51
|
A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia coli and Rhodobacter sphaeroides. Micron 2015; 72:8-14. [PMID: 25725215 DOI: 10.1016/j.micron.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
Abstract
Bacteria have been studied using different microscopy methods for many years. Recently, the developments of high-speed atomic force microscopy have opened the doors to study bacteria in new ways due to the fact that it uses much less force on the sample while imaging. This makes the high-speed atomic force microscope an indispensable technique for imaging the surface of living bacterial cells because it allows for the high-resolution visualization of surface proteins in their natural condition without disrupting the cell or the activity of the proteins. Previous work examining living cells of Magnetospirillum magneticum AMB-1 demonstrated that the surface of these bacteria was covered with a net-like structure that is mainly composed of porin molecules. However, it was unclear whether or not this feature was unique to other living bacteria. In this study we used the high-speed atomic force microscope to examine the surface of living cells of Escherichia coli and Rhodobacter sphaeroides to compare their structure with that of M. magneticum. Our research clearly demonstrated that both of these types of cells have an outer surface that is covered in a network of nanometer-sized holes similar to M. magneticum. The diameter of the holes was 8.0±1.5 nm for E. coli and 6.6±1.1 nm for R. sphaeroides. The results in this paper confirm that this type of outer surface structure exists in other types of bacteria and it is not unique to Magnetospirillum.
Collapse
|
52
|
Imamura M, Uchihashi T, Ando T, Leifert A, Simon U, Malay AD, Heddle JG. Probing structural dynamics of an artificial protein cage using high-speed atomic force microscopy. NANO LETTERS 2015; 15:1331-5. [PMID: 25559993 DOI: 10.1021/nl5045617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A cysteine-substituted mutant of the ring-shaped protein TRAP (trp-RNA binding attenuation protein) can be induced to self-assemble into large, monodisperse hollow spherical cages in the presence of 1.4 nm diameter gold nanoparticles. In this study we use high-speed atomic force microscopy (HS-AFM) to probe the dynamics of the structural changes related to TRAP interactions with the gold nanoparticle as well as the disassembly of the cage structure. The dynamic aggregation of TRAP protein in the presence of gold nanoparticles was observed, including oligomeric rearrangements, consistent with a role for gold in mediating intermolecular disulfide bond formation. We were also able to observe that the TRAP-cage is composed of multiple, closely packed TRAP rings in an apparently regular arrangement. A potential role for inter-ring disulfide bonds in forming the TRAP-cage was shown by the fact that ring-ring interactions were reversed upon the addition of reducing agent dithiothreitol. A dramatic disassembly of TRAP-cages was observed using HS-AFM after the addition of dithiothreitol. To the best of our knowledge, this is the first report to show direct high-resolution imaging of the disassembly process of a large protein complex in real time.
Collapse
Affiliation(s)
- Motonori Imamura
- Heddle Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Henderson RM. Structural dynamics of single molecules studied with high-speed atomic force microscopy. Expert Opin Drug Discov 2014; 10:221-9. [DOI: 10.1517/17460441.2015.998195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
54
|
Ielasi FS, Hirtz M, Sekula-Neuner S, Laue T, Fuchs H, Willaert RG. Dip-Pen Nanolithography-Assisted Protein Crystallization. J Am Chem Soc 2014; 137:154-7. [DOI: 10.1021/ja512141k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Francesco S. Ielasi
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Michael Hirtz
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sylwia Sekula-Neuner
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Thomas Laue
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Harald Fuchs
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Physical
Institute and Center for Nanotechnology, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Ronnie G. Willaert
- Department
of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
55
|
Matsumoto R, Uemura T, Xu Z, Yamaguchi I, Ikoma T, Tanaka J. Rapid oriented fibril formation of fish scale collagen facilitates early osteoblastic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2014; 103:2531-9. [DOI: 10.1002/jbm.a.35387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Rena Matsumoto
- Nanosystem Research Insutitute, AIST (National Institute of Advanced Industrial Science and Technology); Central 4 1-1-1 Higashi Tsukuba Ibaraki 305-8562 Japan
| | - Toshimasa Uemura
- Nanosystem Research Insutitute, AIST (National Institute of Advanced Industrial Science and Technology); Central 4 1-1-1 Higashi Tsukuba Ibaraki 305-8562 Japan
| | - Zhefeng Xu
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| | - Isamu Yamaguchi
- Research Department, R & D Division, Taki Chemical Co. Ltd.; 346, Miyanishi, Harima-Cho Kako-Gun Hyogo 675-0145 Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| | - Junzo Tanaka
- Department of Metallurgy and Ceramics Science; Tokyo Institute of Technology; S7-6 2-12-1 Ookayama Meguro-Ku Tokyo 152-8550 Japan
| |
Collapse
|
56
|
Wadikhaye SP, Yong YK, Moheimani SOR. A serial-kinematic nanopositioner for high-speed atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:105104. [PMID: 25362453 DOI: 10.1063/1.4897483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.
