51
|
Pernisová M, Vernoux T. Auxin Does the SAMba: Auxin Signaling in the Shoot Apical Meristem. Cold Spring Harb Perspect Biol 2021; 13:a039925. [PMID: 33903154 PMCID: PMC8634999 DOI: 10.1101/cshperspect.a039925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants, in contrast to animals, are unique in their capacity to postembryonically develop new organs due to the activity of stem cell populations, located in specialized tissues called meristems. Above ground, the shoot apical meristem generates aerial organs and tissues throughout plant life. It is well established that auxin plays a central role in the functioning of the shoot apical meristem. Auxin distribution in the meristem is not uniform and depends on the interplay between biosynthesis, transport, and degradation. Auxin maxima and minima are created, and result in transcriptional outputs that drive the development of new organs and contribute to meristem maintenance. To uncover and understand complex signaling networks such as the one regulating auxin responses in the shoot apical meristem remains a challenge. Here, we will discuss our current understanding and point to important research directions for the future.
Collapse
Affiliation(s)
- Markéta Pernisová
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
- Functional Genomics and Proteomics, National Centre for Biomolecula Research, Faculty of Science, Masaryk University and CEITEC MU, 62500 Brno, Czech Republic
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University at Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
52
|
Feng C, Zou S, Gao P, Wang Z. In silico identification, characterization expression profile of WUSCHEL-Related Homeobox (WOX) gene family in two species of kiwifruit. PeerJ 2021; 9:e12348. [PMID: 34760371 PMCID: PMC8557698 DOI: 10.7717/peerj.12348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022] Open
Abstract
The WUSCHEL (WUS)-related homeobox (WOX) gene family is a class of plant-specific transcriptional factors and plays a crucial role in forming the shoot apical meristem and embryonic development, stem cell maintenance, and various other developmental processes. However, systematic identification and characterization of the kiwifruit WOX gene family have not been studied. This study identified 17 and 10 WOX genes in A. chinensis (Ac) and A. eriantha (Ae) genomes, respectively. Phylogenetic analysis classified kiwifruit WOX genes from two species into three clades. Analysis of phylogenetics, synteny patterns, and selection pressure inferred that WOX gene families in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in WOX gene number and distribution. Ten conserved motifs were identified in the kiwifruit WOX genes, and motif architectures of WOXs belonging to different clades highly diverged. The cis-element analysis and expression profiles investigation indicated the functional differentiation of WOX genes and identified the potential WOXs in response to stresses. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit WOXs.
Collapse
Affiliation(s)
- Chen Feng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Shuaiyu Zou
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Zupeng Wang
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China.,Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
53
|
Nezhdanova AV, Slugina MA, Dyachenko EA, Kamionskaya AM, Kochieva EZ, Shchennikova AV. Analysis of the structure and function of the tomato Solanum lycopersicum L. MADS-box gene SlMADS5. Vavilovskii Zhurnal Genet Selektsii 2021; 25:492-501. [PMID: 34595372 PMCID: PMC8453369 DOI: 10.18699/vj21.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022] Open
Abstract
At all stages of f lowering, a decisive role is played by the family of MADS-domain transcription factors,
the combinatorial action of which is described by the ABCDE-model of f lower development. The current volume of
data suggests a high conservatism of ABCDE genes in angiosperms. The E-proteins SEPALLATA are the central hub of
the MADS-complexes, which determine the identity of the f loral organs. The only representative of the SEPALLATA3
clade in tomato Solanum lycopersicum L., SlMADS5, is involved in determining the identity of petals, stamens, and
carpels; however, data on the functions of the gene are limited. The study was focused on the SlMADS5 functional
characterization. Structural and phylogenetic analyses of SlMADS5 conf irmed its belonging to the SEP3 clade. An
in silico expression analysis revealed the absence of gene transcripts in roots, leaves, and shoot apical meristem,
and their presence in f lowers, fruits, and seeds at different stages of development. Two-hybrid analysis showed
the ability of SlMADS5 to activate transcription of the target gene and interact with TAGL1. Transgenic plants Nicotiana
tabacum L. with constitutive overexpression of SlMADS5 cDNA f lowered 2.2 times later than the control; plants
formed thickened leaves, 2.5–3.0 times thicker stems, 1.5–2.7 times shortened internodes, and 1.9 times fewer
f lowers and capsules than non-transgenic plants. The f lower structure did not differ from the control; however, the
corolla petals changed color from light pink to magenta. Analysis of the expression of SlMADS5 and the tobacco
genes NtLFY, NtAP1, NtWUS, NtAG, NtPLE, NtSEP1, NtSEP2, and NtSEP3 in leaves and apexes of transgenic and control
plants showed that SlMADS5 mRNA is present only in tissues of transgenic lines. The other genes analyzed were
highly expressed in the reproductive meristem of control plants. Gene transcripts were absent or were imperceptibly
present in the leaves and vegetative apex of the control, as well as in the leaves and apexes of transgenic lines.
