51
|
Sharma R, Sahota P, Thakkar MM. Nicotine administration in the cholinergic basal forebrain increases alcohol consumption in C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:1315-20. [PMID: 24512005 DOI: 10.1111/acer.12353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/21/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol and nicotine are the most commonly abused drugs. The frequent co-morbidity of alcohol and nicotine addiction has led to the hypothesis that they may act via a common substrate: the nicotinic acetylcholine receptors (nAChRs) especially α4β2 and α7 subtypes, the most prevalent nAChRs in the brain. Compelling evidence suggests that alcohol enhances the function of α4β2 subtype. The FDA approved smoking cessation drug, varenicline ("Chantix"), a partial agonist of α4β2 nAChR subtype, reduces alcohol self-administration and alcohol craving in humans and rodents. The cholinergic basal forebrain (BF) controls various functions including arousal, attention, and cognition, and there is a predominance of α4β2 and α7 subtypes. We have shown that the BF has an important role in mediating the effects of alcohol and local infusion of nicotine in the BF activates nucleus accumbens. Does BF have any role in mediating the effect of nicotine on alcohol consumption? This study was designed to address this question. METHODS Under standard surgical procedure, C57BL/6J mice were stereotaxically implanted with bilateral stainless steel guide cannula above the BF. Following post operative recovery and habituation, the animals were exposed to the "drinking-in-the-dark" paradigm whereby alcohol (20%) was presented for 2 hours daily for 3 days. On the fourth day, nicotine or artificial cerebrospinal fluid (ACSF) was microinjected bilaterally in the BF. After 1 hour, mice were exposed to alcohol and allowed to self-administer for 4 hours. The effect of BF nicotine infusion on sucrose consumption was also examined. On completion, mice were euthanized, brain removed and processed to localize the BF injection sites. RESULTS As compared with the ACSF, bilateral nicotine injections into the BF significantly (p < 0.05; n = 5/group) increased alcohol consumption. Sucrose consumption remained unaffected. CONCLUSIONS Based on our results, we believe that the BF may have an important role in nicotine-alcohol co-use.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | | | | |
Collapse
|
52
|
Blum K, Oscar-Berman M, Badgaiyan R, Braverman ER, Gold MS. Hypothesizing Darkness Induced Alcohol Intake Linked to Dopaminergic Regulation of Brain Function. ACTA ACUST UNITED AC 2014; 5:282-288. [PMID: 25009759 DOI: 10.4236/psych.2014.54038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding the role of neurotransmission in the prefrontal cortex and mesolimbic brain regions has become the subject of intensive neuroscience research worldwide. In the 1970s, our group provided evidence that rats exposed to darkness significantly augmented their alcohol intake. At that time, we proposed that melatonin was the culprit. At around the same time, our laboratory, amongst a few others, proposed that dopamine-adducts with acetaldehyde to induce alcohol intake both in rodents and in humans. While the work in these areas has declined considerably over the years, more recent scientifically sound studies continue to show the importance of these earlier controversial ideas involving alcohol abuse and alcoholism. A review of the literature has provided impetus to systematically access the newer genetic and molecular neurobiological findings relevant to the physiological and psychological motives for high alcohol consumption in animals and humans alike. Thus, we hypothesize that darkness-induced alcohol intake is linked not only to serotonergic-melatonin mechanisms, but also to dopaminergic regulation of brain mesolimbic pathways involving neuronal expression switching in response to long photoperiods affecting gene expression.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA. ; Department of Psychiatry & Human Integrated Services Unit, University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, Vermont, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA ; Department of Personalized Medicine, IGENE, LLC. Austin, Texas, USA ; Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA
| | - Marlene Oscar-Berman
- Department of Psychiatry and Neurology, Boston University School of Medicine and Veterans Administration System, Boston, Massachusetts, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry and Laboratory of Neuroimaging and Molecular Imaging, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Eric R Braverman
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA ; Department of Clinical Neurology, Path Foundation, NY, New York, New York, USA
| | - Mark S Gold
- Department of Psychiatry & McKnight Brain Institute, University of Florida, College of Medicine , Gainesville, Florida, USA
| |
Collapse
|
53
|
Sajja RK, Rahman S. Nicotinic receptor partial agonists modulate alcohol deprivation effect in C57BL/6J mice. Pharmacol Biochem Behav 2013. [DOI: https://doi.org/10.1016/j.pbb.2013.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
54
|
Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA. Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem Pharmacol 2013; 86:1181-93. [PMID: 23876345 DOI: 10.1016/j.bcp.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Epidemiological studies consistently find correlations between nicotine and alcohol use, yet the neural mechanisms underlying their interaction remain largely unknown. Nicotine and alcohol (i.e., ethanol) share many common molecular and cellular targets that provide potential substrates for nicotine-alcohol interactions. These targets for interaction often converge upon the mesocorticolimbic dopamine system, where the link to drug self-administration and reinforcement is well documented. Both nicotine and alcohol activate the mesocorticolimbic dopamine system, producing downstream dopamine signals that promote the drug reinforcement process. While nicotine primarily acts via nicotinic acetylcholine receptors, alcohol acts upon a wider range of receptors and molecular substrates. The complex pharmacological profile of these two drugs generates overlapping responses that ultimately intersect within the mesocorticolimbic dopamine system to promote drug use. Here we will examine overlapping targets between nicotine and alcohol and provide evidence for their interaction. Based on the existing literature, we will also propose some potential targets that have yet to be directly tested. Mechanistic studies that examine nicotine-alcohol interactions would ultimately improve our understanding of the factors that contribute to the associations between nicotine and alcohol use.
Collapse
Affiliation(s)
- William M Doyon
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
55
|
Nicotinic receptor partial agonists modulate alcohol deprivation effect in C57BL/6J mice. Pharmacol Biochem Behav 2013; 110:161-7. [PMID: 23872372 DOI: 10.1016/j.pbb.2013.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022]
Abstract
Relapse is a core feature of alcohol addiction and hinders the pharmacotherapy of alcohol use disorders. Pre-clinical and clinical studies have shown that neuronal nicotinic acetylcholine receptor (nAChR) partial agonists such as cytisine and its derivative, varenicline, reduce alcohol (ethanol) consumption and seeking behavior. However, the effects of these ligands on ethanol relapse are little understood. In the present study, we examined the effects of varenicline and cytisine on alcohol deprivation effect (ADE)--a validated model for relapse-like ethanol drinking in C57BL/6J mice. After habituation to 15% (v/v) ethanol intake using a continuous free-choice procedure, mice were exposed to alternating cycles of ethanol deprivation (5 days) and re-exposure (2 days). At the end of third deprivation cycle, animals received repeated intraperitoneal injections of saline, varenicline (0.5 or 3.0 mg/kg) or cytisine (0.5 or 3.0 mg/kg) and fluid intake was measured post 4 h and 24 h ethanol re-exposure. Repeated ethanol deprivation and re-exposure cycles significantly produced a robust and transient increase in ethanol (ADE). Pretreatment with varenicline (0.5 or 3.0 mg/kg) or cytisine (0.5 or 3.0 mg/kg) significantly reduced the expression of ADE at 4 h and 24 h after ethanol re-exposure. The results from this study indicate that nAChR partial agonists reduce the expression of ADE in mice and further suggest the involvement of nAChR mechanisms in ADE, a relapse-like ethanol drinking behavior.