Collapse
Affiliation(s)
- Sachin P Wadikhaye
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Yuen Kuan Yong
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - S O Reza Moheimani
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
57
|
Mashaghi A, Mashaghi S, Reviakine I, Heeren RMA, Sandoghdar V, Bonn M. Label-free characterization of biomembranes: from structure to dynamics. Chem Soc Rev 2014; 43:887-900. [PMID: 24253187 DOI: 10.1039/c3cs60243e] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applying such techniques to biological and model membranes for biophysical studies and biosensing applications are presented, and future prospects are discussed.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
58
|
Slattery AD, Blanch AJ, Ejov V, Quinton JS, Gibson CT. Spring constant calibration techniques for next-generation fast-scanning atomic force microscope cantilevers. NANOTECHNOLOGY 2014; 25:335705. [PMID: 25074581 DOI: 10.1088/0957-4484/25/33/335705] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a recent technological development, high-speed atomic force microscopy (AFM) has provided unprecedented insights into dynamic processes on the nanoscale, and is capable of measuring material property variation over short timescales. Miniaturized cantilevers developed specifically for high-speed AFM differ greatly from standard cantilevers both in size and dynamic properties, and calibration of the cantilever spring constant is critical for accurate, quantitative measurement. This work investigates specifically, the calibration of these new-generation cantilevers for the first time. Existing techniques are tested and the challenges encountered are reported and the most effective approaches for calibrating fast-scanning cantilevers with high accuracy are identified, providing a resource for microscopists in this rapidly developing field. Not only do these cantilevers offer faster acquisition of images and force data but due to their high resonant frequencies (up to 2 MHz) they are also excellent mass sensors. Accurate measurement of deposited mass requires accurate calibration of the cantilever spring constant, therefore the results of this work will also be useful for mass-sensing applications.
Collapse
Affiliation(s)
- Ashley D Slattery
- Flinders Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | | | | | |
Collapse
|
59
|
Ren J, Zou Q. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:073706. [PMID: 25085145 DOI: 10.1063/1.4884343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.
Collapse
Affiliation(s)
- Juan Ren
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854, USA
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Rd, Piscataway, New Jersey 08854, USA
| |
Collapse
|
60
|
Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014; 114:3120-88. [PMID: 24476364 PMCID: PMC4076042 DOI: 10.1021/cr4003837] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Toshio Ando
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Takayuki Uchihashi
- Department of Physics, and Bio-AFM Frontier
Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- CREST,
Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Simon Scheuring
- U1006
INSERM/Aix-Marseille Université, Parc Scientifique et Technologique
de Luminy Bâtiment Inserm TPR2 bloc 5, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
61
|
The Power of Single-Molecule FRET Microscopy Applied to DNA Nanotechnology. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2014. [DOI: 10.1007/978-3-642-38815-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
62
|
Lyubchenko YL, Gall AA, Shlyakhtenko LS. Visualization of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2014; 1117:367-84. [PMID: 24357372 DOI: 10.1007/978-1-62703-776-1_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This article describes sample preparation techniques for AFM imaging of DNA and protein-DNA complexes. The approach is based on chemical functionalization of the mica surface with aminopropyl silatrane (APS) to yield an APS-mica surface. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations, and in a broad range of pH. The chapter describes the methodologies for the preparation of APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The AFM applications are illustrated with examples of images of DNA and protein-DNA complexes.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
63
|
Brown BP, Picco L, Miles MJ, Faul CFJ. Opportunities in high-speed atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3201-3211. [PMID: 23609982 DOI: 10.1002/smll.201203223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Indexed: 06/02/2023]
Abstract
The atomic force microscope (AFM) has become integrated into standard characterisation procedures in many different areas of research. Nonetheless, typical imaging rates of commercial microscopes are still very slow, much to the frustration of the user. Developments in instrumentation for "high-speed AFM" (HSAFM) have been ongoing since the 1990s, and now nanometer resolution imaging at video rate is readily achievable. Despite thorough investigation of samples of a biological nature, use of HSAFM instruments to image samples of interest to materials scientists, or to carry out AFM lithography, has been minimal. This review gives a summary of different approaches to and advances in the development of high-speed AFMs, highlights important discoveries made with new instruments, and briefly discusses new possibilities for HSAFM in materials science.
