51
|
Perspectives and challenges in extracellular vesicles untargeted metabolomics analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
52
|
Giner MP, Christen S, Bartova S, Makarov MV, Migaud ME, Canto C, Moco S. A Method to Monitor the NAD + Metabolome-From Mechanistic to Clinical Applications. Int J Mol Sci 2021; 22:10598. [PMID: 34638936 PMCID: PMC8508997 DOI: 10.3390/ijms221910598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications.
Collapse
Affiliation(s)
- Maria Pilar Giner
- Nestle Research, EPFL Innovation Park, H, 1015 Lausanne, Switzerland; (M.P.G.); (S.C.); (S.B.); (C.C.)
| | - Stefan Christen
- Nestle Research, EPFL Innovation Park, H, 1015 Lausanne, Switzerland; (M.P.G.); (S.C.); (S.B.); (C.C.)
| | - Simona Bartova
- Nestle Research, EPFL Innovation Park, H, 1015 Lausanne, Switzerland; (M.P.G.); (S.C.); (S.B.); (C.C.)
| | - Mikhail V. Makarov
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA; (M.V.M.); (M.E.M.)
- Olon Ricerca Bioscience, 7528 Auburn Road, Concord, OH 44077, USA
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA; (M.V.M.); (M.E.M.)
| | - Carles Canto
- Nestle Research, EPFL Innovation Park, H, 1015 Lausanne, Switzerland; (M.P.G.); (S.C.); (S.B.); (C.C.)
| | - Sofia Moco
- Nestle Research, EPFL Innovation Park, H, 1015 Lausanne, Switzerland; (M.P.G.); (S.C.); (S.B.); (C.C.)
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
53
|
Molsberry S, Bjornevik K, Hughes KC, Zhang ZJ, Jeanfavre S, Clish C, Healy B, Schwarzschild M, Ascherio A. Plasma Metabolomic Markers of Insulin Resistance and Diabetes and Rate of Incident Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:1011-1021. [PMID: 32250318 DOI: 10.3233/jpd-191896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although there is evidence of shared dysregulated pathways between diabetes and Parkinson's disease, epidemiologic research on an association between the two diseases has produced inconsistent results. OBJECTIVE We aimed to assess whether known metabolomic markers of insulin resistance and diabetes are also associated with Parkinson's disease development. METHODS We conducted a nested case-control study among Nurses' Health Study and Health Professionals Follow-up Study participants who had provided blood samples up to twenty years prior to Parkinson's diagnosis. Cases were matched to risk-set sampled controls by age, sex, fasting status, and time of blood collection. Participants provided covariate information via regularly collected cohort questionnaires. We used conditional logistic regression models to assess whether plasma levels of branched chain amino acids, acylcarnitines, glutamate, or glutamine were associated with incident development of Parkinson's disease. RESULTS A total of 349 case-control pairs were included in this analysis. In the primary analyses, none of the metabolites of interest were associated with Parkinson's disease development. In investigations of the association between each metabolite and Parkinson's disease at different time intervals prior to diagnosis, some metabolites showed marginally significant association but, after correction for multiple testing, only C18 : 2 acylcarnitine was significantly associated with Parkinson's disease among subjects for whom blood was collected less than 60 months prior to case diagnosis. CONCLUSIONS Plasma levels of diabetes-related metabolites did not contribute to predict risk of Parkinson's disease. Further investigation of the relationship between pre-diagnostic levels of diabetes-related metabolites and Parkinson's disease in other populations is needed to confirm these findings.
Collapse
Affiliation(s)
- Samantha Molsberry
- Population Health Sciences Program, Harvard University, Cambridge, MA, USA
| | - Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katherine C Hughes
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhongli Joel Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sarah Jeanfavre
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Clary Clish
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Brian Healy
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alberto Ascherio
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Dama E, Colangelo T, Fina E, Cremonesi M, Kallikourdis M, Veronesi G, Bianchi F. Biomarkers and Lung Cancer Early Detection: State of the Art. Cancers (Basel) 2021; 13:cancers13153919. [PMID: 34359818 PMCID: PMC8345487 DOI: 10.3390/cancers13153919] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death worldwide. Detecting lung malignancies promptly is essential for any anticancer treatment to reduce mortality and morbidity, especially in high-risk individuals. The use of liquid biopsy to detect circulating biomarkers such as RNA, microRNA, DNA, proteins, autoantibodies in the blood, as well as circulating tumor cells (CTCs), can substantially change the way we manage lung cancer patients by improving disease stratification using intrinsic molecular characteristics, identification of therapeutic targets and monitoring molecular residual disease. Here, we made an update on recent developments in liquid biopsy-based biomarkers for lung cancer early diagnosis, and we propose guidelines for an accurate study design, execution, and data interpretation for biomarker development. Abstract Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limitations in early detection impede lung cancer diagnosis when the disease is still localized and thus more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells (CTCs), and compared the most promising studies in terms of biomarkers prediction performance. While we observed an overall good performance for the proposed biomarkers, we noticed some critical aspects which may complicate the successful translation of these biomarkers into the clinical setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers during the discovery, prioritization, and clinical validation phase. The integration of innovative minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer early detection.
Collapse
Affiliation(s)
- Elisa Dama
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
| | - Tommaso Colangelo
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
| | - Emanuela Fina
- Humanitas Research Center, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy;
| | - Marco Cremonesi
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (M.C.); (M.K.)
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; (M.C.); (M.K.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Giulia Veronesi
- Division of Thoracic Surgery, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Fabrizio Bianchi
- Cancer Biomarkers Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (E.D.); (T.C.)
- Correspondence: ; Tel.: +39-08-8241-0954; Fax: +39-08-8220-4004
| |
Collapse
|
55
|
Bjerkhaug AU, Granslo HN, Klingenberg C. Metabolic responses in neonatal sepsis-A systematic review of human metabolomic studies. Acta Paediatr 2021; 110:2316-2325. [PMID: 33851423 DOI: 10.1111/apa.15874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
AIM To systematically review human metabolomic studies investigating metabolic responses in septic neonates. METHODS A systematic literature search was performed in the databases MEDLINE, EMBASE and Cochrane library up to the 1st of January 2021. We included studies that assessed neonatal sepsis and the following outcomes; (1) change in the metabolism compared to healthy neonates and/or (2) metabolomics compared to traditional diagnostic tools of neonatal sepsis. The screened abstracts were independently considered for eligibility by two researchers. PROSPERO ID CRD42020164454. RESULTS The search identified in total 762 articles. Fifteen articles were assessed for eligibility. Four studies were included, with totally 78 neonates. The studies used different diagnostic criteria and had between 1 and 16 sepsis cases. All studies with bacterial sepsis found alterations in the glucose and lactate metabolism, reflecting possible redistribution of glucose consumption from mitochondrial oxidative phosphorylation to the lactate and pentose phosphate pathway. We also found signs of increased oxidative stress and fatty acid oxidation in sepsis cases. CONCLUSION We found signs of metabolomic signatures in neonatal sepsis. This may lead to better understanding of sepsis pathophysiology and detection of new candidate biomarkers. Results should be validated in large-scale multicentre studies.