The results obtained indicate the possible involvement of SlMADS5 in the regulation of f lower meristem development
and the pathway of anthocyanin biosynthesis in petals.
Collapse
Affiliation(s)
- A V Nezhdanova
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - M A Slugina
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Dyachenko
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kamionskaya
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
54
|
Choudhury A, Rajam MV. Genetic transformation of legumes: an update. PLANT CELL REPORTS 2021; 40:1813-1830. [PMID: 34230986 DOI: 10.1007/s00299-021-02749-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
This review summarizes the recent advances in legume genetic transformation and provides an insight into the critical factors that play a major role in the process. It also sheds light on some of the potential areas which may ameliorate the transformation of legumes. Legumes are an important group of dicotyledonous plants, highly enriched in proteins and minerals. Majority of the legume plants are cultivated in the arid and semi-arid parts of the world, and hence said to be climate resilient. They have the capability of atmospheric nitrogen fixation and thus play a vital role in the ecological sphere. However, the worldwide production of legumes is somehow not up to the mark and the yields are greatly affected by various biotic and abiotic stress factors. Genetic engineering strategies have emerged as a core of plant biology and remarkably facilitate the crop improvement programmes. A significant progress has been made towards the optimization of efficient transformation system for legume plants over the years but this group is still underutilized in comparison to other crops. Among the variety of available DNA delivery systems, Agrobacterium-mediated and particle bombardment have been primarily deployed for optimization and trait improvement. However, recalcitrance and genotype-dependence are some of the major bottlenecks for successful transformation. In this context, the present review summarizes the advances taken place in the area of legume transformation and provides an insight into the present scenario. The challenges and future possibilities for yield improvement have also been discussed.
Collapse
Affiliation(s)
- Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manchikatla V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
55
|
Shi L, Wang K, Du L, Song Y, Li H, Ye X. Genome-Wide Identification and Expression Profiling Analysis of WOX Family Protein-Encoded Genes in Triticeae Species. Int J Mol Sci 2021; 22:ijms22179325. [PMID: 34502234 PMCID: PMC8431079 DOI: 10.3390/ijms22179325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/05/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
The WOX family is a group of plant-specific transcription factors which regulate plant growth and development, cell division and differentiation. From the available genome sequence databases of nine Triticeae species, 199 putative WOX genes were identified. Most of the identified WOX genes were distributed on the chromosomes of homeologous groups 1 to 5 and originated via the orthologous evolution approach. Parts of WOX genes in Triticum aestivum were confirmed by the specific PCR markers using a set of Triticum. durum-T. aestivum genome D substitution lines. All of these identified WOX proteins could be grouped into three clades, similar to those in rice and Arabidopsis. WOX family members were conserved among these Triticeae plants; all of them contained the HOX DNA-binding homeodomain, and WUS clade members contained the characteristic WUS-box motif, while only WUS and WOX9 contained the EAR motif. The RNA-seq and qPCR analysis revealed that the TaWOX genes had tissue-specific expression feature. From the expression patterns of TaWOX genes during immature embryo callus production, TaWOX9 is likely closely related with the regulation of regeneration process in T. aestivum. The findings in this study could provide a basis for evolution and functional investigation and practical application of the WOX family genes in Triticeae species.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- Key Laboratory of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
| | - Lipu Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
| | - Yuxia Song
- Key Laboratory of Agricultural Biotechnology of Ningxia, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- Correspondence: (H.L.); (X.Y.)