Collapse
Affiliation(s)
- Benjamin P Brown
- Bristol Centre for Functional Nanomaterials, Centre for NSQI, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| | | | | | | |
Collapse
|
64
|
High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci Rep 2013; 3:2131. [PMID: 23823461 PMCID: PMC3701170 DOI: 10.1038/srep02131] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/10/2013] [Indexed: 11/08/2022] Open
Abstract
A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.
Collapse
|
65
|
Lee B, Somnath S, King WP. Fast nanotopography imaging using a high speed cantilever with integrated heater-thermometer. NANOTECHNOLOGY 2013; 24:135501. [PMID: 23478235 DOI: 10.1088/0957-4484/24/13/135501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper presents a high speed tapping cantilever with an integrated heater-thermometer for fast nanotopography imaging. The cantilever is much smaller and faster than previous heated cantilevers, with a length of 35 μm and a resonant frequency of 1.4 MHz. The mechanical response time is characterized by scanning over a backward-facing step of height 20 nm. The mechanical response time is 77 μs in air and 448 μs in water, which compares favorably to the fastest commercial cantilevers that do not have integrated heaters. The doped silicon cantilever is designed with an integrated heater that can heat and cool in about 10 μs and can operate in both air and water. We demonstrate standard laser-based topography imaging along with thermal topography imaging, when the cantilever is actuated via the piezoelectric shaker in an atomic force microscope system and when it is actuated by Lorentz forces. The cantilever can perform thermal topography imaging in tapping mode with an imaging resolution of 7 nm at a scan speed of 1.46 mm s(-1).
Collapse
Affiliation(s)
- Byeonghee Lee
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, USA
| | | | | |
Collapse
|
66
|
Yip CM. Correlative optical and scanning probe microscopies for mapping interactions at membranes. Methods Mol Biol 2013; 950:439-56. [PMID: 23086889 DOI: 10.1007/978-1-62703-137-0_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Innovative approaches for real-time imaging on molecular-length scales are providing researchers with powerful strategies for characterizing molecular and cellular structures and dynamics. Combinatorial techniques that integrate two or more distinct imaging modalities are particularly compelling as they provide a means for overcoming the limitations of the individual modalities and, when applied simultaneously, enable the collection of rich multi-modal datasets. Almost since its inception, scanning probe microscopy has closely associated with optical microscopy. This is particularly evident in the fields of cellular and molecular biophysics where researchers are taking full advantage of these real-time, in situ, tools to acquire three-dimensional molecular-scale topographical images with nanometer resolution, while simultaneously characterizing their structure and interactions though conventional optical microscopy. The ability to apply mechanical or optical stimuli provides an additional experimental dimension that has shown tremendous promise for examining dynamic events on sub-cellular length scales. In this chapter, we describe recent efforts in developing these integrated platforms, the methodology for, and inherent challenges in, performing coupled imaging experiments, and the potential and future opportunities of these research tools for the fields of molecular and cellular biophysics with a specific emphasis on the application of these coupled approaches for the characterization of interactions occurring at membrane interfaces.