Collapse
Affiliation(s)
- Aline U. Bjerkhaug
- Paediatric Research Group Faculty of Health Sciences UiT‐The Arctic University of Norway Tromsø Norway
| | - Hildegunn Norbakken Granslo
- Paediatric Research Group Faculty of Health Sciences UiT‐The Arctic University of Norway Tromsø Norway
- Department of Paediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway
| | - Claus Klingenberg
- Paediatric Research Group Faculty of Health Sciences UiT‐The Arctic University of Norway Tromsø Norway
- Department of Paediatrics and Adolescence Medicine University Hospital of North Norway Tromsø Norway
| |
Collapse
|
56
|
Gupta N, Ramakrishnan S, Wajid S. Emerging role of metabolomics in protein conformational disorders. Expert Rev Proteomics 2021; 18:395-410. [PMID: 34227444 DOI: 10.1080/14789450.2021.1948330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Metabolomics focuses on interactions among different metabolites associated with various cellular functions in cells, tissues, and organs. In recent years, metabolomics has emerged as a powerful tool to identify perturbed metabolites, pathways influenced by the environment, for protein conformational diseases (PCDs) and also offers wide clinical application.Area Covered: This review provides a brief overview of recent advances in metabolomics as applied to identify metabolic variations in PCDs, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, prion disease, and cardiac amyloidosis. The 'PubMed' and 'Google Scholar' database search methods have been used to screen the published reports with key search terms: metabolomics, biomarkers, and protein conformational disorders.Expert opinion: Metabolomics is the large-scale study of metabolites and is deemed to overwhelm other omics. It plays a crucial role in finding variations in diseases due to protein conformational changes. However, many PCDs are yet to be identified. Metabolomics is still an emerging field; there is a need for new high-resolution analytical techniques and more studies need to be carried out to generate new information.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| | | | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, India
| |
Collapse
|
57
|
Huang T, Balasubramanian R, Yao Y, Clis CB, Shadyab AH, Liu B, Tworoger SS, Rexrode KM, Manson JE, Kubzansky LD, Hankinson SE. Associations of depression status with plasma levels of candidate lipid and amino acid metabolites: a meta-analysis of individual data from three independent samples of US postmenopausal women. Mol Psychiatry 2021; 26:3315-3327. [PMID: 32859999 PMCID: PMC7914294 DOI: 10.1038/s41380-020-00870-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023]
Abstract
Recent animal and small clinical studies have suggested depression is related to altered lipid and amino acid profiles. However, this has not been examined in a population-based sample, particularly in women. We identified multiple metabolites associated with depression as potential candidates from prior studies. Cross-sectional data from three independent samples of postmenopausal women were analyzed, including women from the Women's Health Initiative-Observational Study (WHI-OS, n = 926), the WHI-Hormone Trials (WHI-HT; n = 1,325), and the Nurses' Health Study II Mind-Body Study (NHSII-MBS; n = 218). Positive depression status was defined as having any of the following: elevated depressive symptoms, antidepressant use, or depression history. Plasma metabolites were measured using liquid chromatography-tandem mass spectrometry (21 phosphatidylcholines (PCs), 7 lysophosphatidylethanolamines, 5 ceramides, 3 branched chain amino acids, and 9 neurotransmitters). Associations between depression status and metabolites were evaluated using multivariable linear regression; results were pooled by random-effects meta-analysis with multiple testing adjustment using the false discovery rate (FDR). Prevalence rates of positive depression status were 24.4% (WHI-OS), 25.7% (WHI-HT), and 44.7% (NHSII-MBS). After multivariable adjustment, positive depression status was associated with higher levels of glutamate and PC 36 : 1/38 : 3, and lower levels of tryptophan and GABA-to-glutamate and GABA-to-glutamine ratio (FDR-p < 0.05). Positive associations with LPE 18 : 0/18 : 1 and inverse associations with valine and serotonin were also observed, although these associations did not survive FDR adjustment. Associations of positive depression status with several candidate metabolites including PC 36 : 1/38 : 3 and amino acids involved in neurotransmission suggest potential depression-related metabolic alterations in postmenopausal women, with possible implications for later chronic disease.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA
| | - Yubing Yao
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA
| | | | - Aladdin H. Shadyab
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - JoAnn E. Manson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Susan E. Hankinson
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA,Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
58
|
Di Minno A, Gelzo M, Stornaiuolo M, Ruoppolo M, Castaldo G. The evolving landscape of untargeted metabolomics. Nutr Metab Cardiovasc Dis 2021; 31:1645-1652. [PMID: 33895079 DOI: 10.1016/j.numecd.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
AIMS Untargeted Metabolomics is a "hypothesis-generating discovery strategy" that compares groups of samples (e.g., cases vs controls); identifies the metabolome and establishes (early signs of) perturbations. Targeted Metabolomics helped gather key information in life sciences and disclosed novel strategies for the treatment of major clinical entities (e.g., malignancy, cardiovascular diabetes mellitus, drug toxicity). Because of its relevance in biomarker discovery, attention is now devoted to improving the translational potential of untargeted Metabolomics. DATA SYNTHESIS Expertise in laboratory medicine and in bioinformatics helps solve challenges/pitfalls that may bias metabolite profiling in untargeted Metabolomics. Clinical validation (availability/reliability of analytical instruments) and profitability (how many people will use the test) are mandatory steps for potential biomarkers. Biomarkers to predict individual patient response, patient populations that will best respond to specific strategies and/or approaches for an optimal response to treatment are now being developed. Additional help is expected from professional, and regulatory Agencies as to guidelines for study design and data acquisition and analysis, to be applied from the very beginning of a project. Evidence from food, plant, human, environmental, and animal research argues for the need of miniaturized approaches that employ low-cost, easy to use, mobile devices. ELISA kits with such characteristics that employ targeted metabolites are already available. CONCLUSIONS Improving knowledge of the mechanisms behind the disease status (pathophysiology) will help untargeted Metabolomics gather a direct positive impact on welfare and industrial advancements, and fade uncertainties perceived by regulators/payers and patients concerning variables related to miniaturised instruments and user-friendly software and databases.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università Degli Studi di Napoli "Federico II", Napoli, 80131, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Mariano Stornaiuolo
- Dipartimento di Farmacia, Università Degli Studi di Napoli "Federico II", Napoli, 80131, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
59
|
Hancox TPM, Skene DJ, Dallmann R, Dunn WB. Tick-Tock Consider the Clock: The Influence of Circadian and External Cycles on Time of Day Variation in the Human Metabolome-A Review. Metabolites 2021; 11:328. [PMID: 34069741 PMCID: PMC8161100 DOI: 10.3390/metabo11050328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
The past decade has seen a large influx of work investigating time of day variation in different human biofluid and tissue metabolomes. The driver of this daily variation can be endogenous circadian rhythms driven by the central and/or peripheral clocks, or exogenous diurnal rhythms driven by behavioural and environmental cycles, which manifest as regular 24 h cycles of metabolite concentrations. This review, of all published studies to date, establishes the extent of daily variation with regard to the number and identity of 'rhythmic' metabolites observed in blood, saliva, urine, breath, and skeletal muscle. The probable sources driving such variation, in addition to what metabolite classes are most susceptible in adhering to or uncoupling from such cycles is described in addition to a compiled list of common rhythmic metabolites. The reviewed studies show that the metabolome undergoes significant time of day variation, primarily observed for amino acids and multiple lipid classes. Such 24 h rhythms, driven by various factors discussed herein, are an additional source of intra/inter-individual variation and are thus highly pertinent to all studies applying untargeted and targeted metabolomics platforms, particularly for the construction of biomarker panels. The potential implications are discussed alongside proposed minimum reporting criteria suggested to acknowledge time of day variation as a potential influence of results and to facilitate improved reproducibility.
Collapse
Affiliation(s)
- Thomas P. M. Hancox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Warwick B. Dunn
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
60
|
PAIRED BIOCHEMICAL ANALYSIS OF PIGMENTED PLASMA SAMPLES FROM ZOO-KEPT AMERICAN FLAMINGOS ( PHOENICOPTERUS RUBER) USING A POINT-OF-CARE AND A STANDARD WET CHEMISTRY ANALYZER. J Zoo Wildl Med 2021; 50:619-626. [PMID: 33517631 DOI: 10.1638/2017-0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 11/21/2022] Open
Abstract
American flamingos (Phoenicopterus ruber) are commonly kept in zoological collections, making health monitoring essential. Use of point-of-care (POC) blood analyzers that require small volumes of whole blood samples produces prompt results allowing for rapid clinical decision-making. To evaluate and compare blood biochemistry analysis results analyzed by a POC biochemistry analyzer and a laboratory wet biochemistry analyzer, blood was collected from 17 apparently healthy zoo-kept American flamingos. Analyzer agreement was investigated using the Passing-Bablock regression analysis and Spearman correlation coefficients. Plasma samples from all birds were bright yellow in color. The results from the POC analyzer used in this study were found to be outside acceptance and clinical allowable error limits when compared with the laboratory analyzer for phosphorus (Phos), total protein (TP), albumin (Alb), glucose (Glu), creatine kinase (CK), and potassium (K). For aspartate aminotransferase (AST), results were within clinical allowable error but outside the acceptance limits, and for calcium (Ca) and sodium (Na), results were within both limits. The POC analyzer failed to measure the uric acid (UA) concentrations of all the samples, and reported all bile acids (BA) concentrations as below its minimal measurable limit. The use of analyzer-specific reference intervals is recommended for most analytes tested. The POC analyzer used in this study cannot be recommended for measuring UA concentrations in brightly colored samples from American flamingos.
Collapse
|
61
|
Ashworth M, Small B, Oldfield L, Evans A, Greenhalf W, Halloran C, Costello E. The holding temperature of blood during a delay to processing can affect serum and plasma protein measurements. Sci Rep 2021; 11:6487. [PMID: 33753773 PMCID: PMC7985364 DOI: 10.1038/s41598-021-85052-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 12/02/2022] Open
Abstract
Accurate blood-borne biomarkers are sought for diagnosis, prognosis and treatment stratification. Consistent handling of blood is essential for meaningful data interpretation, however, delays during processing are occasionally unavoidable. We investigated the effects of immediately placing blood samples on ice versus room temperature for 1 h (reference protocol), and holding samples on ice versus room temperature during a 3 h delay to processing. Using Luminex multi-plex assays to assess cytokines (n = 29) and diabetes-associated proteins (n = 15) in healthy subjects, we observed that placing blood samples immediately on ice decreased the serum levels of several cytokines, including PAI-1, MIP1-β, IL-9, RANTES and IL-8. During a delay to processing, some analytes, e.g. leptin and insulin, showed little change in serum or plasma values. However, for approximately half of the analytes studied, a delay, regardless of the holding temperature, altered the measured levels compared to the reference protocol. Effects differed between serum and plasma and for some analytes the direction of change in level varied across individuals. The optimal holding temperature for samples during a delay was analyte-specific. In conclusion, deviations from protocol can lead to significant changes in blood analyte levels. Where possible, protocols for blood handling should be pre-determined in an analyte-specific manner.