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.S.); (K.W.); (L.D.)
- National Key Facility of Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (H.L.); (X.Y.)
| |
Collapse
|
56
|
Pathak PK, Zhang F, Peng S, Niu L, Chaturvedi J, Elliott J, Xiang Y, Tadege M, Deng J. Structure of the unique tetrameric STENOFOLIA homeodomain bound with target promoter DNA. Acta Crystallogr D Struct Biol 2021; 77:1050-1063. [PMID: 34342278 PMCID: PMC8329861 DOI: 10.1107/s205979832100632x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Homeobox transcription factors are key regulators of morphogenesis and development in both animals and plants. In plants, the WUSCHEL-related homeobox (WOX) family of transcription factors function as central organizers of several developmental programs ranging from embryo patterning to meristematic stem-cell maintenance through transcriptional activation and repression mechanisms. The Medicago truncatula STENOFOLIA (STF) gene is a master regulator of leaf-blade lateral development. Here, the crystal structure of the homeodomain (HD) of STF (STF-HD) in complex with its promoter DNA is reported at 2.1 Å resolution. STF-HD binds DNA as a tetramer, enclosing nearly the entire bound DNA surface. The STF-HD tetramer is partially stabilized by docking of the C-terminal tail of one protomer onto a conserved hydrophobic surface on the head of another protomer in a head-to-tail manner. STF-HD specifically binds TGA motifs, although the promoter sequence also contains TAAT motifs. Helix α3 not only serves a canonical role as a base reader in the major groove, but also provides DNA binding in the minor groove through basic residues located at its C-terminus. The structural and functional data in planta reported here provide new insights into the DNA-binding mechanisms of plant-specific HDs from the WOX family of transcription factors.
Collapse
Affiliation(s)
- Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Justin Elliott
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
57
|
Genetic and Molecular Control of Somatic Embryogenesis. PLANTS 2021; 10:plants10071467. [PMID: 34371670 PMCID: PMC8309254 DOI: 10.3390/plants10071467] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/21/2022]
Abstract
Somatic embryogenesis is a method of asexual reproduction that can occur naturally in various plant species and is widely used for clonal propagation, transformation and regeneration of different crops. Somatic embryogenesis shares some developmental and physiological similarities with zygotic embryogenesis as it involves common actors of hormonal, transcriptional, developmental and epigenetic controls. Here, we provide an overview of the main signaling pathways involved in the induction and regulation of somatic embryogenesis with a focus on the master regulators of seed development, LEAFY COTYLEDON 1 and 2, ABSCISIC ACID INSENSITIVE 3 and FUSCA 3 transcription factors whose precise role during both zygotic and somatic embryogenesis remains to be fully elucidated.
Collapse
|
58
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
59
|
Ranade SS, Egertsdotter U. In silico characterization of putative gene homologues involved in somatic embryogenesis suggests that some conifer species may lack LEC2, one of the key regulators of initiation of the process. BMC Genomics 2021; 22:392. [PMID: 34039265 PMCID: PMC8157724 DOI: 10.1186/s12864-021-07718-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis (SE) is the process in which somatic embryos develop from somatic tissue in vitro on medium in most cases supplemented with growth regulators. Knowledge of genes involved in regulation of initiation and of development of somatic embryos is crucial for application of SE as an efficient tool to enable genetic improvement across genotypes by clonal propagation. RESULTS Current work presents in silico identification of putative homologues of central regulators of SE initiation and development in conifers focusing mainly on key transcription factors (TFs) e.g. BBM, LEC1, LEC1-LIKE, LEC2 and FUSCA3, based on sequence similarity using BLASTP. Protein sequences of well-characterised candidates genes from Arabidopsis thaliana were used to query the databases (Gymno PLAZA, Congenie, GenBank) including whole-genome sequence data from two representative species from the genus Picea (Picea abies) and Pinus (Pinus taeda), for finding putative conifer homologues, using BLASTP. Identification of corresponding conifer proteins was further confirmed by domain search (Conserved Domain Database), alignment (MUSCLE) with respective sequences of Arabidopsis thaliana proteins and phylogenetic analysis (Phylogeny.fr). CONCLUSIONS This in silico analysis suggests absence of LEC2 in Picea abies and Pinus taeda, the conifer species whose genomes have been sequenced. Based on available sequence data to date, LEC2 was also not detected in the other conifer species included in the study. LEC2 is one of the key TFs associated with initiation and regulation of the process of SE in angiosperms. Potential alternative mechanisms that might be functional in conifers to compensate the lack of LEC2 are discussed.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden.