Collapse
|
56
|
Chatterjee S, Santos N, Holgate J, Haass-Koffler CL, Hopf FW, Kharazia V, Lester H, Bonci A, Bartlett SE. The α5 subunit regulates the expression and function of α4*-containing neuronal nicotinic acetylcholine receptors in the ventral-tegmental area. PLoS One 2013; 8:e68300. [PMID: 23869214 PMCID: PMC3712017 DOI: 10.1371/journal.pone.0068300] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/02/2013] [Indexed: 11/18/2022] Open
Abstract
Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.
Collapse
Affiliation(s)
- Susmita Chatterjee
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Nathan Santos
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Joan Holgate
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Carolina L. Haass-Koffler
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
- Clinical Pharmacology and Experimental Therapeutics, School of Medicine, University of California, San Francisco, California, United States of America
| | - F. Woodward Hopf
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
| | - Viktor Kharazia
- Ernest Gallo Clinic and Research Center at the University of California, San Francisco, Emeryville, California, United States of America
| | - Henry Lester
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Selena E. Bartlett
- Translational Research Institute, Institute for Health and Biomedical Sciences, Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- * E-mail :
| |
Collapse
|
57
|
Nickell JR, Grinevich VP, Siripurapu KB, Smith AM, Dwoskin LP. Potential therapeutic uses of mecamylamine and its stereoisomers. Pharmacol Biochem Behav 2013; 108:28-43. [PMID: 23603417 PMCID: PMC3690754 DOI: 10.1016/j.pbb.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/17/2022]
Abstract
Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
58
|
Liu L, Zhao-Shea R, McIntosh JM, Tapper AR. Nicotinic acetylcholine receptors containing the α6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons. Biochem Pharmacol 2013; 86:1194-200. [PMID: 23811312 DOI: 10.1016/j.bcp.2013.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 12/17/2022]
Abstract
Nicotine and alcohol are often co-abused suggesting a common mechanism of action may underlie their reinforcing properties. Both drugs acutely increase activity of ventral tegmental area (VTA) dopaminergic (DAergic) neurons, a phenomenon associated with reward behavior. Recent evidence indicates that nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels activated by ACh and nicotine, may contribute to ethanol-mediated activation of VTA DAergic neurons although the nAChR subtype(s) involved has not been fully elucidated. Here we show that expression and activation of nAChRs containing the α6 subunit contribute to ethanol-induced activation of VTA DAergic neurons. In wild-type (WT) mouse midbrain sections that contain the VTA, ethanol (50 or 100 mM) significantly increased firing frequency of DAergic neurons. In contrast, ethanol did not significantly increase activity of VTA DAergic neurons in mice that do not express CHRNA6, the gene encoding the α6 nAChR subunit (α6 knock-out (KO) mice). Ethanol-induced activity in WT slices was also reduced by pre-application of the α6 subtype-selective nAChR antagonist, α-conotoxin MII[E11A]. When co-applied, ethanol potentiated the response to ACh in WT DAergic neurons; whereas co-application of ACh and ethanol failed to significantly increase activity of DAergic neurons in α6 KO slices. Finally, pre-application of α-conotoxin MII[E11A] in WT slices reduced ethanol potentiation of ACh responses. Together our data indicate that α6-subunit containing nAChRs may contribute to ethanol activation of VTA DAergic neurons. These receptors are predominantly expressed in DAergic neurons and known to be critical for nicotine reinforcement, providing a potential common therapeutic molecular target to reduce nicotine and alcohol co-abuse.
Collapse
Affiliation(s)
- Liwang Liu
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | | | | | | |
Collapse
|
59
|
Sajja RK, Rahman S. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice. Alcohol 2013; 47:299-307. [PMID: 23601929 DOI: 10.1016/j.alcohol.2013.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 01/23/2023]
Abstract
Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction.
Collapse
Affiliation(s)
- Ravi Kiran Sajja
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Box 2202C, Avera Health and Science Center (SAV 265), Brookings, SD 57007, USA
| | | |
Collapse
|
60
|
Sajja RK, Rahman S. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice. Alcohol 2013. [DOI: https://doi.org/10.1016/j.alcohol.2013.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
61
|
Powers MS, Broderick HJ, Drenan RM, Chester JA. Nicotinic acetylcholine receptors containing α6 subunits contribute to alcohol reward-related behaviours. GENES BRAIN AND BEHAVIOR 2013; 12:543-53. [PMID: 23594044 DOI: 10.1111/gbb.12042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/14/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Evidence is emerging that neuronal nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine (DA) system are involved in mediating the reinforcing effects of alcohol. Midbrain DA neurons express high levels of α6 subunit-containing nAChRs that modulate DA transmission, implicating their involvement in reward-related behaviours. This study assessed the role of α6-containing nAChRs in modulating alcohol reward using transgenic mice expressing mutant, hypersensitive α6 nAChR subunits (α6L9'S mice). α6L9'S mice and littermate controls were tested in three well-established models of alcohol reward: 24-h two-bottle choice drinking, drinking in the dark (DID), and conditioned place preference (CPP). Confocal microscopy and patch-clamp electrophysiology were used to show the localization and function of hypersensitive α6 subunit-containing nAChRs. Results indicate that female α6L9'S mice showed significantly higher alcohol intake at low concentrations of alcohol (3% and 6%) in the two-bottle choice procedure. Both male and female α6L9'S mice drank significantly more in the DID procedure and displayed an alcohol-induced place preference using a low dose of alcohol (0.5 g/kg) that was ineffective in littermate controls. Confocal microscopy showed that α6 subunit-containing nAChRs are selectively expressed on ventral tegmental area (VTA) DAergic, but not GABAergic neurons. Patch-clamp electrophysiology showed that VTA DA neurons of α6L9'S mice are hypersensitive to ACh. Collectively, these results suggest that α6L9'S mice are more sensitive to the rewarding effects of alcohol, and suggest that VTA α6 subunit-containing nAChRs modulate alcohol reward. Thus, α6 subunit-containing nAChRs may be a promising therapeutic target for treatment of alcohol use disorders.
Collapse
Affiliation(s)
- M S Powers
- Department of Psychological Sciences, Purdue University, West Lafayette,IN 47907, USA
| | | | | | | |
Collapse
|
62
|
Sotomayor-Zárate R, Gysling K, Busto UE, Cassels BK, Tampier L, Quintanilla ME. Varenicline and cytisine: two nicotinic acetylcholine receptor ligands reduce ethanol intake in University of Chile bibulous rats. Psychopharmacology (Berl) 2013; 227:287-98. [PMID: 23344555 DOI: 10.1007/s00213-013-2974-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 12/17/2012] [Indexed: 12/13/2022]
Abstract
RATIONALE Neuronal nicotinic acetylcholine receptors (nAChRs) are pharmacological targets that have recently been implicated in the reinforcing effects of many drugs of abuse, including ethanol. Varenicline and cytisine are nAChR partial agonists in clinical use as smoking cessation aids. However, their efficacies to reduce alcohol consumption have not been fully studied. OBJECTIVES This study aims to compare the effects of varenicline and cytisine on ethanol consumption by rats bred for many generations as high ethanol drinkers (UChB). RESULTS Repeated dosing (0.5 or 1.0 mg/kg/day i.p.) of varenicline or cytisine, for three consecutive days, to male UChB rats pre-exposed to 10 % (v/v) ethanol and water 24 h/day for 4 weeks, significantly reduced alcohol intake and preference of ethanol over water during 1- and 24-h ethanol access periods. This effect was specific for ethanol intake and was not observed for 0.2 % saccharin or water consumption. Varenicline appears to be more effective than cytisine, probably due to its more favorable pharmacokinetic and pharmacodynamic properties. Long-term use of both nAChRs ligands for more than 8-10 days induced tolerance to their effects on ethanol consumption. CONCLUSIONS This preclinical study in UChB rats demonstrated that both varenicline and cytisine reduce alcohol intake, with varenicline producing a greater and longer-lasting reduction than cytisine. However, dose adjustment will have to be considered as a possible way to counter tolerance arising after continued use.
