51
|
Yao M, Zhan H, Liu L, Gai T, Zhao D, Wei W. A ratiometric fluorescent biosensing platform based on CDs and AuNCs@CGO for patulin detection. Anal Chim Acta 2024; 1330:343279. [PMID: 39489961 DOI: 10.1016/j.aca.2024.343279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Patulin (PAT) is a mycotoxin, usually found in fruit and their products, that can potentially be harmful to human health. In order to achieve rapid detection of mycotoxins and ensure the safety of food. This study reported a novel ratiometric fluorescent aptasensor for PAT detection. In this study, we used aptamer as the recognition element, Hybrid double stranded modified with fluorescent substances as the fluorescent donor, and AuNCs@CGO as the fluorescent acceptor. After the addition of PAT, the ratiometric fluorescence "turn on" response was exhibited. RESULTS The AuNCs@CGO are obtained by amide reaction between BSA-AuNCs and carboxylated graphene oxide (CGO). The prepared AuNCs@CGO can shorten the time of FRET effect and exhibit highly efficient quenching ability by adsorption effects (π-π stacking and electrostatic gravity) on the Aptamer-modified CDs. When the target PAT bound specifically to the CDs-apt, the fluorescence of the CDs-apt would recover, while the fluorescence of ROX modified cDNA remained unchanged. This ratiometric fluorescence response improved the accuracy of PAT detection. In addition, the proposed had good linearity for PAT in the range of 0.1-50 ng/mL with a limit of detection 0.16 ng/mL. The recovery of standard addition in grapes were 95.9%-105.4 %. SIGNIFICANCE An effective fluorescent detection method for PAT was constructed based on aptamer and nanomaterials. This new fluorescent biosensor has the characteristics of simple synthesis, easy operation, high sensitivity, strong selectivity and a low LOD, which may be a promising idea and platform for the detection of food safety hazard factors.
Collapse
Affiliation(s)
- Mingru Yao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China
| | - Haosong Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China
| | - Lu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China
| | - Teer Gai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China
| | - Dongyue Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China
| | - Wu Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, 257500, China; Qingdao Institute of Special Food, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
52
|
Li Z, Dong J, Wang P, Li D, Li X, Geng H. Detection of Ferric Ion by Fluorescent Carbon Nano Dots Synthesized from Forsythia Residue. J Fluoresc 2024:10.1007/s10895-024-04035-7. [PMID: 39549188 DOI: 10.1007/s10895-024-04035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
To fully utilize the wastes of the traditional Chinese herbs, a highly functionalized fluorescent carbon nano dots (CDs) based ferric ion sensor was prepared from forsythia residue via a one-step hydrothermal method. Under transmission electron microscope (TEM), the CDs were observed to be spherical with the diameter in the range of 5-20 nm. Comprehensive analyses documented the CDs' favorable morphology, diverse functional groups, high water solubility, remarkable optical properties, and exceptional stability under various environmental conditions. Moreover, the CDs exhibited good optical properties with vivid green photoluminescence (PL) when they were exposed to ultraviolet (UV) light. Furthermore, the prepared CDs demonstrated selective fluorescence quenching behavior towards ferric ions with satisfactory sensitivity and a low limit of detection (LOD) of 4.3 µM. Additionally, the CDs displayed good selectivity towards Fe3+ and the least interference with several other metal ions. Consequently, this strategy could be effectively applied to real water samples, demonstrating its potential for broader applications.
Collapse
Affiliation(s)
- Zhaoxia Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang, 843300, China
| | - Jia Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Panchen Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dongchun Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyi Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huiling Geng
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Engineering Laboratory of Chemical Resources Utilization in South Xinjiang of Xinjiang Production and Construction Corps, Alar, Xinjiang, 843300, China.
| |
Collapse
|
53
|
Koparde SV, Nille OS, Kolekar AG, Bote PP, Gaikwad KV, Anbhule PV, Pawar SP, Kolekar GB. Okra peel-derived nitrogen-doped carbon dots: Eco-friendly synthesis and multi-functional applications in heavy metal ion sensing, nitro compound detection and environmental remediation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124659. [PMID: 38943759 DOI: 10.1016/j.saa.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr6+, and Mn7+ metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn7+, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.
Collapse
Affiliation(s)
- Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India; Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Prachi P Bote
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Kishor V Gaikwad
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Samadhan P Pawar
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India.
| |
Collapse
|
54
|
Hu H, Xing H, Zhang Y, Liu X, Gao S, Wang L, Li T, Zhang T, Chen D. Centrifugated lateral flow assay strips based on dual-emission carbon dots modified with europium ions for ratiometric determination and on-site discrimination of tetracyclines in environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175478. [PMID: 39151611 DOI: 10.1016/j.scitotenv.2024.175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Due to the serious detrimental impact on human health, antibiotic pollution particularly tetracyclines residues has become a serious problem. Herein, a multiple response fluorescent probe consisted of dual-emission carbon dots and Eu3+ (D-CDs@Eu3+) is designed for the determination and discrimination of tetracyclines (TCs). Specifically, the carboxyl and amidogen group of dual-emission carbon dots (D-CDs) can coordinate with Eu3+ to form the D-CDs@Eu3+. Upon adding TCs, the fluorescence intensities of D-CDs at 405 nm and 495 nm are quenched due to inner filter effect (IFE) and the localization of fluorescence resonance energy transfer (L-FRET) between the D-CDs@Eu3+ and TC. Simultaneously, the D-CDs@Eu3+ may chelate with TCs to enhance the occurrence of antenna effect, while the characteristic peaks of Eu3+ at 590 nm and 615 nm are enhanced. On these bases, the TCs detection is achieved with low detection limits from 46.7 to 72.0 nM. Additionally, through the distinct efficiencies of L-FRET, the discrimination of TCs is achieved. Moreover, a novel centrifugated lateral flow assay strips (CLFASs) device is developed by integrating the D-CDs@Eu3+, lateral flow assay strips and smartphone using RGB variations for TCs detection, achieving remarkable recoveries (98.6-103.7 %) in real samples. Therefore, this CLFASs device provides a reliable approach for the TCs detection, demonstrating potential applications.
Collapse
Affiliation(s)
- Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Yihao Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Xinru Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Sineng Gao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Linfan Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China; Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ting Zhang
- Department of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, PR China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
55
|
Wang M, Luo X, Jiang M, Zhang L, Zhou Q, Wu C, He Y. Ratio-fluorescence sensor based on carbon dots and PtRu/CN nanozyme for efficient detection of melatonin in tablet. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124699. [PMID: 38909559 DOI: 10.1016/j.saa.2024.124699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
The identification and quantification of melatonin (MT) are crucial for early diagnosis of disorders associated with circadian rhythm disruption. Herein, novel blue-emissive carbon dots (BCDs) were synthesized through an improved hydrothermal treatment using serine and malic acid as reductant and carbon source. The excellent optical properties of the as-obtained BCDs were used for ratiometric sensing by strategically constructing a MT sensing system integrating BCDs with C3N4 nanosheets loaded with platinum/ruthenium nanoparticles (PtRu/CN). In this system, H2O2 activated the peroxidase-like activity of PtRu/CN to generate •OH and 1O2 for oxidizing the colorless o-phenylenediamine (OPD) into yellow 2,3-diaminophenazine (DAP) with fluorescence emission at 565 nm. Concurrently, the fluorescence emission of BCDs at 439 nm was quenched by the generated DAP via the static quenching and inner filter effect (IFE) process. However, MT rapidly scavenged the generated free radicals to reverse the ratio fluorescence signal. The developed BCDs/PtRu/CN/OPD/H2O2 sensing platform enabled quantitative analysis of MT at concentrations ranging from 0.06 to 600 μmol/L with a low detection limit of 23.56 nmol/L. Moreover, smartphone-based RGB sensing of MT was successfully developed for rapid visualization and portable processing. More broadly, novel insights into the preparation of carbon dots with sensitive fluorescence sensing properties were presented, promising for future considerations.