Collapse
Affiliation(s)
- Christopher M Yip
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
67
|
Santillan JJ, Itani T. In situ Analysis of the EUV Resist Pattern Formation during the Resist Dissolution Process. J PHOTOPOLYM SCI TEC 2013. [DOI: 10.2494/photopolymer.26.611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
68
|
Herbert S, Soares H, Zimmer C, Henriques R. Single-molecule localization super-resolution microscopy: deeper and faster. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1419-1429. [PMID: 23113972 DOI: 10.1017/s1431927612013347] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For over a decade fluorescence microscopy has demonstrated the capacity to achieve single-molecule localization accuracies of a few nanometers, well below the ≈ 200 nm lateral and ≈ 500 nm axial resolution limit of conventional microscopy. Yet, only the recent development of new fluorescence labeling modalities, the increase in sensitivity of imaging hardware, and the creation of novel image analysis tools allow for the emergence of single-molecule-based super-resolution imaging techniques. Novel methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy can typically reach a tenfold increase in resolution compared to standard microscopy methods. Their implementation is relatively easy only requiring minimal changes to a conventional wide-field or total internal reflection fluorescence microscope. The recent translation of these two methods into commercial imaging systems has made them further accessible to researchers in biology. However, these methods are still evolving rapidly toward imaging live samples with high temporal resolution and depth. In this review, we recall the roots of single-molecule localization microscopy, summarize major recent developments, and offer perspective on potential applications.
Collapse
Affiliation(s)
- Sébastien Herbert
- Institut Pasteur, Groupe Imagerie et Modélisation, CNRS URA 2582, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
69
|
Force-feedback high-speed atomic force microscope for studying large biological systems. Micron 2012; 43:1372-9. [DOI: 10.1016/j.micron.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/07/2012] [Accepted: 04/07/2012] [Indexed: 11/20/2022]
|
70
|
Yong YK, Moheimani SOR, Kenton BJ, Leang KK. Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:121101. [PMID: 23277965 DOI: 10.1063/1.4765048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the kilohertz range. State-of-the-art designs incorporate uniquely designed flexure mechanisms driven by compact and stiff piezoelectric actuators. This paper surveys key advances in mechanical design and control of dynamic effects and nonlinearities, in the context of high-speed nanopositioning. Future challenges and research topics are also discussed.
Collapse
Affiliation(s)
- Y K Yong
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
71
|
Chen A, Bertozzi AL, Ashby PD, Getreuer P, Lou Y. Enhancement and Recovery in Atomic Force Microscopy Images. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-0-8176-8379-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
72
|
Cerf A, Tian HC, Craighead HG. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS NANO 2012; 6:7928-34. [PMID: 22816516 PMCID: PMC3703913 DOI: 10.1021/nn3023624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Individual chromatin molecules contain valuable genetic and epigenetic information. To date, there have not been reliable techniques available for the controlled stretching and manipulation of individual chromatin fragments for high-resolution imaging and analysis of these molecules. We report the controlled stretching of single chromatin fragments extracted from two different cancerous cell types (M091 and HeLa) characterized through fluorescence microscopy and atomic force microscopy (AFM). Our method combines soft lithography with molecular stretching to form ordered arrays of more than 250,000 individual chromatin fragments immobilized into a beads-on-a-string structure on a solid transparent support. Using fluorescence microscopy and AFM, we verified the presence of histone proteins after the stretching and transfer process.
