51
|
Bone Marrow Fat Physiology in Relation to Skeletal Metabolism and Cardiometabolic Disease Risk in Children With Cerebral Palsy. Am J Phys Med Rehabil 2019; 97:911-919. [PMID: 29894311 DOI: 10.1097/phm.0000000000000981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Individuals with cerebral palsy exhibit neuromuscular complications and low physical activity levels. Adults with cerebral palsy exhibit a high prevalence of chronic diseases, which is associated with musculoskeletal deficits. Children with cerebral palsy have poor musculoskeletal accretion accompanied by excess bone marrow fat, which may lead to weaker bones. Mechanistic studies to determine the role of bone marrow fat on skeletal growth and maintenance and how it relates to systemic energy metabolism among individuals with cerebral palsy are lacking. In this review, we highlight the skeletal status in children with cerebral palsy and analyze the existing literature on the interactions among bone marrow fat, skeletal health, and cardiometabolic disease risk in the general population. Clinically vital questions are proposed, including the following: (1) Is the bone marrow fat in children with cerebral palsy metabolically distinct from typically developing children in terms of its lipid and inflammatory composition? (2) Does the bone marrow fat suppress skeletal acquisition? (3) Or, does it accelerate chronic disease development in children with cerebral palsy? (4) If so, what are the mechanisms? In conclusion, although inadequate mechanical loading may initiate poor skeletal development, subsequent expansion of bone marrow fat may further impede skeletal acquisition and increase cardiometabolic disease risk in those with cerebral palsy.
Collapse
|
52
|
Qi S, He J, Han H, Zheng H, Jiang H, Hu CY, Zhang Z, Li X. Anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats. Food Funct 2019; 10:5350-5360. [PMID: 31393485 DOI: 10.1039/c9fo00681h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic osteoporosis (DOP) is a systemic endocrine-metabolic osteopathy which has the characteristics of bone mineral density (BMD) reduction and bone microstructural destruction. Although anthocyanin-rich extract from black rice (AEBR) was reported to have a beneficial effect on diabetic rats, no studies have been performed on whether black rice anthocyanins are beneficial for diabetic osteoporosis. Therefore, in this study, a streptozotocin-induced diabetic rat model was established to investigate the protective effect of AEBR on diabetes-induced osteoporosis and its possible mechanism. AEBR at three doses (0.5, 1.0, and 2.0 g kg-1 d-1) were administered by oral gavage to diabetic rats for 8 weeks. The blood glucose, BMD, bone histomorphometry parameters, serum bone turnover biomarkers, bone marrow adipocyte numbers, as well as osteoprotegerin (OPG), runt-related transcription factor 2 (RUNX 2), and receptor activator of nuclear factor-κ B ligand (RANKL) protein expression in bone and serum were detected. The results indicated that AEBR dose-dependently decreased the blood glucose, increased the BMD, and decreased the serum bone turnover markers. The bone microstructure and osteoclast numbers in bone tissues returned to normal in the high AEBR dosage group; at the same time, the AEBR dose-dependently suppressed bone marrow adipogenesis. The RUNX 2 as well as the OPG/RANKL ratio in diabetic rats' bone tissues increased significantly in the AEBR treatment group. Our results indicate that AEBR administration can ameliorate bone loss caused by diabetes; this is mainly attributed to its inhibition of bone turnover, suppression of bone marrow adipogenesis, and up-regulation of RUNX 2 and the OPG/RANKL expression ratio.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Jia He
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Hao Han
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Hongxing Zheng
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Hai Jiang
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Ching Yuan Hu
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Zhijian Zhang
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Xinsheng Li
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| |
Collapse
|
53
|
Zebaze R, Osima M, Bui M, Lukic M, Wang X, Ghasem-Zadeh A, Eriksen EF, Vais A, Shore-Lorenti C, Ebeling PR, Seeman E, Bjørnerem Å. Adding Marrow Adiposity and Cortical Porosity to Femoral Neck Areal Bone Mineral Density Improves the Discrimination of Women With Nonvertebral Fractures From Controls. J Bone Miner Res 2019; 34:1451-1460. [PMID: 30883870 DOI: 10.1002/jbmr.3721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR-pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR-pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more-separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver-operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Roger Zebaze
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia.,Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Marit Osima
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Marko Lukic
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Xiaofang Wang
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ali Ghasem-Zadeh
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia
| | - Erik F Eriksen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Angela Vais
- Hudson Institute for Medical Research, Monash University, Melbourne, Australia
| | - Catherine Shore-Lorenti
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia
| | - Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash Health, Monash University, Melbourne, Australia
| | - Ego Seeman
- Departments of Medicine and Endocrinology, Austin Health, University of Melbourne, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
54
|
Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 2019; 123:265-273. [PMID: 30946971 DOI: 10.1016/j.bone.2019.03.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
Abstract
Aging is associated with decreased bone mass and accumulation of bone marrow adipocytes. Both bone forming osteoblastic cells and bone marrow adipocytes are derived from a stem cell population within the bone marrow stroma called bone marrow stromal (skeletal or mesenchymal) stem cells (BMSC). In the present review, we provide an overview, based on the current literature, regarding the physiological aging processes that cause changes in BMSC lineage allocation, enhancement of adipocyte and defective osteoblast differentiation, leading to gradual exhaustion of stem cell regenerative potential and defects in bone tissue homeostasis and metabolism. We discuss strategies to preserve the "youthful" state of BMSC, to reduce bone marrow age-associated adiposity, and to counteract the overall negative effects of aging on bone tissues with the aim of decreasing bone fragility and risk of fractures.
Collapse
Affiliation(s)
- Jan O Nehlin
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Clinical Research Center, Copenhagen University Hospital, Hvidovre, Denmark.
| | - Abbas Jafari
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Tencerova
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
| | - Moustapha Kassem
- The Molecular Endocrinology & Stem Cell Research Unit (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
55
|
Bone Marrow Adipocytes: The Enigmatic Components of the Hematopoietic Stem Cell Niche. J Clin Med 2019; 8:jcm8050707. [PMID: 31109063 PMCID: PMC6572059 DOI: 10.3390/jcm8050707] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
Bone marrow adipocytes (BMA) exert pleiotropic roles beyond mere lipid storage and filling of bone marrow (BM) empty spaces, and we are only now beginning to understand their regulatory traits and versatility. BMA arise from the differentiation of BM mesenchymal stromal cells, but they seem to be a heterogeneous population with distinct metabolisms, lipid compositions, secretory properties and functional responses, depending on their location in the BM. BMA also show remarkable differences among species and between genders, they progressively replace the hematopoietic BM throughout aging, and play roles in a range of pathological conditions such as obesity, diabetes and anorexia. They are a crucial component of the BM microenvironment that regulates hematopoiesis, through mechanisms largely unknown. Previously considered as negative regulators of hematopoietic stem cell function, recent data demonstrate their positive support for hematopoietic stem cells depending on the experimental approach. Here, we further discuss current knowledge on the role of BMA in hematological malignancies. Early hints suggest that BMA may provide a suitable metabolic niche for the malignant growth of leukemic stem cells, and protect them from chemotherapy. Future in vivo functional work and improved isolation methods will enable determining the true essence of this elusive BM hematopoietic stem cell niche component, and confirm their roles in a range of diseases. This promising field may open new pathways for efficient therapeutic strategies to restore hematopoiesis, targeting BMA.
Collapse
|
56
|
He J, Fang H, Li X. Vertebral bone marrow fat content in normal adults with varying bone densities at 3T magnetic resonance imaging. Acta Radiol 2019; 60:509-515. [PMID: 30130978 DOI: 10.1177/0284185118786073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sex-related differences of vertebral bone marrow fat in relation to varying bone densities have not yet been evaluated although some studies have reported an inverse association of bone marrow fat and bone mineral density (BMD). PURPOSE To evaluate the relationship between bone marrow fat and BMD and to demonstrate the sex-related differences of the vertebral bone marrow fat in normal adults with varying bone densities. MATERIAL AND METHODS A total of 123 normal adult volunteers were enrolled in this study. 1H-MRS of the lumbar spine was performed. The fat fraction (FF) values of vertebral bone marrow were measured. Volumetric BMD measurement was performed by quantitative computed tomography (QCT). All participants were divided into three groups according to BMD (normal, osteopenia, osteoporosis). The differences in the FF and body mass index (BMI) values of the three groups were compared, and partial correlation analysis was used to evaluate the correlation between FF values and BMD/BMI. RESULTS The FF values increased with decreasing BMD in both male and female participants. There were significant sex differences for the FF values in the normal bone density group ( P < 0.001). The FF values of the normal bone density group in male participants were significantly higher than those of the female participants ( P < 0.001). The FF values were significantly negative correlated with BMD for all participants (r = -0.820, P < 0.001). CONCLUSION The FF values of vertebral bone marrow correlated inversely with BMD. Sex-related differences of FF values was related to BMD.
Collapse
Affiliation(s)
- Jie He
- Department of Radiology, The Third Hospital, Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei Province, PR China
| | - Hao Fang
- Department of Radiology, First Affiliated Hospital, Tianjin University of Chinese Medicine, Tianjin, PR China
| | - Xiaona Li
- Department of Radiology, The Third Hospital, Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei Province, PR China
| |
Collapse
|
57
|
Kurzbard-Roach N, Jha P, Poder L, Menias C. Abdominal and pelvic imaging findings associated with sex hormone abnormalities. Abdom Radiol (NY) 2019; 44:1103-1119. [PMID: 30483844 DOI: 10.1007/s00261-018-1844-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hormones are substances that serve as chemical communication between cells. They are unique biological molecules that affect multiple organ systems and play a key role in maintaining homoeostasis. In this role, they are usually produced from a single organ and have defined target organs. However, hormones can affect non-target organs as well. As such, biochemical and hormonal abnormalities can be associated with anatomic changes in multiple target as well as non-target organs. Hormone-related changes may take the form of an organ parenchymal abnormality, benign neoplasm, or even malignancy. Given the multifocal action of hormones, the observed imaging findings may be remote from the site of production, and may actually be multi-organ in nature. Anatomic findings related to hormone level abnormalities and/or laboratory biomarker changes may be identified with imaging. The purpose of this image-rich review is to sensitize radiologists to imaging findings in the abdomen and pelvis that may occur in the context of hormone abnormalities, focusing primarily on sex hormones and their influence on these organs.
