with autism and their families. The goal was to assess the feasibility of using this model in identifying autism-associated genes. Replicate microarray experiments demonstrated that expression data from the cell lines were consistent and highly reproducible. Further analyses identified differentially expressed genes between cell lines derived from children with autism and those derived from their normally developing siblings. These genes were then used to identify biochemical pathways potentially involved in autism. This study suggests that lymphoblastoid cell lines may be a viable tool for identifying genes associated with autism.
Collapse
Affiliation(s)
- Colin A Baron
- Department of Pathology and Laboratory Medicine and MIND Institute, University of California-Davis, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
66
|
Agrawal A, Kaushal P, Agrawal S, Gollapudi S, Gupta S. Thimerosal induces TH2 responses via influencing cytokine secretion by human dendritic cells. J Leukoc Biol 2006; 81:474-82. [PMID: 17079650 DOI: 10.1189/jlb.0706467] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Thimerosal is an organic mercury compound that is used as a preservative in vaccines and pharmaceutical products. Recent studies have shown a TH2-skewing effect of mercury, although the underlying mechanisms have not been identified. In this study, we investigated whether thimerosal can exercise a TH2-promoting effect through modulation of functions of dendritic cells (DC). Thimerosal, in a concentration-dependent manner, inhibited the secretion of LPS-induced proinflammatory cytokines TNF-alpha, IL-6, and IL-12p70 from human monocyte-derived DC. However, the secretion of IL-10 from DC was not affected. These thimerosal-exposed DC induced increased TH2 (IL-5 and IL-13) and decreased TH1 (IFN-gamma) cytokine secretion from the T cells in the absence of additional thimerosal added to the coculture. Thimerosal exposure of DC led to the depletion of intracellular glutathione (GSH), and addition of exogenous GSH to DC abolished the TH2-promoting effect of thimerosal-treated DC, restoring secretion of TNF-alpha, IL-6, and IL-12p70 by DC and IFN-gamma secretion by T cells. These data suggest that modulation of TH2 responses by mercury and thimerosal, in particular, is through depletion of GSH in DC.
Collapse
Affiliation(s)
- Anshu Agrawal
- Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
67
|
Harry GJ, Lawler C, Brunssen SH. Maternal infection and white matter toxicity. Neurotoxicology 2006; 27:658-70. [PMID: 16787664 PMCID: PMC1592133 DOI: 10.1016/j.neuro.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/01/2006] [Accepted: 05/10/2006] [Indexed: 12/11/2022]
Abstract
Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology.
Collapse
Affiliation(s)
- G Jean Harry
- Neurotoxicology Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
68
|
Chauhan A, Chauhan V. Oxidative stress in autism. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2006; 13:171-81. [PMID: 16766163 DOI: 10.1016/j.pathophys.2006.05.007] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autism is a severe developmental disorder with poorly understood etiology. Oxidative stress in autism has been studied at the membrane level and also by measuring products of lipid peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in the defense system against reactive oxygen species (ROS). Lipid peroxidation markers are elevated in autism, indicating that oxidative stress is increased in this disease. Levels of major antioxidant serum proteins, namely transferrin (iron-binding protein) and ceruloplasmin (copper-binding protein), are decreased in children with autism. There is a positive correlation between reduced levels of these proteins and loss of previously acquired language skills in children with autism. The alterations in ceruloplasmin and transferrin levels may lead to abnormal iron and copper metabolism in autism. The membrane phospholipids, the prime target of ROS, are also altered in autism. The levels of phosphatidylethanolamine (PE) are decreased, and phosphatidylserine (PS) levels are increased in the erythrocyte membrane of children with autism as compared to their unaffected siblings. Several studies have suggested alterations in the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glutathione levels and homocysteine/methionine metabolism, increased inflammation, excitotoxicity, as well as mitochondrial and immune dysfunction have been suggested in autism. Furthermore, environmental and genetic factors may increase vulnerability to oxidative stress in autism. Taken together, these studies suggest increased oxidative stress in autism that may contribute to the development of this disease. A mechanism linking oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed.
Collapse
Affiliation(s)
- Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
69
|
Burgess NK, Sweeten TL, McMahon WM, Fujinami RS. Hyperserotoninemia and Altered Immunity in Autism. J Autism Dev Disord 2006; 36:697-704. [PMID: 16614791 DOI: 10.1007/s10803-006-0100-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the most consistent biological findings in autism is elevated whole blood serotonin (5-HT) levels found in about 1/3 of cases. Immune abnormalities are also commonly observed in this disorder. Given 5-HT's role as an immunomodulator, possible connections between 5-HT and immune abnormalities in autism are explored in this review. Areas of focus include hyperserotoninemia and cellular immune function, autoantibodies to 5-HT receptors, and 5-HT's role in autoimmunity. Further research is needed to determine the interactions between neuropsychiatric and immune dysfunction in autism and related disorders.
Collapse
Affiliation(s)
- Nancy K Burgess
- Department of Neurology, University of Utah, 30 North 1900 East, 3R330 SOM, Salt Lake City, UT 84132-2305, USA.