| | - Ulrika Egertsdotter
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center (UPSC), Swedish University of Agricultural Science (SLU), 901 83, Umeå, Sweden
| |
Collapse
|
60
|
Shafique Khan F, Zeng RF, Gan ZM, Zhang JZ, Hu CG. Genome-Wide Identification and Expression Profiling of the WOX Gene Family in Citrus sinensis and Functional Analysis of a CsWUS Member. Int J Mol Sci 2021; 22:4919. [PMID: 34066408 PMCID: PMC8124563 DOI: 10.3390/ijms22094919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) transcription factors (TFs) are well known for their role in plant development but are rarely studied in citrus. In this study, we identified 11 putative genes from the sweet orange genome and divided the citrus WOX genes into three clades (modern/WUSCHEL(WUS), intermediate, and ancient). Subsequently, we performed syntenic relationship, intron-exon organization, motif composition, and cis-element analysis. Co-expression analysis based on RNA-seq and tissue-specific expression patterns revealed that CsWOX gene expression has multiple intrinsic functions. CsWUS homolog of AtWUS functions as a transcriptional activator and binds to specific DNA. Overexpression of CsWUS in tobacco revealed dramatic phenotypic changes, including malformed leaves and reduced gynoecia with no seed development. Silencing of CsWUS in lemon using the virus-induced gene silencing (VIGS) system implied the involvement of CsWUS in cells of the plant stem. In addition, CsWUS was found to interact with CsCYCD3, an ortholog in Arabidopsis (AtCYCD3,1). Yeast one-hybrid screening and dual luciferase activity revealed that two TFs (CsRAP2.12 and CsHB22) bind to the promoter of CsWUS and regulate its expression. Altogether, these results extend our knowledge of the WOX gene family along with CsWUS function and provide valuable findings for future study on development regulation and comprehensive data of WOX members in citrus.
Collapse
Affiliation(s)
| | | | | | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (F.S.K.); (R.-F.Z.); (Z.-M.G.)
| |
Collapse
|
61
|
Chano V, Sobrino-Plata J, Collada C, Soto A. Wood development regulators involved in apical growth in Pinus canariensis. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:438-444. [PMID: 33301624 DOI: 10.1111/plb.13228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The shoot apical meristem is responsible of seasonal length increase in plants. In woody plants transition from primary to secondary growth is also produced during seasonal apical growth. These processes are controlled by different families of transcription factors. Levels of transcriptomic activity during apical growth were measured by means of a cDNA microarray designed from sequences related to meristematic activity in Pinus canariensis. The identification of differentially expressed genes was performed using a time-course analysis. A total of 7170 genes were differentially expressed and grouped in six clusters according to their expression profiles. We identified master regulators, such as WUSCHEL-like HOMEOBOX (WOX), to be involved in the first stages of apical development, i.e. growth of primary tissues, while other transcription factors, such as Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) and KNOTTED-like (KNOX) and BEL1-like (BELL) HOMEODOMAIN proteins, were found to be induced during last stages of apical seasonal development, already with secondary growth. Our results reveal the main expression patterns of these genes during apical development and the transition from primary to secondary stem growth. In particular, the regulatory factors identified play key roles in controlling stem architecture and constitute candidate genes for the study of other development processes in conifers.