Collapse
Affiliation(s)
- Milton Ashworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Benjamin Small
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Lucy Oldfield
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Anthony Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
62
|
Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological disorders requiring hospitalization and is associated with substantial morbidity and mortality. Metabolomics nowadays not only help us to understand cellular metabolism to a degree that was not previously obtainable, but also to reveal the importance of the metabolites in physiological control, disease onset and development. An in-depth understanding of metabolic phenotyping would be therefore crucial for accurate diagnosis, prognosis and precise treatment of AP. In this review, we summarized and addressed the metabolomics design and workflow in AP studies, as well as the results and analysis of the in-depth of research. Based on the metabolic profiling work in both clinical populations and experimental AP models, we described the metabolites with potential utility as biomarkers and the correlation between the altered metabolites and AP status. Moreover, the disturbed metabolic pathways correlated with biological function were discussed in the end. A practical understanding of current and emerging metabolomic approaches applicable to AP and use of the metabolite information presented will aid in designing robust metabolomics and biological experiments that result in identification of unique biomarkers and mechanisms, and ultimately enhanced clinical decision-making.
Collapse
|
63
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
64
|
Patuleia SIS, Hagenaars SC, Moelans CB, Ausems MGEM, van Gils CH, Tollenaar RAEM, van Diest PJ, Mesker WE, van der Wall E. Lessons Learned from Setting Up a Prospective, Longitudinal, Multicenter Study with Women at High Risk for Breast Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:441-449. [PMID: 33082203 DOI: 10.1158/1055-9965.epi-20-0770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
Women identified with an increased risk of breast cancer due to mutations in cancer susceptibility genes or a familial history of breast cancer undergo tailored screening with the goal of detecting tumors earlier, when potential curative interventions are still possible. Ideally, screening would identify signs of carcinogenesis even before a tumor is detectable by imaging. This could be achieved by timely signaling of altered biomarker levels for precancerous processes in liquid biopsies. Currently, the Nipple Aspirate Fluid (NAF) and the Trial Early Serum Test BREAST cancer (TESTBREAST), both ongoing, prospective, multicenter studies, are investigating biomarkers in liquid biopsies to improve breast cancer screening in high-risk women. The NAF study focuses on changes over time in miRNA expression levels both in blood and NAF samples, whereas the TESTBREAST study analyzes changes in protein levels in blood samples at sequential interval timepoints. These within-subject changes are studied in relation to later occurrence of breast cancer using a nested case-control design. These longitudinal studies face their own challenges in execution, such as hindrances in logistics and in sample processing that were difficult to anticipate. This article offers insight into those challenges and concurrently aims to provide useful strategies for the set-up of similar studies.See related commentary by Sauter, p. 429.
Collapse
Affiliation(s)
- Susana I S Patuleia
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sophie C Hagenaars
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Margreet G E M Ausems
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla H van Gils
- Department of Epidemiology of the Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
65
|
Abstract
![]()
Helminths
represent a diverse category of parasitic organisms that
can thrive within a host for years, if not decades, in the absence
of treatment. As such, they must establish mechanisms to subsist off
their hosts, evade the immune system, and develop a niche among the
other cohabiting microbial communities. The complex interplay of biologically
small molecules (collectively known as the metabolome) derived from,
utilized by, or in response to the presence of helminths within a
host is an emerging field of study. In this Perspective, we briefly
summarize the current existing literature, categorize key host–pathogen–microbiome
interfaces that could be studied in the context of the metabolome,
and provide background on mass spectrometry-based metabolomic methodology.
Overall, we hope to provide a comprehensive guide for utilizing metabolomics
in the context of helminthic disease.
Collapse
Affiliation(s)
- Jeffrey D. Whitman
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California 94110, United States
| | - Judy A. Sakanari
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States
| |
Collapse
|
66
|
Pyle L, Carreau AM, Rahat H, Garcia-Reyes Y, Bergman BC, Nadeau KJ, Cree-Green M. Fasting plasma metabolomic profiles are altered by three days of standardized diet and restricted physical activity. Metabol Open 2021; 9:100085. [PMID: 33665598 PMCID: PMC7903000 DOI: 10.1016/j.metop.2021.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Few studies have examined the effects of participants' diet and activity prior to sample collection on metabolomics profiles, and results have been conflicting. We compared the effects of overnight fasting with or without 3 days of standardized diet and restricted physical activity on the human blood metabolome, and examined the effects of these protocols on our ability to detect differences in metabolomics profiles in adolescent girls with obesity and polycystic ovary syndrome (PCOS) vs. sex and BMI-matched controls. Methods This was a cross-sectional study of 16 adolescent girls with obesity and PCOS and 5 sex and BMI-matched controls. Fasting plasma metabolomic profiles were measured twice in each participant: once without preceding restriction of physical activity or control of macronutrient content ("typical fasting visit"), and again after 12 h of monitored inpatient fasting with 3 days of standardized diet and avoidance of vigorous exercise ("controlled fasting visit"). Moderated paired t-tests with FDR correction for multiple testing and multilevel sparse partial least-squares discriminant analysis (sPLS-DA) were used to examine differences between the 2 visits and to compare the PCOS and control groups with the 2 visits combined and again after stratifying by visit. Results Twenty-three known metabolites were significantly different between the controlled fasting and typical fasting visits. Hypoxanthine and glycochenodeoxycholic acid had the largest increases in relative abundance at the controlled fasting visit compared to the typical fasting visit, while oleoyl-glycerol and oleamide had the largest increases in relative abundance at the typical fasting visit compared to the controlled fasting visit. sPLS-DA showed excellent discrimination between the 2 visits; however, when the samples from the 2 visits were combined, differences between the PCOS and control groups could not be detected. After stratifying by visit, discrimination of PCOS status was improved. Conclusions There were differences in fasting metabolomic profiles following typical fasting vs monitored fasting with preceding restriction of physical activity and control of macronutrient content, and combining samples from the two visits obscured differences by PCOS status. In studies performing metabolomics analysis, careful attention should be paid to acute diet and activity history. Depending on the sample size of the study and the expected effect size of the outcomes of interest, control of diet and physical activity beyond typical outpatient fasting may not be required.
Collapse
Affiliation(s)
- Laura Pyle
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, 80045, USA
| | - Anne-Marie Carreau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Haseeb Rahat
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yesenia Garcia-Reyes
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Bryan C Bergman
- Department of Medicine, Division of Endocrinology and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristen J Nadeau
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Center for Women's Health Research, Aurora, CO, 80045, USA
| | - Melanie Cree-Green
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Center for Women's Health Research, Aurora, CO, 80045, USA
| |
Collapse
|
67
|
Lehn-Stefan A, Peter A, Machann J, Schick F, Randrianarisoa E, Heni M, Wagner R, Birkenfeld AL, Fritsche A, Häring HU, Staiger H, Stefan N. Elevated Circulating Glutamate Is Associated With Subclinical Atherosclerosis Independently of Established Risk Markers: A Cross-Sectional Study. J Clin Endocrinol Metab 2021; 106:e982-e989. [PMID: 33277657 DOI: 10.1210/clinem/dgaa898] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Elevated plasma glutamate levels are associated with an increased risk of cardiovascular disease (CVD). Because plasma glutamate levels are also strongly associated with visceral adiposity, nonalcoholic fatty liver disease, insulin resistance, and high circulating levels of branched-chain amino acids (BCAAs), it is unknown to what extent elevated circulating glutamate is an independent marker of an increased risk of atherosclerosis. METHODS Plasma levels of glutamate and BCAAs were measured in 102 individuals who were precisely phenotyped for body fat mass and distribution (magnetic resonance [MR] tomography), liver fat content (1H-MR spectroscopy), insulin sensitivity (oral glucose tolerance test and hyperinsulinemic, euglycemic clamp [N = 57]), and carotid intima media thickness (cIMT). RESULTS Plasma glutamate levels, adjusted for age, sex, body fat mass, and visceral fat mass, correlated positively with liver fat content and cIMT (all std β ≥ .22, all P ≤ .023) and negatively with insulin sensitivity (std β ≤ -.31, P ≤ .002). Glutamate levels also were associated with cIMT, independently of additional adjustment for liver fat content, insulin sensitivity and BCAAs levels (std β ≥ .24, P ≤ .02). Furthermore, an independent positive association of glutamate and interleukin-6 (IL-6) levels was observed (N = 50; std β = .39, P = .03). Although glutamate, adjusted for age, sex, body fat mass, and visceral fat mass, also correlated positively with cIMT in this subgroup (std β = .31, P = .02), after additional adjustment for the parameters liver fat content, insulin sensitivity, BCAAs, or IL-6 levels, adjustment for IL-6 most strongly attenuated this relationship (std β = .28, P = .05). CONCLUSIONS Elevated plasma glutamate levels are associated with increased cIMT, independently of established CVD risk factors, and this relationship may in part be explained by IL-6-associated subclinical inflammation.