| | | | | | | |
Collapse
|
70
|
Cohly HHP, Panja A. Immunological findings in autism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 71:317-41. [PMID: 16512356 DOI: 10.1016/s0074-7742(05)71013-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immunopathogenesis of autism is presented schematically in Fig. 1. Two main immune dysfunctions in autism are immune regulation involving pro-inflammatory cytokines and autoimmunity. Mercury and an infectious agent like the measles virus are currently two main candidate environmental triggers for immune dysfunction in autism. Genetically immune dysfunction in autism involves the MHC region, as this is an immunologic gene cluster whose gene products are Class I, II, and III molecules. Class I and II molecules are associated with antigen presentation. The antigen in virus infection initiated by the virus particle itself while the cytokine production and inflammatory mediators are due to the response to the putative antigen in question. The cell-mediated immunity is impaired as evidenced by low numbers of CD4 cells and a concomitant T-cell polarity with an imbalance of Th1/Th2 subsets toward Th2. Impaired humoral immunity on the other hand is evidenced by decreased IgA causing poor gut protection. Studies showing elevated brain specific antibodies in autism support an autoimmune mechanism. Viruses may initiate the process but the subsequent activation of cytokines is the damaging factor associated with autism. Virus specific antibodies associated with measles virus have been demonstrated in autistic subjects. Environmental exposure to mercury is believed to harm human health possibly through modulation of immune homeostasis. A mercury link with the immune system has been postulated due to the involvement of postnatal exposure to thimerosal, a preservative added in the MMR vaccines. The occupational hazard exposure to mercury causes edema in astrocytes and, at the molecular level, the CD95/Fas apoptotic signaling pathway is disrupted by Hg2+. Inflammatory mediators in autism usually involve activation of astrocytes and microglial cells. Proinflammatory chemokines (MCP-1 and TARC), and an anti-inflammatory and modulatory cytokine, TGF-beta1, are consistently elevated in autistic brains. In measles virus infection, it has been postulated that there is immune suppression by inhibiting T-cell proliferation and maturation and downregulation MHC class II expression. Cytokine alteration of TNF-alpha is increased in autistic populations. Toll-like-receptors are also involved in autistic development. High NO levels are associated with autism. Maternal antibodies may trigger autism as a mechanism of autoimmunity. MMR vaccination may increase risk for autism via an autoimmune mechanism in autism. MMR antibodies are significantly higher in autistic children as compared to normal children, supporting a role of MMR in autism. Autoantibodies (IgG isotype) to neuron-axon filament protein (NAFP) and glial fibrillary acidic protein (GFAP) are significantly increased in autistic patients (Singh et al., 1997). Increase in Th2 may explain the increased autoimmunity, such as the findings of antibodies to MBP and neuronal axonal filaments in the brain. There is further evidence that there are other participants in the autoimmune phenomenon. (Kozlovskaia et al., 2000). The possibility of its involvement in autism cannot be ruled out. Further investigations at immunological, cellular, molecular, and genetic levels will allow researchers to continue to unravel the immunopathogenic mechanisms' associated with autistic processes in the developing brain. This may open up new avenues for prevention and/or cure of this devastating neurodevelopmental disorder.
Collapse
|
71
|
Stern L, Francoeur MJ, Primeau MN, Sommerville W, Fombonne E, Mazer BD. Immune function in autistic children. Ann Allergy Asthma Immunol 2006; 95:558-65. [PMID: 16400896 DOI: 10.1016/s1081-1206(10)61019-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There have been reports that some children with autistic spectrum disorders have abnormal immune function. However, data in this area remain scarce and conflicting. OBJECTIVE To evaluate the immune function of a series of autistic children in the context of this proposed association. METHODS We prospectively collected data on 24 autistic children who, between January 1, 1996, and September 30, 1998, were referred unsolicited to an immunology clinic. We examined the clinical history and evaluated immunoglobulin levels; specific antibody titers to diphtheria, tetanus, and Haemophilus influenzae; T- + B-cell numbers; T-cell proliferation; and complement studies. RESULTS Seven of the 24 children had a history of recurrent infections. Only 2 patients had immunoglobulin levels that were outside the age-adjusted reference ranges, 1 of whom was subsequently diagnosed as having common variable immune deficiency. All the patients had normal in vitro T-cell function and complement study results, and only 2 of 24 patients had subtle derangements in T-cell numbers. Elevated levels of IgE were found in 5 patients, which correlated with a clinical history of atopy. Low diphtheria or tetanus antibody levels were found in 12 patients, but in 11 of these, vaccination status was not up-to-date. CONCLUSIONS Most of the autistic children studied had normal immune function, suggesting that routine immunologic investigation is unlikely to be of benefit in most autistic children and should be considered only when there is a history suggestive of recurrent infections.
Collapse
Affiliation(s)
- Lara Stern
- Department of Psychiatry, McGill University Health Center-Montreal Children's Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
Autism is a complex neurodevelopmental disorder of early onset that is highly variable in its clinical presentation. Although the causes of autism in most patients remain unknown, several lines of research support the view that both genetic and environmental factors influence the development of abnormal cortical circuitry that underlies autistic cognitive processes and behaviors. The role of the immune system in the development of autism is controversial. Several studies showing peripheral immune abnormalities support immune hypotheses, however until recently there have been no immune findings in the CNS. We recently demonstrated the presence of neuroglial and innate neuroimmune system activation in brain tissue and cerebrospinal fluid of patients with autism, findings that support the view that neuroimmune abnormalities occur in the brain of autistic patients and may contribute to the diversity of the autistic phenotypes. The role of neuroglial activation and neuroinflammation are still uncertain but could be critical in maintaining, if not also in initiating, some of the CNS abnormalities present in autism. A better understanding of the role of neuroinflammation in the pathogenesis of autism may have important clinical and therapeutic implications.