Collapse
Affiliation(s)
- Ramón Sotomayor-Zárate
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile.
| | | | | | | | | | | |
Collapse
|
63
|
Liu L, Hendrickson LM, Guildford MJ, Zhao-Shea R, Gardner PD, Tapper AR. Nicotinic acetylcholine receptors containing the α4 subunit modulate alcohol reward. Biol Psychiatry 2013; 73:738-46. [PMID: 23141806 PMCID: PMC4501776 DOI: 10.1016/j.biopsych.2012.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Nicotine and alcohol are the two most co-abused drugs in the world, suggesting a common mechanism of action might underlie their rewarding properties. Although nicotine elicits reward by activating ventral tegmental area dopaminergic (DAergic) neurons via high-affinity neuronal nicotinic acetylcholine receptors (nAChRs), the mechanism by which alcohol activates these neurons is unclear. METHODS Because most high-affinity nAChRs expressed in ventral tegmental area DAergic neurons contain the α4 subunit, we measured ethanol-induced activation of DAergic neurons in midbrain slices from two complementary mouse models, an α4 knock-out (KO) mouse line and a knock-in line (Leu9'Ala) expressing α4 subunit-containing nAChRs hypersensitive to agonist compared with wild-type (WT). Activation of DAergic neurons by ethanol was analyzed with both biophysical and immunohistochemical approaches in midbrain slices. The ability of alcohol to condition a place preference in each mouse model was also measured. RESULTS At intoxicating concentrations, ethanol activation of DAergic neurons was significantly reduced in α4 KO mice compared with WT. Conversely, in Leu9'Ala mice, DAergic neurons were activated by low ethanol concentrations that did not increase activity of WT neurons. In addition, alcohol potentiated the response to ACh in DAergic neurons, an effect reduced in α4 KO mice. Rewarding alcohol doses failed to condition a place preference in α4 KO mice, paralleling alcohol effects on DAergic neuron activity, whereas a sub-rewarding alcohol dose was sufficient to condition a place preference in Leu9'Ala mice. CONCLUSIONS Together, these data indicate that nAChRs containing the α4 subunit modulate alcohol reward.
Collapse
|
64
|
Dawson A, Miles MF, Damaj MI. The β2 nicotinic acetylcholine receptor subunit differentially influences ethanol behavioral effects in the mouse. Alcohol 2013; 47:85-94. [PMID: 23419392 DOI: 10.1016/j.alcohol.2012.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/15/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022]
Abstract
The high co-morbidity between alcohol (ethanol) and nicotine abuse suggests that nicotinic acetylcholine receptors (nAChRs), thought to underlie nicotine dependence, may also be involved in alcohol dependence. The β2* nAChR subtype serves as a potential interface for these interactions since they are the principle mediators of nicotine dependence and have recently been shown to modulate some acute responses to ethanol. Therefore, the aim of this study was to more fully characterize the role of β2* nAChRs in ethanol-responsive behaviors in mice after acute exposure to the drug. We conducted a battery of tests in mice lacking the β2* coding gene (Chrnb2) or pretreated with a selective β2* nAChR antagonist for a range of ethanol-induced behaviors including locomotor depression, hypothermia, hypnosis, and anxiolysis. We also tested the effect of deletion on voluntary escalated ethanol consumption in an intermittent access two-bottle choice paradigm to determine the extent of these effects on drinking behavior. Our results showed that antagonism of β2* nAChRs modulated some acute behaviors, namely by reducing recovery time from hypnosis and enhancing the anxiolytic-like response produced by acute ethanol in mice. Chrnb2 deletion had no effect on ethanol drinking behavior, however. We provide further evidence that β2* nAChRs have a measurable role in mediating specific behavioral effects induced by acute ethanol exposure without affecting drinking behavior directly. We conclude that these receptors, along with being key components in nicotine dependence, may also present viable candidates in the discovery of the molecular underpinnings of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, MCV Campus, Box 980613, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|
65
|
|
66
|
Gubner NR, McKinnon CS, Reed C, Phillips TJ. Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation. Drug Alcohol Depend 2013; 127:108-14. [PMID: 22795175 PMCID: PMC3505243 DOI: 10.1016/j.drugalcdep.2012.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. METHODS Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. RESULTS The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. CONCLUSIONS These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability.
Collapse
Affiliation(s)
- N R Gubner
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | | | | |
Collapse
|
67
|
Hendrickson LM, Guildford MJ, Tapper AR. Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 2013; 4:29. [PMID: 23641218 PMCID: PMC3639424 DOI: 10.3389/fpsyt.2013.00029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023] Open
Abstract
Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels normally activated by endogenous acetylcholine (ACh), ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic) reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA) which project to the nucleus accumbens (NAc). Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from pre-clinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.
Collapse
Affiliation(s)
- Linzy M Hendrickson
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | | | | |
Collapse
|
68
|
McKee SA, Weinberger AH. How can we use our knowledge of alcohol-tobacco interactions to reduce alcohol use? Annu Rev Clin Psychol 2012; 9:649-74. [PMID: 23157448 DOI: 10.1146/annurev-clinpsy-050212-185549] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Currently, 8.5% of the US population meets criteria for alcohol use disorders, with a total cost to the US economy estimated at $234 billion per year. Alcohol and tobacco use share a high degree of comorbidity and interact across many levels of analysis. This review begins by highlighting alcohol and tobacco comorbidity and presenting evidence that tobacco increases the risk for alcohol misuse and likely has a causal role in this relationship. We then discuss how knowledge of alcohol and tobacco interactions can be used to reduce alcohol use, focusing on whether (a) smoking status can be used as a clinical indicator for alcohol misuse, (b) tobacco policies reduce alcohol use, and (c) nicotinic-based medications can be used to treat alcohol use disorders.
Collapse
Affiliation(s)
- Sherry A McKee
- Department of Psychiatry and Women's Health Research at Yale, Yale University School of Medicine, and Cancer Prevention and Control Research Program, Yale Cancer Center, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
69
|
The α6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation. Alcohol 2012; 46:463-71. [PMID: 22572056 DOI: 10.1016/j.alcohol.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
Alcohol and nicotine are often co-used and data from human and animals studies have demonstrated that common genes underlie responses to these two drugs. Recently, the genes that code for the subunits of the nicotinic acetylcholine receptors have been implicated as a common genetic mediator for alcohol and nicotine responses. The mammalian genes that code for the α6 and β3 subunits of the nicotinic acetylcholine receptor (Chrna6 and Chrnb3, respectively) are located adjacent to each other on human and mouse chromosome 8. These subunits have gained attention as potential regulators of drug behaviors because of their expression in the striatum where they have been shown to modulate dopamine release. Human genetic studies have shown that variation in these genes is associated with alcohol phenotypes. In the current experiments, mice lacking the Chrna6 or Chrnb3 gene were tested for three ethanol behaviors: choice ethanol consumption, ataxia, and sedation. Wildtype (WT), heterozygous (HET), and knockout (KO) mice of each strain went through a standard 2-bottle choice drinking paradigm, the balance beam, and the Loss of Righting Reflex (LORR) paradigm. No genotypic effects on any of the 3 behavioral tasks were observed in Chrnb3 animals. While the Chrna6 gene did not significantly influence ethanol consumption (g/kg) or ataxia, mice lacking the α6 subunit took significantly longer to recover their righting reflex than WT animals. These data provide evidence that receptors containing this subunit modulate the sedative effects of ethanol. Further work examining other models of ethanol consumption and behavioral responses to ethanol is needed to fully characterize the role of these receptor subunits in modulating ethanol responses.