Collapse
Affiliation(s)
- Nicole Kurzbard-Roach
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Priyanka Jha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Liina Poder
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
58
|
Immunometabolic Links between Estrogen, Adipose Tissue and Female Reproductive Metabolism. BIOLOGY 2019; 8:biology8010008. [PMID: 30736459 PMCID: PMC6466614 DOI: 10.3390/biology8010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 12/25/2022]
Abstract
The current knowledge of sex-dependent differences in adipose tissue biology remains in its infancy and is motivated in part by the desire to understand why menopause is linked to an increased risk of metabolic disease. However, the development and characterization of targeted genetically-modified rodent models are shedding new light on the physiological actions of sex hormones in healthy reproductive metabolism. In this review we consider the need for differentially regulating metabolic flexibility, energy balance, and immunity in a sex-dependent manner. We discuss the recent advances in our understanding of physiological roles of systemic estrogen in regulating sex-dependent adipose tissue distribution, form and function; and in sex-dependent healthy immune function. We also review the decline in protective properties of estrogen signaling in pathophysiological settings such as obesity-related metaflammation and metabolic disease. It is clear that the many physiological actions of estrogen on energy balance, immunity, and immunometabolism together with its dynamic regulation in females make it an excellent candidate for regulating metabolic flexibility in the context of reproductive metabolism.
Collapse
|
59
|
Hawkes CP, Mostoufi-Moab S. Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone 2019; 119:57-64. [PMID: 29550266 PMCID: PMC6139083 DOI: 10.1016/j.bone.2018.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 12/23/2022]
Abstract
The relationship between fat, bone and systemic metabolism is a growing area of scientific interest. Marrow adipose tissue is a well-recognized component of the bone marrow milieu and is metabolically distinct from current established subtypes of adipose tissue. Despite recent advances, the functional significance of marrow adipose tissue is still not clearly delineated. Bone and fat cells share a common mesenchymal stem cell (MSC) within the bone marrow, and hormones and transcription factors such as growth hormone, leptin, and peroxisomal proliferator-activated receptor γ influence MSC differentiation into osteoblasts or adipocytes. MSC osteogenic potential is more vulnerable than adipogenic potential to radiation and chemotherapy, and this confers a risk for an abnormal fat-bone axis in survivors following cancer therapy and bone marrow transplantation. This review provides a summary of data from animal and human studies describing the relationship between marrow adipose tissue and hematopoiesis, bone mineral density, bone strength, and metabolic function. The significance of marrow adiposity in other metabolic disorders such as osteoporosis, diabetes mellitus, and estrogen and growth hormone deficiency are also discussed. We conclude that marrow adipose tissue is an active endocrine organ with important metabolic functions contributing to bone energy maintenance, osteogenesis, bone remodeling, and hematopoiesis. Future studies on the metabolic role of marrow adipose tissue may provide the critical insight necessary for selecting targeted therapeutic interventions to improve altered hematopoiesis and augment skeletal remodeling in cancer survivors.
Collapse
Affiliation(s)
- C P Hawkes
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - S Mostoufi-Moab
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, USA; Perelman School of Medicine, Department of Pediatrics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
60
|
Qi S, Zheng H, Chen C, Jiang H. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats. Biol Trace Elem Res 2019; 187:172-180. [PMID: 29740803 DOI: 10.1007/s12011-018-1362-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P < 0.05); however, this decrease was inhibited by the intake of Du-Zhong cortex extract (P < 0.05, vs. PbAc group; P > 0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P < 0.05). The PbAc group had higher ALP, osteocalcin, and RANKL than the control group (P < 0.01), and they were significantly lower in the PbAc+DZCE group compared with the PbAc group. There were no significant differences of ALP, osteocalcin, and RANKL among the PbAc+DZCE, control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P < 0.05). The bone histomorphometric analyses showed that bone volume and trabecular thickness in the femoral trabecular bone were significantly lower in the PbAc group than that in the control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P < 0.01), and those were restored in the PbAc+DZCE group. The differences of those parameters between PbAc+DZCE, DZCE, and the control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Hongxing Zheng
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
| | - Chen Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China.
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi University of Technology, Hanzhong, 723000, China.
| | - Hai Jiang
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| |
Collapse
|
61
|
Beekman KM, Veldhuis-Vlug AG, van der Veen A, den Heijer M, Maas M, Kerckhofs G, Parac-Vogt TN, Bisschop PH, Bravenboer N. The effect of PPARγ inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. Am J Physiol Endocrinol Metab 2019; 316:E96-E105. [PMID: 30457914 DOI: 10.1152/ajpendo.00265.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow adipose tissue (BMAT) increases after menopause, and increased BMAT is associated with osteoporosis and prevalent vertebral fractures. Peroxisome proliferator-activated receptor-γ (PPARγ) activation promotes adipogenesis and inhibits osteoblastogenesis; therefore, PPARγ is a potential contributor to the postmenopausal increase in BMAT and decrease in bone mass. The aim of this study is to determine if PPARγ inhibition can prevent ovariectomy-induced BMAT increase and bone loss in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice ( n = 40) were allocated to four intervention groups: sham surgery (Sham) or ovariectomy (OVX; isoflurane anesthesia) with either vehicle (Veh) or PPARγ antagonist administration (GW9662; 1 mg·kg-1·day-1, daily intraperitoneal injections) for 3 wk. We measured BMAT volume, adipocyte size, adipocyte number. and bone structural parameters in the proximal metaphysis of the tibia using polyoxometalate-based contrast enhanced-nanocomputed topogaphy. Bone turnover was measured in the contralateral tibia using histomorphometry. The effects of surgery and treatment were analyzed by two-way ANOVA. OVX increased the BMAT volume fraction (Sham + Veh: 2.9 ± 2.7% vs. OVX + Veh: 8.1 ± 5.0%: P < 0.001), average adipocyte diameter (Sham + Veh: 19.3 ± 2.6 μm vs. OVX + Veh: 23.1 ± 3.4 μm: P = 0.001), and adipocyte number (Sham + Veh: 584 ± 337cells/μm3 vs. OVX + Veh: 824 ± 113cells/μm3: P = 0.03), while OVX decreased bone volume fraction (Sham + Veh: 15.5 ± 2.8% vs. OVX + Veh: 7.7 ± 1.9%; P < 0.001). GW9662 had no effect on BMAT, bone structural parameters, or bone turnover. In conclusion, ovariectomy increased BMAT and decreased bone volume in C3H/HeJ mice. The PPARγ antagonist GW9662 had no effect on BMAT or bone volume in C3H/HeJ mice, suggesting that BMAT accumulation is regulated independently of PPARγ in C3H/HeJ mice.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Annegreet G Veldhuis-Vlug
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Albert van der Veen
- Department of Physics and Medical Technology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department Cardiology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Martin den Heijer
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
- Department Materials Engineering, KU Leuven , Leuven , Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Chemistry Department, KU Leuven , Leuven , Belgium
| | - Peter H Bisschop
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Nathalie Bravenboer
- Amsterdam Movement Sciences, Research Laboratory Bone and Calcium Metabolism, Department of Clinical Chemistry, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department of Internal Medicine, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
62
|
Penel G, Kerckhofs G, Chauveau C. Brief Report From the 4th International Meeting on Bone Marrow Adiposity (BMA2018). Front Endocrinol (Lausanne) 2019; 10:691. [PMID: 31681168 PMCID: PMC6813723 DOI: 10.3389/fendo.2019.00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 01/03/2023] Open
Abstract
The 4th International Meeting on Bone Marrow Adiposity (BMA2018) was hosted at the premises of the Regional Government of Hauts de France in Lille, from August 29th to August 31st 2018. This congress brought together physicians and scientists working on rheumatology and bone biology, oncology, hematology, endocrinology, and metabolic diseases, all interested in bone marrow adiposity. They shared their opinions, hypothesis, and original results. Six invited keynotes were given by S. Badr, B.C.J. van der Eerden, M.J. Moreno Aliaga, O. Naveiras, C.J. Rosen, and A.V. Schwartz. Twenty-one short talks were also given. This report briefly summarizes the scientific content of the meeting and the progress of the working groups of the BMA Society (http://bma-society.org/).
Collapse
Affiliation(s)
- Guillaume Penel
- Inflammatory Bone Diseases Lab, Univ. Littoral Côte d'Opale, Boulogne-Sur-Mer, and Univ. Lille, Lille, and CHU Lille, Lille, France
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Christophe Chauveau
- Inflammatory Bone Diseases Lab, Univ. Littoral Côte d'Opale, Boulogne-Sur-Mer, and Univ. Lille, Lille, and CHU Lille, Lille, France
- *Correspondence: Christophe Chauveau
| |
Collapse
|
63
|
Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2019; 10:69. [PMID: 30800100 PMCID: PMC6375842 DOI: 10.3389/fendo.2019.00069] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or brown adipose tissue (BAT) for its location, feature and function. As a largely ignored adipose depot, it is situated in bone marrow space and resided with bone tissue side-by-side. MAT is considered not only as a regulator of bone metabolism through paracrine, but also as a functionally particular adipose tissue that may contribute to global metabolism. Adipokines, inflammatory factors and other molecules derived from bone marrow adipocytes may exert systematic effects. In this review, we summary the evidence from several aspects including development, distribution, histological features and phenotype to elaborate the basic characteristics of MAT. We discuss the association between bone metabolism and MAT, and highlight our current understanding of this special adipose tissue. We further demonstrate the probable relationship between MAT and energy metabolism, as well as glucose metabolism. On the basis of preliminary results from animal model and clinical studies, we propose that MAT has its unique secretory and metabolic function, although there is no in-depth study at present.
Collapse
Affiliation(s)
- Yujue Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
64
|
Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone 2019; 118:8-15. [PMID: 29477645 DOI: 10.1016/j.bone.2018.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
There is growing interest in the relationship between bone marrow fat (BMF) and skeletal health. Progress in clinical studies of BMF and skeletal health has been greatly enhanced by recent technical advances in our ability to measure BMF non-invasively. Magnetic resonance imagery (MRI) with or without spectroscopy is currently the standard technique for evaluating BMF content and composition in humans. This review focuses on clinical studies of marrow fat and its relationship with bone. The amount of marrow fat is associated with bone mineral density (BMD). Several studies have reported a significant negative association between marrow fat content and BMD in both healthy and osteoporotic populations. There may also be a relationship between marrow fat and fracture (mostly vertebral fracture), but data are scarce and further studies are needed. Furthermore, a few studies suggest that a lower proportion of unsaturated lipids in vertebral BMF may be associated with reduced BMD and greater prevalence of fracture. Marrow fat might be influenced by metabolic diseases associated with bone loss and fractures, such as diabetes mellitus, obesity and anorexia nervosa. An intriguing aspect of bariatric (weight loss) surgery is that it induces bone loss and fractures, but with different impacts on marrow fat depending on diabetic status. In daily practice, the usefulness for clinicians of assessing marrow fat using MRI is still limited. However, the perspectives are exciting, particularly in terms of improving the diagnosis and management of osteoporosis. Further studies are needed to better understand the regulators involved in the marrow fat-bone relationship and the links between marrow fat, other fat depots and energy metabolism.