Collapse
Affiliation(s)
- Angela Lehn-Stefan
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - Elko Randrianarisoa
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Martin Heni
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| | - Harald Staiger
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Pharmacological Sciences, Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
68
|
Volumetric Absorptive Microsampling of Blood for Untargeted Lipidomics. Molecules 2021; 26:molecules26020262. [PMID: 33430231 PMCID: PMC7825730 DOI: 10.3390/molecules26020262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 01/20/2023] Open
Abstract
In the present, proof-of-concept paper, we explore the potential of one common solid support for blood microsampling (dried blood spot, DBS) and a device (volumetric absorptive microsampling, VAMS) developed for the untargeted lipidomic profiling of human whole blood, performed by high-resolution LC-MS/MS. Dried blood microsamples obtained by means of DBS and VAMS were extracted with different solvent compositions and compared with fluid blood to evaluate their efficiency in profiling the lipid chemical space in the most broad way. Although more effort is needed to better characterize this approach, our results indicate that VAMS is a viable option for untargeted studies and its use will bring all the corresponding known advantages in the field of lipidomics, such as haematocrit independence.
Collapse
|
69
|
Scarsella E, Segato J, Zuccaccia D, Swanson KS, Stefanon B. An application of nuclear magnetic resonance spectroscopy to study faecal canine metabolome. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1925602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Elisa Scarsella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Jacopo Segato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| | - Kelly S. Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Udine, Italy
| |
Collapse
|
70
|
Saigusa D, Matsukawa N, Hishinuma E, Koshiba S. Identification of biomarkers to diagnose diseases and find adverse drug reactions by metabolomics. Drug Metab Pharmacokinet 2020; 37:100373. [PMID: 33631535 DOI: 10.1016/j.dmpk.2020.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Metabolomics has been widely used for investigating the biological functions of disease expression and has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic changes. Metabolic profiling has advantages because of the use of unbiased techniques, including multivariate analysis, and has been applied in pharmacological studies to predict therapeutic and adverse reactions of drugs, which is called pharmacometabolomics (PMx). Nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based metabolomics has contributed to the discovery of recent disease biomarkers; however, the optimal strategy for the study purpose must be selected from many established protocols, methodologies and analytical platforms. Additionally, information on molecular localization in tissue is essential for further functional analyses related to therapeutic and adverse effects of drugs in the process of drug development. MS imaging (MSI) is a promising technology that can visualize molecules on tissue surfaces without labeling and thus provide localized information. This review summarizes recent uses of MS-based global and wide-targeted metabolomics technologies and the advantages of the MSI approach for PMx and highlights the PMx technique for the biomarker discovery of adverse drug effects.
Collapse
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Naomi Matsukawa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Eiji Hishinuma
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan; Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| |
Collapse
|
71
|
Roca M, Alcoriza MI, Garcia-Cañaveras JC, Lahoz A. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial. Anal Chim Acta 2020; 1147:38-55. [PMID: 33485584 DOI: 10.1016/j.aca.2020.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolomics has become an invaluable tool for both studying metabolism and biomarker discovery. The great technical advances in analytical chemistry and bioinformatics have considerably increased the number of measurable metabolites, yet an important part of the human metabolome remains uncovered. Among the various MS hyphenated techniques available, LC-MS stands out as the most used. Here, we aimed to show the capabilities of LC-MS to uncover part of the metabolome and how to best proceed with sample preparation and LC to maximise metabolite detection. The analyses of various open metabolite databases served us to estimate the size of the already detected human metabolome, the expected metabolite composition of most used human biospecimens and which part of the metabolome can be detected when LC-MS is used. Based on an extensive review and on our experience, we have outlined standard procedures for LC-MS analysis of urine, cells, serum/plasma, tissues and faeces, to guide in the selection of the sample preparation method that best matches with one or more LC techniques in order to get the widest metabolome coverage. These standard procedures may be a useful tool to explore, at a glance, the wide spectrum of possibilities available, which can be a good starting point for most of the LC-MS metabolomic studies.
Collapse
Affiliation(s)
- Marta Roca
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Maria Isabel Alcoriza
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Juan Carlos Garcia-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Agustín Lahoz
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain; Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
| |
Collapse
|
72
|
Osakunor DNM, Mduluza T, Osei-Hyiaman D, Burgess K, Woolhouse MEJ, Mutapi F. Schistosoma haematobium infection is associated with alterations in energy and purine-related metabolism in preschool-aged children. PLoS Negl Trop Dis 2020; 14:e0008866. [PMID: 33315875 PMCID: PMC7735607 DOI: 10.1371/journal.pntd.0008866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths are parasitic worms that infect over a billion people worldwide. The pathological consequences from infection are due in part, to parasite-induced changes in host metabolic pathways. Here, we analyse the changes in host metabolic profiles, in response to the first Schistosoma haematobium infection and treatment in Zimbabwean children. A cohort of 83 schistosome-negative children (2-5 years old) as determined by parasitological examination, guardian interviews and examination of medical records, was recruited at baseline. Children were followed up after three months for parasitological diagnosis of their first S. haematobium infection, by detection of parasite eggs excreted in urine. Children positive for infection were treated with the antihelminthic drug praziquantel, and treatment efficacy checked three months after treatment. Blood samples were taken at each time point, and capillary electrophoresis mass spectrometry in conjunction with multivariate analysis were used to compare the change in serum metabolite profiles in schistosome-infected versus uninfected children. Following baseline at the three-month follow up, 11 children had become infected with S. haematobium (incidence = 13.3%). Our results showed that infection with S. haematobium was associated with significant increases (>2-fold) in discriminatory metabolites, linked primarily with energy (G6P, 3-PG, AMP, ADP) and purine (AMP, ADP) metabolism. These observed changes were commensurate with schistosome infection intensity, and levels of the affected metabolites were reduced following treatment, albeit not significantly. This study demonstrates that early infection with S. haematobium is associated with alterations in host energy and purine metabolism. Taken together, these changes are consistent with parasite-related clinical manifestations of malnutrition, poor growth and poor physical and cognitive performance observed in schistosome-infected children.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- * E-mail:
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- Metabolomics Research Division, Human Metabolome Technologies Inc., Tsuruoka, Yamagata, Japan
- Department of Systems Neurophysiology, Graduate School of Medical & Dental Science, Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Karl Burgess
- Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, King’s Buildings, Edinburgh, United Kingdom
| | - Mark E. J. Woolhouse
- Usher Institute, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| |
Collapse
|
73
|
Serum Metabolite Biomarkers for Predicting Residual Feed Intake (RFI) of Young Angus Bulls. Metabolites 2020; 10:metabo10120491. [PMID: 33266049 PMCID: PMC7759889 DOI: 10.3390/metabo10120491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Residual feed intake (RFI) is a feed efficiency measure commonly used in the livestock industry to identify animals that efficiently/inefficiently convert feed into meat or body mass. Selection for low-residual feed intake (LRFI), or feed efficient animals, is gaining popularity among beef producers due to the fact that LRFI cattle eat less and produce less methane per unit weight gain. RFI is a difficult and time-consuming measure to perform, and therefore a simple blood test that could distinguish high-RFI (HRFI) from LRFI animals (early on) would potentially benefit beef farmers in terms of optimizing production or selecting which animals to cull or breed. Using three different metabolomics platforms (nuclear magnetic resonance (NMR) spectrometry, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and inductively coupled plasma mass spectrometry (ICP-MS)) we successfully identified serum biomarkers for RFI that could potentially be translated to an RFI blood test. One set of predictive RFI biomarkers included formate and leucine (best for NMR), and another set included C4 (butyrylcarnitine) and LysoPC(28:0) (best for LC-MS/MS). These serum biomarkers have high sensitivity and specificity (AUROC > 0.85), for distinguishing HRFI from LRFI animals. These results suggest that serum metabolites could be used to inexpensively predict and categorize bovine RFI values. Further validation using a larger, more diverse cohort of cattle is required to confirm these findings.