Collapse
|
70
|
Burns BE, Proctor WR. Cigarette smoke exposure greatly increases alcohol consumption in adolescent C57BL/6 mice. Alcohol Clin Exp Res 2012; 37 Suppl 1:E364-72. [PMID: 22827559 DOI: 10.1111/j.1530-0277.2012.01911.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/30/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol and tobacco are often used together, and alcoholism is much more common among smokers compared with nonsmokers. Studies in humans suggest that nicotine (an active ingredient in cigarette smoke) can increase the consumption of alcohol. Research on rats and mice demonstrated mixed results; some studies report that nicotine increases alcohol consumption, while others show a decrease in drinking. Because cigarette smoke includes many other chemicals, these also may play a significant role in alcohol consumption. For example, 2 of these other constituents, monoamine oxidase inhibitors and acetaldehyde, increase alcohol tolerance and/or alcohol consumption in rodents. This study was designed to investigate how cigarette smoke from tobacco may modify self-administration of alcohol in adolescent C57BL/6 mice, a critical time when adolescent humans begin abusing drugs. METHODS C57BL/6 male mice (4 to 5 weeks old) were acclimated for 3 weeks to consume a 10% (w/v) alcohol solution during a 2-hour daily access in the dark. Subsequently, half the animals were exposed to cigarette smoke for 6 h/d for 16 days. The remaining animals (control) were placed in a smoke-free adjacent chamber. Immediately following the 6-hour period in the chambers, the control and smoke-exposed mice were given access to the 10% alcohol solution for 2 hours. RESULTS Animals exposed to cigarette smoke for 6 h/d consumed approximately 3- to 5-fold more alcohol than the mice in the control group throughout the 16-day study. The mice in the smoke group had a blood alcohol concentration that was nearly 4-fold that of the control mice. CONCLUSIONS Cigarette smoke increases alcohol consumption several fold higher than reported studies using nicotine treatment alone in adolescent rodents. Thus, this model should be useful to determine the roles of other bioactive components in cigarette smoke that may be important in the high co-abuse of smoking and alcohol consumption.
Collapse
Affiliation(s)
- Benjamin E Burns
- University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | |
Collapse
|
71
|
Sajja RK, Rahman S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol Biochem Behav 2012. [DOI: https://doi.org/10.1016/j.pbb.2012.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
72
|
Gallego X, Ruiz J, Valverde O, Molas S, Robles N, Sabrià J, Crabbe JC, Dierssen M. Transgenic over expression of nicotinic receptor alpha 5, alpha 3, and beta 4 subunit genes reduces ethanol intake in mice. Alcohol 2012; 46:205-15. [PMID: 22459873 PMCID: PMC3340912 DOI: 10.1016/j.alcohol.2011.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 11/28/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022]
Abstract
Abuse of alcohol and smoking are extensively co-morbid. Some studies suggest partial commonality of action of alcohol and nicotine mediated through nicotinic acetylcholine receptors (nAChRs). We tested mice with transgenic over expression of the alpha 5, alpha 3, beta 4 receptor subunit genes, which lie in a cluster on human chromosome 15, that were previously shown to have increased nicotine self-administration, for several responses to ethanol. Transgenic and wild-type mice did not differ in sensitivity to several acute behavioral responses to ethanol. However, transgenic mice drank less ethanol than wild-type in a two-bottle (ethanol vs. water) preference test. These results suggest a complex role for this receptor subunit gene cluster in the modulation of ethanol's as well as nicotine's effects.
Collapse
Affiliation(s)
- Xavier Gallego
- Genes and Disease Program, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), CRG-UPF, Barcelona, Spain
| | - Jessica Ruiz
- Neurobiology of Behavior Research Group. Department of Health and Life Experimental Sciences. Pompeu Fabra University (UPF), Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group. Department of Health and Life Experimental Sciences. Pompeu Fabra University (UPF), Barcelona, Spain
| | - Susanna Molas
- Genes and Disease Program, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), CRG-UPF, Barcelona, Spain
| | - Noemí Robles
- Department of Biochemistry, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - Josefa Sabrià
- Department of Biochemistry, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Barcelona, Spain
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Medical Center, Portland, Oregon 97239 USA
| | - Mara Dierssen
- Genes and Disease Program, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), CRG-UPF, Barcelona, Spain
| |
Collapse
|
73
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
74
|
Sajja RK, Rahman S. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice. Pharmacol Biochem Behav 2012; 102:36-43. [PMID: 22741175 DOI: 10.1016/j.pbb.2012.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alcohol and nicotine are commonly abused drugs in humans and evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) in the midbrain dopamine system are common targets for the neurobehavioral interactions between alcohol (ethanol) and nicotine. The present study examined the efficacy of nAChR ligands with different pharmacological profiles such as cytisine, lobeline and dihydro-β-erythroidine (DHβE) to modulate chronic nicotine-induced increase in ethanol intake by C57BL/6J mice, using a two-bottle choice procedure. After establishment of baseline ethanol preference (10%, v/v), animals received daily subcutaneous injections of saline, nicotine (0.4 mg/kg) or different doses of cytisine, lobeline or DHβE 15 min prior to nicotine, for 10 days. Ethanol and water were presented immediately after the last (saline or nicotine) injection and fluid levels were monitored for post 1 h and 2 h treatment. Compared to control, nicotine injection significantly increased mean ethanol intake over 10 days, at both post 1 h and 2 h. Pretreatment with cytisine (0.5, 1.5 or 3.0 mg/kg) or lobeline (4.0 or 10.0 mg/kg) significantly reduced nicotine-induced increase in ethanol intake post 1 h and 2 h, without affecting water consumption. DHβE (0.5 or 2.0 mg/kg) failed to suppress nicotine-induced ethanol intake across 2 h post injection. These results indicate that nAChRmediated signaling is critical in regulating nicotine-induced ethanol drinking behaviors.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, South Dakota State University, College of Pharmacy, Brookings, SD 57007, USA
| | | |
Collapse
|
75
|
Bhutada P, Mundhada Y, Ghodki Y, Dixit P, Umathe S, Jain K. Acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in mice: effects of exposure to stress and modulation by mecamylamine. J Psychopharmacol 2012; 26:315-23. [PMID: 22182742 DOI: 10.1177/0269881111431749] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nicotinic acetylcholine receptors mediate some of the rewarding and motivational effects of ethanol, including relapses. Relapses are common in drug addicts during abstinence when exposure to any stressor ensues. However, the role of nicotinic acetylcholine receptors in the ethanol- and stress-induced reinstatement of ethanol-induced conditioned place preference has not yet been explored. Therefore, the present study investigated the influence of mecamylamine, a nicotinic acetylcholine receptors antagonist on acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in adult male Swiss mice. The results revealed that mecamylamine (0.1-10 µg/mouse, intracerebroventricularly) dose dependently prevented the development, expression, and reinstatement of ethanol-induced conditioned place preference. Further, acute treatment with mecamylamine blocked the restraint stress and forced swim stress-induced reinstatement of ethanol-induced conditioned place preference. All of these treatments had no influence on the locomotor activity. Therefore, it is concluded that mecamylamine blocks the acquisition, expression and reinstatement of conditioned reinforcing effects of ethanol without per se reinforcing or aversive influence. This ability of mecamylamine might be a potential advantage in the treatment of alcoholism.