Collapse
Affiliation(s)
- Aline Cerf
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Harvey C. Tian
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- To whom correspondence should be addressed. ; Fax: (607) 255-7658
| |
Collapse
|
73
|
Husain M, Boudier T, Paul-Gilloteaux P, Casuso I, Scheuring S. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series. J Mol Recognit 2012; 25:292-8. [PMID: 22528191 DOI: 10.1002/jmr.2187] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Atomic force microscopy (AFM) image acquisition is performed by raster-scanning a faint tip with respect to the sample by the use of a piezoelectric stage that is guided by a feedback system. This process implies that the resulting images feature particularities that distinguish them from images acquired by other techniques, such as the drift of the piezoelectric elements, the unequal image contrast along the fast- and the slow-scan axes, the physical contact between the tip of nondefinable geometry and the sample, and the feedback parameters. Recently, high-speed AFM (HS-AFM) has been introduced, which allows image acquisition about three orders of magnitude faster (500-100 ms frame rate) than conventional AFM (500 s to 100 s frame rate). HS-AFM produces image sequences, large data sets, which report biological sample dynamics. To analyze these movies, we have developed a software package that (i) adjusts individual scan lines and images to a common contrast and z-scale, (ii) filters specifically those scan lines where increased or insufficient force was applied, (iii) corrects for piezo-scanner drift, (iv) defines particle localization and angular orientation, and (v) performs particle tracking to analyze the lateral and rotation displacement of single molecules.
Collapse
Affiliation(s)
- Mohamed Husain
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique de Luminy, Marseille, F-13009, France
| | | | | | | | | |
Collapse
|
74
|
Torun H, Finkler O, Degertekin FL. Atomic force microscope based biomolecular force-clamp measurements using a micromachined electrostatic actuator. Ultramicroscopy 2012; 122:26-31. [PMID: 22960003 DOI: 10.1016/j.ultramic.2012.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/18/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
The authors describe a method for biomolecular force clamp measurements using atomic force microscope (AFM) cantilevers and micromachined membrane-based electrostatic actuators. The actuators comprise of Parylene membranes with embedded side actuation electrodes and are fabricated on a silicon substrate. The devices have a displacement range of 1.8 μm with 200 V actuation voltage, and displacement uncertainty is 0.8 nm, including the noise and drift. The settling time, limited by the particular amplifier is 5 ms, with an inherent range down to 20 μs. A force clamp measurement setup using these actuators in a feedback loop has been used to measure bond life-times between human IgG and anti-human IgG molecules to demonstrate the feasibility of this method for biological experiments. The experimental findings are compared with a molecular pulling experiment and the results are found to be in good agreement.
Collapse
Affiliation(s)
- Hamdi Torun
- Department of Electrical and Electronics Engineering, Bogazici University, Bebek, TR-34342 Istanbul, Turkey.
| | | | | |
Collapse
|
75
|
Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. Single-Molecule Imaging on Living Bacterial Cell Surface by High-Speed AFM. J Mol Biol 2012; 422:300-9. [DOI: 10.1016/j.jmb.2012.05.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 11/27/2022]
|
76
|
New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 2012; 13:436-47. [PMID: 22722606 DOI: 10.1038/nrm3382] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions.
Collapse
|
77
|
Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 2012; 7:1193-206. [DOI: 10.1038/nprot.2012.047] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
Zhong J, He D. Recent Progress in the Application of Atomic Force Microscopy for Supported Lipid Bilayers. Chemistry 2012; 18:4148-55. [DOI: 10.1002/chem.201102831] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
79
|
Abstract
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
80
|
Structural and Functional Analysis of Proteins by High-Speed Atomic Force Microscopy. STRUCTURAL AND MECHANISTIC ENZYMOLOGY - BRINGING TOGETHER EXPERIMENTS AND COMPUTING 2012; 87:5-55. [DOI: 10.1016/b978-0-12-398312-1.00002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Penttilä M, Ando T, Samejima M. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Methods Enzymol 2012; 510:169-82. [PMID: 22608726 DOI: 10.1016/b978-0-12-415931-0.00009-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellulases hydrolyze β-1,4-glucosidic linkages of insoluble cellulose at the solid/liquid interface, generating soluble cellooligosaccharides. We describe here our method for real-time observation of the behavior of cellulase molecules on the substrate, using high-speed atomic force microscopy (HS-AFM). When glycoside hydrolase family 7 cellobiohydrolase from Trichoderma reesei (TrCel7A) was incubated with crystalline cellulose, many enzyme molecules were observed to move unidirectionally on the surface of the substrate by HS-AFM. The velocity of the moving molecules of TrCel7A on cellulose I crystals was estimated by means of image analysis.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy. Methods Mol Biol 2012; 931:295-312. [PMID: 23027008 DOI: 10.1007/978-1-62703-056-4_14] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface preparation is a key step for reliable and reproducible imaging of DNA and protein-DNA complexes with atomic force microscopy (AFM). This article describes the approaches for chemical functionalization of the mica surface. One approach utilizes 3-aminopropyl-trietoxy silane (APTES), enabling one to obtain a smooth surface termed AP-mica. This surface binds nucleic acids and nucleoprotein complexes in a wide range of ionic strengths, in the absence of divalent cations and in a broad range of pH. Another method utilizes aminopropyl silatrane (APS) to yield an APS-mica surface. The advantage of APS-mica compared with AP-mica is the ability to obtain reliable and reproducible time-lapse images in aqueous solutions. The chapter describes the methodologies for the preparation of AP-mica and APS-mica surfaces and the preparation of samples for AFM imaging. The protocol for synthesis and purification of APS is also provided. The applications are illustrated with a number of examples.