Collapse
|
74
|
Determination of one year stability of lipid plasma profile and comparison of blood collection tubes using UHPSFC/MS and HILIC-UHPLC/MS. Anal Chim Acta 2020; 1137:74-84. [DOI: 10.1016/j.aca.2020.08.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/27/2023]
|
75
|
A Review of GC-Based Analysis of Non-Invasive Biomarkers of Colorectal Cancer and Related Pathways. J Clin Med 2020; 9:jcm9103191. [PMID: 33019642 PMCID: PMC7601558 DOI: 10.3390/jcm9103191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world. In Europe, it is the second most common cause of cancer-related deaths. With the advent of metabolomics approaches, studies regarding the investigation of metabolite profiles related to CRC have been conducted, aiming to serve as a tool for early diagnosis. In order to provide further information about the current status of this field of research, 21 studies were systematically reviewed, regarding their main findings and analytical aspects. A special focus was given to the employment of matrices obtained non-invasively and the use of gas chromatography as the analytical platform. The relationship between the reported volatile and non-volatile biomarkers and CRC-related metabolic alterations was also explored, demonstrating that many of these metabolites are connected with biochemical pathways proven to be involved in carcinogenesis. The most commonly reported CRC indicators were hydrocarbons, aldehydes, amino acids and short-chain fatty acids. These potential biomarkers can be associated with both human and bacterial pathways and the analysis based on such species has the potential to be applied in the clinical practice as a low-cost screening method.
Collapse
|
76
|
Vitório JG, Duarte-Andrade FF, Dos Santos Fontes Pereira T, Fonseca FP, Amorim LSD, Martins-Chaves RR, Gomes CC, Canuto GAB, Gomez RS. Metabolic landscape of oral squamous cell carcinoma. Metabolomics 2020; 16:105. [PMID: 33000429 DOI: 10.1007/s11306-020-01727-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Head and neck cancers are the seventh most common type of cancer worldwide, with almost half of the cases affecting the oral cavity. Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, showing poor prognosis and high mortality. OSCC molecular pathogenesis is complex, resulting from a wide range of events that involve the interplay between genetic mutations and altered levels of transcripts, proteins, and metabolites. Metabolomics is a recently developed sub-area of omics sciences focused on the comprehensive analysis of small molecules involved in several biological pathways by high throughput technologies. AIM OF REVIEW This review summarizes and evaluates studies focused on the metabolomics analysis of OSCC and oral premalignant disorders to better interpret the complex process of oral carcinogenesis. Additionally, the metabolic biomarkers signatures identified so far are also included. Moreover, we discuss the limitations of these studies and make suggestions for future investigations. KEY SCIENTIFIC CONCEPTS Although many questions about the metabolic features of OSCC have already been answered in metabolomic studies, further validation and optimization are still required to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Larissa Stefhanne Damasceno Amorim
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos, Belo Horizonte, Minas Gerais, 6627, 31270-901, Brazil.
| |
Collapse
|
77
|
Muhamadali H, Simoens K, Xu Y, Nicolai B, Bernaerts K, Goodacre R. Evaluation of Sample Preparation Methods for Inter-Laboratory Metabolomics Investigation of Streptomyces lividans TK24. Metabolites 2020; 10:E379. [PMID: 32972026 PMCID: PMC7569812 DOI: 10.3390/metabo10090379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/11/2023] Open
Abstract
In the past two decades, metabolomics has proved to be a valuable tool with many potential applications in different areas of science. However, there are still some challenges that need to be addressed, particularly for multicenter studies. These challenges are mainly attributed to various sources of fluctuation and unwanted variations that can be introduced at pre-analytical, analytical, and/or post-analytical steps of any metabolomics experiment. Thus, this study aimed at using Streptomyces lividans TK24 as the model organism in a cross-laboratory experiment in Manchester and Leuven to evaluate the reproducibility of a standard sample preparation method, and determine the optimal sample format (cell extract or quenched biomass) required to preserve the metabolic profile of the cells during cross-lab sample transportation and storage. Principal component analysis (PCA) scores plot of the gas chromatography-mass spectrometry (GC-MS) data from both laboratories displayed clear growth-dependent clustering patterns which was in agreement with the Procrustes analysis findings. In addition, the data generated in Manchester displayed tight clustering of cell pellets (quenched biomass) and metabolite extracts, confirming the stability of both sample formats during the transportation and storage period.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Kenneth Simoens
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F Box 2424, 3001 Leuven, Belgium; (K.S.); (K.B.)
| | - Yun Xu
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Bart Nicolai
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), Department of Biosystems (BIOSYST), KU Leuven (University of Leuven), Willem de Croylaan 42 Box 2428, 3001 Leuven, Belgium;
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven (University of Leuven), Leuven Chem&Tech, Celestijnenlaan 200F Box 2424, 3001 Leuven, Belgium; (K.S.); (K.B.)
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, UK; (H.M.); (Y.X.)
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
78
|
Snowden SG, Korosi A, de Rooij SR, Koulman A. Combining lipidomics and machine learning to measure clinical lipids in dried blood spots. Metabolomics 2020; 16:83. [PMID: 32710150 PMCID: PMC7381462 DOI: 10.1007/s11306-020-01703-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Blood-based sample collection is a challenge, and dried blood spots (DBS) represent an attractive alternative. However, for DBSs to be an alternative to venous blood it is important that these samples are able to deliver comparable associations with clinical outcomes. To explore this we looked to see if lipid profile data could be used to predict the concentration of triglyceride, HDL, LDL and total cholesterol in DBSs using markers identified in plasma. OBJECTIVES To determine if DBSs can be used as an alternative to venous blood in both research and clinical settings, and to determine if machine learning could predict 'clinical lipid' concentration from lipid profile data. METHODS Lipid profiles were generated from plasma (n = 777) and DBS (n = 835) samples. Random forest was applied to identify and validate panels of lipid markers in plasma, which were translated into the DBS cohort to provide robust measures of the four 'clinical lipids'. RESULTS In plasma samples panels of lipid markers were identified that could predict the concentration of the 'clinical lipids' with correlations between estimated and measured triglyceride, HDL, LDL and total cholesterol of 0.920, 0.743, 0.580 and 0.424 respectively. When translated into DBS samples, correlations of 0.836, 0.591, 0.561 and 0.569 were achieved for triglyceride, HDL, LDL and total cholesterol. CONCLUSION DBSs represent an alternative to venous blood, however further work is required to improve the combined lipidomics and machine learning approach to develop it for use in health monitoring.
Collapse
Affiliation(s)
- Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Aniko Korosi
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Department of Clinical Epidemiology, Amsterdam University Medical Centre, Biostatistics & Bio informaticslocation AMC, Amsterdam, The Netherlands
- Department of Public Health, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
79
|
A blood-based metabolomics test to distinguish relapsing-remitting and secondary progressive multiple sclerosis: addressing practical considerations for clinical application. Sci Rep 2020; 10:12381. [PMID: 32709911 PMCID: PMC7381627 DOI: 10.1038/s41598-020-69119-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The transition from relapsing–remitting multiple sclerosis (RRMS) to secondary progressive MS (SPMS) represents a huge clinical challenge. We previously demonstrated that serum metabolomics could distinguish RRMS from SPMS with high diagnostic accuracy. As differing sample-handling protocols can affect the blood metabolite profile, it is vital to understand which factors may influence the accuracy of this metabolomics-based test in a clinical setting. Herein, we aim to further validate the high accuracy of this metabolomics test and to determine if this is maintained in a ‘real-life’ clinical environment. Blood from 31 RRMS and 28 SPMS patients was subjected to different sample-handling protocols representing variations encountered in clinics. The effect of freeze–thaw cycles (0 or 1) and time to erythrocyte removal (30, 120, or 240 min) on the accuracy of the test was investigated. For test development, samples from the optimised protocol (30 min standing time, 0 freeze–thaw) were used, resulting in high diagnostic accuracy (mean ± SD, 91.0 ± 3.0%). This test remained able to discriminate RRMS and SPMS samples that had experienced additional freeze–thaw, and increased standing times of 120 and 240 min with accuracies ranging from 85.5 to 88.0%, because the top discriminatory metabolite biomarkers from the optimised protocol remained discriminatory between RRMS and SPMS despite these sample-handling variations. In conclusion, while strict sample-handling is essential for the development of metabolomics-based blood tests, the results confirmed that the RRMS vs. SPMS test is resistant to sample-handling variations and can distinguish these two MS stages in the clinics.
Collapse
|
80
|
McGee EE, Kiblawi R, Playdon MC, Eliassen AH. Nutritional Metabolomics in Cancer Epidemiology: Current Trends, Challenges, and Future Directions. Curr Nutr Rep 2020; 8:187-201. [PMID: 31129888 DOI: 10.1007/s13668-019-00279-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Metabolomics offers several opportunities for advancement in nutritional cancer epidemiology; however, numerous research gaps and challenges remain. This narrative review summarizes current research, challenges, and future directions for epidemiologic studies of nutritional metabolomics and cancer. RECENT FINDINGS Although many studies have used metabolomics to investigate either dietary exposures or cancer, few studies have explicitly investigated diet-cancer relationships using metabolomics. Most studies have been relatively small (≤ ~ 250 cases) or have assessed a limited number of nutritional metabolites (e.g., coffee or alcohol-related metabolites). Nutritional metabolomic investigations of cancer face several challenges in study design; biospecimen selection, handling, and processing; diet and metabolite measurement; statistical analyses; and data sharing and synthesis. More metabolomics studies linking dietary exposures to cancer risk, prognosis, and survival are needed, as are biomarker validation studies, longitudinal analyses, and methodological studies. Despite the remaining challenges, metabolomics offers a promising avenue for future dietary cancer research.