Collapse
Affiliation(s)
- Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Qian Zhou
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| |
Collapse
|
56
|
do Nascimento WC, Ramo LB, da Silva FF, C U Araujo M, I E de Andrade S, Bichinho KM. One-step microwave-assisted synthesis of fluorescent carbon quantum dots for determination of ascorbic acid and riboflavin in vitamin supplements. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124669. [PMID: 38909560 DOI: 10.1016/j.saa.2024.124669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
The synthesis of carbon quantum dots (CQDs) using chemical precursors with different organic groups is a strategy to improve optical properties and expand applications in several fields of research such as Analytical Chemistry. Ascorbic acid and riboflavin are widely used in human food supplementation, making quality monitoring of these vitamin supplements relevant and necessary. In this work, disodium ethylenediaminetetraacetic, sodium thiosulfate and urea were applied to obtain CQDs through a single-step microwave-assisted synthesis. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, infrared spectroscopy, zeta potential measurements, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. The synthesized nanoparticles exhibited satisfactory and stable optical properties with luminescence at 430 nm, water solubility, and fluorescence quantum yield of 8.9 %. They were applied in the quantification of ascorbic acid and riboflavin in vitamin supplements. The fluorescence mechanisms observed were dynamic quenching for the CQDs/Cr(VI) sensor, followed by a return of fluorescence in the presence of ascorbic acid, and static quenching and inner filter effect in the interaction with riboflavin. Factorial designs 23 and 24 were used to optimize the analytical parameters. The CQDs/Cr(VI) sensor used in the determination of ascorbic acid, employing an on-off-on strategy, resulted in a linear range of 0.5 to 50 µg mL-1 and a limit of detection of 0.15 µg mL-1. The ratiometric fluorescence used in the determination of riboflavin resulted in a linear range of 0.1 to 7 µg mL-1 and a limit of detection of 0.09 µg mL-1. The analytical results for ascorbic acid were compared to the reference method of the Brazilian pharmacopeia, showing accuracy and precision according to the Brazilian Health Regulation Agency. Therefore, the synthesized CQDs were used to determine ascorbic acid and riboflavin in vitamin supplements, and the application of this nanomaterial can be expanded to different analytes and matrices, using simple and low-cost analysis techniques.
Collapse
Affiliation(s)
- Wallis C do Nascimento
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Luciano B Ramo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Fausthon F da Silva
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Mario C U Araujo
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Stéfani I E de Andrade
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| | - Kátia M Bichinho
- Universidade Federal Da Paraíba, Centro de Ciências Exatas e Da Natureza, Departamento de Química, 58051-900 João Pessoa, Paraíba, Brasil.
| |
Collapse
|
57
|
Tsai TH, Lo W, Wang HY, Tsai TL. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. J Funct Biomater 2024; 15:347. [PMID: 39590551 PMCID: PMC11595631 DOI: 10.3390/jfb15110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine. However, leek seeds have not been studied as a precursor of carbon dots. In this study, leek seeds underwent a supercritical fluid extraction process. Leek seed extract was obtained and then carbonized using a dry heating method, followed by hydrolysis to form carbon dot micelles (CD-micelles). CD-micelles exhibited analyte-induced PL quenching against Co2+ through the static quenching mechanism, with the formation of self-assembled Co2+-CD-micelle sphere particles. In addition, CD-micelles extracted metal ion through liquid-liquid extraction, with removal efficiencies of >90% for Pb2+, Al3+, Fe3+, Cr3+, Pd2+, and Au3+. Moreover, CD-micelles exhibited ABTS•+ radical scavenging ability and cytotoxicity for cisplatin-resistant lung cancer cells. CD-micelles killed cisplatin-resistant small-cell lung cancer cells in a dose-dependent manner with a cancer cell survival rate down to 12.8 ± 4.2%, with a similar treatment function to that of cisplatin. Consequently, CD-micelles functionalized as novel antioxidants show great potential as anticancer nanodrugs in cancer treatment.
Collapse
Affiliation(s)
- Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei Lo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsiu-Yun Wang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
58
|
Sahu G, Chawre Y, Kujur AB, Miri P, Sinha A, Nagwanshi R, Karbhal I, Ghosh KK, Jena VK, Satnami ML. Nitrogen Doped Carbon Quantum Dots as Fluorescence "Turn-Off-On" Sensor for Detection of Fe 3+ Ions and Ascorbic Acid in Moringa oleifera and Citrus Lemon. J Fluoresc 2024:10.1007/s10895-024-04012-0. [PMID: 39514072 DOI: 10.1007/s10895-024-04012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
In recent year, the uses of carbon quantum dots (CQDs) have increased in many fields. Herein we report, synthesis of fluorescent nitrogen doped carbon quantum dots (N-CQDs) by simple and ecofriendly hydrothermal method. The as-synthesized N-CQDs were characterized by various techniques and the quantum yield was also calculated. Then, application of N-CQDs were performed as a sensor for detection of ferric ions (Fe3+) based on static quenching mechanism (turn-off) which occurred due to formation of non-fluorescent complex between N-CQDs and Fe3+ ions. Interestingly, fluorescence intensity of quenched N-CQDs has been significantly recovered (turn-on) by addition of ascorbic acid (AA). The recovery mechanism is based on the redox reaction between Fe3+ ions and AA. Thus, N-CQDs has been used as fluorescence "turn-off-on" sensor for detection of Fe3+ ions and AA. Further this detection system is used for detecting Fe3+ ions in Moringa oleifera and AA in citrus lemon.
Collapse
Affiliation(s)
- Girish Sahu
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Yogyata Chawre
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Ankita Beena Kujur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Pinki Miri
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Akash Sinha
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. P. G. Science College, Ujjain, 456010, Madhya Pradesh, India
| | - Indrapal Karbhal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India
| | - Vinod K Jena
- Department of Chemistry, Govt. Nagarjuna P. G. College of Science, Raipur, 492010, C.G, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, 492010, C.G, India.
| |
Collapse
|
59
|
Sasikumar K, Prabakaran DS, Rajamanikandan R, Ju H. Yellow Emissive Carbon Dots - A Robust Nanoprobe for Highly Sensitive Quantification of Jaundice Biomarker and Mitochondria Targeting in Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:6730-6739. [PMID: 39267591 DOI: 10.1021/acsabm.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The abnormally high level of bilirubin (BR) in biofluids (human serum and urine) indicates a high probability of jaundice and liver dysfunction. However, quantification of BR as the Jaundice biomarker is difficult due to the interference of various biomolecules in serum and urine. To address this issue, we developed a fluorescence-based detection strategy, for which yellow emissive carbon dots (YCDs) were produced from a one-step solvothermal process using phloroglucinol and thionin acetate as chemical precursors. The as-fabricated YCDs exhibited a strong fluorescence peak at the wavelength of 542 nm upon excitation at 390 nm. We used YCDs for detecting BR through the fluorescence turn-off mechanism, unveiling the excellent sensitivity in the linear range of 0.5-12.5 μM with a limit of detection (LOD) of 9.62 nM, which was far below the clinically relevant range. The analytical nanoprobe also offered excellent detection specificity for quantifying BR in real samples. Moreover, the biocompatible fluorescent nanoprobe was successfully employed to target mitochondria in live cancer cells. A colocalization study confirmed that YCDs possessed the ability to target mitochondria and overlapped completely with MitoTracker Red. The developed nanoprobe of YCDs turned out to be straightforward in their synthesis, noninvasive, and can be utilized for biomedical sensors to diagnose the onset of jaundice as well as for mitochondria targeting.