Collapse
Affiliation(s)
- Julien Paccou
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France.
| | - Guillaume Penel
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France
| | - Christophe Chauveau
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| | - Bernard Cortet
- Université de Lille, Université Littoral Côte d'Opale, PMOI EA 4490 faculté de chirurgie dentaire, place de Verdun, 59000 Lille, France; Service de rhumatologie, CHRU, 59000 Lille, France
| | - Pierre Hardouin
- Univ. Littoral Côte d'Opale, Univ. Lille, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, F-62300 Boulogne-sur-Mer, France
| |
Collapse
|
65
|
Beekman KM, Veldhuis-Vlug AG, den Heijer M, Maas M, Oleksik AM, Tanck MW, Ott SM, van 't Hof RJ, Lips P, Bisschop PH, Bravenboer N. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 2019; 118:62-68. [PMID: 29032175 DOI: 10.1016/j.bone.2017.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
In patients with postmenopausal osteoporosis low bone volume is associated with high bone marrow adipose tissue (MAT). Moreover, high MAT is associated with increased fracture risk. This suggests an interaction between MAT and bone turnover, however literature remains equivocal. Estrogen treatment decreases MAT, but the effect of raloxifene, a selective estrogen receptor modulator (SERM) registered for treatment of postmenopausal osteoporosis, on MAT is not known. The aim of this study is 1] to determine the effect of raloxifene on MAT and 2] to determine the relationship between MAT and bone turnover in patients with osteoporosis. Bone biopsies from the MORE trial were analyzed. The MORE trial investigated the effects of raloxifene 60 or 120mg per day versus placebo on bone metabolism and fracture incidence in patients with postmenopausal osteoporosis. We quantified MAT in iliac crest biopsies obtained at baseline and after 2years of treatment (n=53; age 68.2±6.2years). Raloxifene did not affect the change in MAT volume after 2years compared to baseline (placebo: 1.89±10.84%, raloxifene 60mg: 6.31±7.22%, raloxifene 120mg: -0.77±10.72%), nor affected change in mean adipocyte size (placebo: 1.45 (4.45) μm, raloxifene 60mg: 1.45 (4.35) μm, raloxifene 120mg: 0.81 (5.21) μm). Adipocyte number tended to decrease after placebo treatment (-9.92 (42.88) cells/mm2) and tended to increase during raloxifene 60mg treatment (13.27 (66.14) cells/mm2) while adipocyte number remained unchanged in the raloxifene 120mg group, compared to placebo (3.06 (39.80) cells/mm2, Kruskal-Wallis p=0.055, post hoc: placebo vs raloxifene 60mg p=0.017). MAT volume and adipocyte size were negatively associated with osteoclast number at baseline (R2=0.123, p=0.006 and R2=0.098, p=0.016 respectively). Furthermore adipocyte size was negatively associated with osteoid surface (R2=0.067, p=0.049). Finally, patients with vertebral fractures had higher MAT volume (50.82 (8.80)%) and larger adipocytes (55.75 (3.14) μm) compared to patients without fractures (45.58 (12.72)% p=0.032, 52.77 (3.73) μm p=0.004 respectively). In conclusion, raloxifene did not affect marrow adipose tissue, but tended to increase adipocyte number compared to placebo. At baseline MAT volume and adipocyte size were associated with bone resorption, and adipocyte size was associated with osteoid surface, suggesting an interaction between bone marrow adipocytes and bone turnover. In addition, we found that high MAT volume and larger adipocyte size are associated with prevalent vertebral fractures in postmenopausal women with osteoporosis, indicating that adipocyte size affects bone quality independent of bone volume.
Collapse
Affiliation(s)
- Kerensa M Beekman
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands; Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Annegreet G Veldhuis-Vlug
- Academic Medical Center/University of Amsterdam, Department of Endocrinology and Metabolism, The Netherlands; Maine Medical Center Research Institute, Center for Clinical and Translational Medicine, 81 Research Drive, 04074 Scarborough, ME, USA.
| | - Martin den Heijer
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Mario Maas
- Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Ania M Oleksik
- Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, PO Box 9600, 2300RC Leiden, The Netherlands.
| | - Michael W Tanck
- Academic Medical Center/University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, The Netherlands.
| | - Susan M Ott
- University of Washington, Bone and Joint Center, Box 354740, 4245 Roosevelt Way N.E., Seattle, WA 98105-6920, USA.
| | - Rob J van 't Hof
- University of Liverpool, Institute of Ageing and Chronic Disease, 6 West Derby Street, Liverpool L7 8TX, United Kingdom.
| | - Paul Lips
- VU University Medical Center, Department of Internal Medicine, Section of Endocrinology, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Peter H Bisschop
- Academic Medical Center/University of Amsterdam, Department of Radiology and Nuclear Medicine, PO Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Leiden University Medical Center, Department of Internal Medicine, Albinusdreef 2, PO Box 9600, 2300RC Leiden, The Netherlands; VU University Medical Center, Department of Clinical Chemistry, The Netherlands.
| |
Collapse
|
66
|
Fazeli PK, Klibanski A. The paradox of marrow adipose tissue in anorexia nervosa. Bone 2019; 118:47-52. [PMID: 29458121 PMCID: PMC6095826 DOI: 10.1016/j.bone.2018.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric disorder characterized by inappropriate nutrient intake resulting in low body weight. Multiple hormonal adaptations facilitate decreased energy expenditure in this state of caloric deprivation including non-thyroidal illness syndrome, growth hormone resistance, and hypogonadotropic hypogonadism. Although these hormonal adaptations confer a survival advantage during periods of negative energy balance, they contribute to the long-term medical complications associated with AN, the most common of which is significant bone loss and an increased risk of fracture. In recent years, marrow adipose tissue (MAT) has emerged as an important potential determinant of the low bone mass state characteristic of AN. Unlike subcutaneous and visceral adipose tissue depots which are low in AN, MAT levels are paradoxically elevated and are inversely associated with BMD. In this review, we discuss what is known about MAT in AN and the proposed hormonal determinants of this adipose tissue depot.
Collapse
Affiliation(s)
- Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
67
|
Grahnemo L, Gustafsson KL, Sjögren K, Henning P, Lionikaite V, Koskela A, Tuukkanen J, Ohlsson C, Wernstedt Asterholm I, Lagerquist MK. Increased bone mass in a mouse model with low fat mass. Am J Physiol Endocrinol Metab 2018; 315:E1274-E1285. [PMID: 30253110 DOI: 10.1152/ajpendo.00257.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mice with impaired acute inflammatory responses within adipose tissue display reduced diet-induced fat mass gain associated with glucose intolerance and systemic inflammation. Therefore, acute adipose tissue inflammation is needed for a healthy expansion of adipose tissue. Because inflammatory disorders are associated with bone loss, we hypothesized that impaired acute adipose tissue inflammation leading to increased systemic inflammation results in a lower bone mass. To test this hypothesis, we used mice overexpressing an adenoviral protein complex, the receptor internalization and degradation (RID) complex that inhibits proinflammatory signaling, under the control of the aP2 promotor (RID tg mice), resulting in suppressed inflammatory signaling in adipocytes. As expected, RID tg mice had lower high-fat diet-induced weight and fat mass gain and higher systemic inflammation than littermate wild-type control mice. Contrary to our hypothesis, RID tg mice had increased bone mass in long bones and vertebrae, affecting trabecular and cortical parameters, as well as improved humeral biomechanical properties. We did not find any differences in bone formation or resorption parameters as determined by histology or enzyme immunoassay. However, bone marrow adiposity, often negatively associated with bone mass, was decreased in male RID tg mice as determined by histological analysis of tibia. In conclusion, mice with reduced fat mass due to impaired adipose tissue inflammation have increased bone mass.
Collapse
Affiliation(s)
- L Grahnemo
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - K L Gustafsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - K Sjögren
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - P Henning
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - V Lionikaite
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - A Koskela
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine and Medical Research Center, University of Oulu , Oulu , Finland
| | - J Tuukkanen
- Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine and Medical Research Center, University of Oulu , Oulu , Finland
| | - C Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - I Wernstedt Asterholm
- Unit of Metabolic Physiology, Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - M K Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
68
|
Abstract
Bone marrow adipocytes (BMA-) constitute an original and heterogeneous fat depot whose development appears interlinked with bone status throughout life. The gradual replacement of the haematopoietic tissue by BMA arises in a well-ordered way during childhood and adolescence concomitantly to bone growth and continues at a slower rate throughout the adult life. Importantly, BM adiposity quantity is found well associated with bone mineral density (BMD) loss at different skeletal sites in primary osteoporosis such as in ageing or menopause but also in secondary osteoporosis consecutive to anorexia nervosa. Since BMA and osteoblasts originate from a common mesenchymal stem cell, adipogenesis is considered as a competitive process that disrupts osteoblastogenesis. Besides, most factors secreted by bone and bone marrow cells (ligands and antagonists of the WNT/β-catenin pathway, BMP and others) reciprocally regulate the two processes. Hormones such as oestrogens, glucocorticoids, parathyroid and growth hormones that control bone remodelling also modulate the differentiation and the activity of BMA. Actually, BMA could also contribute to bone loss through the release of paracrine factors altering osteoblast and/or osteoclast formation and function. Based on clinical and fundamental studies, this review aims at presenting and discussing these current arguments that support but also challenge the involvement of BMA in the bone mass integrity.
Collapse
Affiliation(s)
- Tareck Rharass
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| | - Stéphanie Lucas
- Littoral Côte d’Opale University, Lille University, EA 4490, PMOI, Physiopathologie des Maladies Osseuses Inflammatoires, Lille, F-59000, France
| |
Collapse
|
69
|
Sfeir JG, Drake MT, Atkinson EJ, Achenbach SJ, Camp JJ, Tweed AJ, McCready LK, Yu L, Adkins MC, Amin S, Khosla S. Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography. Bone 2018; 112:145-152. [PMID: 29704696 PMCID: PMC5970096 DOI: 10.1016/j.bone.2018.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/09/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022]
Abstract
Central quantitative computed tomography (QCT) is increasingly used in clinical trials and practice to assess bone mass or strength and to evaluate longitudinal changes in response to drug treatment. Current studies utilize single-energy (SE) QCT scans, which may be confounded both by the amount of bone marrow fat at baseline and changes in marrow fat over time. However, the extent to which marrow fat changes either underestimate volumetric BMD (vBMD) measurements at baseline or under-/overestimate longitudinal changes in vivo in humans remains unclear. To address this issue, 197 early postmenopausal women [median age (IQR) 56.7 (54.4-58.7) years] underwent spine and hip QCT scans at baseline and 3 years using a 128-slice dual-source dual-energy (DE) scanner. The scans were analyzed as either SE scans (100 kVp) or DE scans (100 kVp and 140 kVp), with the latter accounting for bone marrow fat. At baseline, vertebral trabecular vBMD was (median) 17.6% lower (P < 0.001) while femur neck (FN) cortical vBMD was only 3.2% lower (P < 0.001) when assessed by SE vs DE scanning. SE scanning overestimated the 3 year rate of bone loss for trabecular bone at the spine by 24.2% (P < 0.001 vs DE rates of loss) but only by 8.8% for changes in FN cortical vBMD (P < 0.001 vs DE rates of loss). The deviation between SE and DE rates of bone loss in trabecular vBMD became progressively greater as the rate of bone loss increased. These findings demonstrate that SE QCT scans underestimate trabecular vBMD and substantially overestimate rates of age-related bone loss due to ongoing conversion of red to yellow marrow. Further, the greater the rate of bone loss, the greater the overestimation of bone loss by SE scans. Although our findings are based on normal aging, recent evidence from animal studies demonstrates that the skeletal anabolic drugs teriparatide and romosozumab may markedly reduce marrow fat, perhaps accounting for the disproportionate increases in trabecular vBMD by SE QCT as compared to dual-energy X-ray absorptiometry with these agents. As such, future studies using recently available DE scanning technology that has satisfactory precision and radiation exposure are needed to evaluate changes in trabecular vBMD independent of changes in marrow fat with aging and drugs that may alter marrow fat composition.