Collapse
Affiliation(s)
- Emma E McGee
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Rama Kiblawi
- Division of Cancer Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mary C Playdon
- Division of Cancer Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
81
|
Foroutan A, Fitzsimmons C, Mandal R, Piri-Moghadam H, Zheng J, Guo A, Li C, Guan LL, Wishart DS. The Bovine Metabolome. Metabolites 2020; 10:metabo10060233. [PMID: 32517015 PMCID: PMC7345087 DOI: 10.3390/metabo10060233] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023] Open
Abstract
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including serum, ruminal fluid, liver, Longissimus thoracis (LT) muscle, semimembranosus (SM) muscle, and testis tissues. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography–tandem mass spectrometry (LC–MS/MS), and inductively coupled plasma–mass spectrometry (ICP–MS), we were able to identify and quantify more than 145 metabolites in each of these biofluids/tissues. Combining these results with previous work done by our team on other bovine biofluids, as well as previously published literature values for other bovine tissues and biofluids, we were able to generate quantitative reference concentration data for 2100 unique metabolites across five different bovine biofluids and seven different tissues. These experimental data were combined with computer-aided, genome-scale metabolite inference techniques to add another 48,628 unique metabolites that are biochemically expected to be in bovine tissues or biofluids. Altogether, 51,801 unique metabolites were identified in this study. Detailed information on these 51,801 unique metabolites has been placed in a publicly available database called the Bovine Metabolome Database.
Collapse
Affiliation(s)
- Aidin Foroutan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Carolyn Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
- Agriculture and Agri-Food Canada, Edmonton, AB T6G 2P5, Canada
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Hamed Piri-Moghadam
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - AnChi Guo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Carin Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (A.F.); (C.F.); (L.L.G.)
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (R.M.); (H.P.-M.); (J.Z.); (A.G.); (C.L.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
- Correspondence:
| |
Collapse
|
82
|
González-Domínguez R, González-Domínguez Á, Sayago A, Fernández-Recamales Á. Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites 2020; 10:metabo10060229. [PMID: 32503183 PMCID: PMC7344701 DOI: 10.3390/metabo10060229] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolomics can be significantly influenced by a range of pre-analytical factors, such as sample collection, pre-processing, aliquoting, transport, storage and thawing. This therefore shows the crucial need for standardizing the pre-analytical phase with the aim of minimizing the inter-sample variability driven by these technical issues, as well as for maintaining the metabolic integrity of biological samples to ensure that metabolomic profiles are a direct expression of the in vivo biochemical status. This review article provides an updated literature revision of the most important factors related to sample handling and pre-processing that may affect metabolomics results, particularly focusing on the most commonly investigated biofluids in metabolomics, namely blood plasma/serum and urine. Finally, we also provide some general recommendations and best practices aimed to standardize and accurately report all these pre-analytical aspects in metabolomics research.
Collapse
Affiliation(s)
- Raúl González-Domínguez
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
- Correspondence: ; Tel.: +34-959219975
| | - Álvaro González-Domínguez
- Department of Pediatrics, Hospital Universitario Puerta del Mar, 11009 Cádiz, Spain;
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Ana Sayago
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
| | - Ángeles Fernández-Recamales
- AgriFood Laboratory, Faculty of Experimental Sciences, University of Huelva, 21007 Huelva, Spain; (A.S.); (Á.F.-R.)
- International Campus of Excellence CeiA3, University of Huelva, 21007 Huelva, Spain
| |
Collapse
|
83
|
Bi H, Guo Z, Jia X, Liu H, Ma L, Xue L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020; 16:68. [PMID: 32451742 DOI: 10.1007/s11306-020-01666-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Metabolomics provides measurement of numerous metabolites in human samples, which can be a useful tool in clinical research. Blood and urine are regarded as preferred subjects of study because of their minimally invasive collection and simple preprocessing methods. Adhering to standard operating procedures is an essential factor in ensuring excellent sample quality and reliable results. AIM OF REVIEW In this review, we summarize the studies about the impacts of various preprocessing factors on metabolomics studies involving clinical blood and urine samples in order to provide guidance for sample collection and preprocessing. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical information is important for sample grouping and data analysis which deserves attention before sample collection. Plasma and serum as well as urine samples are appropriate for metabolomics analysis. Collection tubes, hemolysis, delay at room temperature, and freeze-thaw cycles may affect metabolic profiles of blood samples. Collection time, time between sampling and examination, contamination, normalization strategies, and storage conditions may alter analysis results of urine samples. Taking these collection and preprocessing factors into account, this review provides suggestions of standard sample preprocessing.
Collapse
Affiliation(s)
- Hai Bi
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China
| | - Zhengyang Guo
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
| | - Xiao Jia
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China.
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China.
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China.
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
84
|
Liu K, Xu Z, Wang X, Chen Y, Mao XD. The application of quality control circle to improve the quality of samples: A SQUIRE-compliant quality-improving study. Medicine (Baltimore) 2020; 99:e20333. [PMID: 32481320 PMCID: PMC7249848 DOI: 10.1097/md.0000000000020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Since its application in medical institutions in China, quality control circle (QCC) has gained achievements in medical care and thus earned more attention from the administrative department of health.In order to improve the quality of laboratory specimens, we launched a QCC activity to solve the problems and evaluate the effect of it. The data of 30,105 unqualified specimens in our hospital were collected from February to June 2017. After the QCC activity, the data of 43,125 specimens taken from July to December 2017 were collected.The defect rate of the specimens before the QCC activity was 0.98% (297/30105), and after the QCC activity, it was 0.45% (193/43125), showing a significant statistical difference (P < .05). The achievement rate and improvement rate were 108.2% and 54.1%, respectively.After the implementation of QCC, the defect rate of specimens in clinical laboratories was significantly decreased, and the intangible factors were also improved, which demonstrated the positive effects of QCC on the quality control of specimens.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing
| | - Zhirong Xu
- Department of Clinical Laboratory, the First affiliated Hospital of Soochow University, Suzhou
| | - Xiangdong Wang
- Department of Clinical Laboratory, Nanjing Chest Hospital, Medical School of Southeast university
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
85
|
Hardikar S, Albrechtsen RD, Achaintre D, Lin T, Pauleck S, Playdon M, Holowatyj AN, Gigic B, Schrotz-King P, Boehm J, Habermann N, Brezina S, Gsur A, van Roekel EH, Weijenberg MP, Keski-Rahkonen P, Scalbert A, Ose J, Ulrich CM. Impact of Pre-blood Collection Factors on Plasma Metabolomic Profiles. Metabolites 2020; 10:E213. [PMID: 32455751 PMCID: PMC7281389 DOI: 10.3390/metabo10050213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Demographic, lifestyle and biospecimen-related factors at the time of blood collection can influence metabolite levels in epidemiological studies. Identifying the major influences on metabolite concentrations is critical to designing appropriate sample collection protocols and considering covariate adjustment in metabolomics analyses. We examined the association of age, sex, and other short-term pre-blood collection factors (time of day, season, fasting duration, physical activity, NSAID use, smoking and alcohol consumption in the days prior to collection) with 133 targeted plasma metabolites (acylcarnitines, amino acids, biogenic amines, sphingolipids, glycerophospholipids, and hexoses) among 108 individuals that reported exposures within 48 h before collection. The differences in mean metabolite concentrations were assessed between groups based on pre-collection factors using two-sided t-tests and ANOVA with FDR correction. Percent differences in metabolite concentrations were negligible across season, time of day of collection, fasting status or lifestyle behaviors at the time of collection, including physical activity or the use of tobacco, alcohol or NSAIDs. The metabolites differed in concentration between the age and sex categories for 21.8% and 14.3% metabolites, respectively. In conclusion, extrinsic factors in the short period prior to collection were not meaningfully associated with concentrations of selected endogenous metabolites in a cross-sectional sample, though metabolite concentrations differed by age and sex. Larger studies with more coverage of the human metabolome are warranted.
Collapse
Affiliation(s)
- Sheetal Hardikar
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Cancer Prevention, Population Health Sciences, Fred Hutchinson Cancer Research Institute, Seattle, WA 19024, USA
| | - Richard D. Albrechtsen
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - David Achaintre
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Tengda Lin
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Svenja Pauleck
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Mary Playdon
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84108, USA
| | - Andreana N. Holowatyj
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Biljana Gigic
- Department of Surgery, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
| | - Juergen Boehm
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
| | - Nina Habermann
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.S.-K.); (N.H.)
- Genome Biology, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (S.B.); (A.G.)
| | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands; (E.H.v.R.); (M.P.W.)
| | - Pekka Keski-Rahkonen
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Augustin Scalbert
- International Agency for Research on Cancer, 69372 Lyon, France; (D.A.); (P.K.-R.); (A.S.)
| | - Jennifer Ose
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | - Cornelia M. Ulrich
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA; (R.D.A.); (T.L.); (S.P.); (M.P.); (A.N.H.); (J.B.); (J.O.); (C.M.U.)