Collapse
Affiliation(s)
- Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dhashnamoorthy Subramanian Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ramar Rajamanikandan
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
- Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
60
|
Ruan Z, Xu Z, Liu T, Chen L, Liu X, Chen K, Zhao C. Multifunctional nitrogen-sulfur codoped carbon quantum dots: Determining reduced glutathione, broad-spectrum antibacterial activity, and cell imaging. Heliyon 2024; 10:e38177. [PMID: 39386857 PMCID: PMC11462334 DOI: 10.1016/j.heliyon.2024.e38177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, nitrogen-sulfur codoped carbon quantum dots (N-S/CQDs) with various functions and properties were synthesized through a one-step method utilizing citric acid and cysteine as reaction substrates. The fluorescence of N-S/CQDs can be specifically quenched by permanganate ion (MnO4 -), and the quenched fluorescence can be recovered by the presence of reduced glutathione (GSH). A fluorescence sensing system based on N-S/CQDs@MnO4 - was developed and successfully applied for the determination of GSH in pharmaceutical preparations. Additionally, N-S/CQDs demonstrated broad-spectrum antibacterial activity, with minimum inhibitory concentrations of 32 μg/ml against Staphylococcus aureus (gram-positive bacterium) and 64 μg/ml against Escherichia coli (gram-negative bacterium). N-S/CQDs also proved effective for cell imaging, exhibiting excellent biocompatibility. These findings underscore the multifunctional characteristics and promising application potential of N-S/CQDs. Furthermore, this study provides a solid foundation for the development of multifunctional carbon quantum dots and the expansion of their applications in various fields.
Collapse
Affiliation(s)
- Zhipeng Ruan
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Zhifeng Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Putian University, Putian University, Putian, 351100, China
| | - Tianhui Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| | - Liwen Chen
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Xiaoling Liu
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
| | - Kaiying Chen
- Pathology Department, The First Hospital of Putian City, Putian, 351100, China
| | - Chengfei Zhao
- Department of Pharmacy, School of Pharmacy and Medical Technology, Putian University, Putian, 351100, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, 351100, China
| |
Collapse
|
61
|
Das N, Srivastava R, Roy S, De AK, Kar RK. Physico-chemical properties and biological evaluation of graphene quantum dots for anticancer drug susceptibility. Colloids Surf B Biointerfaces 2024; 245:114322. [PMID: 39426099 DOI: 10.1016/j.colsurfb.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Graphene quantum dots (GQDs) possess unique optical and biocompatible properties, making them suitable candidates for biomedical and pharmaceutical applications. This study reports the hydrothermal synthesis of pristine-GQD and doped variants: Nitrogen-GQD and Sulfur-GQD. The materials underwent thorough characterization techniques such as UV-vis, fluorescence, XRD, FE-TEM/SEM, EDX, and Raman spectroscopy. The particle sizes of these GQDs range from 2 to 5 nm. We conducted a comprehensive study through MTT assays to evaluate the potential cytotoxic effect of GQD and the doped variants. This study demonstrated their synergistic interactions with an anti-cancer drug, methotrexate (MTX), and also improvement of cytocompatibility in the presence of folic acid (FA). Systematic MD simulations revealed a compacting effect on the dynamic behavior of GQD and its variants in the presence of drugs. Fluorescence spectroscopy and computational modeling suggest non-intercalative surface interactions between GQDs and the drugs. The cytotoxic activity of pristine GQD on HeLa cervical cancer cells is higher than that of N-GQD and S-GQD. When treated with GQD-IC50-MTX-IC50, only 5.6 % of HeLa cells remained viable. The doped variants exhibited bio-compatibility when tested on normal HEK cell lines. Overall, this study emphasizes the potential of GQDs for targeted cancer therapy through an interdisciplinary approach involving material characterization, computational modeling, and biological assays.
Collapse
Affiliation(s)
- Nirupam Das
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ravishankar Srivastava
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sawna Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Arup K De
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
62
|
Wang X, Jiang D, Dong M, Chen Y, Wang W, Sun Z, Li H, Shiigi H, Chen Z. Dual-Mechanism Quenching Electrochemiluminescence System by Coupling Energy Transfer with Electron Transfer for Sensitive Competitive Aptamer-Based Detection of Furanyl Fentanyl in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22360-22368. [PMID: 39344894 DOI: 10.1021/acs.jafc.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resonance energy transfer (RET) quenching is significantly important for developing electrochemiluminescence (ECL) sensors, but RET platforms face challenges like interference from other fluorescent substances and reliance on energy transfer efficiency. This study used Zn-PTC, formed by zinc ions coordinated with perylene-3,4,9,10-tetracarboxylate, as a dual-mechanism quencher to reduce the ECL intensity of carbon nitride nanosheets (Tg-CNNSs). Co3O4/NiCo2O4 acts as a coreaction promoter, enhancing and stabilizing the luminescence of Tg-CNNSs. Zn-PTC absorbs energy from Tg-CNNSs, altering the fluorescence lifetime to confirm energy transfer, while energy-level matching demonstrates electron transfer. By leveraging both RET and electron transfer mechanisms, the designed ECL aptasensor significantly reduces signal fluctuations that may arise from a single mechanism, resulting in more stable and reliable detection outcomes. The ECL aptasensor designed for furanyl fentanyl (FUF) detection shows excellent performance with a detection limit of 5.7 × 10-15 g/L, offering new pathways for detecting FUF and other small molecules.