Collapse
Affiliation(s)
- Pravinkumar Bhutada
- Sinhgad College of Pharmacy, Post-Graduate Research Department, Vadgaon (Bk), Pune, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
76
|
Sprow GM, Thiele TE. The neurobiology of binge-like ethanol drinking: evidence from rodent models. Physiol Behav 2012; 106:325-31. [PMID: 22245775 DOI: 10.1016/j.physbeh.2011.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Binge alcohol (ethanol) drinking is a destructive pattern of ethanol consumption that may precipitate ethanol dependence-a chronic, debilitating, and prevalent health problem. While an abundance of research has focused on the neurochemical underpinnings of ethanol dependence, relatively little is known about the mechanisms underlying the heavy consumption characteristic of binge ethanol drinking. Recently, a simple preclinical model termed "drinking in the dark" (DID) was developed to examine binge-like ethanol consumption in a rodent population. This assay capitalizes on the predisposition of C57BL/6J mice to voluntarily consume substantial quantities of a high concentration (20% v/v) ethanol solution, resulting in pharmacologically relevant blood ethanol concentrations (BECs). This review provides a comprehensive overview of recent literature utilizing this model to investigate the neuromodulatory systems that may influence binge ethanol drinking. Studies examining the glutamatergic and opioidergic systems not only provide evidence for these systems in the modulation of binge-like ethanol consumption, but also suggest this preclinical model has predictive validity and may be an appropriate tool for screening novel pharmacological compounds aimed at treating binge ethanol drinking in the human population. Additionally, this review presents evidence for the involvement of the GABAergic, dopaminergic, nicotinic, and endocannabinoid systems in modulating binge-like ethanol consumption. Finally, recent evidence shows that corticotropin-releasing factor (CRF), agouti-related protein (AgRP), neuropeptide Y (NPY), and ghrelin are also implicated as impacting this pattern of ethanol consumption.
Collapse
Affiliation(s)
- Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599-3270, USA
| | | |
Collapse
|
77
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
78
|
Bahi A. RETRACTED: The pre-synaptic metabotropic glutamate receptor 7 “mGluR7” is a critical modulator of ethanol sensitivity in mice. Neuroscience 2011; 199:13-23. [DOI: 10.1016/j.neuroscience.2011.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
79
|
Abstract
Binge drinking is prevalent and has serious biomedical consequences. In children, adolescents, and young adults, it is a prominent risk factor for later development of alcohol-use disorders. Many preclinical models have been employed to study the genetic risks for and biomedical consequences of alcohol drinking. However, these models historically did not result in blood-alcohol concentrations (BACs) exceeding 80 mg%; this relatively modest level is the threshold that currently defines a binge session, according to the NIAAA and CDC. Nevertheless, in alcohol-dependent rodents, binge drinking has been well documented. Key neurobiological substrates localized to brain reward and stress systems have been identified. Studies of newer models of binge drinking without dependence are reviewed here. In these models, rodents, non-human primates, and flies will drink enough to reach high BACs. They often display observable signs of intoxication. The neurobiological consequences of these episodes of binge drinking without dependence are reviewed, and preliminary evidence for roles for GABA, glutamate, opioid peptides, and corticotropin releasing factor are discussed, as is the need for more work to identify the antecedents and consequences of binge drinking in both animal models and humans.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and VA Medical Center, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
80
|
Hauser SR, Getachew B, Oster SM, Dhaher R, Ding ZM, Bell RL, McBride WJ, Rodd ZA. Nicotine modulates alcohol-seeking and relapse by alcohol-preferring (P) rats in a time-dependent manner. Alcohol Clin Exp Res 2011; 36:43-54. [PMID: 21689122 DOI: 10.1111/j.1530-0277.2011.01579.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Alcohol is frequently co-abused with smoking. In humans, nicotine use can increase alcohol craving and consumption. The objectives of the current study were to assess the acute effects of nicotine on alcohol seeking and relapse at 2 different time points. METHODS Adult female alcohol-preferring (P) rats were trained in 2-lever operant chambers to self-administer 15% ethanol (EtOH) (v/v) and water on a concurrent fixed-ratio 5-fixed-ratio 1 (FR5-FR1) schedule of reinforcement in daily 1-hour sessions. Following 10 weeks of daily 1-hour sessions, rats underwent 7 extinction sessions, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without EtOH or water being present for 4 sessions (Pavlovian Spontaneous Recovery [PSR]). Rats were then given a week in their home cage before being returned to the operant chambers with access to EtOH and water (relapse). Nicotine (0, 0.1, 0.3, or 1.0 mg/kg) was injected subcutaneously immediately or 4 hours prior to PSR or relapse testing. RESULTS Injections of nicotine immediately prior to testing reduced (5 to 10 responses PSR; 50 to 60 responses relapse), whereas injections of nicotine 4 hours prior to testing increased (up to 150 responses for PSR; up to 400 responses for relapse with 1.0 mg/kg dose) responses on the EtOH lever during PSR and relapse tests. CONCLUSIONS The results of this study demonstrate that acute effects of nicotine on EtOH-seeking and relapse behaviors may be time dependent, with the immediate effects being a result of nicotine possibly acting as a substitute for EtOH, whereas with a delay of 4 hours, priming effects of nicotine alterations in nicotinic receptors, and/or the effects of nicotine's metabolites (i.e., cotinine and nornicotine) may enhance the expression of EtOH-seeking and relapse behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Przybył AK, Nowakowska Z. Electron impact mass spectral study of halogenated N-acetyl- and N-propionylcytisines. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1193-1197. [PMID: 21488117 DOI: 10.1002/rcm.4976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
(-)-Cytisine and its derivatives, characterised by high affinity to neuronal nicotinic acetylcholine receptors with specificity for the α4β2 subtype, have been shown to be important probes in central nervous system (CNS) research. Electron impact mass spectral (EI-MS) fragmentations of halogenated derivatives of N-acetylcytisine and N-propionylcytisine have been investigated. Detailed fragmentation pathways have been identified for all significant ions including a few characteristic fragment ions. The principal mass spectral fragmentation routes of iodine and bromine compounds have been determined on the basis of low (EI), high resolution (HRD) and B(2)/E linked scan mass spectra as well as linked scans at constant B/E.