Collapse
Affiliation(s)
- Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
73
|
Sperner-Unterweger B. Immunological aetiology of major psychiatric disorders: evidence and therapeutic implications. Drugs 2005; 65:1493-520. [PMID: 16033289 DOI: 10.2165/00003495-200565110-00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Historically, immunological research in psychiatry was based on empirical findings and early epidemiological studies indicating a possible relationship between psychiatric symptoms and acute infectious diseases. However, aetiopathological explanations for psychiatric disorders are no longer closely related to acute infection. Nevertheless, immune hypotheses have been discussed in schizophrenia, affective disorders and infantile autism in the last decades. Although the variability between the results of the epidemiological studies conducted to date is strikingly high, there is still some evidence that the immune system might play a role in the aetiopathogenesis of these three psychiatric diseases, at least in subgroups of patients. In anxiety disorders immunological research is still very much in its infancy, and the few and inconsistent data of immune changes in these patients are believed to reflect the influence of short- or long-term stress exposure. Nevertheless, there are also some hints raising the possibility that autoimmune mechanisms could interrupt neurotransmission, which would be of significance in certain patients with anxiety and panic disorders. Drug and alcohol (ethanol) dependence are not believed to be primarily influenced by an immunological aetiology. On the other hand, immune reactions due to different drugs of abuse and alcohol may directly or indirectly influence the course of concomitant somatic diseases. In different organic brain disorders the underlying somatic disease is defined as a primary immune or autoimmune disorder, for instance HIV infection or systemic lupus erythematosus (SLE). For other neurodegenerative disorders, such as Alzheimer's disease, immunoaetiopathological mechanisms are supported by experimental and clinical studies. Treatment strategies based on immune mechanisms have been investigated in patients with schizophrenia and affective disorders. Furthermore, some antipsychotics and most antidepressants are known to have direct or indirect effects on the immune system. Different immunotherapies have been used in autism, including transfer factor, pentoxifylline, intravenous immunoglobulins and corticosteroids. Immunosuppressive and/or immunomodulating agents are well established methods for treating the neuropsychiatric sequelae of immune or autoimmune disorders, for example AIDS and SLE. Therapeutic approaches in Alzheimer's disease also apply immunological methods such as strategies of active/passive immunisation and NSAIDs. Considering the comprehensive interactive network between mind and body, future research should focus on approaches linking targets of the different involved systems.
Collapse
|
74
|
Vojdani A, Bazargan M, Vojdani E, Samadi J, Nourian AA, Eghbalieh N, Cooper EL. Heat shock protein and gliadin peptide promote development of peptidase antibodies in children with autism and patients with autoimmune disease. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:515-24. [PMID: 15138176 PMCID: PMC404567 DOI: 10.1128/cdli.11.3.515-524.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Searching for a mechanism underlying autoimmunity in autism, we postulated that gliadin peptides, heat shock protein 60 (HSP-60), and streptokinase (SK) bind to different peptidases resulting in autoantibody production against these components. We assessed this hypothesis in patients with autism and in those with mixed connective tissue diseases. Associated with antigliadin and anti-HSP antibodies, children with autism and patients with autoimmune disease developed anti-dipeptidylpeptidase I (DPP I), anti-dipeptidylpeptidase IV (DPP IV [or CD26]) and anti-aminopeptidase N (CD13) autoantibodies. A significant percentage of autoimmune and autistic sera were associated with elevated immunoglobulin G (IgG), IgM, or IgA antibodies against three peptidases, gliadin, and HSP-60. These antibodies are specific, since immune absorption demonstrated that only specific antigens (e.g., DPP IV absorption of anti-DPP IV), significantly reduced IgG, IgM, and IgA antibody levels. For direct demonstration of SK, HSP-60, and gliadin peptide binding to DPP IV, microtiter wells coated with DPP IV were reacted with SK, HSP-60, and gliadin. They were then reacted with anti-DPP IV or anti-SK, anti-HSP, and antigliadin antibodies. Adding SK, HSP-60, and gliadin peptides to DPP IV resulted in 27 to 43% inhibition of the DPP IV-anti-DPP IV reaction, but DPP IV-positive peptides caused 18 to 20% enhancement of antigen-antibody reactions. We propose that (i) superantigens (e.g., SK and HSP-60) and dietary proteins (e.g., gliadin peptides) in individuals with predisposing HLA molecules bind to aminopeptidases and (ii) they induce autoantibodies to peptides and tissue antigens. Dysfunctional membrane peptidases and autoantibody production may result in neuroimmune dysregulation and autoimmunity.
Collapse
Affiliation(s)
- Aristo Vojdani
- Section of Neuroimmunology, Immunosciences Lab., Inc., 8693 Wilshire Blvd., Suite 200, Beverly Hills, CA 90211, USA.
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
In no area of developmental pediatric practice is there more controversy regarding the choice of treatment than related to children with autistic spectrum disorders (ASD). Complementary and alternative medical therapies (CAM) are often elected because they are perceived as treating the cause of symptoms rather than the symptoms themselves. CAM used for autism can be divided by proposed mechanism: immune modulation, gastrointestinal, supplements that affect neurotransmitter function, and nonbiologic intervention. Secretin as a therapy for autism is discussed as an example of how a clinical observation rapidly grew to a widespread treatment before well-designed studies demonstrated absence of effect. The plausibility for behavioral effect was not substantiated by clinical studies. CAM used for treatment of autism is examined in terms of rationale, evidence of efficacy, side effects, and additional commentary. Families and clinicians need access to well-designed clinical evidence to assist them in choice of therapies.
Collapse
Affiliation(s)
- Susan E Levy
- Children's Seashore House, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, 1914, USA.
| | | |
Collapse
|
76
|
Abstract
Public fears of rising rates of children being diagnosed with autistic spectrum disorders has led to a fear that immunizations, specifically the measles-mumps-varicella vaccine (MMR), may trigger autism. This article reviews theories of immunization as a risk factor for autism, including thimerosal exposure. We also review theories of autoimmunity as a predisposing genetic risk in autistic patients. We summarize from multiple population-based studies and extensive review committee reports that neither immunization nor thimerosal exposure has been conclusively linked to autism. Current treatments for autoimmunity in autism are reviewed and summarized as being only anecdotally effective, with no controlled studies to conclusively determine effectiveness. The goal of this article is to allow child neurologists to effectively counsel parents of autistic patients about vaccination risks and treatment options in presumed cases of autoimmune dysfunction.