Collapse
Affiliation(s)
- Xiaolan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Meihua Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Zheng Sun
- Institute of Forensic Science, Changzhou Municipal Security Bureau, Changzhou 13 213164, China
| | - Haibo Li
- Institute of Forensic Science, Changzhou Municipal Security Bureau, Changzhou 13 213164, China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, Naka Ku, 1-2 Gakuen, Sakai, Osaka 5998570, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| |
Collapse
|
63
|
Zhao C, Ma M, Yang J, Ye Z, Ma P, Song D. "Hedgehog Ball"-Shaped Nanoprobes for Multimodal Detection and Imaging of Inflammatory Markers in Osteosarcoma Using Fluorescence and Electrochemiluminescence. Anal Chem 2024; 96:16053-16062. [PMID: 39316735 DOI: 10.1021/acs.analchem.4c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Inflammation can affect the progression of cancer at tumor sites, such as in osteosarcoma, by intensifying metastasis and complicating outcomes. The current diagnostic methods lack the specificity and sensitivity required for early and accurate detection, particularly in differentiating between inflammation-induced changes and tumor activities. To address this, a novel "hedgehog ball"-shaped nanoprobe, Fe3O4@Au-pep-CQDs, was developed and designed to enhance the detection of caspase-1, a key marker of inflammation. This magnetic nanoprobe facilitates simultaneous fluorescence (FL) and electrochemiluminescence (ECL) detection. Magnetic separation minimizes the quenching of nanoparticles in solution and eliminates the need for frequent electrode replacement in ECL tests, thereby simplifying diagnostic procedures. The experimental results showed that in the detection of caspase-1, the nanoprobe had a detection limit of 0.029 U/mL (FL) and 0.033 U/mL (ECL) and had a dynamic range of 0.05 to 1.0 U/mL. Additionally, the nanoprobe achieved high recovery rates of 94.36 to 102.44% (FL) and 94.36-100.12% (ECL) in spiked biological samples. Furthermore, the nanoprobe's capabilities were extended to in vivo bioimaging to provide direct, intuitive visualization of biological processes. These novel nanoprobes were able to significantly enhance the accurate detection of inflammation at tumor sites, thereby optimizing both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Zhao
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
- School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Jukun Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
64
|
Liao Z, Zhong J, Tang X, Peng Z, Xu P, Qiu P. Smartphone-assisted portable swabs for blood glucose management: A point-of-use assay for dual-mode visual detection based on bifunctional carbon dots. Talanta 2024; 278:126545. [PMID: 39002257 DOI: 10.1016/j.talanta.2024.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Controlling glucose (Glu) intake is a "required course" for diabetics, thus quickly and precisely measuring the amount of Glu in food is crucial. For this purpose, a novel smartphone-assisted portable swab for the dual-mode visual detection of Glu was constructed combined the selectivity of natural enzymes with the controllable catalytic activity of nanozymes. Glu was specifically decomposed by glucose oxidase (natural enzyme) to produce H2O2, which was catalyzed by carbon dots (FeMn/N-CDs, nanozyme) to accelerate the reaction of o-phenylenediamine (OPD, colorless) to produce 2,3-diaminophenazine (DAP, yellow). As a result, the absorbance at 450 nm gradually increased with the increasing concentration of Glu, leading to a color change in the system from colorless to yellow. Meanwhile, the fluorescence of FeMn/N-CDs gradually decreased at 450 nm, while the fluorescence of DAP gradually increased at 550 nm, allowing for both ratiometric fluorescence and colorimetric dual-mode detection. Furthermore, natural enzyme and nanozyme together with OPD were co-loaded on the swabs to achieve cascade catalysis of Glu. The assembled portable swabs have detection ranges of 1-600 μM (LOD = 0.37 μM) and 4-1200 μM (LOD = 1.19 μM) for the colorimetric and fluorometric detection, respectively. The field test results on real samples demonstrated that the portable swabs have great promise for use in efficiently and accurately guiding the dietary intake of diabetics.
Collapse
Affiliation(s)
- Ziwen Liao
- Department of Chemistry, Nanchang University, Nanchang 330031, China; College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiali Zhong
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xiaomin Tang
- The Fourth Affiliated Hospital, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zoujun Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
65
|
Guo L, Zhang Y, Du L, Xu S, Gao J, Cui F. Development of an accurate hand-held sensing platform for nitrite detection based on nitrogen-doped carbon dots. Talanta 2024; 278:126527. [PMID: 38996562 DOI: 10.1016/j.talanta.2024.126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
As is well known, excessive nitrite can seriously pollute the environment and can harm human health. Although existing methods can be used to determine nitrite content, they still have some drawbacks, such as relatively complicated operation and expensive equipment. Herein, a hand-held sensing platform (HSP) for NO2- determination was developed. First, ammonia-rich nitrogen-doped carbon dots with orange-yellow emission were designed and synthesised, which were suitable as fluorescent probes because of their good optical properties and stability. Then, the HSP based on fluorescence using photoelectric conversion technology was designed and manufactured using three-dimensional printing technology. Under optimum conditions, the voltage (V/V0) of the proposed HSP showed good linearity for NO2- detection in the range of 10-500 μM, with a detection limit of 1.95 μM. This portable sensor showed good stability, accuracy and reliability in detecting actual water and meat samples, which may ensure food safety in practical applications. Moreover, the HSP is compact, portable and easily assembled and is suitable for on-site real-time detection, which shows great application potential and prospects.
Collapse
Affiliation(s)
- Liucheng Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China; Luohe Medical College, Luohe, Henan, 462002, China
| | - Yan Zhang
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, 450000, China
| | - Liyue Du
- Luohe Medical College, Luohe, Henan, 462002, China
| | - Shengrui Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China.
| | - Fengling Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, China.
| |
Collapse
|
66
|
Chen Y, Xu L, Zhao S, Miao C, Chen Y, Wang Z, Feng F, Lin M, Weng S. One-pot hydrothermal synthesis of silicon, nitrogen co-doped carbon dots for enhancing enzyme activity of acid phosphatase (ACP) to dopamine and for cell imaging. Talanta 2024; 278:126451. [PMID: 38917549 DOI: 10.1016/j.talanta.2024.126451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Developing water-soluble nanomaterials with high photoluminescence emission and high yield for biological analysis and imaging is urgently needed. Herein, water-soluble blue emitting silicon and nitrogen co-doped carbon dots (abbreviated as Si-CDs) of a high photoluminescence quantum yield of 80 % were effectively prepared with high yield rate (59.1 %) via one-step hydrothermal treatment of N-[3-(trimethoxysilyl)propyl]ethylenediamine (DAMO) and trans-aconitic acid. Furthermore, the Si-CDs demonstrate environmental robustness, photo-stability and biocompatibility. Given the importance of the potentially abnormal levels of acid phosphatase (ACP) in cancer diagnosis, developing a reliable and sensitive ACP measurement method is of significance for clinical research. The Si-CDs unexpectedly promote the catalytic oxidation of ACP on dopamine (DA) to polydopamine under acidic conditions through the produced reactive oxygen species (ROS). Correspondingly, a fluorescence response strategy using Si-CDs as the dual functions of probes and promoting enzyme activity of ACP on catalyzing DA was constructed to sensitively determine ACP. The quantitative analysis of ACP displayed a linear range of 0.1-60 U/L with a detection limit of 0.056 U/L. The accurate detection of ACP was successfully achieved in human serum through recovery tests. As a satisfactory fluorescent probe, Si-CDs were successfully applied to fluorescent imaging of A549 cells in cytoplasmic with long-term and safe staining. The Si-CDs have the dual properties of outstanding fluorescent probes and auxiliary oxidase activity, indicating their great potential in multifunctional applications.