Collapse
Affiliation(s)
- Jad G Sfeir
- Robert and Arlene Kogod Center on Aging, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States
| | - Matthew T Drake
- Robert and Arlene Kogod Center on Aging, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States
| | - Elizabeth J Atkinson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Sara J Achenbach
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Jon J Camp
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States
| | - Amanda J Tweed
- Robert and Arlene Kogod Center on Aging, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States
| | - Louise K McCready
- Robert and Arlene Kogod Center on Aging, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Mark C Adkins
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States
| | - Shreyasee Amin
- Division of Rheumatology, Mayo Clinic, Rochester, MN 55905, United States
| | - Sundeep Khosla
- Robert and Arlene Kogod Center on Aging, Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
70
|
Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration. Stem Cells Int 2018; 2018:7098456. [PMID: 29955232 PMCID: PMC6000863 DOI: 10.1155/2018/7098456] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/13/2018] [Indexed: 02/05/2023] Open
Abstract
Marrow adipose tissue (MAT) is a unique fat depot in the bone marrow and exhibits close relationship with hematopoiesis and bone homeostasis. MAT is distinct from peripheral adipose tissue in respect of its heterogeneous origin, site-specific distribution, and complex and perplexing function. Though MAT is indicated to function in hematopoiesis, skeletal remodeling, and energy metabolism, its explicit characterization still requires further research. In this review, we highlight recent advancement made in MAT regarding the origin and distribution of MAT, the local interaction with bone homeostasis and hematopoietic niche, the systemic endocrine regulation of metabolism, and MAT-based strategies to enhance bone formation.
Collapse
|
71
|
Li Z, Hardij J, Bagchi DP, Scheller EL, MacDougald OA. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone 2018; 110:134-140. [PMID: 29343445 PMCID: PMC6277028 DOI: 10.1016/j.bone.2018.01.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Abstract
Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells.
Collapse
Affiliation(s)
- Ziru Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Julie Hardij
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Devika P Bagchi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent findings on marrow adipose tissue (MAT) function and to discuss the possibility of targeting MAT for therapeutic purposes. RECENT FINDINGS MAT is characterized with high heterogeneity which may suggest both that marrow adipocytes originate from multiple different progenitors and/or their phenotype is determined by skeletal location and environmental cues. Close relationship to osteoblasts and heterogeneity suggests that MAT consists of cells representing spectrum of phenotypes ranging from lipid-filled adipocytes to pre-osteoblasts. We propose a term of adiposteoblast for describing phenotypic spectrum of MAT. Manipulating with MAT activity in diseases where impairment in energy metabolism correlates with bone functional deficit, such as aging and diabetes, may be beneficial for both. Paracrine activities of MAT might be considered for treatment of bone diseases. MAT has unrecognized potential, either beneficial or detrimental, to regulate bone homeostasis in physiological and pathological conditions. More research is required to harness this potential for therapeutic purposes.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| | - Sudipta Baroi
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Lance A Stechschulte
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Amit Sopan Chougule
- Department of Orthopaedic Research, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
73
|
Chen YY, Wu CL, Shen SH. High Signal in Bone Marrow on Diffusion-Weighted Imaging of Female Pelvis: Correlation With Anemia and Fibroid-Associated Symptoms. J Magn Reson Imaging 2018; 48:1024-1033. [PMID: 29504179 DOI: 10.1002/jmri.26002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The diffusion-weighted imaging (DWI) signals of the female pelvic bone marrow show great variability and are usually high in female patients with fibroid-associated symptoms and anemia. PURPOSE To ascertain clinical factors contributing to high signal intensity in the bone marrow of the female pelvis on DWI. STUDY TYPE Retrospective case-control study. SUBJECTS A single-institution review of 221 female patients underwent a pelvic magnetic resonance study from December 2012 to July 2014. FIELD STRENGTH/SEQUENCE 1.5T/DWI (b = 0 and 1000) and apparent diffusion coefficient (ADC). ASSESSMENT The ADC of pelvic bone marrow and the muscle-normalized signal intensity (SI) on DWI (mnDWI) were measured. A brightness grading scale ranging from 0 to 4 was used for pelvic bone assessment. Clinical factors, namely, age, the lowest hemoglobin level in the last 6 months, the presence of large uterine fibroids, and/or adenomyosis and fibroid-associated symptoms were recorded. STATISTICAL TESTS The relationships between the brightness grade and clinical factors were evaluated through multinomial logistic regression, and correlations of mnDWI and the ADC with the clinical factors were analyzed through the Kruskal-Wallis test, Jonckheere's trend test, and the Mann-Whitney U-test with Bonferroni correction. RESULTS Age and the hemoglobin level were inversely associated with the bone marrow brightness grade on DWI (both P < 0.05), whereas the presence of fibroid-associated symptoms showed a positive association (P = 0.028). The ADC and mnDWI in women younger than 50 years were significantly higher than those in older women (both P < 0.0001). The ADC had no significant correlation with anemia (P = 0.511), whereas mnDWI increased as the severity of anemia increased (P = 0.00154). DATA CONCLUSION Our study showed an association of high DWI SI of pelvic bone marrow with anemia in premenopausal women. LEVEL OF EVIDENCE 4 Technical Efficacy Stage 3 J. Magn. Reson. Imaging 2018;48:1024-1033.
Collapse
Affiliation(s)
- Ying-Yuan Chen
- Department of Radiology, National Yang-Ming University Hospital, Yilan County, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ching-Lan Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shu-Huei Shen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
74
|
Mistry SD, Woods GN, Sigurdsson S, Ewing SK, Hue TF, Eiriksdottir G, Xu K, Hilton JF, Kado DM, Gudnason V, Harris TB, Rosen CJ, Lang TF, Li X, Schwartz AV. Sex hormones are negatively associated with vertebral bone marrow fat. Bone 2018; 108:20-24. [PMID: 29241825 PMCID: PMC5803453 DOI: 10.1016/j.bone.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 12/24/2022]
Abstract
CONTEXT Higher bone marrow fat (BMF)1 is associated with osteoporosis and reduced hematopoiesis. Exogenous estradiol reduces BMF in older women, but effects of endogenous sex hormones are unknown. OBJECTIVE To determine if endogenous sex hormones are associated with BMF in older men and women. DESIGN, SETTING AND PARTICIPANTS Cross-sectional study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Participants using medications that may affect BMF were excluded. MAIN OUTCOME MEASURES Vertebral BMF was measured with magnetic resonance spectroscopy. Estradiol, testosterone and sex hormone binding globulin were measured on archived serum. Linear regression models were adjusted for age, total percent body fat and visit window. RESULTS Analyses included 244 men and 226 women, mean age 81.5 (SD 4.1) years. Mean BMF was 54.1% (SD 8.6) (men) and 54.7% (SD 8.1) (women). In adjusted models, per 1pg/ml increase in total estradiol, there was a statistically significant 0.26% decrease in BMF in men (95% CI: -0.41, -0.11) and a non-significant 0.20% decrease in women (95% CI: -0.55, 0.15), with no evidence of interaction by gender (p=0.88). Per 10ng/dl increase in total testosterone, there was a significant 0.10% decrease in BMF in men (95% CI: -0.17, -0.03) and a non-significant 0.13% (95% CI: -0.79, 0.53) decrease in women, with no evidence of interaction by gender (p=0.97). CONCLUSION Higher bone marrow fat is associated with lower total estradiol and testosterone levels in older men, with a similar but statistically non-significant association in older women. Sex hormone levels appear to play a role in the regulation of bone marrow fat in older adults.
Collapse
Affiliation(s)
- Swaroop D Mistry
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94158, USA.
| | - Gina N Woods
- Department of Medicine, University of California San Diego, CA 92093, USA.
| | | | - Susan K Ewing
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94158, USA.
| | - Trisha F Hue
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94158, USA.
| | | | - Kaipin Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA 94107, USA.
| | - Joan F Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94158, USA.
| | - Deborah M Kado
- Department of Family Medicine and Family Health, University of California San Diego, CA 92093, USA.
| | | | - Tamara B Harris
- Intramural Research Program, National Institute of Aging, 20892, USA.
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Portland, ME 04102, USA.
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA 94107, USA.
| | - Xiaojuan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA 94107, USA.
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, CA 94158, USA.
| |
Collapse
|
75
|
Ermetici F, Briganti S, Delnevo A, Cannaò P, Leo GD, Benedini S, Terruzzi I, Sardanelli F, Luzi L. Bone marrow fat contributes to insulin sensitivity and adiponectin secretion in premenopausal women. Endocrine 2018. [PMID: 28624865 DOI: 10.1007/s12020-017-1349-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Bone marrow fat is a functionally distinct adipose tissue that may contribute to systemic metabolism. This study aimed at evaluating a possible association between bone marrow fat and insulin sensitivity indices. METHODS Fifty obese (n = 23) and non-obese (n = 27) premenopausal women underwent proton magnetic resonance spectroscopy to measure vertebral bone marrow fat content and unsaturation index at L4 level. Abdominal visceral, subcutaneous fat, and epicardial fat were also measured using magnetic resonance imaging. Bone mineral density was measured by dual-energy X-ray absorptiometry. Body composition was assessed by bioelectrical impedance analysis. Fasting serum glucose, insulin, lipids, adiponectin were measured; the insulin resistance index HOMA (HOMA-IR) was calculated. RESULTS Bone marrow fat content and unsaturation index were similar in obese and non-obese women (38.5 ± 0.1 vs. 38.6 ± 0.1%, p = 0.994; 0.162 ± 0.065 vs. 0.175 ± 0.048, p = 0.473, respectively). Bone marrow fat content negatively correlated with insulin and HOMA-IR (r = -0.342, r = -0.352, respectively, p = 0.01) and positively with high density lipoprotein cholesterol (r = 0.270, p = 0.043). From a multivariate regression model including lnHOMA-IR as a dependent variable and visceral, subcutaneous, epicardial fat, and bone marrow fat as independent variables, lnHOMA-IR was significantly associated with bone marrow fat (β = -0.008 ± 0.004, p = 0.04) and subcutaneous fat (β = 0.003 ± 0.001, p = 0.04). Bone marrow fat, among the other adipose depots, was a significant predictor of circulating adiponectin (β = 0.147 ± 0.060, p = 0.021). Bone marrow fat unsaturation index negatively correlated with visceral fat (r = -0.316, p = 0.026). CONCLUSIONS There is a relationship between bone marrow fat content and insulin sensitivity in obese and non-obese premenopausal women, possibly mediated by adiponectin secretion. Visceral fat does not seem to regulate bone marrow fat content while it may affect bone marrow fat composition.