Collapse
Affiliation(s)
- Anna K Przybył
- Faculty of Chemistry, A. Mickiewicz University, Poznań, Poland.
| | | |
Collapse
|
82
|
Zhao-Shea R, Liu L, Soll LG, Improgo MR, Meyers EE, McIntosh JM, Grady SR, Marks MJ, Gardner PD, Tapper AR. Nicotine-mediated activation of dopaminergic neurons in distinct regions of the ventral tegmental area. Neuropsychopharmacology 2011; 36:1021-32. [PMID: 21289604 PMCID: PMC3077271 DOI: 10.1038/npp.2010.240] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nicotine activation of nicotinic acetylcholine receptors (nAChRs) within the dopaminergic (DAergic) neuron-rich ventral tegmental area (VTA) is necessary and sufficient for nicotine reinforcement. In this study, we show that rewarding doses of nicotine activated VTA DAergic neurons in a region-selective manner, preferentially activating neurons in the posterior VTA (pVTA) but not in the anterior VTA (aVTA) or in the tail VTA (tVTA). Nicotine (1 μM) directly activated pVTA DAergic neurons in adult mouse midbrain slices, but had little effect on DAergic neurons within the aVTA. Quantification of nAChR subunit gene expression revealed that pVTA DAergic neurons expressed higher levels of α4, α6, and β3 transcripts than did aVTA DAergic neurons. Activation of nAChRs containing the α4 subunit (α4(*) nAChRs) was necessary and sufficient for activation of pVTA DAergic neurons: nicotine failed to activate pVTA DAergic neurons in α4 knockout animals; in contrast, pVTA α4(*) nAChRs were selectively activated by nicotine in mutant mice expressing agonist-hypersensitive α4(*) nAChRs (Leu9'Ala mice). In addition, whole-cell currents induced by nicotine in DAergic neurons were mediated by α4(*) nAChRs and were significantly larger in pVTA neurons than in aVTA neurons. Infusion of an α6(*) nAChR antagonist into the VTA blocked activation of pVTA DAergic neurons in WT mice and in Leu9'Ala mice at nicotine doses, which only activate the mutant receptor indicating that α4 and α6 subunits coassemble to form functional receptors in these neurons. Thus, nicotine selectively activates DAergic neurons within the pVTA through α4α6(*) nAChRs. These receptors represent novel targets for smoking-cessation therapies.
Collapse
Affiliation(s)
- Rubing Zhao-Shea
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Liwang Liu
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lindsey G Soll
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ma Reina Improgo
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin E Meyers
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - J Michael McIntosh
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Sharon R Grady
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Paul D Gardner
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew R Tapper
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA,Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA. Tel: +1 508 856 2674, Fax: +1 508 856 2627, E-mail:
| |
Collapse
|
83
|
Hendrickson LM, Gardner P, Tapper AR. Nicotinic acetylcholine receptors containing the α4 subunit are critical for the nicotine-induced reduction of acute voluntary ethanol consumption. Channels (Austin) 2011; 5:124-7. [PMID: 21239887 DOI: 10.4161/chan.5.2.14409] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.
Collapse
Affiliation(s)
- Linzy M Hendrickson
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | |
Collapse
|
84
|
Sajja RK, Rahman S. Lobeline and cytisine reduce voluntary ethanol drinking behavior in male C57BL/6J mice. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:257-64. [PMID: 21111768 DOI: 10.1016/j.pnpbp.2010.11.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/11/2010] [Accepted: 11/13/2010] [Indexed: 11/20/2022]
Abstract
Brain nicotinic acetylcholine receptors (nAChRs) have been implicated in the rewarding effects of ethanol and other drugs of abuse. The present study examined the effects of two important nicotinic ligands that target nAChRs, on ethanol consumption in drinking-in-the-dark or continuous access two-bottle choice drinking procedures in C57BL/6J mice. Nicotinic alkaloids such as lobeline or cytisine were administered via subcutaneous (s.c.) injections about 25 min before offering ethanol solutions. Pretreatment with lobeline (4 or 10mg/kg, s.c.) or cytisine (1.5 or 3mg/kg, s.c.) significantly reduced ethanol drinking-in-the-dark (g/kg) post 2-h and 4-h treatment, relative to control. In continuous access drinking procedure, pretreatment with lobeline (4 or 10mg/kg, s.c.) significantly reduced ethanol consumption post 1-h, 2-h, 4-h and 12-h treatment and pretreatment with cytisine (0.5, 1.5 or 3mg/kg, s.c.) significantly reduced ethanol consumption across 4-h post treatment, relative to control. Neither lobeline nor cytisine significantly affected water or sucrose solution (10% w/v) intake during drinking-in-the-dark or continuous drinking procedures, relative to control. These findings provide evidence that nAChR-mediated signaling plays a critical role in ethanol drinking behavior in mice and nicotinic ligands have therapeutic potential for cessation of binge-like ethanol drinking and dependence in humans.
Collapse
Affiliation(s)
- Ravi K Sajja
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | | |
Collapse
|
85
|
Rahman S. Brain nicotinic receptors as emerging targets for drug addiction: neurobiology to translational research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:349-65. [PMID: 21199776 DOI: 10.1016/b978-0-12-385506-0.00008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug addiction, a chronic relapsing disorder, is a serious public health problem around the world. A growing body of preclinical and clinical evidence suggests that mammalian brain nicotinic acetylcholine receptors (nAChRs), the heterogeneous family of ion channels, play a pivotal role in drug addiction, including nicotine and alcohol dependence. As a result, there is an increasing interest in developing nAChR-based therapies for the treatment of addictive disorders. The current review summarizes the important preclinical and clinical data, demonstrating the ability of nAChR ligands to modulate nicotine and alcohol-induced biobehavioral and neurochemical changes in laboratory animals and humans. Recent studies suggest that partial agonists and antagonists at nAChRs have therapeutic potential for the management of nicotine and alcohol dependence. The complexity of nAChRs and their regulation for the development of nAChR-based drug candidates as novel pharmacotherapy for other addictive disorders will also be discussed. Taken together, this review will provide new insights into nAChR-based compounds and offer innovative translational strategies for combating drug addictive disorders.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
86
|
Varenicline attenuates cue-induced relapse to alcohol, but not nicotine seeking, while reducing inhibitory response control. Psychopharmacology (Berl) 2011; 216:267-77. [PMID: 21331520 PMCID: PMC3121941 DOI: 10.1007/s00213-011-2213-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/27/2011] [Indexed: 11/17/2022]
Abstract
RATIONALE Treatment of the most widely abused drugs, nicotine and alcohol, is hampered by high rates of relapse. Varenicline tartrate, an α4β2 nicotinic receptor partial agonist, is currently prescribed as a smoking cessation aid. However, there is emerging evidence that it may also modulate alcohol seeking and cognitive functioning in rats. OBJECTIVES As preclinical data on alcohol taking and relapse are limited, we used a self-administration-reinstatement model to evaluate the effects of varenicline on operant responding for alcohol (12%, v/v), intravenous nicotine (40 μg/kg/inf.), sucrose (10%, w/v) and on cue-induced relapse to alcohol and nicotine seeking in rats. At the cognitive level, we assed varenicline's effects on 5-choice serial reaction time task (5-CSRTT) performance with a focus on correct responses (attention) and premature responding (impulsivity), modalities that have previously been associated with addictive behaviour. RESULTS Varenicline, at doses of 1.5 and 2.5 mg/kg, reduced alcohol and nicotine self-administration and enhanced operant responding for sucrose. At these doses, varenicline reduced cue-induced relapse to alcohol, but not nicotine seeking. In contrast, at 0.5 mg/kg, varenicline facilitated cue-induced nicotine seeking. Similar to nicotine, varenicline increased premature responding at low doses, but had no effect on any of the other behavioural parameters in the 5-CSRTT. CONCLUSIONS Our data indicate that varenicline specifically reduced responding for nicotine and alcohol, but not for natural reinforcers such as sucrose. Interestingly, varenicline strongly attenuated cue-induced relapse to alcohol seeking, but not nicotine seeking. Varenicline may therefore be a promising aid in the treatment of alcohol addiction.