Collapse
|
83
|
Jungmann R, Scheible M, Simmel FC. Nanoscale imaging in DNA nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:66-81. [PMID: 22114058 DOI: 10.1002/wnan.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA nanotechnology has developed powerful techniques for the construction of precisely defined molecular structures and machines, and nanoscale imaging methods have always been crucial for their experimental characterization. While initially atomic force microscopy (AFM) was the most widely employed imaging method for DNA-based molecular structures, in recent years a variety of other techniques were adopted by researchers in the field, namely electron microscopy (EM), super-resolution fluorescence microscopy, and high-speed AFM. EM is now typically applied for the characterization of compact nanoobjects and three-dimensional (3D) origami structures, as it offers better resolution than AFM and can be used for 3D reconstruction from single-particle analysis. While the small size of DNA nanostructures had previously precluded the application of fluorescence microscopic methods, the development of super-resolution microscopy now facilities the application of fast and powerful optical methods also in DNA nanotechnology. In particular, the observation of dynamical processes associated with DNA nanoassemblies-e.g., molecular walkers and machines-requires imaging techniques that are both fast and allow observation under native conditions. Here single-molecule fluorescence techniques and high-speed AFM are beginning to play an increasingly important role.
Collapse
Affiliation(s)
- Ralf Jungmann
- Department of Systems Biology, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | |
Collapse
|
84
|
Laisne A, Ewald M, Ando T, Lesniewska E, Pompon D. Self-Assembly Properties and Dynamics of Synthetic Proteo–Nucleic Building Blocks in Solution and on Surfaces. Bioconjug Chem 2011; 22:1824-34. [DOI: 10.1021/bc2002264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aude Laisne
- Centre de Génétique Moléculaire, CNRS, UPR3404, Avenue de la Terrasse, F91190 Gif-sur-Yvette, France
| | - Maxime Ewald
- Institut Carnot Bourgogne, UMR CNRS 5209, University of Bourgogne, F21078 Dijon, France
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Eric Lesniewska
- Institut Carnot Bourgogne, UMR CNRS 5209, University of Bourgogne, F21078 Dijon, France
| | - Denis Pompon
- Centre de Génétique Moléculaire, CNRS, UPR3404, Avenue de la Terrasse, F91190 Gif-sur-Yvette, France
| |
Collapse
|
85
|
Torun H, Torello D, Degertekin FL. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:086104. [PMID: 21895282 DOI: 10.1063/1.3622748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum "seesaw" like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated.