Collapse
Affiliation(s)
- Yuanting Chen
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Linlin Xu
- Department of Pharmacy, Maternal and Child Health Hospital of Fuzhou Second General Hospital, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Sheng Zhao
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuyuan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhenzhen Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Feng Feng
- Department of Pharmacy, Fujian Provincial Governmental Hospital, Affiliated Hospital of Fujian Health College, Fuzhou, 350003, China.
| | - Mingrui Lin
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China; Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
67
|
Farag AS, Rizk M, Mohamed OM, Azab MM. A novel turn-off green carbon dot-based fluorescent probe for selective determination of nitrazepam in its pharmaceutical dosage form and milk samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6373-6382. [PMID: 39221649 DOI: 10.1039/d4ay01216j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In this study, a new, rapid, simple, and cost-effective fluorescent probe based on carbon dots (CDs) has been developed for the selective determination of nitrazepam (NZP). The CDs were synthesized with high production yield (71.43%) through one step carbonization of dried banana peels. The fluorescence intensity of the CDs is quenched by increasing the NZP concentration as a result of the inner-filter effect and dynamic quenching mechanism. This fluorescent sensor effectively quantified NZP in the linear range of 0.30-26 μg mL-1, with a limit of detection of 0.10 μg mL-1. The performance of the sensor was validated according to ICH guidelines and exhibited high precision and accuracy. The proposed method was also successfully extended for determining NZP in tablet dosage form and milk samples.
Collapse
Affiliation(s)
- Amir Shaaban Farag
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, 11795 Cairo, Egypt.
| | - Mohamed Rizk
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, 11795 Cairo, Egypt.
| | - Omaima Mahmoud Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, 11795 Cairo, Egypt.
| | - Marwa Mohamed Azab
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Helwan, 11795 Cairo, Egypt.
| |
Collapse
|
68
|
Dai Z, Liu H, Sun X, Wang Y, Fan J, Li L, Ding Y. Synthesis of P-Rich Carbon Quantum Dots for Sensitive Fluorescent Detection of 2-Methylimidazole. J Fluoresc 2024:10.1007/s10895-024-03946-9. [PMID: 39325300 DOI: 10.1007/s10895-024-03946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
Using o-phenylenediamine as carbon source and phytic acid as phosphorus source, two P-rich carbon quantum dots RCDs and BCDs were synthesized successfully by changing the reaction temperature and time of hydrothermal method. It was found that RCDs with red emission could realize sensitive detection of 2-methylimidazole, and 2-methylimidazole had no obvious quenching effect on BCDs with blue emission, which made RCDs a sensitive, quick and selective fluorescence sensor for 2-methylimidazole detection. Under the optimal experimental conditions, the fluorescence intensity of RCDs decreased with the increasing of 2-methylimidazole concentration. The detection of 2-methylimidazole concentration by the carbon quantum dots sensor showed a good linear relationship in the range of 5 ~ 110 µM, and the low detection limit was 0.61 µM (S/N = 3). The sensor is able to detect 2-methylimidazole in lake water, enabling the application of real samples. The results show that this work provides a simple fluorescence method to detect 2-methylimidazole in water.
Collapse
Affiliation(s)
- Zhengyuan Dai
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Xuyuan Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Ying Wang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jie Fan
- Department of Urology, School of Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, 200080, PR China
| | - Li Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Yaping Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
69
|
Dai S, Yao L, Liu L, Cui J, Su Z, Zhao A, Yang P. Carbon dots-supported Zn single atom nanozymes for the catalytic therapy of diabetic wounds. Acta Biomater 2024; 186:454-469. [PMID: 39098446 DOI: 10.1016/j.actbio.2024.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Diabetic wound treatment continues to be a significant clinical issue due to higher levels of oxidative stress, susceptibility to bacterial infections, and chronic inflammatory responses during healing. We rationally developed and synthesized an ultra-small carbon dots (C-dots) loaded with zinc single-atom nanozyme (Zn/C-dots) with the aim of promoting wounds healing by nanocatalytic treatment, especially targeting its complex pathological microenvironment. Zinc single atoms and C-dots form a dual catalytic system with higher enzymatic activity. Furthermore, the Zn/C-dots nanozyme effectively enters cells, accumulates at mitochondria, and removes excess ROS, protecting cells from oxidative stress damage and limiting the release of pro-inflammatory cytokines, hence reducing inflammation. Zinc can synergistically increase the antibacterial action of C-dots (the effective antibacterial rate of 100 µg/mL Zn/C-dots was above 90 %). Unlike traditional C-dots, Zn/C-dots can cause endothelial cell migration and the formation of new blood vessels. In vitro cytotoxicity, blood compatibility, and in vivo toxicity studies of Zn/C-dots show that they are biocompatible. We subsequently utilized the Zn/C-dots nanozymes to treat diabetic rats' chronic wounds for external use, combining them with ROS-responsive hydrogels to create an antioxidative system (H-Zn/C-dots). The hydrogels anchored the Zn/C-dots nanozymes to the wound, allowing for long-term treatment. The results revealed that H-Zn/C-dots can considerably reduce inflammation, accelerate angiogenesis, collagen deposition, and promote tissue remodeling at the diabetic wound site. After 14 days, the wound area had decreased to approximately 9.19 %, making it a potential treatment. STATEMENT OF SIGNIFICANCE: An ultra-small carbon dot with a zinc single-atom nanozyme was designed and manufactured. Zn/C-dots possess antibacterial, ROS-scavenging, and angiogenesis activities. In vivo, the multifunctional ROS-responsive hydrogel incorporating Zn/C-dots could speed up diabetic wound healing.
Collapse
Affiliation(s)
- Sheng Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Li Yao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Luying Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Cui
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Zhaogui Su
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ansha Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Ping Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
70
|
Zhang Q, Yan Y, Cai R, Li XN, Liu C. Diphenylamino-Modified Neutral Pt(II) Complexes: Their Aggregation-Induced Phosphorescent Emission and Picric Acid-Sensing Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4366. [PMID: 39274756 PMCID: PMC11395801 DOI: 10.3390/ma17174366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
Three neutral Pt(II) complexes with diphenylamino-modified 2-phenylpyridine derivatives as cyclometalating ligands and acetylacetone as the ancillary ligand exhibit aggregation-induced phosphorescent emission (AIPE) properties in THF/H2O. The crystal structures of the complexes highlight the contributions of non-covalent Pt···Pt interactions and hydrogen bonds to the AIPE properties. These AIPE-active Pt(II) complexes 1-3 have been successfully applied to detect picric acid (PA) in aqueous media, affording the lowest limit of detection at 70 nM. Furthermore, three Pt(II) complexes are able to detect PA in common water samples. The quenching of luminescence in the detection can be attributed to photo-induced electron transfer.
Collapse
Affiliation(s)
- Qinglong Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yingying Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Rui Cai
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xiao-Na Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China
| | - Chun Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
71
|
Yu L, Yang Y, Jiang X, Li Y, He X, Chen L, Zhang Y. A self-calibrating ratiometric fluorescence sensor with photonic crystal-based signal amplification for the detection of tetracycline in food. Food Chem 2024; 451:139418. [PMID: 38677133 DOI: 10.1016/j.foodchem.2024.139418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
A dual-color ratiometric fluorescence sensor based on photonic crystals (PCs) was developed to detect tetracycline (TC) in food. PC was fabricated via self-assembly of carbon dots (CDs)-loaded SiO2 nanoparticles. Gold nanoclusters (AuNCs) and copper ions (Cu2+) were then adsorbed onto the PC for sensor fabrication. The fluorescence of AuNCs was amplified by the PC with an enhancement ratio of 7.6, providing higher sensitivity. The fluorescence of AuNCs was quenched by Cu2+, whereas that of CDs remained unchanged as an internal reference. TC restored the fluorescence of AuNCs owing to its complexation with Cu2+, resulting in a change in the fluorescence intensity ratio. The sensor exhibited a good linear relationship with TC concentrations ranging from 0.1 to 10 μM, with a detection limit of 34 nM. Furthermore, the sensor was applied for TC detection in food with satisfactory recoveries and relative standard deviations, revealing great potential in practical application.