Collapse
Affiliation(s)
- Federica Ermetici
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| | - Silvia Briganti
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Alessandra Delnevo
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Paola Cannaò
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Giovanni Di Leo
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Stefano Benedini
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Sardanelli
- Radiology Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Livio Luzi
- Endocrinology and Metabolism, IRCCS Policlinico San Donato, San Donato Milanese, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
76
|
Abstract
Marrow adipocytes, collectively termed marrow adipose tissue (MAT), reside in the bone marrow in close contact to bone cells and haematopoietic cells. Marrow adipocytes arise from the mesenchymal stem cell and share their origin with the osteoblast. Shifts in the lineage allocation of the mesenchymal stromal cell could potentially explain the association between increased MAT and increased fracture risk in diseases such as postmenopausal osteoporosis, anorexia nervosa and diabetes. Functionally, marrow adipocytes secrete adipokines, such as adiponectin, and cytokines, such as RANK ligand and stem cell factor. These mediators can influence both bone remodelling and haematopoiesis by promoting bone resorption and haematopoietic recovery following chemotherapy. In addition, marrow adipocytes can secrete free fatty acids, acting as a energy supply for bone and haematopoietic cells. However, this induced lipolysis is also used by neoplastic cells to promote survival and proliferation. Therefore, MAT could represent a new therapeutic target for multiple diseases from osteoporosis to leukaemia, although the exact characteristics and role of the marrow adipocyte in health and diseases remain to be determined.
Collapse
Affiliation(s)
- A G Veldhuis-Vlug
- Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| |
Collapse
|
77
|
Sollmann N, Dieckmeyer M, Schlaeger S, Rohrmeier A, Syvaeri J, Diefenbach MN, Weidlich D, Ruschke S, Klupp E, Franz D, Rummeny EJ, Zimmer C, Kirschke JS, Karampinos DC, Baum T. Associations Between Lumbar Vertebral Bone Marrow and Paraspinal Muscle Fat Compositions-An Investigation by Chemical Shift Encoding-Based Water-Fat MRI. Front Endocrinol (Lausanne) 2018; 9:563. [PMID: 30323789 PMCID: PMC6172293 DOI: 10.3389/fendo.2018.00563] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: Advanced magnetic resonance imaging (MRI) methods enable non-invasive quantification of body fat situated in different compartments. At the level of the lumbar spine, the paraspinal musculature is the compartment spatially and functionally closely related to the vertebral column, and both vertebral bone marrow fat (BMF) and paraspinal musculature fat contents have independently shown to be altered in various metabolic and degenerative diseases. However, despite their close relationships, potential correlations between fat compositions of these compartments remain largely unclear. Materials and Methods: Thirty-nine female subjects (38.5% premenopausal women, 29.9 ± 7.1 years; 61.5% postmenopausal women, 63.2 ± 6.3 years) underwent MRI at 3T of the lumbar spine using axially- and sagittally-prescribed gradient echo sequences for chemical shift encoding-based water-fat separation. The erector spinae muscles and vertebral bodies of L1-L5 were segmented to determine the proton density fat fraction (PDFF) of the paraspinal and vertebral bone marrow compartments. Correlations were calculated between the PDFF of the paraspinal muscle and bone marrow compartments. Results: The average PDFF of the paraspinal muscle and bone marrow compartments were significantly lower in premenopausal women when compared to postmenopausal women (11.6 ± 2.9% vs. 24.6 ± 7.1% & 28.8 ± 8.3% vs. 47.2 ± 8.5%; p < 0.001 for both comparisons). In premenopausal women, no significant correlation was found between the PDFF of the erector spinae muscles and the PDFF of the bone marrow of lumbar vertebral bodies (p = 0.907). In contrast, a significant correlation was shown in postmenopausal women (r = 0.457, p = 0.025). Significance was preserved after inclusion of age and body mass index (BMI) as control variables (r = 0.472, p = 0.027). Conclusion: This study revealed significant correlations between the PDFF of paraspinal and vertebral bone marrow compartments in postmenopausal women. The PDFF of the paraspinal and vertebral bone marrow compartments and their correlations might potentially serve as biomarkers; however, future studies including more subjects are required to evaluate distinct clinical value and reliability. Future studies should also follow up our findings in patients suffering from metabolic and degenerative diseases to clarify how these correlations change in the course of such diseases.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Nico Sollmann
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Rohrmeier
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan Syvaeri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian N. Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
78
|
|
79
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|
80
|
Ho L, Wang L, Roth TM, Pan Y, Verdin EM, Hsiao EC, Nissenson RA. Sirtuin-3 Promotes Adipogenesis, Osteoclastogenesis, and Bone Loss in Aging Male Mice. Endocrinology 2017; 158:2741-2753. [PMID: 28911171 PMCID: PMC5659662 DOI: 10.1210/en.2016-1739] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Sirtuin-3 (Sirt3) is an essential metabolic regulatory enzyme that plays an important role in mitochondrial metabolism, but its role in bone marrow and skeletal homeostasis remains largely unknown. In this study, we hypothesize that increased expression of Sirt3 plays a role in skeletal aging. Using mice that overexpress Sirt3 [i.e., Sirt3 transgenic (Sirt3Tg)], we show that Sirt3 is a positive regulator of adipogenesis and osteoclastogenesis and a negative regulator of skeletal homeostasis. Sirt3Tg mice exhibited more adipocytes in the tibia compared with control mice. Bone marrow stromal cells (BMSCs) from Sirt3Tg mice displayed an enhanced ability to differentiate into adipocytes compared with control BMSCs. We found a 2.5-fold increase in the number of osteoclasts on the bone surface in Sirt3Tg mice compared with control mice (P < 0.03), and increased osteoclastogenesis in vitro. Importantly, Sirt3 activates the mechanistic target of rapamycin (mTOR) pathway to regulate osteoclastogenesis. Sirt3Tg male mice exhibited a significant reduction in cortical thickness at the tibiofibular junction (P < 0.05). In summary, Sirt3 activity in bone marrow cells is associated with increased adipogenesis, increased osteoclastogenesis through activation of mTOR signaling, and reduced bone mass. Interestingly, Sirt3 expression in bone marrow cells increases during aging, suggesting that Sirt3 promotes age-related adipogenesis and osteoclastogenesis associated with bone loss. These findings identify Sirt3 as an important regulator of adipogenesis and skeletal homeostasis in vivo and identify Sirt3 as a potential target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Linh Ho
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California 94158
| | - Liping Wang
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California 94158
| | - Theresa M. Roth
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California 94158
| | - Yong Pan
- Gladstone Institutes, University of California, San Francisco, San Francisco, California 94941
| | - Eric M. Verdin
- Gladstone Institutes, University of California, San Francisco, San Francisco, California 94941
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Institute for Human Genetics, University of California, San Francisco, San Francisco, California 94143
| | - Robert A. Nissenson
- Endocrine Research Unit, VA Medical Center and Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
81
|
The effects of knee immobilization on marrow adipocyte hyperplasia and hypertrophy at the proximal rat tibia epiphysis. Acta Histochem 2017; 119:759-765. [PMID: 28967429 DOI: 10.1016/j.acthis.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
Marrow adipose deposition is observed during aging and in association with extended periods of immobility. The objective of this study was to determine the contribution of adipocyte hypertrophy and hyperplasia to bone marrow fat deposition induced by immobilization of the rat knee joint for 2, 4, 16 or 32 weeks. Histomorphometric analyses compared immobilized to sham-operated proximal tibia from age and gender matched rats to assess the contribution of aging and duration of immobilization on the number and size of marrow adipocytes. Results indicated that marrow adipose tissue increased with the duration of immobilization and was significant larger at 16 weeks compared to the sham-operated group (0.09956±0.13276mm2 vs 0.01990±0.01100mm2, p=0.047). The marrow adipose tissue was characterized by hyperplasia of adipocytes with a smaller average size after 2 and 4 weeks of immobilization (at 2 weeks hyperplasia: 68.86±33.62 vs 43.57±24.47 adipocytes/mm2, p=0.048; at 4 weeks hypotrophy: 0.00036±0.00019 vs 0.00046±0.00023mm2, p=0.027), and by adipocyte hypertrophy after 16 weeks of immobilization (0.00083±0.00049 vs 0.00046±0.00028mm2, p=0.027) compared to sham-operated. Both immobilized and sham-operated groups showed marrow adipose conversion with age; immobilized (p=0.008; sham: p=0.003). Overall, fat deposition in the bone marrow of the proximal rat tibia epiphysis and induced by knee joint immobilization was characterized by hyperplasia of small adipocytes in the early phase and by adipocyte hypertrophy in the later phase. Mediators of marrow fat deposition after immobilization and preventive countermeasures need to be investigated.
Collapse
|
82
|
Suchacki KJ, Roberts F, Lovdel A, Farquharson C, Morton NM, MacRae VE, Cawthorn WP. Skeletal energy homeostasis: a paradigm of endocrine discovery. J Endocrinol 2017; 234:R67-R79. [PMID: 28455432 DOI: 10.1530/joe-17-0147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022]
Abstract
Throughout the last decade, significant developments in cellular, molecular and mouse models have revealed major endocrine functions of the skeleton. More recent studies have evolved the interplay between bone-specific hormones, the skeleton, marrow adipose tissue, muscle and the brain. This review focuses on literature from the last decade, addressing the endocrine regulation of global energy metabolism via the skeleton. In addition, we will highlight several recent studies that further our knowledge of new endocrine functions of some organs; explore remaining unanswered questions; and, finally, we will discuss future directions for this more complex era of bone biology research.