Collapse
Affiliation(s)
- H Torun
- Department of Electrical and Electronics Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | | | | |
Collapse
|
86
|
Caplan J, Niethammer M, Taylor RM, Czymmek KJ. The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional. Curr Opin Struct Biol 2011; 21:686-93. [PMID: 21782417 DOI: 10.1016/j.sbi.2011.06.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/22/2011] [Indexed: 11/24/2022]
Abstract
Correlative microscopy is a sophisticated approach that combines the capabilities of typically separate, but powerful microscopy platforms: often including, but not limited, to conventional light, confocal and super-resolution microscopy, atomic force microscopy, transmission and scanning electron microscopy, magnetic resonance imaging and micro/nano CT (computed tomography). When targeting rare or specific events within large populations or tissues, correlative microscopy is increasingly being recognized as the method of choice. Furthermore, this multi-modal assimilation of technologies provides complementary and often unique information, such as internal and external spatial, structural, biochemical and biophysical details from the same targeted sample. The development of a continuous stream of cutting-edge applications, probes, preparation methodologies, hardware and software developments will enable realization of the full potential of correlative microscopy.
Collapse
Affiliation(s)
- Jeffrey Caplan
- Delaware Biotechnology Institute Bio-Imaging Center, University of Delaware, Newark, DE 19711, United States
| | | | | | | |
Collapse
|
87
|
Rutten PE. High speed two-dimensional optical beam position detector. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:073705. [PMID: 21806187 DOI: 10.1063/1.3608506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Disclosed is the design of a high speed two-dimensional optical beam position detector which outputs the X and Y displacement and total intensity linearly. The experimental detector measures the displacement from DC to 123 MHz and the intensity of an optical spot in a similar way as a conventional quadrant photodiode detector. The design uses four discrete photodiodes and simple dedicated optics for the position decomposition which enables higher spatial accuracy and faster electronic processing than conventional detectors. Measurements of the frequency response and the spatial sensitivity demonstrate high suitability for atomic force microscopy, scanning probe data storage applications, and wideband wavefront sensing. The operation principle allows for position measurements up to 20 GHz and more in bandwidth.
Collapse
|
88
|
Chang PI, Huang P, Maeng J, Andersson SB. Local raster scanning for high-speed imaging of biopolymers in atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:063703. [PMID: 21721698 PMCID: PMC7480175 DOI: 10.1063/1.3600558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/22/2011] [Indexed: 05/31/2023]
Abstract
A novel algorithm is described and illustrated for high speed imaging of biopolymers and other stringlike samples using atomic force microscopy. The method uses the measurements in real-time to steer the tip of the instrument to localize the scanning area over the sample of interest. Depending on the sample, the scan time can be reduced by an order of magnitude or more while maintaining image resolution. Images are generated by interpolating the non-raster data using a modified Kriging algorithm. The method is demonstrated using physical simulations that include actuator and cantilever dynamics, nonlinear tip-sample interactions, and measurement noise as well as through scanning experiments in which a two-axis nanopositioning stage is steered by the algorithm using simulated height data.
Collapse
Affiliation(s)
- Peter I Chang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
89
|
Casuso I, Rico F, Scheuring S. High-speed atomic force microscopy: Structure and dynamics of single proteins. Curr Opin Chem Biol 2011; 15:704-9. [PMID: 21632275 DOI: 10.1016/j.cbpa.2011.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 11/18/2022]
Abstract
For surface analysis of biological molecules, atomic force microscopy (AFM) is an appealing technique combining data acquisition under physiological conditions, for example buffer solution, room temperature and ambient pressure, and high resolution. However, a key feature of life, dynamics, could not be assessed until recently because of the slowness of conventional AFM setups. Thus, for observing bio-molecular processes, the gain of image acquisition speed signifies a key progress. Here, we review the development and recent achievements using high-speed atomic force microscopy (HS-AFM). The HS-AFM is now the only technique to assess structure and dynamics of single molecules, revealing molecular motor action and diffusion dynamics. From this imaging data, watching molecules at work, novel and direct insights could be gained concerning the structure, dynamics and function relationship at the single bio-molecule level.
Collapse
Affiliation(s)
- Ignacio Casuso
- INSERM U1006, Institut Curie, 26 rue d'Ulm, 75005 Paris, France
| | | | | |
Collapse
|
90
|
Shibata M, Uchihashi T, Yamashita H, Kandori H, Ando T. Structural Changes in Bacteriorhodopsin in Response to Alternate Illumination Observed by High-Speed Atomic Force Microscopy. Angew Chem Int Ed Engl 2011; 50:4410-3. [DOI: 10.1002/anie.201007544] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 11/09/2022]
|
91
|
Shibata M, Uchihashi T, Yamashita H, Kandori H, Ando T. Structural Changes in Bacteriorhodopsin in Response to Alternate Illumination Observed by High-Speed Atomic Force Microscopy. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
92
|
Structure determination of channel and transport proteins by high-resolution microscopy techniques. Biol Chem 2011; 392:143-50. [DOI: 10.1515/bc.2011.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.