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| |
Collapse
|
86
|
Use of Large and Diverse Datasets for 1H NMR Serum Metabolic Profiling of Early Lactation Dairy Cows. Metabolites 2020; 10:metabo10050180. [PMID: 32366010 PMCID: PMC7281003 DOI: 10.3390/metabo10050180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
Most livestock metabolomic studies involve relatively small, homogenous populations of animals. However, livestock farming systems are non-homogenous, and large and more diverse datasets are required to ensure that biomarkers are robust. The aims of this study were therefore to (1) investigate the feasibility of using a large and diverse dataset for untargeted proton nuclear magnetic resonance (1H NMR) serum metabolomic profiling, and (2) investigate the impact of fixed effects (farm of origin, parity and stage of lactation) on the serum metabolome of early-lactation dairy cows. First, we used multiple linear regression to correct a large spectral dataset (707 cows from 13 farms) for fixed effects prior to multivariate statistical analysis with principal component analysis (PCA). Results showed that farm of origin accounted for up to 57% of overall spectral variation, and nearly 80% of variation for some individual metabolite concentrations. Parity and week of lactation had much smaller effects on both the spectra as a whole and individual metabolites (< 3% and < 20%, respectively). In order to assess the effect of fixed effects on prediction accuracy and biomarker discovery, we used orthogonal partial least squares (OPLS) regression to quantify the relationship between NMR spectra and concentrations of the current gold standard serum biomarker of energy balance, β-hydroxybutyrate (BHBA). Models constructed using data from multiple farms provided reasonably robust predictions of serum BHBA concentration (0.05 ≤ RMSE ≤ 0.18). Fixed effects influenced the results biomarker discovery; however, these impacts could be controlled using the proposed method of linear regression spectral correction.
Collapse
|
87
|
Leung RY, Li GH, Cheung BM, Tan KC, Kung AW, Cheung CL. Serum metabolomic profiling and its association with 25-hydroxyvitamin D. Clin Nutr 2020; 39:1179-1187. [DOI: 10.1016/j.clnu.2019.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/20/2019] [Accepted: 04/27/2019] [Indexed: 02/01/2023]
|
88
|
Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites 2020; 10:metabo10030104. [PMID: 32178364 PMCID: PMC7142637 DOI: 10.3390/metabo10030104] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolomics has found numerous applications in the study of liver metabolism in health and disease. Metabolomics studies can be conducted in a variety of biological matrices ranging from easily accessible biofluids such as urine, blood or feces, to organs, tissues or even cells. Sample collection and storage are critical steps for which standard operating procedures must be followed. Inappropriate sample collection or storage can indeed result in high variability, interferences with instrumentation or degradation of metabolites. In this review, we will first highlight important general factors that should be considered when planning sample collection in the study design of metabolomic studies, such as nutritional status and circadian rhythm. Then, we will discuss in more detail the specific procedures that have been described for optimal pre-analytical handling of the most commonly used matrices (urine, blood, feces, tissues and cells).
Collapse
|
89
|
Hahnefeld L, Gurke R, Thomas D, Schreiber Y, Schäfer SM, Trautmann S, Snodgrass IF, Kratz D, Geisslinger G, Ferreirós N. Implementation of lipidomics in clinical routine: Can fluoride/citrate blood sampling tubes improve preanalytical stability? Talanta 2020; 209:120593. [DOI: 10.1016/j.talanta.2019.120593] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
|
90
|
Gils C, Nybo M. Quality Control of Preanalytical Handling of Blood Samples for Future Research: A National Survey. J Appl Lab Med 2020; 5:83-90. [PMID: 31811074 DOI: 10.1373/jalm.2019.029942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Assessment and control of preanalytical handling of blood samples for future research are essential to preserve integrity and assure quality of the specimens. However, investigation is limited on how quality control of preanalytical handling of blood samples is performed by biobanks. METHODS A questionnaire was sent to all Danish departments of clinical biochemistry, all Danish departments of clinical immunology, the Danish Health Surveillance Institution and the Danish Cancer Society. The questionnaire consisted of questions regarding preanalytical handling of samples for future research. The survey was carried out from October 2018 until the end of January 2019. RESULTS A total of 22 departments (78%) replied, of which 17 (77%) performed preanalytical quality control of the blood samples. This quality control consisted of patient preparation, temperature surveillance of freezers, maintenance of centrifuges, and visual inspection for hemolysis, lipemia, and sample volume. Automated sample check for hemolysis, icterus, and lipemia interferences was performed by 41% of respondents, not performed by 50% of respondents, and 9% did not answer. The majority (55%) of the participants stated that they had no local standard operating procedure for preanalytical handling of samples for research projects. CONCLUSIONS The preanalytical phase for blood samples obtained and preserved for future research in Denmark is highly heterogeneous, although many aspects (e.g., hemolysis, which also affects DNA analyses, metabolomics, and proteomics) seems highly relevant to document. Our findings emphasize the need to optimize and standardize best practices for the preanalytical phase for blood samples intended for use in future research projects.
Collapse
Affiliation(s)
- Charlotte Gils
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Mads Nybo
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
91
|
Noreldeen HAA, Liu X, Xu G. Metabolomics of lung cancer: Analytical platforms and their applications. J Sep Sci 2019; 43:120-133. [DOI: 10.1002/jssc.201900736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Hamada A. A. Noreldeen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- University of Chinese Academy of Sciences Beijing P. R. China
- Marine Chemistry LabMarine Environment DivisionNational Institute of Oceanography and Fisheries Hurghada Egypt
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
92
|
Evaluation of Dried Blood Spot Sampling for Clinical Metabolomics: Effects of Different Papers and Sample Storage Stability. Metabolites 2019; 9:metabo9110277. [PMID: 31726782 PMCID: PMC6918358 DOI: 10.3390/metabo9110277] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/01/2023] Open
Abstract
The dried blood spot (DBS) sampling has a lot of advantages in comparison with the “standard” venous blood collecting, such as small collection volume, painless and easy sample collection with minimal training required, stable and transportable at ambient temperatures, etc. The aim of this study was to determine the comparability of four different types of DBS sampling (HemaSpot™-HF Blood Collection Device, Whatman® 903 Protein Saver Snap Apart Card, card ImmunoHealth™, and glass fiber strip ImmunoHealth™) for analysis of the global metabolites profile. All the samples were collected from the same person at the same time and stored at room temperature for four weeks in order to exclude all possible deviations deriving from biological variances and to evaluate sample storage stability. Metabolome profiling by direct injection of a deproteinized capillary blood DBS sample into an electrospray ion source of a hybrid quadrupole time-of-flight mass spectrometer was used. Differences in the metabolomics profile were found between the different DBS collection materials, especially for ImmunoHealth™ card and ImmunoHealth™ glass fiber strip. However, our results indicate that the analytical performance of all tested DBS sampling materials showed consistent results overall detected metabolites and no dramatic changes between them in the metabolic composition during the storage time.
Collapse
|
93
|
Wei F, Lamichhane S, Orešič M, Hyötyläinen T. Lipidomes in health and disease: Analytical strategies and considerations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
94
|
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, Deutsch EW, Schwenk JM. Mass Spectrometry-Based Plasma Proteomics: Considerations from Sample Collection to Achieving Translational Data. J Proteome Res 2019; 18:4085-4097. [PMID: 31573204 DOI: 10.1021/acs.jproteome.9b00503] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteomic analysis of human blood and blood-derived products (e.g., plasma) offers an attractive avenue to translate research progress from the laboratory into the clinic. However, due to its unique protein composition, performing proteomics assays with plasma is challenging. Plasma proteomics has regained interest due to recent technological advances, but challenges imposed by both complications inherent to studying human biology (e.g., interindividual variability) and analysis of biospecimens (e.g., sample variability), as well as technological limitations remain. As part of the Human Proteome Project (HPP), the Human Plasma Proteome Project (HPPP) brings together key aspects of the plasma proteomics pipeline. Here, we provide considerations and recommendations concerning study design, plasma collection, quality metrics, plasma processing workflows, mass spectrometry (MS) data acquisition, data processing, and bioinformatic analysis. With exciting opportunities in studying human health and disease though this plasma proteomics pipeline, a more informed analysis of human plasma will accelerate interest while enhancing possibilities for the incorporation of proteomics-scaled assays into clinical practice.