Collapse
Affiliation(s)
- V Chano
- GENFOR, Grupo de Investigación en Genética y Fisiología Forestal, ETSI Montes, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - J Sobrino-Plata
- GENFOR, Grupo de Investigación en Genética y Fisiología Forestal, ETSI Montes, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - C Collada
- GENFOR, Grupo de Investigación en Genética y Fisiología Forestal, ETSI Montes, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - A Soto
- GENFOR, Grupo de Investigación en Genética y Fisiología Forestal, ETSI Montes, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
62
|
Cruz JO, San Martin JAB, Lubini G, Strini EJ, Sobral R, Pinoti VF, Ferreira PB, Thomé V, Quiapim AC, Dornelas MC, Pranchevicius MCS, Madueño F, Costa MMR, Goldman MHS. SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:642879. [PMID: 33815449 PMCID: PMC8012853 DOI: 10.3389/fpls.2021.642879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively.
Collapse
Affiliation(s)
- Joelma O. Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juca A. B. San Martin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Edward J. Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rómulo Sobral
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Vitor F. Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Pedro B. Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Andréa C. Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcelo C. Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | | | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, Valencia, Spain
| | - M. Manuela R. Costa
- Biosystems and Integrative Sciences Institute, Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
63
|
Lopes FL, Galvan-Ampudia C, Landrein B. WUSCHEL in the shoot apical meristem: old player, new tricks. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1527-1535. [PMID: 33332559 DOI: 10.1093/jxb/eraa572] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/21/2023]
Abstract
The maintenance of the stem cell niche in the shoot apical meristem, the structure that generates all of the aerial organs of the plant, relies on a canonical feedback loop between WUSCHEL (WUS) and CLAVATA3 (CLV3). WUS is a homeodomain transcription factor expressed in the organizing centre that moves to the central zone to promote stem cell fate. CLV3 is a peptide whose expression is induced by WUS in the central zone and that can move back to the organizing centre to inhibit WUS expression. Within the past 20 years since the initial formulation of the CLV-WUS feedback loop, the mechanisms of stem cell maintenance have been intensively studied and the function of WUS has been redefined. In this review, we highlight the most recent advances in our comprehension of the molecular mechanisms of WUS function, of its interaction with other transcription factors and hormonal signals, and of its connection to environmental signals. Through this, we will show how WUS can integrate both internal and external cues to adapt meristem function to the plant environment.
Collapse
Affiliation(s)
- Filipa Lara Lopes
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, INRAE, Lyon Cedex, France
| |
Collapse
|
64
|
Qian Z, Zhang B, Chen H, Lu L, Duan M, Zhou J, Cui Y, Li D. Identification of Quantitative Trait Loci Controlling the Development of Prickles in Eggplant by Genome Re-sequencing Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:731079. [PMID: 34567042 PMCID: PMC8457335 DOI: 10.3389/fpls.2021.731079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Eggplant (Solanum melongena L.) is the third most important crop in the family of Solanaceae. Prickles are considered as the undesirable traits during the plantation of eggplant and the transportation of fruits. In this study, we constructed a high-quality genetic linkage Bin map derived from the re-sequencing analysis on a cross of a prickly wild landrace, 17C01, and a cultivated variety, 17C02. The major quantitative trait locus (QTL) controlling the development of prickles on the calyx (explained 30.42% of the phenotypic variation), named as qPC.12, was identified on a ~7 kb region on chromosome 12. A gene within qPC.12, which encodes a WUSCHEL-related homeobox-like protein, with higher expression levels in 17C01 calyx and 22-bp deletion in 17C02 was probably the functional gene for prickle formation. Results from this study would ultimately facilitate uncovering the molecular regulatory mechanisms underlying the development of a prickle in eggplant.