Collapse
|
93
|
Wang F, Greene EC. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J Mol Biol 2011; 412:814-31. [PMID: 21255583 DOI: 10.1016/j.jmb.2011.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/08/2011] [Indexed: 12/30/2022]
Abstract
Single-molecule techniques have emerged as powerful tools for deciphering mechanistic details of transcription and have yielded discoveries that would otherwise have been impossible to make through the use of more traditional biochemical and/or biophysical techniques. Here, we provide a brief overview of single-molecule techniques most commonly used for studying RNA polymerase and transcription. We then present specific examples of single-molecule studies that have contributed to our understanding of key mechanistic details for each different stage of the transcription cycle. Finally, we discuss emerging single-molecule approaches and future directions, including efforts to study transcription at the single-molecule level in living cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
94
|
Itani T, Santillan JJ. The Photopolymer Science and Technology Award. J PHOTOPOLYM SCI TEC 2011. [DOI: 10.2494/photopolymer.24.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Abstract
The atomic force microscope (AFM) is a high-resolution scanning-probe instrument which has become an important tool for cellular and molecular biophysics in recent years, but lacks the time resolution and functional specificities offered by fluorescence microscopic techniques. The advantages of both methods may be exploited by combining and synchronizing them. In this paper, the biological applications of AFM, fluorescence, and their combinations are briefly reviewed, and the assembly and utilization of a spatially and temporally synchronized AFM and total internal reflection fluorescence microscope are described. The application of the method is demonstrated on a fluorescently labeled cell culture.
Collapse
Affiliation(s)
- Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
96
|
Abstract
Atomic force microscope (AFM) is unique in its capability to capture high-resolution images of biological samples in liquids. This capability will become more versatile to biological sciences if AFM additionally acquires an ability of high-speed imaging, because "direct and real-time visualization" is a straightforward and powerful means to understand biomolecular processes. However, the imaging speed of conventional AFM is too slow to capture moving protein molecules at high resolution. In order to fill this large gap, various efforts have been carried out in the past decade. In this chapter, the past efforts for increasing the scan rate and reduction of tip-sample interaction force of AFM and demonstration of direct visualization of biomolecular processes are described.
Collapse
|
97
|
Suzuki Y, Yokokawa M, Yoshimura SH, Takeyasu K. Biological Application of Fast-Scanning Atomic Force Microscopy. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2 2011. [DOI: 10.1007/978-3-642-10497-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
98
|
Zhong J. From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol (Camb) 2011; 3:632-44. [DOI: 10.1039/c0ib00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS One 2010; 5:e13240. [PMID: 20949034 PMCID: PMC2951901 DOI: 10.1371/journal.pone.0013240] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins.
Collapse
|
100
|
Jung SH, Park D, Park JH, Kim YM, Ha KS. Molecular imaging of membrane proteins and microfilaments using atomic force microscopy. Exp Mol Med 2010; 42:597-605. [PMID: 20689364 PMCID: PMC2947017 DOI: 10.3858/emm.2010.42.9.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2010] [Indexed: 11/04/2022] Open
Abstract
Atomic force microscopy (AFM) is an emerging technique for a variety of uses involving the analysis of cells. AFM is widely applied to obtain information about both cellular structural and subcellular events. In particular, a variety of investigations into membrane proteins and microfilaments were performed with AFM. Here, we introduce applications of AFM to molecular imaging of membrane proteins, and various approaches for observation and identification of intracellular microfilaments at the molecular level. These approaches can contribute to many applications of AFM in cell imaging.
Collapse
Affiliation(s)
- Se-Hui Jung
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | |
Collapse
|