Collapse
Affiliation(s)
- Vera Ignjatovic
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia.,Department of Paediatrics , The University of Melbourne , Parkville , VIC 3052 , Australia
| | - Philipp E Geyer
- NNF Center for Protein Research, Faculty of Health Sciences , University of Copenhagen , 2200 Copenhagen , Denmark.,Department of Proteomics and Signal Transduction , Max Planck Institute of Biochemistry , 82152 Martinsried , Germany
| | - Krishnan K Palaniappan
- Freenome , 259 East Grand Avenue , South San Francisco , California 94080 , United States
| | - Jessica E Chaaban
- Haematology Research , Murdoch Children's Research Institute , Parkville , VIC 3052 , Australia
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Human Genetics, and Internal Medicine and School of Public Health , University of Michigan , 100 Washtenaw Avenue , Ann Arbor , Michigan 48109-2218 , United States
| | - Mark S Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences , Macquarie University , 75 Talavera Road , North Ryde , NSW 2109 , Australia
| | - Eric W Deutsch
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109 , United States
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab , KTH Royal Institute of Technology , 171 65 Stockholm , Sweden
| |
Collapse
|
95
|
Meesters R. Biofluid Collection in Metabolomics by the Application of the novel Volumetric Absorptive Microsampling Technology: a mini-Review. ACTA ACUST UNITED AC 2019. [DOI: 10.17145/rss.19.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
96
|
Wang F, Debik J, Andreassen T, Euceda LR, Haukaas TH, Cannet C, Schäfer H, Bathen TF, Giskeødegård GF. Effect of Repeated Freeze–Thaw Cycles on NMR-Measured Lipoproteins and Metabolites in Biofluids. J Proteome Res 2019; 18:3681-3688. [DOI: 10.1021/acs.jproteome.9b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | | | | | - Leslie R. Euceda
- Camo Analytics, Oslo Science Park, Gaustadalléen 21, 0349 Oslo, Norway
| | - Tonje H. Haukaas
- SINTEF Industry, Richard Birkelands vei 3, 7034 Trondheim, Norway
| | - Claire Cannet
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - Hartmut Schäfer
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | | | | |
Collapse
|
97
|
Young T, Walker SP, Alfaro AC, Fletcher LM, Murray JS, Lulijwa R, Symonds J. Impact of acute handling stress, anaesthesia, and euthanasia on fish plasma biochemistry: implications for veterinary screening and metabolomic sampling. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1485-1494. [PMID: 31240506 DOI: 10.1007/s10695-019-00669-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Impacts of pre-sampling practices on fish plasma biochemistry may bias the outcome of a study if not considered within the general sampling strategy. Acute handling stresses can be imposed on fish during capture, and it is common practice to immobilise fish via sedation prior to obtaining blood samples for non-lethal extraction purposes, and/or to reduce stress, pain, or suffering before being euthanised. We investigated these potential influences using a Chinook salmon model (Oncorhynchus tshawytscha) by measuring levels of 119 biochemical targets comprising ions, metabolites, and enzymes in plasma. Multivariate analyses showed that 2 min of confinement with mild handling manipulation led to a significant departure from baseline metabolism, which was further exasperated during a prolonged 5-min challenge. These changes were characterised by a disruption in osmoregulation, a switch towards anaerobic metabolism, and shifts in ammonia recycling, among others. Sedation of fish with clove oil and AQUI-S® had major impacts on plasma biochemical profiles, with alterations signalling changes in glycolytic metabolism, respiratory modes, carbon flux through the TCA cycle, and lipid compartmentalisation. Sedation also enhanced levels of plasma amino acids, revealing a key difference between responses to handling stress and sedation. These results demonstrate that pre-harvest practices should be carefully managed during fish sampling for biochemical/metabolomic-based analyses, and if manipulations are essential, they should be standardised.
Collapse
Affiliation(s)
- Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | | | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | | | | | - Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), National Agricultural Research Organisation (NARO), P. O. Box 96, Fort Portal, Uganda
| | | |
Collapse
|
98
|
Stevens VL, Hoover E, Wang Y, Zanetti KA. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites 2019; 9:metabo9080156. [PMID: 31349624 PMCID: PMC6724180 DOI: 10.3390/metabo9080156] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023] Open
Abstract
Metabolomics provides a comprehensive assessment of numerous small molecules in biological samples. As it integrates the effects of exogenous exposures, endogenous metabolism, and genetic variation, metabolomics is well-suited for studies examining metabolic profiles associated with a variety of chronic diseases. In this review, we summarize the studies that have characterized the effects of various pre-analytical factors on both targeted and untargeted metabolomic studies involving human plasma, serum, and urine and were published through 14 January 2019. A standardized protocol was used for extracting data from full-text articles identified by searching PubMed and EMBASE. For plasma and serum samples, metabolomic profiles were affected by fasting status, hemolysis, collection time, processing delays, particularly at room temperature, and repeated freeze/thaw cycles. For urine samples, collection time and fasting, centrifugation conditions, filtration and the use of additives, normalization procedures and multiple freeze/thaw cycles were found to alter metabolomic findings. Consideration of the effects of pre-analytical factors is a particularly important issue for epidemiological studies where samples are often collected in nonclinical settings and various locations and are subjected to time and temperature delays prior being to processed and frozen for storage.
Collapse
Affiliation(s)
- Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA 30303, USA.
| | - Elise Hoover
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850, USA
- PKD Foundation, Kansas City, MO 64131, USA
| | - Ying Wang
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA 30303, USA
| | - Krista A Zanetti
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD 20850, USA.
| |
Collapse
|
99
|
Buendia P, Bradley RM, Taylor TJ, Schymanski EL, Patti GJ, Kabuka MR. Ontology-based metabolomics data integration with quality control. Bioanalysis 2019; 11:1139-1155. [PMID: 31179719 PMCID: PMC6661928 DOI: 10.4155/bio-2018-0303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aim: The complications that arise when performing meta-analysis of datasets from multiple metabolomics studies are addressed with computational methods that ensure data quality, completeness of metadata and accurate interpretation across studies. Results & methodology: This paper presents an integrated system of quality control (QC) methods to assess metabolomics results by evaluating the data acquisition strategies and metabolite identification process when integrating datasets for meta-analysis. An ontology knowledge base and a rule-based system representing the experiment and chemical background information direct the processes involved in data integration and QC verification. A diabetes meta-analysis study using these QC methods finds putative biomarkers that differ between cohorts. Conclusion: The methods presented here ensure the validity of meta-analysis when integrating data from different metabolic profiling studies.
Collapse
Affiliation(s)
- Patricia Buendia
- INFOTECH Soft, Inc., 1201 Brickell Ave. Suite 220, Miami, FL 33131, USA
| | - Ray M Bradley
- INFOTECH Soft, Inc., 1201 Brickell Ave. Suite 220, Miami, FL 33131, USA
| | - Thomas J Taylor
- INFOTECH Soft, Inc., 1201 Brickell Ave. Suite 220, Miami, FL 33131, USA
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 6 Avenue du Swing, Belvaux L-4367, Luxembourg
- Eawag – Swiss Federal Institute of Aquatic Science & Technology, Überland Strasse 133, Dübendorf 8600, Switzerland
| | - Gary J Patti
- Departments of Chemistry, Genetics, & Medicine. Washington University, Saint Louis, MO 63110, USA
| | - Mansur R Kabuka
- INFOTECH Soft, Inc., 1201 Brickell Ave. Suite 220, Miami, FL 33131, USA
| |
Collapse
|
100
|
The Effect of Anticoagulants, Temperature, and Time on the Human Plasma Metabolome and Lipidome from Healthy Donors as Determined by Liquid Chromatography-Mass Spectrometry. Biomolecules 2019; 9:biom9050200. [PMID: 31126114 PMCID: PMC6571950 DOI: 10.3390/biom9050200] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Liquid-chromatography mass spectrometry is commonly used to identify and quantify metabolites from biological samples to gain insight into human physiology and pathology. Metabolites and their abundance in biological samples are labile and sensitive to variations in collection conditions, handling and processing. Variations in sample handling could influence metabolite levels in ways not related to biology, ultimately leading to the misinterpretation of results. For example, anticoagulants and preservatives modulate enzyme activity and metabolite oxidization. Temperature may alter both enzymatic and non-enzymatic chemistry. The potential for variation induced by collection conditions is particularly important when samples are collected in remote locations without immediate access to specimen processing. Data are needed regarding the variation introduced by clinical sample collection processes to avoid introducing artifact biases. In this study, we used metabolomics and lipidomics approaches paired with univariate and multivariate statistical analyses to assess the effects of anticoagulant, temperature, and time on healthy human plasma samples collected to provide guidelines on sample collection, handling, and processing for vaccinology. Principal component analyses demonstrated clustering by sample collection procedure and that anticoagulant type had the greatest effect on sample metabolite variation. Lipids such as glycerophospholipids, acylcarnitines, sphingolipids, diacylglycerols, triacylglycerols, and cholesteryl esters are significantly affected by anticoagulant type as are amino acids such as aspartate, histidine, and glutamine. Most plasma metabolites and lipids were unaffected by storage time and temperature. Based on this study, we recommend samples be collected using a single anticoagulant (preferably EDTA) with sample processing at <24 h at 4 °C.
Collapse
|