Collapse
Affiliation(s)
- Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China..
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China..
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China.
| |
Collapse
|
72
|
Elshenawy EA, Yassin MG, Marie AA. P-doped carbon dot nano-probe for inner filter effect-based determination of sarecycline in pharmaceutical dosage form and human plasma. LUMINESCENCE 2024; 39:e4889. [PMID: 39223967 DOI: 10.1002/bio.4889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Based on novel phosphorus-doped carbon dots (PCDs), a simple, quick, and accurate fluorescence probe for sarecycline (SAR) determination has been created. The PCDs were prepared in just five minutes using green, straightforward one-step microwave pyrolysis. To create the PCD probe, sodium phosphate monobasic was utilized as a phosphorus dopant and citric acid as a carbon supply. The proposed synthesis method was energy efficient and yielded CDs with a narrow particle size distribution. Based on inner-filter effect mechanism, the generated PCDs were used as nano-probe for SAR determination. The fluorescence quenching intensity showed a strong linear relationship with SAR concentration in the 3-90-μM range with a detection limit of 0.88 μM. Because there is no surface alteration of the CDs or creation of a covalent bond between SAR and PCDs, the developed approach is quick, easy, inexpensive, and requires less time. The new probe's enhanced sensitivity, broad linear range, and acceptable selectivity made it suitable for SAR measurement in pharmaceutical formulations and spiked human plasma. Most importantly, the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) assessments showed that the suggested method was environmentally friendly.
Collapse
Affiliation(s)
- Eman A Elshenawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Aya A Marie
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
73
|
Li J, Lu C, Yang S, Xie Q, Danzeng Q, Liu C, Zhou CH. Integrating carbon dots and gold/silver core-shell nanoparticles to achieve sensitive detection of dopamine with fluorometric/colorimetric dual signal. Anal Bioanal Chem 2024; 416:4951-4960. [PMID: 39046501 DOI: 10.1007/s00216-024-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Dopamine (DA) is a potent neuromodulator in the brain that affects a wide range of motivated behaviors. Abnormal concentration of DA is related to a variety of diseases. Hence, it is imperative to establish a rapid and precise method for quantifying DA. In this work, we integrate orange-yellow emissive carbon dots (CDs) with target-induced silver deposition on gold nanoparticles (Au NPs), forming gold/silver core-shell nanoparticles (Au@Ag NPs), to construct a fluorometric and colorimetric dual-signal sensor for sensitive detection of DA. Au NPs and silver ions (Ag+) have minimal effect on the fluorescence of CDs. DA can reduce the silver ions to Ag(0) on the surface of the Au NPs to form a silver shell, resulting in the blue-shift of the absorbance peak from 520 to 416 nm, which overlaps with the excitation spectrum of CDs. As a result, the system color turns from pink to orange-yellow, and the fluorescence of CDs is quenched due to the strong inner filter effect. The linear range of the colorimetry is 0.5-18 μM with a limit of detection (LOD) of 0.41 μM, while the linear range for the fluorometry method is 0.5-14 μM with a LOD of 0.021 μM. This method demonstrates notable advantages including a low detection limit, rapid response time, and straightforward operation in practical samples, showing great potential in biomedical analysis.
Collapse
Affiliation(s)
- Jing Li
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Chaofen Lu
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Shufen Yang
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Qing Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Qunzeng Danzeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China.
| | - Chuan-Hua Zhou
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
74
|
Swathi R, Reddy GB, Rajkumar B, Ramakrishna D, Swamy PY. Jamun Seed-Derived Nitrogen-Doped Carbon Dots: A Novel Microwave-Assisted Synthesis for Ultra-Bright Fluorescence and Mn 7+ Detection. J Fluoresc 2024; 34:2287-2298. [PMID: 37747598 DOI: 10.1007/s10895-023-03438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
For the synthesis of heteroatom-doped carbon nanostructures, biomass is considered as a promising option. Utilizing the microwave-assisted method, we have demonstrated an easy and straightforward one-pot synthesis of nitrogen-doped luminous carbon dots (NCDs) from jamun seed powder and guanidine hydrochloride. Structural and morphological analyses were performed using various analytical techniques. Under ultraviolet light of 315 nm, NCDs emit a bright blue fluorescence, possess a high quantum yield of 26.90%, exhibit strong water dispersion, and demonstrated excellent stability. The average particle size of the NCDs was found to be 7.5±1.2 nm, with a spherical shape. NCDs exhibit high selectivity and sensitivity in fluorescence quenching when exposed to Mn7+ ions. Over a concentration range of 2-30 µM, the fluorescence response (F0/F) shows a linear relationship with Mn7+ concentration, with a detection limit of 0.81 µM. The probe exhibited negligible interference and proved to be effective in accurately quantifying Mn7+ in spiked real-water samples.
Collapse
Affiliation(s)
- R Swathi
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500008, India
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University, Wanaparthy, Telangana, 509001, India
| | - Bandi Rajkumar
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500008, India
| | - Dadigala Ramakrishna
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500008, India
| | - P Yadagiri Swamy
- Department of Chemistry, Osmania University, Hyderabad, Telangana, 500008, India.
- Department of Chemistry, Palamuru University, Wanaparthy, Telangana, 509001, India.
| |
Collapse
|
75
|
Qi X, Hu H, Liang L, Lin Y, Liu Y, Sun H, Piao Y. Fluorescence nanoprobes bearing low temperature-derived biochar nanoparticles as efficient quenchers for the detection of single-stranded DNA and 17β-estradiol and their analytical potential. RSC Adv 2024; 14:28077-28085. [PMID: 39228759 PMCID: PMC11370820 DOI: 10.1039/d4ra03168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024] Open
Abstract
Bagasse-derived biochar nanoparticles obtained under a low pyrolysis condition (400 °C) were first revealed to be capable of highly efficiently quenching the fluorescence of 6-carboxyfluorescein, with a significantly improved quenching rate constant over that of other quenchers and high-temperature prepared ones, and were designated as bagasse-derived quencher nanoparticles (BQNPs). The BQNPs are suitable for the construction of fluorescence nanoprobes, taking advantage of their various beneficial properties, including low cost, environmental friendliness, high dispersibility, and rich functional groups that allow their easy and versatile molecular modification. They were demonstrated to be capable of stably binding single-stranded oligonucleotides through both adsorption and covalent interactions and were utilized for the construction of both BQNPs/DNA and BQNPs/aptamer probes. The BQNPs/DNA probe had strong resistance against degradation by deoxyribonuclease I and showed high precision and selectivity for the detection of single-stranded DNA, with a limit of detection of 1.04 nM. Moreover, the BQNPs/aptamer probe demonstrated the rapid and sensitive detection of 17β-estradiol (E2) with a limit of detection of 0.4 ng mL-1 with no cross-reactivity with the analogues, and it was also applied for real environmental sample detection and demonstrated reasonable signal recoveries. Benefiting from their strong quenching ability, low cost, and great dispersibility, the BQNPs show great potential for the development of cost-effective and sensitive fluorescence sensors.