Collapse
Affiliation(s)
- Michael G Chez
- Department of Neurology, The Chicago Medical School, North Chicago, IL, USA
| | | | | |
Collapse
|
77
|
Sweeten TL, Posey DJ, Shankar S, McDougle CJ. High nitric oxide production in autistic disorder: a possible role for interferon-gamma. Biol Psychiatry 2004; 55:434-7. [PMID: 14960298 DOI: 10.1016/j.biopsych.2003.09.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Revised: 08/29/2003] [Accepted: 09/03/2003] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroimmune regulation abnormalities have been implicated in the pathophysiology of autistic disorder. Nitric oxide (NO) is involved in immune reactivity and is known to affect brain neurodevelopmental processes. Recent evidence indicates that NO, and cytokines involved in NO production, may be high in children with autism. The purpose of this study was to verify that plasma NO is high in children with autism and determine whether this elevation is related to plasma levels of cytokines involved in NO production. METHODS The metabolites of NO, nitrite, and nitrate (NOx), along with the cytokines interferon-gamma (IFN-gamma), tumor necrosis factor-alpha, and interleukin-1beta, were measured in plasma of 29 children with autism (mean age +/- SD = 6.1 +/- 2.8 years) and 27 age- and gender-matched healthy comparison subjects using commercially available assay kits. RESULTS Plasma levels of NOx were significantly higher in the autistic subjects (p =.006); plasma levels of the cytokines did not differ between groups. NOx and IFN-gamma levels were positively correlated in the autistic subjects (r =.51; p =.005). CONCLUSIONS These results confirm that plasma NO is high in some children with autism and suggest that this elevation may be related to IFN-gamma activity.
Collapse
Affiliation(s)
- Thayne L Sweeten
- Department of Psychiatry, Indiana University School of Medicine, 1111 W. 10th Street, Indianapolis, IN 46202-4800, USA
| | | | | | | |
Collapse
|
78
|
Niederhofer H. Acetylcholinesterase-inhibitors in the treatment of autistic disorders. Expert Rev Neurother 2003; 3:409-12. [PMID: 19810924 DOI: 10.1586/14737175.3.4.409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
79
|
Abstract
BACKGROUND Autism is a disorder that can lead to life-long disability. Currently, the etiology of autism is unknown, and although there are treatments for some of the behavioral abnormalities, there is no cure. REVIEW SUMMARY While this article will review the clinical, anatomic, and pathologic features seen in autism, the primary focus will be to present a new and provocative unifying theory regarding the underlying mechanisms causing this disorder. Current research advances, some controversial, will be discussed, and a novel definition of autism as a "circuit syndrome" will be presented. The work elaborated here will tie many of the disparate findings together, based on the idea that autism arises from abnormalities of the cerebellolimbic circuitry. Some of the more alternative theories of autism, such as mercury toxicity, linkage to the measles, mumps, and rubella vaccine, and the use of secretin will be discussed. Finally, pharmacologic treatment options will be reviewed. CONCLUSIONS Autism is not single disorder but represents dysfunction of the cerebellolimbic circuitry that can arise from many different etiologies.
Collapse
Affiliation(s)
- Deborah A Lee
- Department of Psychiatry, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
80
|
Vojdani A, Campbell AW, Anyanwu E, Kashanian A, Bock K, Vojdani E. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol 2002; 129:168-77. [PMID: 12161033 DOI: 10.1016/s0165-5728(02)00180-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We measured autoantibodies against nine different neuron-specific antigens and three cross-reactive peptides in the sera of autistic subjects and healthy controls by means of enzyme-linked immunosorbent assay (ELISA) testing. The antigens were myelin basic protein (MBP), myelin-associated glycoprotein (MAG), ganglioside (GM1), sulfatide (SULF), chondroitin sulfate (CONSO4), myelin oligodendrocyte glycoprotein (MOG), alpha,beta-crystallin (alpha,beta-CRYS), neurofilament proteins (NAFP), tubulin and three cross-reactive peptides, Chlamydia pneumoniae (CPP), streptococcal M protein (STM6P) and milk butyrophilin (BTN). Autistic children showed the highest levels of IgG, IgM and IgA antibodies against all neurologic antigens as well as the three cross-reactive peptides. These antibodies are specific because immune absorption demonstrated that only neuron-specific antigens or their cross-reactive epitopes could significantly reduce antibody levels. These antibodies may have been synthesized as a result of an alteration in the blood-brain barrier. This barrier promotes access of preexisting T-cells and central nervous system antigens to immunocompetent cells, which may start a vicious cycle. These results suggest a mechanism by which bacterial infections and milk antigens may modulate autoimmune responses in autism.
Collapse
Affiliation(s)
- A Vojdani
- Section of Neuroimmunology, Immunosciences Laboratory, Inc., 8693 Wilshire Boulevard, Suite 200, Beverly Hills, CA 90211, USA.
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
BACKGROUND Etiologic hypotheses in infantile autism suggest a strong genetic component, as well as possible environmental risks linked to early fetal development. We evaluated the association of maternal, pregnancy, delivery, and infant characteristics and risk of infantile autism. METHODS We conducted a case-control study nested within a population-based cohort (all Swedish children born in 1974-1993). We used prospectively recorded data from the Swedish Birth Register, which were individually linked to the Swedish Inpatient Register. Cases were 408 children (321 boys and 87 girls) discharged with a main diagnosis of infantile autism from any hospital in Sweden before 10 years of age in the period 1987-1994, plus 2,040 matched controls. Conditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The risk of autism was associated with daily smoking in early pregnancy (OR = 1.4; CI = 1.1-1.8), maternal birth outside Europe and North America (OR = 3.0; CI = 1.7-5.2), cesarean delivery (OR = 1.6; CI = 1.1-2.3), being small for gestational age (SGA; OR = 2.1; CI = 1.1-3.9), a 5-minute Apgar score below 7 (OR = 3.2, CI = 1.2-8.2), and congenital malformations (OR = 1.8, CI = 1.1-3.1). No association was found between autism and head circumference, maternal diabetes, being a twin, or season of birth. CONCLUSIONS Our findings suggest that intrauterine and neonatal factors related to deviant intrauterine growth or fetal distress are important in the pathogenesis of autism.