Collapse
|
87
|
Activation of alpha4* nAChRs is necessary and sufficient for varenicline-induced reduction of alcohol consumption. J Neurosci 2010; 30:10169-76. [PMID: 20668200 DOI: 10.1523/jneurosci.2601-10.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the smoking cessation therapeutic varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, has been shown to reduce alcohol consumption. However, the mechanism and nAChR subtype(s) involved are unknown. Here we demonstrate that varenicline and alcohol exposure, either alone or in combination, selectively activates dopaminergic (DAergic) neurons within the posterior, but not the anterior, ventral tegmental area (VTA). To gain insight into which nAChR subtypes may be involved in the response to alcohol, we analyzed nAChR subunit gene expression in posterior VTA DAergic neurons. Ethanol-activated DAergic neurons expressed higher levels of alpha4, alpha6, and beta3 subunit genes compared with nonactivated neurons. To examine the role of nicotinic receptors containing the alpha4 subunit (alpha4* nAChRs) in varenicline-induced reduction of alcohol consumption, we examined the effect of the drug in two complementary mouse models, a knock-out line that does not express the alpha4 subunit (alpha4 KO) and another line that expresses alpha4* nAChRs hypersensitive to agonist (Leu9'Ala). While varenicline (0.1-0.3 mg/kg, i.p.) reduced 2% and 20% alcohol consumption in wild-type (WT) mice, the drug did not significantly reduce consumption in alpha4 KO animals. Conversely, low doses of varenicline (0.0125-0.05 mg/kg, i.p.) that had little effect in WT mice dramatically reduced ethanol intake in Leu9'Ala mice. Infusion of varenicline into the posterior, but not the anterior VTA was sufficient to reduce alcohol consumption. Together, our data indicate that activation of alpha4* nAChRs is necessary and sufficient for varenicline reduction of alcohol consumption.
Collapse
|
88
|
Rezvani AH, Slade S, Wells C, Petro A, Lumeng L, Li TK, Xiao Y, Brown ML, Paige MA, McDowell BE, Rose JE, Kellar KJ, Levin ED. Effects of sazetidine-A, a selective alpha4beta2 nicotinic acetylcholine receptor desensitizing agent on alcohol and nicotine self-administration in selectively bred alcohol-preferring (P) rats. Psychopharmacology (Berl) 2010; 211:161-74. [PMID: 20535453 PMCID: PMC3695635 DOI: 10.1007/s00213-010-1878-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE Manipulations of nicotinic cholinergic receptors have been shown to influence both alcohol and nicotine intake. Sazetidine-A [6-(5(((S)-azetidine-2-yl)methoxy)pyridine-3-yl)hex-5-yn-1-ol] is a novel compound that potently and selectively desensitizes alpha4beta2 nicotinic receptors with only modest receptor activation. OBJECTIVES The goal of the present study was to examine the effects of sazetidine-A on alcohol and nicotine self-administration in alcohol-preferring (P) rats. METHODS P rats were given the choice of water or alcohol. Once stable baselines were established, the acute (0, 0.1, 0.3, 1, and 3 mg/kg, s.c.) and chronic (3 mg/kg for 10 days) effects of sazetidine-A on alcohol intake were assessed. Naltrexone (2.5 mg/kg) served as a positive control. The effect of sazetidine-A (3 mg/kg) and naltrexone (4 mg/kg) on saccharin (0.2%) preference was also assessed. In addition, the acute effects of sazetidine-A (3 mg/kg) and naltrexone (4 mg/kg) on alcohol intake after alcohol deprivation were evaluated. In another experiment, the effects of sazetidine-A (0, 1, or 3 mg/kg) on i.v. nicotine self-administration in P and NP rats were assessed. RESULTS Sazetidine-A caused a dose-dependent reduction in alcohol intake. Chronic sazetidine-A also effectively reduced alcohol intake until the seventh day of treatment, when partial tolerance appeared to develop. In the post-deprivation study, sazetidine-A significantly reduced alcohol intake and preference. Sazetidine-A at 3 mg/kg significantly reduced nicotine self-administration in both lines. CONCLUSIONS Sazetidine-A significantly reduced alcohol and nicotine intake in P rats that self-administer higher levels of both drugs. Sazetidine-A may hold promise for the treatment of alcohol and nicotine addiction.
Collapse
Affiliation(s)
- Amir H. Rezvani
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Susan Slade
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Cori Wells
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Ann Petro
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Lawrence Lumeng
- Department of Internal Medicine, University of Indiana, Indianapolis, IN, USA
| | - Ting-Kai Li
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Yingxian Xiao
- Department of Pharmacology, Georgetown University School of Medicine, Washington, DC, USA
| | - Milton L. Brown
- Department of Drug Discovery Program, Georgetown University School of Medicine, Washington, DC, USA
| | - Mikell A. Paige
- Department of Drug Discovery Program, Georgetown University School of Medicine, Washington, DC, USA
| | - Brian E. McDowell
- Department of Drug Discovery Program, Georgetown University School of Medicine, Washington, DC, USA
| | - Jed E. Rose
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| | - Kenneth J. Kellar
- Department of Pharmacology, Georgetown University School of Medicine, Washington, DC, USA
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA
| |
Collapse
|
89
|
Crabbe JC, Phillips TJ, Belknap JK. The complexity of alcohol drinking: studies in rodent genetic models. Behav Genet 2010; 40:737-50. [PMID: 20552264 DOI: 10.1007/s10519-010-9371-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/22/2010] [Indexed: 02/01/2023]
Abstract
Risk for alcohol dependence in humans has substantial genetic contributions. Successful rodent models generally attempt to address only selected features of the human diagnosis. Most such models target the phenotype of oral administration of alcohol solutions, usually consumption of or preference for an alcohol solution versus water. Data from rats and mice for more than 50 years have shown genetic influences on preference drinking and related phenotypes. This paper summarizes some key findings from that extensive literature. Much has been learned, including the genomic location and possible identity of several genes influencing preference drinking. We report new information from congenic lines confirming QTLs for drinking on mouse chromosomes 2 and 9. There are many strengths of the various phenotypic assays used to study drinking, but there are also some weaknesses. One major weakness, the lack of drinking excessively enough to become intoxicated, has recently been addressed with a new genetic animal model, mouse lines selectively bred for their high and intoxicating blood alcohol levels after a limited period of drinking in the circadian dark. We report here results from a second replicate of that selection and compare them with the first replicate.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
90
|
Bhutada PS, Mundhada YR, Bansod KU, Dixit PV, Umathe SN, Mundhada DR. Inhibitory influence of mecamylamine on the development and the expression of ethanol-induced locomotor sensitization in mice. Pharmacol Biochem Behav 2010; 96:266-73. [PMID: 20580908 DOI: 10.1016/j.pbb.2010.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/20/2010] [Accepted: 05/13/2010] [Indexed: 02/02/2023]
Abstract
Several evidences have indicated the involvement of neuronal nicotinic acetylcholine receptors (nAChR) in behavioral effects of drugs of abuse, including ethanol. nAChRs are implicated in ethanol-induced behaviors as well as neurochemical responses to ethanol. Recently, it is demonstrated that mecamylamine, a nAChR antagonist blocks cocaine-, d-amphetamine-, ephedrine-, nicotine-, and methylphenidate-induced psychomotor sensitization. However, no reports are available on its role in ethanol-induced psychomotor sensitization. Therefore, an attempt was made to evaluate its effect on ethanol-induced locomotor sensitization using a model previously described by us. The results revealed that acute administration of mecamylamine (1 and 2mg/kg, i.p.) blocked the acute stimulant effect of ethanol (2.0g/kg, i.p.). In addition, treatment with mecamylamine (0.5-2.0mg/kg, i.p.), 30min prior to the challenge dose of ethanol (2.0g/kg, i.p.) dose dependently attenuated expression of sensitization to locomotor stimulant effect of ethanol. Moreover, administration of mecamylamine (1 and 2mg/kg, i.p.) during development (prior to each ethanol injection on days 1, 4, 7, and 10) blocked acquisition as well as expression (day 15) of sensitization to locomotor stimulant effect of ethanol. Mecamylamine per se did not affect locomotor activity. Further, it also did not influence blood ethanol levels and rotarod performance in mice. These results support the hypothesis that neuroadaptive changes in nAChRs may participate in the development and the expression of ethanol-induced locomotor sensitization.