Collapse
Affiliation(s)
- Karla J Suchacki
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Fiona Roberts
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - Andrea Lovdel
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Colin Farquharson
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - Nik M Morton
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| | - Vicky E MacRae
- The Roslin InstituteThe University of Edinburgh, Easter Bush, Midltohian, UK
| | - William P Cawthorn
- The Queen's Medical Research InstituteThe University of Edinburgh, Edinburgh, UK
| |
Collapse
|
83
|
Wang J, Li SF, Wang T, Sun CH, Wang L, Huang MJ, Chen J, Zheng SW, Wang N, Zhang YJ, Chen TY. Isopsoralen-mediated suppression of bone marrow adiposity and attenuation of the adipogenic commitment of bone marrow-derived mesenchymal stem cells. Int J Mol Med 2017; 39:527-538. [PMID: 28204811 PMCID: PMC5360393 DOI: 10.3892/ijmm.2017.2880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis (OP) increases the risk of bone fractures and other complications, and is thus a major clinical problem. In this study, we examined the effect of isopsoralen on the differentiation of bone-derived marrow mesenchymal stem cells (BMSCs) into osteoblasts and adipocytes, as well as bone formation under osteoporotic conditions. Primary femoral BMSCs isolated from C57BL/6 mice were used to evaluate the isopsoralen-mediated regulation of the expression of alkaline phosphatase (ALP), osteocalcin (OCN) and runt-related transcription factor 2 (RUNX2) during osteogenesis 2 weeks. We also examined the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein β (C/EBPβ) under adipogenic conditions for 1 and 2 weeks. In addition, ovariectomized (OVX) mice were used to examine the effects of isopsoralen on bone formation for 2 months. Finally, mammalian target of rapamycin complex 1 (mTORC1) signaling was examined under osteogenic and adipogenic conditions. We found that following treatment with isopsoralen, the expression levels of ALP, OCN and RUNX2 were upregulated, whereas those of PPARγ and C/EBPβ were downregulated. mTORC1 signaling was also inhibited in vitro and in vivo. In the OVX mice that were intragastrically administered isopsoralen, bone parameters (trabecular thickness, bone volume/total volume and trabecular number) in the distal femoral metaphysis were significantly increased and the adipocyte number was decreased. On the whole, our findings demonstrate that isopsoralen promoted BMSC differentiation into osteoblasts and suppressed differentiation into adipocytes.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopaedics, People's Hospital of Inner Mongolia Autonomous Region, Hohhot 010050, P.R. China
| | - Sheng-Fa Li
- Department of Orthopaedics, The First People's Hospital of Huizhou, Huizhou, Guangdong 516003, P.R. China
| | - Ting Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chun-Han Sun
- Department of Orthopaedics, The First People's Hospital of Huizhou, Huizhou, Guangdong 516003, P.R. China
| | - Liang Wang
- Department of Orthopedics, Guangdong Orthopedics Academy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510665, P.R. China
| | - Min-Jun Huang
- Department of Orthopedics, Guangdong Orthopedics Academy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510665, P.R. China
| | - Jian Chen
- Department of Orthopaedics, Three Gorges Central Hospital of Chongqing, Chongqing 404100, P.R. China
| | - Shao-Wei Zheng
- Department of Orthopaedics, The First People's Hospital of Huizhou, Huizhou, Guangdong 516003, P.R. China
| | - Nan Wang
- Research Center of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying-Jun Zhang
- Department of Medical Imaging, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Tian-Yu Chen
- Department of Orthopedics, Guangdong Orthopedics Academy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510665, P.R. China
| |
Collapse
|
84
|
Lama A, Santoro A, Corrado B, Pirozzi C, Paciello O, Pagano TB, Russo S, Calignano A, Mattace Raso G, Meli R. Extracorporeal shock waves alone or combined with raloxifene promote bone formation and suppress resorption in ovariectomized rats. PLoS One 2017; 12:e0171276. [PMID: 28158228 PMCID: PMC5291474 DOI: 10.1371/journal.pone.0171276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disease characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. We examined the beneficial effect of shock waves (SW) alone or in combination with raloxifene (RAL) on bone loss in ovariectomized rats (OVX). Sixteen weeks after surgery, OVX were treated for five weeks with SW at the antero-lateral side of the right hind leg, one session weekly, at 3 Hz (EFD of 0.33 mJ/mm2), or with RAL (5 mg/kg/die, per os) or with SW+RAL. Sera, femurs, tibiae and vertebrae were sampled for following biochemical and histological analysis. SW, alone or combined with RAL, prevented femur weight reduction and the deterioration of trabecular microarchitecture both in femur and vertebrae. All treatments increased Speed of Sound (SoS) values, improving bone mineral density, altered by OVX. Serum parameters involved in bone remodeling (alkaline phosphatase, receptor activator of nuclear factor kappa-B ligand, osteoprotegerin) and osteoblast proliferation (PTH), altered by ovariectomy, were restored by SW and RAL alone or in combination. In tibiae, SW+RAL significantly reduced cathepsin k and TNF-α levels, indicating the inhibition of osteoclast activity, while all treatments significantly increased runt-related transcription factor 2 and bone morphogenetic-2 expression, suggesting an increase in osteoblastogenic activity. Finally, in bone marrow from tibiae, SW or RAL reduced PPARγ and adiponectin transcription, indicating a shift of mesenchymal cells toward osteoblastogenesis, without showing a synergistic effect. Our data indicate SW therapy, alone and in combination with raloxifene, as an innovative strategy to limit the hypoestrogenic bone loss, restoring the balance between bone formation and resorption.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Santoro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Bruno Corrado
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Teresa Bruna Pagano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Sergio Russo
- Department of Public Health, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
85
|
Veldhuis-Vlug AG, Rosen CJ. Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism 2017; 67:106-114. [PMID: 28081773 PMCID: PMC5325679 DOI: 10.1016/j.metabol.2016.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022]
Abstract
The bone marrow niche is composed of cells from hematopoietic and mesenchymal origin. Both require energy to power differentiation and these processes are intimately connected to systemic metabolic homeostasis. Glycolysis is the preferred substrate for mesenchymal stromal cells in the niche, although fatty acid oxidation and glutaminolysis are important during stage specific differentiation. Autophagy and lipophagy, in part triggered by adenosine monophosphate-activated protein kinase (AMPK), may also play an important but temporal specific role in osteoblast differentiation. Enhanced marrow adiposity is caused by clinical factors that are genetically, environmentally, and hormonally mediated. These determinants mediate a switch from the osteogenic to the adipogenic lineage. Preliminary evidence supports an important role for fuel utilization in those cell fate decisions. Although both the origin and function of the marrow adipocyte remain to be determined, and in some genetic mouse models high marrow adiposity may co-exist with greater bone mass, in humans changes in marrow adiposity are closely linked to adverse changes in skeletal metabolism. This supports an intimate relationship between bone and fat in the marrow. Future studies will likely shed more light on the relationship of cellular as well as whole body metabolism on the ultimate fate of bone marrow stromal cells.
Collapse
|
86
|
Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow Adipose Tissue: Skeletal Location, Sexual Dimorphism, and Response to Sex Steroid Deficiency. Front Endocrinol (Lausanne) 2017; 8:188. [PMID: 28824548 PMCID: PMC5543291 DOI: 10.3389/fendo.2017.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023] Open
Abstract
Marrow adipose tissue (MAT) is unique with respect to origin, metabolism, and function. MAT is characterized with high heterogeneity which correlates with skeletal location and bone metabolism. This fat depot is also highly sensitive to various hormonal, environmental, and pharmacologic cues to which it responds with changes in volume and/or metabolic phenotype. We have demonstrated previously that MAT has characteristics of both white (WAT) and brown (BAT)-like or beige adipose tissue, and that beige phenotype is attenuated with aging and in diabetes. Here, we extended our analysis by comparing MAT phenotype in different locations within a tibia bone of mature C57BL/6 mice and with respect to the presence of sex steroids in males and females. We report that MAT juxtaposed to trabecular bone of proximal tibia (pMAT) is characterized by elevated expression of beige fat markers including Ucp1, HoxC9, Prdm16, Tbx1, and Dio2, when compared with MAT located in distal tibia (dMAT). There is also a difference in tissue organization with adipocytes in proximal tibia being dispersed between trabeculae, while adipocytes in distal tibia being densely packed. Higher trabecular bone mass (BV/TV) in males correlates with lower pMAT volume and higher expression of beige markers in the same location, when compared with females. However, there is no sexual divergence in the volume and transcriptional profile of dMAT. A removal of ovaries in females resulted in decreased cortical bone mass and increased volume of both pMAT and dMAT, as well as volume of gonadal WAT (gWAT). Increase in pMAT volume was associated with marked increase in Fabp4 and Adiponectin expression and relative decrease in beige fat gene markers. A removal of testes in males resulted in cortical and trabecular bone loss and the tendency to increased volume of both pMAT and dMAT, despite a loss of gWAT. Orchiectomy did not affect the expression of white and beige adipocyte gene markers. In conclusion, expression profile of beige adipocyte gene markers correlates with skeletal location of active bone remodeling and higher BV/TV, however bone loss resulted from sex steroid deficiency is not proportional to MAT expansion at the same skeletal location.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
- *Correspondence: Beata Lecka-Czernik,
| | - Lance A. Stechschulte
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
- Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Piotr J. Czernik
- Department of Physiology and Pharmacology, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shermel B. Sherman
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Shilong Huang
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| | - Amrei Krings
- Department of Orthopaedic Surgery, University of Toledo Health Sciences Campus, Toledo, OH, United States
| |
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW This study aims to describe bone marrow fat changes in diabetes and to discuss the potential role of marrow fat in skeletal fragility. RECENT FINDINGS Advances in non-invasive imaging have facilitated marrow fat research in humans. In contrast to animal studies which clearly demonstrate higher levels of marrow fat in diabetes, human studies have shown smaller and less certain differences. Marrow fat has been reported to correlate with A1c, and there may be a distinct marrow lipid saturation profile in diabetes. Greater marrow fat is associated with impaired skeletal health. Marrow fat may be a mediator of skeletal fragility in diabetes. Circulating lipids, growth hormone alterations, visceral adiposity, and hypoleptinemia have been associated with greater marrow fat and may represent potential mechanisms for the putative effects of diabetes on marrow fat, although other factors likely contribute. Additional research is needed to further define the role of marrow fat in diabetic skeletal fragility and to determine whether marrow fat is a therapeutic target.