Collapse
Affiliation(s)
- Christina M Hultman
- Department of Medical Epidemiology, Karolinska Institutet, S-17277 Stockholm, Sweden.
| | | | | |
Collapse
|
82
|
Korvatska E, Van de Water J, Anders TF, Gershwin ME. Genetic and immunologic considerations in autism. Neurobiol Dis 2002; 9:107-25. [PMID: 11895365 DOI: 10.1006/nbdi.2002.0479] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
According to recent epidemiological surveys, autistic spectrum disorders have become recognized as common childhood psychopathologies. These life-lasting conditions demonstrate a strong genetic determinant consistent with a polygenic mode of inheritance for which several autism susceptibility regions have been identified. Parallel evidence of immune abnormalities in autistic patients argues for an implication of the immune system in pathogenesis. This review summarizes advances in the molecular genetics of autism, as well as recently emerging concerns addressing the disease incidence and triggering factors. The neurochemical and immunologic findings are analyzed in the context of a neuroimmune hypothesis for autism. Studies of disorders with established neuroimmune nature indicate multiple pathways of the pathogenesis; herein, we discuss evidence of similar phenomena in autism.
Collapse
Affiliation(s)
- Elena Korvatska
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
83
|
Hornig M, Lipkin WI. Infectious and immune factors in the pathogenesis of neurodevelopmental disorders: epidemiology, hypotheses, and animal models. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:200-10. [PMID: 11553936 DOI: 10.1002/mrdd.1028] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Both genetic and environmental factors contribute to the pathogenesis of a wide variety of neurodevelopmental disorders, including autism, mental retardation, and schizophrenia. Some heritable disorders approach 100% penetrance; nonetheless, even in these disorders, subtle aspects of clinical disease expression may be influenced by the environment. In other disorders with genetic influences, exogenous factors, and the timepoint(s) during nervous system development at which they are introduced, modulate expression of disease. Elucidation of the mechanisms guiding this intricate interplay between host response genes, environmental agents, and the neurodevelopmental context within which these interactions occur, is necessary to understand the continuum of clinical outcomes. This chapter will review the evidence that infectious and immune factors may contribute to the pathogenesis of neurodevelopmental disorders, describe an animal model of neurodevelopmental disorders based upon viral infection, identify processes by which neural circuitry may be compromised, and outline areas for future research.
Collapse
Affiliation(s)
- M Hornig
- Emerging Diseases Laboratory, Gillespie Neuroscience Research Facility, University of California, Irvine, California 92697-4292, USA.
| | | |
Collapse
|
84
|
Halsey NA, Hyman SL. Measles-mumps-rubella vaccine and autistic spectrum disorder: report from the New Challenges in Childhood Immunizations Conference convened in Oak Brook, Illinois, June 12-13, 2000. Pediatrics 2001; 107:E84. [PMID: 11331734 DOI: 10.1542/peds.107.5.e84] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Parents and physicians are understandably concerned about the causes and treatment of autism, a devastating disease that affects the entire family. Although much has been learned about autism, there are many gaps in our knowledge about what causes the disorder and how it can be prevented. Autistic symptoms occur along a spectrum, often referred to as autistic spectrum disorder (ASD). Concern has been raised about a possible association between measles-mumps-rubella (MMR) vaccine and inflammatory bowel disease (IBD) and ASD, especially autism with regression. Also, increased requests for educational services related to ASD have raised concerns about possible increases in the incidence of ASD. METHODS On June 12-13, 2000, the American Academy of Pediatrics (AAP) convened a conference titled "New Challenges in Childhood Immunizations" in Oak Brook, Illinois. At this conference, parents, practitioners, and scientists presented information and research on MMR vaccine and ASD. Attendees included representatives from select AAP committees and sections as well as federal and other organizations that address related issues. The multidisciplinary panel of experts reviewed data on what is known about the pathogenesis, epidemiology, and genetics of ASD and the available data on hypothesized associations with IBD, measles, and MMR vaccine. Supplemental information was requested from authors who have proposed the hypotheses and other experts in relevant areas. RESULTS Autism is a complex disorder of uncertain and probably multiple etiologies. Genetic predisposition to ASD may involve as many as 10 genes. Many experts believe that the abnormal brain development in autism occurs before 30 weeks' gestation in most instances. In utero rubella is a known cause of autism. Animal model data support the biologic plausibility that exposure to yet unrecognized infectious or other environmental agents could cause ASD. Several factors may contribute to apparent increases in incidence of ASD in recent years. Most data indicate increased recognition and reporting as primary factors, but the epidemiologic data are insufficient to determine if there has been a true increase in the incidence of ASD. Increased reporting of ASD in recent years has occurred long after the introduction of MMR vaccine in the United States in 1971 and widespread use of this vaccine in the 1970s for routine immunization of children at 12 to 15 months of age. Appropriate detailed studies are needed to define the true incidence and prevalence of ASD. Epidemiologic studies in Europe indicate no association between MMR vaccine and ASD. Some children with ASD have gastrointestinal symptoms, but an increased rate of any specific gastrointestinal disorder in children with ASD has not been established. Studies to detect evidence of measles virus in intestinal tissue specimens from patients with IBD or autism with gastrointestinal symptoms have not used uniform techniques. Several laboratories have found no evidence of measles viruses in tissue specimens from patients with IBD, but 2 groups have found evidence of measles virus using different techniques. A group that found evidence of measles virus in affected tissue specimens from patients with IBD has also reported detecting portions of measles virus in peripheral blood lymphocytes and intestinal tissue specimens from patients with autism and gastrointestinal disorders. Finding a portion of a virus using molecular techniques does not constitute evidence for a causal relationship, because some viruses persist in unaffected hosts. Additional controlled studies in several laboratories are needed to determine if portions of measles virus persist in intestinal and other tissues of people with and without gastrointestinal disease and/or ASD. CONCLUSIONS Although the possible association with MMR vaccine has received much public and political attention and there are many who have derived their own conclusions based on personal experiences, the available evidence does not support the hypothesis that MMR vaccine causes autism or associated disorders or IBD. Separate administration of measles, mumps, and rubella vaccines to children provides no benefit over administration of the combination MMR vaccine and would result in delayed or missed immunizations. Pediatricians need to work with families to ensure that children are protected early in the second year of life from these preventable diseases. Continued scientific efforts need to be directed to the identification of the causes of ASD.