Collapse
Affiliation(s)
- Pravinkumar S Bhutada
- Agnihotri College of Pharmacy, Pharmacology Division, Bapuji Wadi, Sindhi (Meghe), Wardha-442 001, Maharashtra, India.
| | | | | | | | | | | |
Collapse
|
91
|
CRF-1 antagonist and CRF-2 agonist decrease binge-like ethanol drinking in C57BL/6J mice independent of the HPA axis. Neuropsychopharmacology 2010; 35:1241-52. [PMID: 20130533 PMCID: PMC2927867 DOI: 10.1038/npp.2009.209] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that corticotropin-releasing factor (CRF) receptor (CRFR) signaling is involved in modulating binge-like ethanol consumption in C57BL/6J mice. In this report, a series of experiments were performed to further characterize the role of CRFR signaling in binge-like ethanol consumption. The role of central CRFR signaling was assessed with intracerebroventricular (i.c.v.) infusion of the nonselective CRFR antagonist, alpha-helical CRF(9-41) (0, 1, 5, 10 microg/1 microl). The contribution of central CRF type 2 receptor (CRF(2)R) signaling was assessed with i.c.v. infusion of the selective CRF(2)R agonist, urocortin (Ucn) 3 (0, 0.05, 0.1, or 0.5 microg/1 microl). The role of the hypothalamic-pituitary-adrenal (HPA) axis was assessed by pretreating mice with intraperitoneal (i.p.) injection of (1) the corticosterone synthesis inhibitor, metyrapone (0, 50, 100, 150 mg/kg) or (2) the glucocorticoid receptor antagonist, mifepristone (0, 25, 50 mg/kg), and (3) by using radioimmunoassay to determine whether binge-like ethanol intake influenced plasma corticosterone levels. Finally, we determined whether the ability of the CRF(1)R antagonist, CP-154,526 (CP; 0, 10, 15 mg/kg, i.p.), to blunt binge-like drinking required normal HPA axis signaling by comparing the effectiveness of CP in adrenalectomized (ADX) and normal mice. Results showed that i.c.v. infusion of a 1 microg dose of alpha-helical CRF(9-41) significantly attenuated binge-like ethanol consumption relative to vehicle treatment, and i.c.v. infusion of Ucn 3 dose-dependently blunted binge-like drinking. On the other hand, metyrapone nonselectively reduced both ethanol and sucrose consumption, mifepristone did not alter ethanol drinking, and binge-like drinking did not correlate with plasma corticosterone levels. Finally, i.p. injection of CP significantly attenuated binge-like ethanol intake in both ADX and normal mice. Together, these results suggest that binge-like ethanol intake in C57BL/6J mice is modulated by CRF(1)R and CRF(2)R signaling, such that blockade of CRF(1)R or activation of CRF(2)R effectively reduces excessive ethanol intake. Furthermore, normal HPA axis signaling is not necessary to achieve binge-like drinking behavior.
Collapse
|
92
|
Kamens HM, Andersen J, Picciotto MR. Modulation of ethanol consumption by genetic and pharmacological manipulation of nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl) 2010; 208:613-26. [PMID: 20072781 PMCID: PMC2901400 DOI: 10.1007/s00213-009-1759-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/09/2009] [Indexed: 12/12/2022]
Abstract
RATIONALE Alcohol and nicotine are commonly co-abused. Genetic correlations between responses to these drugs have been reported, providing evidence that common genes underlie the response to alcohol and nicotine. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system are important in mediating nicotine response, and several studies suggest that alcohol may also interact with these nAChRs. OBJECTIVE The aim of this study was to examine the role of nAChRs containing α7 or β2 subunits in ethanol consumption. METHODS A two-bottle choice paradigm was used to determine ethanol consumption in wild-type and nAChR subunit knockout mice. Challenge studies were performed using the α4β2 nAChR partial agonist varenicline. RESULTS Mice lacking the β2 subunit consumed a similar amount of ethanol compared to their wild-type siblings in an ethanol-drinking paradigm. In contrast, mice lacking the α7 nAChR receptor subunit consumed significantly less ethanol than wild-type mice but consumed comparable amounts of water, saccharin, and quinine. In C57BL/6J mice, varenicline dose-dependently decreased ethanol consumption with a significant effect of 2 mg/kg, without affecting water or saccharin consumption. This effect of varenicline was not reversed in mice lacking either the α7 or β2 subunit, providing evidence that nAChRs containing one of these subunits are not required for this effect of varenicline. CONCLUSIONS This study provides evidence that α7 nAChRs are involved in ethanol consumption and supports the idea that pharmacological manipulation of nAChRs reduces ethanol intake. Additional nAChRs may also be involved in ethanol intake, and there may be functional redundancy in the nicotinic control of alcohol drinking.
Collapse
Affiliation(s)
- Helen M. Kamens
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| | - Jimena Andersen
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, School of Medicine, Yale University, 34 Park Street—3rd floor research, New Haven, CT 06508, USA
| |
Collapse
|
93
|
Bell RL, Eiler BJ, Cook JB, Rahman S. Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats. Alcohol 2009; 43:581-92. [PMID: 20004336 DOI: 10.1016/j.alcohol.2009.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/24/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of many drugs of abuse, including ethanol. The present study examined the efficacy of cytisine, a nAChR partial agonist, and lobeline, a putative nAChR antagonist, on the maintenance of ethanol drinking by HAD-2 rats. Adult male HAD-2 rats were given access to ethanol (15 and 30%, with ad libitum access to water and food) 22 h/day for 12 weeks, beginning at 60 days of age, after which cytisine (0.0, 0.5, and 1.5 mg/kg) was tested for 3 consecutive days. The rats were given an 18-day washout period and were then tested with lobeline (0.0, 1.0, and 5.0 mg/kg) for 3 consecutive days. Ethanol intake was measured at 1, 4, and 22 h postinjection. Rats were injected intraperitoneally just before lights out (1200 h). There was a significant main effect of cytisine treatment on the second test day, with the 1.5 mg/kg dose significantly reducing ethanol intake at the 1- and 4-h time-points, relative to saline, and the 0.5 mg/kg dose inducing a significant reduction at the 4-h time-point. Conversely, lobeline treatment resulted in significant main effects of treatment for all three time-points within each test day, with the 5.0 mg/kg dose significantly reducing ethanol intake, relative to saline, at each time-point within each test day. These findings provide further evidence that activity at the nAChR influences ethanol intake and is a promising target for pharmacotherapy development for the treatment of alcohol dependence and relapse.
Collapse
|
94
|
Bell RL, Eiler BJ, Cook JB, Rahman S. Nicotinic receptor ligands reduce ethanol intake by high alcohol–drinking HAD-2 rats. Alcohol 2009. [DOI: https://doi.org/10.1016/j.alcohol.2009.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|