Collapse
Affiliation(s)
- Tiffany Y Kim
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| | - Anne L Schafer
- University of California, San Francisco, 1700 Owens St, Room 349, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| |
Collapse
|
88
|
Sarda Y, Bergman E, Hillel I, Binderman I, Nevo U. Detection of bone marrow changes related to estrogen withdrawal in rats with a tabletop stray-field NMR scanner. Magn Reson Med 2016; 78:860-870. [PMID: 27690262 DOI: 10.1002/mrm.26472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/22/2016] [Accepted: 08/27/2016] [Indexed: 11/06/2022]
Abstract
PURPOSE Osteoporosis is characterized by a decrease in bone mineral density (BMD). A preliminary stage of the disease is progressive bone marrow adiposity, caused by imbalance between osteogenesis and adipogenesis in the marrow. Detection of osteoporosis relies on the quantification of BMD with techniques such as dual-energy X-ray absorptiometry. This work aimed to detect bone marrow changes in an experimental model of osteopenia using a low-field tabletop NMR scanner. METHODS An experiment was performed on 32 female rats, 3 months old, 16 of which were ovariectomized (OVX) and 16 were sham-operated (sham). The femur and tibia from both hind limbs were isolated and underwent ex vivo NMR scans at four time points after the OVX and sham operations. NMR scans were complemented by BMD measurements and histology. RESULTS Significant changes in the bone marrow of ovariectomized rats, relative to sham operated rats, were observed after 3.5 and 4.5 months. Bone marrow adiposity was detected by significant changes in T1 and T2 relaxation times, and in the diffusion coefficient. CONCLUSIONS This study suggests a potential detection of changes to the bone marrow using a tabletop NMR device. Clinical translation may facilitate screening, early detection of bone weakening as a result of estrogen withdrawal, and monitoring of treatment efficacy. Magn Reson Med 78:860-870, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yifat Sarda
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Elad Bergman
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Inbar Hillel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Itzhak Binderman
- Department of Oral Biology, School of Dental Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|
89
|
Cui FZ, Cui JL, Wang SL, Yu H, Sun YC, Zhao N, Cui SJ. Signal characteristics of normal adult bone marrow in whole-body diffusion-weighted imaging. Acta Radiol 2016; 57:1230-7. [PMID: 26787674 DOI: 10.1177/0284185115626477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Knowledge of the signal characteristics of normal adult bone marrow in whole-body diffusion-weighted (DW) images (WB-DWI) is essential for correctly interpreting DW images in clinical practice; however, these factors have not yet been clearly determined. PURPOSE To evaluate the signal characteristics of normal adult bone marrow in WB-DWI, to correlate these characteristics with age and gender, and to determine the causes of these phenomena. MATERIAL AND METHODS Ninety-eight healthy volunteers underwent WB-DWI (b = 0 and 800 s/mm(2)). Two radiologists visually evaluated the signal characteristics of bone marrow in DW images separately. One radiologist measured the apparent diffusion coefficient (ADC) of the thoracic and lumbar vertebrae, bilateral femur (including head, neck, and proximal and distal femoral shaft), bilateral humeral head, ilium, and scapula. The signal characteristics of normal bone marrow were analyzed. RESULTS The visual evaluation results of DW images indicated that hyperintensity of bone marrow was more frequently seen in women aged 21-50 years (68.4%) than in men aged 21-50 years (3.3%) (P < 0.001), men aged 51-81 years (5.9%) (P < 0.001), and women aged 51-81 years (15.4%) (P = 0.001). However, no statistically significant difference was found between men and women aged 51-81 years (P = 0.565). The ADC of bone marrow was significantly higher in women than in men aged 21-50 years. Bone marrow ADC showed significant negative correlation with age in women but not in men. CONCLUSION The signal intensity of bone marrow varies with age and gender in DW images. ADC and the T2 shine-through effect contributed to the bone marrow signal intensity in DW images, and the latter effect may predominate.
Collapse
Affiliation(s)
- Feng-Zhen Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
- Department of Radiology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Jian-Ling Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
| | - Shi-Lei Wang
- Department of Radiology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, PR China
| | - Hong Yu
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
| | - Ying-Cai Sun
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
| | - Na Zhao
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
| | - Sheng-Jie Cui
- Department of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laboratory of Orthopedics, Shijiazhuang, Hebei, PR China
| |
Collapse
|
90
|
Panax notoginseng saponins mitigate ovariectomy-induced bone loss and inhibit marrow adiposity in rats. Menopause 2016; 22:1343-50. [PMID: 26035148 DOI: 10.1097/gme.0000000000000471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Previous data have suggested that Panax notoginseng saponins (PNS) can prevent estrogen deficiency-induced bone loss by dual action: stimulation of new bone formation and inhibition of bone resorption. Marrow adipogenesis has been identified as a negative indicator of skeletal strength and integrity. This study assessed the effects of early PNS supplementation on bone microarchitecture preservation and marrow fat content in an ovariectomized rat model. METHODS Forty adult female Sprague-Dawley rats were randomly assigned to four equal groups for 12 weeks of treatment: (1) sham operation (SHAM) + vehicle; (2) ovariectomy (OVX) + vehicle; (3) OVX + 17β-estradiol (25 μg/kg); (4) OVX + PNS (300 mg/kg/d, PO). Marrow fat content of the femur was determined, using fat/water magnetic resonance imaging (MRI), at baseline and 6 and 12 weeks after operation. At the end of the experiment, bone turnover, trabecular microarchitecture, and marrow adipocytes were assessed by serum biomarkers, micro-computed tomography (micro-CT), and histopathology, respectively. The effects of PNS on adipocytic differentiation were reflected by expression levels of the adipogenic genes PPARγ2 and C/EBPα, as determined by reverse transcription-polymerase chain reaction. RESULTS Ovariectomized rats experienced remarkable increases in marrow fat content across time points, which were accompanied by elevated rate of bone turnover, global volumetric bone density, and trabecular microarchitecture deterioration. These OVX-induced pathological changes are reversible in that most of them could be mostly corrected upon 17β-estradiol treatment. PNS treatment significantly reduced marrow adipogenesis (adipocyte density, -27.2%; size, -22.7%; adipocyte volume-to-tissue volume ratio, -53.3%; all P < 0.01) and adipocyte marker gene expression, and prevented bone mass loss and microarchitecture deterioration. Moreover, PNS enhanced osteoblast activity but suppressed osteoclast turnover, as evidenced by decreased levels of serum C-terminal telopeptides of type I collagen and elevated levels of alkaline phosphatase. CONCLUSIONS PNS mitigates estrogen deficiency-induced deterioration of trabecular microarchitecture and suppresses marrow adipogenesis.
Collapse
|
91
|
Xu H, Zhang Y, Dong H, Pei F, Li G, Wu D. To assess the association between vertebral marrow fat content and colorectal adenoma in postmenopausal women using magnetic resonance spectroscopy. Acta Radiol 2016; 57:1033-9. [PMID: 26567964 DOI: 10.1177/0284185115616292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/18/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although lower bone mineral density (BMD) is considered to have an increased risk for colorectal adenoma, no association between marrow fat content and colorectal adenoma has been elucidated yet. PURPOSE To evaluate the relationship between marrow fat fraction (MFF) and the presence of colorectal adenoma in postmenopausal women using magnetic resonance spectroscopy (MRS). MATERIAL AND METHODS We performed a cross-sectional observational study on 152 postmenopausal patients with colorectal adenoma and 100 matched control subjects who underwent screening colonoscopy, biochemical measurements, dual-energy X-ray absorptiometry, and MRS. Logistic regression models were performed to assess the relationships among BMD, MFF, and colorectal adenoma. RESULTS With univariate analysis, marrow fat accumulation was higher and BMD values were lower in patients with colorectal adenoma compared with those in controls. After adjustment for potential confounders including demographics, health history, blood lipid levels, indexes of glucose metabolism, and validated measures of diet and physical activity, MFF was significantly positively associated with colorectal adenoma (odds ratio [OR], 1.64; 95% confidence interval [CI], 1.10-2.46; P = 0.008). Vertebral BMD, but not total hip and femoral neck BMD, was inversely related with colorectal adenoma (OR, 0.62; 95% CI, 0.14-0.89; P = 0.027). Additionally, MFF was associated with adenoma number, size, and high-risk adenoma (all P < 0.01). MFF was found to be an independent risk factor of a high-risk colorectal adenoma (OR, 2.08; 95% CI, 1.24-3.60; P = 0.019). CONCLUSION Marrow fat accumulation is highly associated with colorectal adenoma, particularly high-risk adenoma, in postmenopausal women.
Collapse
Affiliation(s)
- Haidong Xu
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Zhejiang, PR China
| | - Yuqin Zhang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Zhejiang, PR China
| | - Haibo Dong
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Zhejiang, PR China
| | - Feng Pei
- Department of Anus-intestines, Ningbo Medical Treatment Center Lihuili Hospital, Zhejiang, PR China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR China
| |
Collapse
|
92
|
Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep 2016; 6:30186. [PMID: 27443833 PMCID: PMC4957106 DOI: 10.1038/srep30186] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is caused by pathologic factors such as aging, hormone deficiency or excess, inflammation, and systemic diseases like diabetes. Bone marrow stromal cells (BMSCs), the mesenchymal progenitors for both osteoblasts and adipocytes, are modulated by niche signals. In differential pathologic states, the pathological characteristics of BMSCs to osteoporoses and functional differences are unknown. Here, we detected that trabecular bone loss co-existed with increased marrow adiposity in 6 osteoporotic models, respectively induced by natural aging, accelerated senescence (SAMP6), ovariectomy (OVX), type 1 diabetes (T1D), excessive glucocorticoids (GIOP) and orchidectomy (ORX). Of the ex vivo characteristics of BMSCs, the colony-forming efficiency and the proliferation rate in aging, SAMP6, OVX, GIOP and ORX models decreased. The apoptosis and cellular senescence increased except in T1D, with up-regulation of p53 and p16 expression. The osteogenesis declined except in GIOP, with corresponding down-regulation of Runt-related transcription factor 2 (RUNX2) expression. The adipogenesis increased in 6 osteoporotic models, with corresponding up-regulation of Peroxisome proliferator activated receptor gamma (PPARγ) expression. These findings revealed differential characteristics of BMSCs in a common shift from osteoblastogenesis to adipogenesis among different osteoporoses and between sexes, and provide theoretical basis for the functional modulation of resident BMSCs in the regenerative therapy for osteoporosis.
Collapse
|
93
|
Devlin MJ, Brooks DJ, Conlon C, Vliet MV, Louis L, Rosen CJ, Bouxsein ML. Daily leptin blunts marrow fat but does not impact bone mass in calorie-restricted mice. J Endocrinol 2016; 229:295-306. [PMID: 27340200 PMCID: PMC5171226 DOI: 10.1530/joe-15-0473] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
Starvation induces low bone mass and high bone marrow adiposity in humans, but the underlying mechanisms are poorly understood. The adipokine leptin falls in starvation, suggesting that hypoleptinemia may be a link between negative energy balance, bone marrow fat accumulation, and impaired skeletal acquisition. In that case, treating mice with leptin during caloric restriction (CR) should reduce marrow adipose tissue (MAT) and improve bone mass. To test this hypothesis, female C57Bl/6J mice were fed a 30% CR or normal (N) diet from 5 to 10 weeks of age, with daily injections of vehicle (VEH), 1mg/kg leptin (LEP1), or 2mg/kg leptin (LEP2) (N=6-8/group). Outcomes included body mass, body fat percentage, and whole-body bone mineral density (BMD) via peripheral dual-energy X-ray absorptiometry, cortical and trabecular microarchitecture via microcomputed tomography (μCT), and MAT volume via μCT of osmium tetroxide-stained bones. Overall, CR mice had lower body mass, body fat percentage, BMD, and cortical bone area fraction, but more connected trabeculae, vs N mice (P<0.05 for all). Most significantly, although MAT was elevated in CR vs N overall, leptin treatment blunted MAT formation in CR mice by 50% vs VEH (P<0.05 for both leptin doses). CR LEP2 mice weighed less vs CR VEH mice at 9-10 weeks of age (P<0.05), but leptin treatment did not affect body fat percentage, BMD, or bone microarchitecture within either diet. These data demonstrate that once daily leptin bolus during CR inhibits bone marrow adipose expansion without affecting bone mass acquisition, suggesting that leptin has distinct effects on starvation-induced bone marrow fat formation and skeletal acquisition.