Collapse
|
85
|
Bernard S, Enayati A, Redwood L, Roger H, Binstock T. Autism: a novel form of mercury poisoning. Med Hypotheses 2001; 56:462-71. [PMID: 11339848 DOI: 10.1054/mehy.2000.1281] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autism is a syndrome characterized by impairments in social relatedness and communication, repetitive behaviors, abnormal movements, and sensory dysfunction. Recent epidemiological studies suggest that autism may affect 1 in 150 US children. Exposure to mercury can cause immune, sensory, neurological, motor, and behavioral dysfunctions similar to traits defining or associated with autism, and the similarities extend to neuroanatomy, neurotransmitters, and biochemistry. Thimerosal, a preservative added to many vaccines, has become a major source of mercury in children who, within their first two years, may have received a quantity of mercury that exceeds safety guidelines. A review of medical literature and US government data suggests that: (i) many cases of idiopathic autism are induced by early mercury exposure from thimerosal; (ii) this type of autism represents an unrecognized mercurial syndrome; and (iii) genetic and non-genetic factors establish a predisposition whereby thimerosal's adverse effects occur only in some children.
Collapse
Affiliation(s)
- S Bernard
- ARC Research, Cranford, New Jersey 07901, USA
| | | | | | | | | |
Collapse
|
86
|
Kern JK, Miller VS, Cauller PL, Kendall PR, Mehta PJ, Dodd M. Effectiveness of N,N-dimethylglycine in autism and pervasive developmental disorder. J Child Neurol 2001; 16:169-73. [PMID: 11305684 DOI: 10.1177/088307380101600303] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N,N-dimethylglycine, a dietary supplement, has been reported to be beneficial in children with autism and pervasive developmental disorder. We examined the effectiveness of dimethylglycine in children with autism and pervasive developmental disorder in a double-blind, placebo-controlled study. Thirty-seven children between 3 and 11 years of age with a diagnosis of autism and/or pervasive developmental disorder were gender and age matched and randomly assigned to receive either placebo or dimethylglycine for 4 weeks. All children were assessed before and after treatment on two behavioral measures, the Vineland Maladaptive Behavior Domain and the Aberrant Behavior Checklist. Standardized neurologic examinations before and after treatment on 33 children showed no change. An overall improvement on all behavioral measures was observed for both the placebo and the dimethylglycine groups. However, the improvement among the children who received dimethylglycine was not statistically different from the improvement observed among the children who received the placebo. The children who participated in this study were a heterogeneous group, and their apparent responses to the dimethylglycine varied. Some children appeared to respond positively to the dimethylglycine, and there was a smaller proportion of negative changes in the dimethylglycine group, but the quantitative changes in the dimethylglycine behavioral assessments were not significantly different from what was observed among children who received placebo.
Collapse
Affiliation(s)
- J K Kern
- Department of Human Development, University of Texas at Dallas, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Several investigators, including ourselves, have reported significant changes in various immune responses in children with autism. These changes demonstrate dysregulation of the immune system (deficiency in some components of the immune system and excesses in others). In addition, certain genes in the major histocompatibility complex (that regulates immune responses) appear to be involved in autism. Based upon immunological abnormalities, various treatment modalities have been applied to children with autism. In this brief review, these immunological changes and various biological therapies are analyzed and summarized.
Collapse
Affiliation(s)
- S Gupta
- Division of Basic and Clinical Immunology, Medical Sciences I, University of California, Irvine 92697, USA.
| |
Collapse
|
88
|
Marazziti D, Presta S, Pfanner C, Gemignani A, Rossi A, Sbrana S, Rocchi V, Ambrogi F, Cassano GB. Immunological alterations in adult obsessive-compulsive disorder. Biol Psychiatry 1999; 46:810-4. [PMID: 10494449 DOI: 10.1016/s0006-3223(98)00371-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Some recent findings suggest the involvement of autoimmune mechanisms in childhood onset of obsessive-compulsive disorder (OCD), on the basis of a parallel drawn with Sydenham's chorea, a manifestation of rheumatic fever. A monoclonal antibody called D8/D17 characterizing a B-lymphocyte antigen, present in almost all patients with rheumatic fever, has been found also in children affected by OCD, Tourette syndrome, and chronic tics to a greater degree than in healthy control subjects. The few observations of disturbances of some immunologic parameters in adult OCD patients, prompted the authors to investigate and compare subsets of peripheral immunological cells for differences in adult patients with OCD and healthy control subjects. METHODS Twenty patients suffering from OCD, with no comorbidity for other psychiatric disorders, were compared with a similar group of healthy control subjects. The immune subsets were measured by flow cytometry. RESULTS The CD8+ lymphocytes were significantly increased and CD4+ lymphocytes significantly decreased in OCD patients, while the other cells did not differ between the two groups. No correlation was found between immunologic and clinical parameters. CONCLUSIONS These data indicate that patients with adult OCD showed increased CD8+, i.e., suppressor T lymphocytes, and decreased CD4+, which identify helper T lymphocytes, as compared with a similar group of healthy control subjects. The findings appear peculiar to patients with OCD and are suggestive of an immunologic imbalance, which might be related to the stress deriving from the frustrating situation determined by the disorder itself.