Collapse
Affiliation(s)
- Xiaoli Qi
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Hui Hu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Lina Liang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Yuqing Lin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Yudan Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Haifeng Sun
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University Changchun 130021 China
| |
Collapse
|
76
|
Pan C, Lu M, Ma L, Wu M. A Dual Emission Fluorescence Probe Based on Silicon Nanoparticles and Rhodamine B for Ratiometric Detection of Kaempferol. J Fluoresc 2024:10.1007/s10895-024-03906-3. [PMID: 39186138 DOI: 10.1007/s10895-024-03906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
In this paper, blue fluorescent silicon nanoparticles (SiNPs) with outstanding optical properties and robust stability were synthesized by a simple one-step hydrothermal method. By introducing red emissive rhodamine B (RhB) into SiNPs solution, a dual emission nanoprobe (SiNPs@RhB) was constructed, which showed excellent pH stability, salt resistance and photobleaching resistance. The SiNPs@RhB probe could emit two peaks at 444 nm and 583 nm under 365 nm excitation. It was found that the fluorescence intensity of the two emission peaks decreased in different degrees with the addition of different concentrations of kaempferol (Kae). According to this phenomenon, a novel ratiometric fluorescence method was established for the detection of Kae via utilizing SiNPs@RhB as nanoprobe. The detection range and limit of detection (LOD) were 0.5 ~ 150 µM and 0.24 µM, respectively. The ratiometric fluorescence method exhibited the superiority of rapid detection, excellent stability, wide linear range and high sensitivity. The detection mechanism was studied by ultraviolet visible absorption spectra, fluorescence spectra and fluorescence lifetime. Furthermore, the method was applied to the detection of Kae in real samples (kaempferia powder, sea buckthorn granules and sea buckthorn dry emulsion).
Collapse
Affiliation(s)
- Congjie Pan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, China.
| | - Meicheng Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Longfei Ma
- Henan Police College, Zhengzhou, 450046, China
| | - Mingxia Wu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
77
|
Sendh J, Baruah JB. Bi-component sensing platform for the detection of Cd 2+, Fe 2+and Fe 3+ ions. RSC Adv 2024; 14:27153-27161. [PMID: 39193302 PMCID: PMC11348839 DOI: 10.1039/d4ra04655b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
The ability of N-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)isonicotinamide (naphydrazide) or 2,6-pyridinedicarboxylic acid (2,6-H2pdc) individually or as a bi-component system in distinguishing and detecting Fe3+ or Fe2+ and Cd2+ ions was investigated. The use of these molecules as single or bi-component analytes in absorption or emission spectroscopy studies showed that under specific conditions each had their own merits for specific purposes. UV-visible spectroscopic studies of 2,6-H2pdc for assessing the interactions with ferrous and ferric ions showed characteristic distinctions. The detection limit for Fe3+ analysed through UV-visible spectroscopy using naphydrazide was 0.46 μM, whereas it was 1.28 μM using 2,6-H2pdc. Naphydrazide together with Fe3+ allowed distinguishing Cd2+ ions from Zn2+ and Fe2+ ions. The bi-component system was useful for the selective detection of Cd2+ ions using fluorescence spectroscopy, with a detection limit for Cd2+ ions of 18.31 μM. The presence of Fe2+ and Cd2+ ions in a solution of the bi-component had resulted white-light emission. An analogous compound N,N'-(1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-2,7(1H,3H,6H,8H)-diyl)diisonicotinamide (binaphydrazide) was found unsuitable for such detections. Two 2,6-pyridinedicarboxylate Fe3+ complexes possessing protonated naphydrazide or binaphydrazide were prepared and characterised. These complexes were also found unsuitable for the detection of the said ions in solution. Electrochemical studies with the bi-component system showed that cyclic voltammograms could distinguish Fe3+ or Fe2+ from Cd2+ ions.
Collapse
Affiliation(s)
- Jagajiban Sendh
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| | - Jubaraj B Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati-781 039 Assam India +91-361-2582311
| |
Collapse
|
78
|
Wang C, Qiao C, Tian F, Guo L, Wang R, Li J, Pang T, Pang R, Xie H. N-Doped Carbon Dots for Selective Detection of Fe 3+ and Degradation of Fe 3+/Basic Red 9 Complexes in Water Samples. J Fluoresc 2024:10.1007/s10895-024-03894-4. [PMID: 39153167 DOI: 10.1007/s10895-024-03894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
In this work, the eco-friendly N-doped carbon dots KF-CDs and A-CDs were derived from kiwifruit by a simple one-step hydrothermal strategy at 180 °C for 6 h. KF-CDs have a high fluorescence quantum yield (27.85%), it is obviously rapid quenched by Fe3+, and have a good linear relationship from 1 to 8.26 µM (the detection limit was 0.077 µM). Basic red 9 is extensively used in biological, environmental and industry. Although it makes a great contribution to the economy, its toxicity should be taken seriously, especially with harmful metal ions. Within 2 h, A-CDs could degrade basic red 9 with degradation efficiency 89.6%, even though there was a stable compound formed with Fe3+ that the degradation efficiency was up to 88.3%. The results complement the research blank of carbon dots in catalytic degradation of basic red 9.
Collapse
Affiliation(s)
- Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ruiping Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
79
|
Zhang D, Wang S, Zhang Y, Ma Y, Liu H, Sun B. Self-assembled dipeptide confined in covalent organic polymers for fluorescence sensing of tryptamine in fermented meat products. Mikrochim Acta 2024; 191:512. [PMID: 39105857 DOI: 10.1007/s00604-024-06590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Diphenylalanine(FF)-Zn self-assembly (FS) confined in covalent organic polymers (FS@COPs) with efficient fluorescence was synthesized for fluorescence sensing of biogenic amines, which was one of the most important indicators for monitoring food freshness. FS@COPs combined excellent biodegradability of self-assembled dipeptide with chemical stability, porosity and targeted site recognition of COPs. With an optimal excitation wavelength of 360 nm and an optimal emission wavelength of 450 nm, FS@COPs could be used as fluorescence probes to rapidly visualize and highly sensitive determination of tryptamine (Try) within 15 min, and the linear range was from 40 to 900 μg L-1 with a detection limit of 63.08 μg kg-1. Importantly, the FS@COPs showed a high fluorescence quantum yield of 11.28%, and good stability, solubility, and selectivity, which could successfully achieve the rapid, accurate and highly sensitive identification of Try. Furthermore, we revealed the mechanism of FS@COPs for fluorescence sensing of targets. The FS@COPs system was applied to the fluorescence sensing of Try in real samples and showed satisfactory accuracy of 93.02%-105.25%.