Collapse
Affiliation(s)
- M J Devlin
- Department of AnthropologyUniversity of Michigan, Ann Arbor, Michigan, USA
| | - D J Brooks
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C Conlon
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - M van Vliet
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - L Louis
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - C J Rosen
- Maine Medical Center Research InstituteScarborough, Maine, USA
| | - M L Bouxsein
- Center for Advanced Orthopedic StudiesBeth Israel Deaconess Medical Center, Boston, Massachusetts, USA Harvard Medical SchoolBoston, Massachusetts, USA
| |
Collapse
|
94
|
Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow Adipose Tissue: Trimming the Fat. Trends Endocrinol Metab 2016; 27:392-403. [PMID: 27094502 PMCID: PMC4875855 DOI: 10.1016/j.tem.2016.03.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
Abstract
Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and the development of bone metastases. The diversity of these functions highlights the breadth of the potential impact of MAT on health and disease.
Collapse
Affiliation(s)
- Erica L Scheller
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University, Saint Louis, MO 63110, USA.
| | - William P Cawthorn
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Aaron A Burr
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
95
|
Suchacki KJ, Cawthorn WP, Rosen CJ. Bone marrow adipose tissue: formation, function and regulation. Curr Opin Pharmacol 2016; 28:50-6. [PMID: 27022859 DOI: 10.1016/j.coph.2016.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 11/27/2022]
Abstract
The human body requires an uninterrupted supply of energy to maintain metabolic homeostasis and energy balance. To sustain energy balance, excess consumed calories are stored as glycogen, triglycerides and protein, allowing the body to continue to function in states of starvation and increased energy expenditure. Adipose tissue provides the largest natural store of excess calories as triglycerides and plays an important role as an endocrine organ in energy homeostasis and beyond. This short review is intended to detail the current knowledge of the formation and role of bone marrow adipose tissue (MAT), a largely ignored adipose depot, focussing on the role of MAT as an endocrine organ and highlighting the pharmacological agents that regulate MAT.
Collapse
Affiliation(s)
- Karla J Suchacki
- The Queen's Medical Research Institute, University of Edinburgh, UK.
| | | | | |
Collapse
|
96
|
Nicks KM, Fujita K, Fraser D, McGregor U, Drake MT, McGee-Lawrence ME, Westendorf JJ, Monroe DG, Khosla S. Deletion of Estrogen Receptor Beta in Osteoprogenitor Cells Increases Trabecular but Not Cortical Bone Mass in Female Mice. J Bone Miner Res 2016; 31:606-14. [PMID: 26418452 PMCID: PMC4822412 DOI: 10.1002/jbmr.2723] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Although the role of ERα in regulating bone metabolism has been extensively studied, ERβ has been largely dismissed as a relevant modulator of bone mass. Previous studies examining ERβ utilized a germline knockout mouse expressing transcript variants of ERβ and displaying systemic hormonal changes that confounded interpretation of the skeletal phenotype. Thus, we used a conditional ERβ mouse model to achieve deletion of ERβ specifically in early osteoprogenitor cells using the Prx1-Cre driver. We observed marked increases in the trabecular bone volume fraction (of 58% [p < 0.003] and 93% [p < 0.0003] in 6- and 12-week-old female ERβ(Prx1-CKO) mice, respectively) but no changes in cortical bone. Serum estradiol and IGF-I levels were unaltered in ERβ(Prx1-CKO) mice. Bone formation and resorption indices by histomorphometry and serum assays were unchanged in these mice, suggesting that alterations in bone turnover may have occurred early in development. However, the ratio of colony-forming unit-osteoblasts (CFU-OBs) to CFU-fibroblasts (CFU-Fs) was increased in bone marrow cultures from ERβ(Prx1-CKO) compared with control mice, indicating increased differentiation of osteoblast precursor cells into osteoblasts in ERβ(Prx1-CKO) mice. Detailed quantitative polymerase chain reaction analyses of 128 genes in 16 prespecified pathways revealed significant downregulation of 11 pathways in ERβ(Prx1-CKO) mice. Thus, deletion of ERβ specifically in osteoblast lineage cells, in the absence of all splice variants, increases trabecular bone mass and modulates multiple pathways related to bone metabolism. These findings suggest that pharmacological inhibition of ERβ in bone may provide a novel approach to treat osteoporosis.
Collapse
Affiliation(s)
| | - Koji Fujita
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CMH, Sulston RJ, Burr AA, Das AK, Simon BR, Mori H, Bree AJ, Schell B, Krishnan V, MacDougald OA. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology 2016; 157:508-21. [PMID: 26696121 PMCID: PMC4733126 DOI: 10.1210/en.2015-1477] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, and in stark contrast to white adipose tissue, MAT has been found to increase during caloric restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these observations, we have now performed CR studies in rabbits to determine whether CR affects adiponectin production by MAT. Moderate or extensive CR decreased bone mass, white adipose tissue mass, and circulating leptin but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with potential relevance to health and disease.
Collapse
Affiliation(s)
- William P Cawthorn
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Erica L Scheller
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Sebastian D Parlee
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - H An Pham
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Brian S Learman
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Catherine M H Redshaw
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Richard J Sulston
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Aaron A Burr
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Arun K Das
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Becky R Simon
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Hiroyuki Mori
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Adam J Bree
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Benjamin Schell
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Venkatesh Krishnan
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| | - Ormond A MacDougald
- Departments of Molecular and Integrative Physiology (W.P.C., E.L.S., S.D.P., H.A.P., B.S.L., A.A.B., H.M., A.J.B., B.S., O.A.M.) and Internal Medicine (A.K.D., O.A.M.), and Program in Cellular and Molecular Biology (B.R.S., O.A.M.), University of Michigan Medical School, Ann Arbor, Michigan 48109; Musculoskeletal Research (W.P.C., V.K.), Lilly Research Laboratories, Indianapolis, Indiana 46285; and University/British Heart Foundation Centre for Cardiovascular Science (W.P.C., C.M.H.R., R.J.S.), The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom EH16 4TJ
| |
Collapse
|
98
|
Singhal V, Miller KK, Torriani M, Bredella MA. Short- and long-term reproducibility of marrow adipose tissue quantification by 1H-MR spectroscopy. Skeletal Radiol 2016; 45:221-5. [PMID: 26563561 PMCID: PMC4864977 DOI: 10.1007/s00256-015-2292-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess short- and long-term reproducibility of marrow adipose tissue (MAT) quantification by 1H-MR spectroscopy. MATERIALS AND METHODS Our study was IRB-approved and HIPAA compliant. Written informed consent was obtained. We studied 20 overweight/obese but otherwise healthy subjects (12 female, 8 male) with a mean age of 37 ± 6 years. All subjects underwent proton magnetic resonance spectroscopy (1H-MRS) of the fourth lumbar vertebral body using a single-voxel point-resolved spatially localized spectroscopy sequence without water suppression at 3 T. Measurements were repeated after 6 weeks and 6 months using identical scanning protocols. The following clinical parameters were collected, weight, BMI, exercise status, and trabecular bone mineral density (BMD), by quantitative computed tomography. Short- (baseline, 6 weeks) and long-term (baseline, 6 months) reproducibility of MAT was assessed by the coefficient of variance (CV), standard deviation (SD), and interclass correlation coefficients (ICCs). Short- and long-term changes in clinical parameters were assessed by paired t-test. RESULTS For short-term reproducibility between baseline and 6-week scans, the CV was 9.9 %, SD was 0.08, and ICC was 0.97 (95 % CI 0.94-099). For long-term reproducibility between baseline and 6-month scans, the CV was 12.0 %, SD was 0.10, and ICC was 0.95 (95 % CI 0.88 to 0.98). There was no significant short- or long-term change in clinical parameters (weight, BMI, exercise status, BMD) (p > 0.2). CONCLUSION 1H-MRS is a reproducible method for short- and long-term quantification of MAT. Our results can guide sample size calculations for interventional and longitudinal studies.
Collapse
Affiliation(s)
- Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA,Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Karen K. Miller
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Martin Torriani
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
99
|
Ghali O, Al Rassy N, Hardouin P, Chauveau C. Increased Bone Marrow Adiposity in a Context of Energy Deficit: The Tip of the Iceberg? Front Endocrinol (Lausanne) 2016; 7:125. [PMID: 27695438 PMCID: PMC5025430 DOI: 10.3389/fendo.2016.00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Elevated bone marrow adiposity (BMA) is defined as an increase in the proportion of the bone marrow (BM) cavity volume occupied by adipocytes. This can be caused by an increase in the size and/or number of adipocytes. BMA increases with age in a bone-site-specific manner. This increase may be linked to certain pathophysiological situations. Osteoporosis or compromised bone quality is frequently associated with high BMA. The involvement of BM adipocytes in bone loss may be due to commitment of mesenchymal stem cells to the adipogenic pathway rather than the osteogenic pathway. However, adipocytes may also act on their microenvironment by secreting factors with harmful effects for the bone health. Here, we review evidence that in a context of energy deficit (such as anorexia nervosa (AN) and restriction rodent models) bone alterations can occur in the absence of an increase in BMA. In severe cases, bone alterations are even associated with gelatinous BM transformation. The relationship between BMA and energy deficit and the potential regulators of this adiposity in this context are also discussed. On the basis of clinical studies and preliminary results on animal model, we propose that competition between differentiation into osteoblasts and differentiation into adipocytes might trigger bone loss at least in moderate-to-severe AN and in some calorie restriction models. Finally, some of the main questions resulting from this hypothesis are discussed.
Collapse
Affiliation(s)
- Olfa Ghali
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Nathalie Al Rassy
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Pierre Hardouin
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Christophe Chauveau
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
- *Correspondence: Christophe Chauveau,
| |
Collapse
|
100
|
Hardouin P, Rharass T, Lucas S. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue? Front Endocrinol (Lausanne) 2016; 7:85. [PMID: 27445987 PMCID: PMC4928601 DOI: 10.3389/fendo.2016.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues.
Collapse
Affiliation(s)
- Pierre Hardouin
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Tareck Rharass
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Stéphanie Lucas
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
- *Correspondence: Stéphanie Lucas,
| |
Collapse
|