Collapse
Affiliation(s)
- D Marazziti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
Autism is a neurobiological disorder. The core clinical features of autism include impairment in social interaction, impairments in verbal and nonverbal communication, and restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. Autism often has coexisting neuropsychiatric disorders, including seizure disorders, attention deficit hyperactivity disorder, affective disorders, anxiety disorder, obsessive-compulsive disorder, and Tourette disorder. No etiology-based treatment modality has been developed to cure individuals with autism. However, comprehensive intervention, including parental counseling, behavior modification, special education in a highly structured environment, sensory integration training, speech therapy, social skill training, and medication, has demonstrated significant treatment effects in many individuals with autism. Findings from preliminary studies of major neurotransmitters and other neurochemical agents strongly suggest that neurochemical factors play a major role in autism. The findings also provide the rationale for psychopharmacotherapy in individuals with autism. This article reviews studies of neurochemical systems and related psychopharmacological research in autism and related neuropsychiatric disorders. Clinical indications for pharmacotherapy are described, and uses of various medications are suggested. This article also discusses new avenues of investigation that may lead to the development of more effective medication treatments in persons with autism.
Collapse
Affiliation(s)
- L Y Tsai
- Child and Adolescent Psychiatric Hospital, University of Michigan Medical School, Ann Arbor 48109-0390, USA
| |
Collapse
|
90
|
Rogers T, Kalaydjieva L, Hallmayer J, Petersen PB, Nicholas P, Pingree C, McMahon WM, Spiker D, Lotspeich L, Kraemer H, McCague P, Dimiceli S, Nouri N, Peachy T, Yang J, Hinds D, Risch N, Myers RM. Exclusion of linkage to the HLA region in ninety multiplex sibships with autism. J Autism Dev Disord 1999; 29:195-201. [PMID: 10425582 DOI: 10.1023/a:1023075904742] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies have suggested a role for the histocompatibility complex of loci (HLA) in the genetic susceptibility to autism. We have tested this hypothesis by linkage analysis using genetic marker loci in the HLA region on chromosome 6p in multiplex families with autism. We have examined sharing of alleles identical by descent in 97 affected sib pairs from 90 families. Results demonstrate no deviation from the null expectation of 50% sharing of alleles in this region; in fact, for most marker loci, the observed sharing was less than 50%. Thus, it is unlikely that loci in this region contribute to the genetic etiology of autism to any significant extent in our families.
Collapse
Affiliation(s)
- T Rogers
- Centre for Human Genetics, Edith Cowan University, Perth, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Connolly AM, Chez MG, Pestronk A, Arnold ST, Mehta S, Deuel RK. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. J Pediatr 1999; 134:607-13. [PMID: 10228297 DOI: 10.1016/s0022-3476(99)70248-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Etiologically unexplained disorders of language and social development have often been reported to improve in patients treated with immune-modulating regimens. Here we determined the frequency of autoantibodies to brain among such children. DESIGN We collected sera from a cohort of children with (1) pure Landau-Kleffner syndrome (n = 2), (2) Landau-Kleffner syndrome variant (LKSV, n = 11), and (3) autistic spectrum disorder (ASD, n = 11). None had received immune-modulating treatment before the serum sample was obtained. Control sera (n = 71) were from 29 healthy children, 22 with non-neurologic illnesses (NNIs), and 20 children with other neurologic disorders (ONDs). We identified brain autoantibodies by immunostaining of human temporal cortex and antinuclear autoantibodies using commercially available kits. RESULTS IgG anti-brain autoantibodies were present in 45% of sera from children with LKSV, 27% with ASD, and 10% with ONDs compared with 2% from healthy children and control children with NNIs. IgM autoantibodies were present in 36% of sera from children with ASD, 9% with LKSV, and 15% with ONDs compared with 0% of control sera. Labeling studies identified one antigenic target to be endothelial cells. Antinuclear antibodies with titers >/=1:80 were more common in children with ASD and control children with ONDs. CONCLUSION Children with LKSV and ASD have a greater frequency of serum antibodies to brain endothelial cells and to nuclei than children with NNIs or healthy children. The presence of these antibodies raises the possibility that autoimmunity plays a role in the pathogenesis of language and social developmental abnormalities in a subset of children with these disorders.
Collapse
Affiliation(s)
- A M Connolly
- Departments of Neurology and Pediatrics, Washington University, St. Louis Children's Hospital, St Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
92
|
DelGiudice-Asch G, Simon L, Schmeidler J, Cunningham-Rundles C, Hollander E. Brief report: a pilot open clinical trial of intravenous immunoglobulin in childhood autism. J Autism Dev Disord 1999; 29:157-60. [PMID: 10382136 DOI: 10.1023/a:1023096728131] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- G DelGiudice-Asch
- Department of Psychiatry, Seaver Autism Research Center, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
93
|
Hollander E, DelGiudice-Asch G, Simon L, Schmeidler J, Cartwright C, DeCaria CM, Kwon J, Cunningham-Rundles C, Chapman F, Zabriskie JB. B lymphocyte antigen D8/17 and repetitive behaviors in autism. Am J Psychiatry 1999; 156:317-20. [PMID: 9989573 DOI: 10.1176/ajp.156.2.317] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Monoclonal antibody D8/17 identifies a B lymphocyte antigen with expanded expression in rheumatic fever, Sydenham's chorea, and subgroups of obsessive-compulsive disorder and Tourette's syndrome with repetitive behaviors. The authors examined the rate of D8/17 expression in children with autism and its correlation with severity of repetitive behaviors. METHOD Blood samples from 18 patients with autism and 14 comparable medically ill children were evaluated for percentage of D8/17-positive B cells by immunofluorescence and for streptococcal antibodies. Severity of repetitive behaviors was also determined. RESULTS The frequency of individuals with > or =11% D8/17-positive cells was significantly higher in the autistic patients (78%) than the comparison subjects (21%), severity of repetitive behaviors significantly correlated with D8/17 expression, and D8/17-positive patients had significantly higher compulsion scores than D8/17-negative patients. CONCLUSIONS D8/17 expression is high in patients with autism and may serve as a marker for compulsion severity within autism.