Collapse
Affiliation(s)
- Zongwei Qian
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Haili Chen
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
| | - Lei Lu
- College of Life Science and Technology, Jining Normal University, Ulanqab, China
| | - Mengqi Duan
- Turf Research Institute, Beijing Forestry University, Beijing, China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanling Cui
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
- *Correspondence: Yanling Cui
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, China
- College of Life Sciences, Shandong Normal University, Jinan, China
- Dayong Li
| |
Collapse
|
65
|
Chen H, Miao Y, Wang K, Bayer M. Zygotic Embryogenesis in Flowering Plants. Methods Mol Biol 2021; 2288:73-88. [PMID: 34270005 DOI: 10.1007/978-1-0716-1335-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In the context of plant regeneration, in vitro systems to produce embryos are frequently used. In many of these protocols, nonzygotic embryos are initiated that will produce shoot-like structures but may lack a primary root. By increasing the auxin-to-cytokinin ratio in the growth medium, roots are then regenerated in a second step. Therefore, in vitro systems might not or only partially execute a similar developmental program as employed during zygotic embryogenesis. There are, however, in vitro systems that can remarkably mimic zygotic embryogenesis such as Brassica microspore-derived embryos. In this case, the patterning process of these haploid embryos closely follows zygotic embryogenesis and all fundamental tissue types are generated in a rather similar manner. In this review, we discuss the most fundamental molecular events during early zygotic embryogenesis and hope that this brief summary can serve as a reference for studying and developing in vitro embryogenesis systems in the context of doubled haploid production.
Collapse
Affiliation(s)
- Houming Chen
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Yingjing Miao
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Kai Wang
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Martin Bayer
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany.
| |
Collapse
|
66
|
Subban P, Kutsher Y, Evenor D, Belausov E, Zemach H, Faigenboim A, Bocobza S, Timko MP, Reuveni M. Shoot Regeneration Is Not a Single Cell Event. PLANTS 2020; 10:plants10010058. [PMID: 33383798 PMCID: PMC7823732 DOI: 10.3390/plants10010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Abstract
Shoot regeneration is a key tool of modern plant biotechnology. While many researchers use this process empirically, very little is known about the early molecular genetic factors and signaling events that lead to shoot regeneration. Using tobacco as a model system, we found that the inductive events required for shoot regeneration occur in the first 4–5 days following incubation on regeneration medium. Leaf segments placed on regeneration medium did not produce shoots if removed from the medium before four days indicating this time frame is crucial for the induction of shoot regeneration. Leaf segments placed on regeneration medium for longer than five days maintain the capacity to produce shoots when removed from the regeneration medium. Analysis of gene expression during the early days of incubation on regeneration medium revealed many changes occurring with no single expression pattern evident among major gene families previously implicated in developmental processes. For example, expression of Knotted gene family members increased during the induction period, whereas transcription factors from the Wuschel gene family were unaltered during shoot induction. Expression levels of genes involved in cell cycle regulation increased steadily on regeneration medium while expression of NAC genes varied. No obvious possible candidate genes or developmental processes could be identified as a target for the early events (first few days) in the induction of shoot regeneration. On the other hand, observations during the early stages of regeneration pointed out that regeneration does not occur from a single cell but a group of cells. We observed that while cell division starts just as leaf segments are placed on regeneration medium, only a group of cells could become shoot primordia. Still, these primordia are not identifiable during the first days.
Collapse
Affiliation(s)
- Patharajan Subban
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Yaarit Kutsher
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Dalia Evenor
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Eduard Belausov
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Hanita Zemach
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Adi Faigenboim
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Samuel Bocobza
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Moshe Reuveni
- Institute of Plant Sciences, ARO Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel; (P.S.); (Y.K.); (D.E.); (E.B.); (H.Z.); (A.F.); (S.B.)
- Correspondence:
| |
Collapse
|
67
|
Tian R, Paul P, Joshi S, Perry SE. Genetic activity during early plant embryogenesis. Biochem J 2020; 477:3743-3767. [PMID: 33045058 PMCID: PMC7557148 DOI: 10.1042/bcj20190161] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Seeds are essential for human civilization, so understanding the molecular events underpinning seed development and the zygotic embryo it contains is important. In addition, the approach of somatic embryogenesis is a critical propagation and regeneration strategy to increase desirable genotypes, to develop new genetically modified plants to meet agricultural challenges, and at a basic science level, to test gene function. We briefly review some of the transcription factors (TFs) involved in establishing primary and apical meristems during zygotic embryogenesis, as well as TFs necessary and/or sufficient to drive somatic embryo programs. We focus on the model plant Arabidopsis for which many tools are available, and review as well as speculate about comparisons and contrasts between zygotic and somatic embryo processes.
Collapse
Affiliation(s)
- Ran Tian
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Priyanka Paul
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, U.S.A
| |
Collapse
|