Collapse
Affiliation(s)
- E Hollander
- Department of Psychiatry and the Seaver Autism Research Center, Mt. Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Autism is a developmental disorder characterized by disturbance in language, perception and socialization. A variety of biochemical, anatomical and neuroradiographical studies imply a disturbance of brain energy metabolism in autistic patients. The underlying etiology of a disturbed bioenergetic metabolism in autism is unknown. A likely etiological possibility may involve mitochondrial dysfunction with concomitant defects in neuronal oxidative phosphorylation within the central nervous system. This hypothesis is supported by a frequent association of lactic acidosis and carnitine deficiency in autistic patients. Mitochondria are vulnerable to a wide array of endogenous and exogenous factors which appear to be linked by excessive nitric oxide production. Strategies to augment mitochondrial function, either by decreasing production of endogenous toxic metabolites, reducing nitric oxide production, or stimulating mitochondrial enzyme activity may be beneficial in the treatment of autism.
Collapse
Affiliation(s)
- J Lombard
- Westchester Square Medical Center, New York, NY 10461, USA
| |
Collapse
|
95
|
Gupta S, Aggarwal S, Rashanravan B, Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol 1998; 85:106-9. [PMID: 9627004 DOI: 10.1016/s0165-5728(98)00021-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Th1-like (IL-2, IFN-gamma) and Th2-like (IL-4, IL-6, and IL-10) cytokines were examined in CD4+ and CD8+ T cells in children with autism. Intracellular cytokines were measured using specific antibodies to various cytokines and anti-CD4 or anti-CD8 monoclonal antibodies by FACScan. Proportions of IFN-gamma+CD4+ T cells and IL-2+CD4+ T cells (Th1), and IFN-gamma+CD8+ and IL-2+CD8+ T cells (TC1) were significantly lower in autistic children as compared to healthy controls. In contrast, IL-4+CD4+ T cells (Th2) and IL-4+CD8+ T cells (TC2) were significantly increased in autism. The proportions of IL-6+ CD4+, IL-6+CD8+ and IL-10+CD4+, IL-10+CD8+ T cells were comparable in autism and control group. These data suggest that an imbalance of Th1- and Th2-like cytokines in autism may play a role in the pathogenesis of autism.
Collapse
Affiliation(s)
- S Gupta
- Department of Medicine, University of California, Irvine 92697-4075, USA.
| | | | | | | |
Collapse
|
96
|
Abstract
Since autism has been associated with immunologic abnormalities suggesting an autoimmune cause of autistic symptoms in a subset of patients, this study was undertaken to investigate whether intravenous immunoglobulin (i.v.Ig) would improve autistic symptoms. Ten autistic children with immunologic abnormalities, demonstrated on blood tests, were enrolled in this study. Their ages ranged from 4 to 17 years, with two girls and eight boys. Eight children (1 female and 7 male) historically had undergone autistic regression. Intravenous immunoglobulin, 200 to 400 mg/kg, was administered every 6 weeks for an intended treatment program of four infusions. In five children, there was no detectable change in behavior during the treatment program. In four children, there was a mild improvement noted in attention span and hyperactivity. In none of these children did the parents feel that the improvement was sufficient to warrant further continuation of the infusions beyond the termination of the program. Only in one child was there a very significant improvement, with almost total amelioration of autistic symptoms over the time period of the four infusions. Once the treatment program was completed, this child gradually deteriorated over a 5-month time period and fully reverted to his previous autistic state. In this treatment program, five children had no response to intravenous immunoglobulin. In the four children who showed mild improvements, those improvements may simply have been due to nonspecific effects of physician intervention and parental expectation (ie, placebo effect). However, in one child there was a very significant amelioration of autistic symptoms. There were no distinguishing historic or laboratory features in this child who improved. Given a positive response rate of only 10% in this study, along with the high economic costs of the immunologic evaluations and the intravenous immunoglobulin treatments, the use of intravenous immunoglobulin to treat autistic children should be undertaken only with great caution, and only under formal research protocols.
Collapse
Affiliation(s)
- A V Plioplys
- Mercy Hospital and Medical Center, and the Department of Neurology, University of Illinois, Chicago 60616, USA
| |
Collapse
|
97
|
|
98
|
Smalley SL. Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 1997; 60:1276-82. [PMID: 9199546 PMCID: PMC1716113 DOI: 10.1086/515485] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- S L Smalley
- Department of Adolescent and Child Psychiatry, UCLA School of Medicine 90024, USA.
| |
Collapse
|
99
|
Abstract
Many different treatments have been claimed to have a dramatic impact on children with autism. This paper reviews what is known about the outcome in adult life and examines the limitations and advantages of a variety of intervention approaches. It concludes that there is little evidence of any "cure" for autism, but appropriately structured programmes for education and management in the early years can play a significant role in enhancing functioning in later life.
Collapse
Affiliation(s)
- P Howlin
- Department of Psychology, St. George's Hospital Medical School, Tooting, London, United Kingdom
| |
Collapse
|
100
|
Abstract
As our knowledge of the interactions of the immune, nervous and endocrine systems progresses, complex links with the origin and course of psychopathology in childhood are revealed. In this article the neuroimmunological literature on autism is reviewed. Relevant aspects of immune functioning and the neuroendocrine-immune network are described. We present the immunological findings in autistic patients within two related conceptual frameworks: a viral and an autoimmune hypothesis. Interpretation of data is hampered by conceptual and methodological differences between studies. Both the clinical significance of the immune changes and the causal connection between immune changes and psychopathological phenomena in autism remain to be elucidated. Recommendations for further research are given.
Collapse
|