Collapse
Affiliation(s)
- Dianwei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Shengnan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Yuhua Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Yuanchen Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
80
|
Ma Y, Mao L, Cui C, Hu Y, Chen Z, Zhan Y, Zhang Y. Nitrogen-doped carbon dots as fluorescent probes for sensitive and selective determination of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124347. [PMID: 38678843 DOI: 10.1016/j.saa.2024.124347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
At present, the contamination of water resources by heavy metal ions has posed a significant threat to human survival. Therefore, it is particularly critical to develop low-cost, easy-to-use, and highly efficient heavy metal detection technologies. In this work, a fast and cost-effective fluorescent probe for nitrogen-doped carbon dots (N-CDs) was prepared using one-step hydrothermal method with citric acid (CA) as carbon source, and melamine as nitrogen source. The structural and optical characterizations of the resulting N-CDs were investigated in details. The results showed that the quantum yield of the prepared fluorescent probe was as high as 45 %, and an average fluorescence lifetime was about 7.80 ns. N-CDs have excellent water solubility and dispersibility, with an average size of 2.58 nm. N-CDs exhibited excellent specific responsiveness to Fe3+ and can be used as an effective method for detecting Fe3+ at low-concentrations (the concentrations of N-CDs as low as 0.24 μg/mL) using fluorescent probes. The linear response of the fluorescent probe N-CDs to Fe3+ was formed in the concentration range of 20-80 μM, and the detection limit was 3.18 μM. In addition, in the actual water samples analysis, the recovery rate reached 97.05-100.58 %. The prepared of N-CDs provide available Fe3+ fluorescent probes in the environment.
Collapse
Affiliation(s)
- Yulin Ma
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Linhan Mao
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Congcong Cui
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhaoxia Chen
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| | - Yuhong Zhang
- Ministry-of- Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
81
|
Li Z, Li S, Jiang L, Xiao J, Niu J, Zhang Y, Chen C, Zhou Q. Construction of nitrogen-doped carbon dots-based fluorescence probe for rapid, efficient and sensitive detection of chlortetracycline. CHEMOSPHERE 2024; 361:142535. [PMID: 38844108 DOI: 10.1016/j.chemosphere.2024.142535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely used in clinical medicine due to their excellent antibacterial abilities. As typical emerging pollutants, their misuse can lead to excess antibiotics entering the environment, causing antimicrobial resistance and leading to serious health problems via food chain. Herein, a nano-fluorescent probe based on nitrogen-doped carbon dots (N-CDs) was constructed for the sensitive detection of chlortetracycline (CTC). N-CDs with stable fluorescence were synthesized by hydrothermal method using alizarin red and melamine as raw materials. The N-CDs exhibited significant independence to excitation wavelength. The fluorescence of N-CDs was significantly quenched by CTC ascribing to the fluorescence resonance energy transfer mechanism. The concentration of N-CDs, solution pH and incubation time were optimized to obtain the optimal detection parameters. Under optimal conditions, CTC exhibited excellent linearity over the range of 20-1200 μg/L, and the detection limit was 8.74 μg/L. The method was validated with actual water samples and achieved satisfied spiked recoveries of 97.6-102.6%. Therefore, the proposed method has significant application value in the detection of CTC in waters.
Collapse
Affiliation(s)
- Zhi Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Junping Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingwen Niu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yue Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
82
|
Chen Y, Wang Z, Liang M, Liu Y, Dong W, Hu Q, Dong C, Gong X. High-efficient nickel-doped lignin carbon dots as a fluorescent and smartphone-assisted sensing platform for sequential detection of Cr(VI) and ascorbic acid. Int J Biol Macromol 2024; 274:133790. [PMID: 38992545 DOI: 10.1016/j.ijbiomac.2024.133790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Using lignin as a raw material to prepare fluorescent nanomaterials represents a significant pathway toward the high-value utilization of waste biomass. In this study, Ni-doped lignin carbon dots (Ni-LCDs) were rapidly synthesized with a yield of 63.22 % and a quantum yield of 8.25 % using a green and simple hydrothermal method. Exploiting the inner filter effect (IFE), Cr(VI) effectively quenched the fluorescence of the Ni-LCDs, while the potent reducing agent ascorbic acid (AA) restored the quenched fluorescence, thus establishing a highly sensitive fluorescence switch sensor platform for the sequential detection of Cr(VI) and AA. Importantly, the integration of a smartphone facilitated the portability of Cr(VI) and AA detection, enabling on-site, in-situ, and real-time monitoring. Ultimately, the developed fluorescence and smartphone-assisted sensing platform was successfully applied to detect Cr(VI) in actual water samples and AA in various fruits. This study not only presents an efficient method for the conversion and utilization of waste lignin but also broadens the application scope of the CDs in the field of smart sensors.
Collapse
Affiliation(s)
- Yihong Chen
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zihan Wang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Meiqi Liang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yang Liu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xiaojuan Gong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
83
|
Bu L, Li S, Nie L, Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Zhou Q. Construction of fluorescent sensor array with nitrogen-doped carbon dots for sensing Sudan Orange G and identification of various azo compounds. J Colloid Interface Sci 2024; 667:403-413. [PMID: 38640659 DOI: 10.1016/j.jcis.2024.04.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 μg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.
Collapse
Affiliation(s)
- Lutong Bu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
84
|
Li Z, Li S, Jiang L, Niu J, Zhang Y, Nie L, Zhou Q, Chen C. High enrichment and sensitive measurement of oxytetracycline in tea drinks by thermosensitive magnetic molecular imprinting based magnetic solid phase extraction coupled with boron doped carbon dots. Food Chem 2024; 447:138998. [PMID: 38503068 DOI: 10.1016/j.foodchem.2024.138998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 μg L-1 and the limit of detection was 0.1 μg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.
Collapse
Affiliation(s)
- Zhi Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shuangying Li
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwen Niu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Chunmao Chen
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
85
|
Wang S, Liang N, Hu X, Li W, Guo Z, Zhang X, Huang X, Li Z, Zou X, Shi J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem 2024; 447:138663. [PMID: 38489878 DOI: 10.1016/j.foodchem.2024.138663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 03/17/2024]
Abstract
The combination of carbon dots (CDs) with covalent organic frameworks (COFs) was used to design an innovative sensor based on fluorescence resonance energy transfer (FRET) for the detection of Escherichia coli O157:H7 (E. coli O157:H7) in food samples. Carbon dots were used as fluorescence donors, covalent organic frameworks as fluorescence acceptors. The antibody (Ab) specific to E. coli O157:H7 was used to form a CD-Ab-COF immunosensor by linking CDs and COFs. The antibody was specifically bound with E. coli O157:H7, which caused the connection between CDs and COFs to be interrupted, and the carbon dots exhibited fluorescence restoration. The sensor exhibited a linear detection range spanning from 0 to 106 CFU/mL, with the limit of detection (LOD) of 7 CFU/mL. The analytical performance of the developed immunosensor was evaluated using spiked food samples with different concentrations of E. coli O157:H7, validating the capability of assessing risks in food testing.
Collapse
Affiliation(s)
- Sunli Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China.
| |
Collapse
|
86
|
Öztürk D, Durmuş M. Utilizing Carbon Dots Derived from Waste Face Masks for Pentachlorophenol Detection. J Fluoresc 2024:10.1007/s10895-024-03844-0. [PMID: 39028449 DOI: 10.1007/s10895-024-03844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Pentachlorophenol is a very toxic chemical that is used as a pesticide, fungicide, herbicide, wood preservative, etc., and it should be monitored in terms of human health and environmental production. Another environmental problem is the increase in the use of facemasks, especially during the COVID-19 pandemic. This study provides a value added chemicals to sustainability of recycling process. Fluorescent carbon dots (CDs) were synthesized from waste facemasks and investigated their fluorescence sensor performances. UV-Vis and fluorescence spectra of the synthesized carbon dots were recorded in different organic solvents. The sensor properties of these carbon dots against pesticides were investigated, and a 'turn-off' response was observed toward pentachlorophenol. The limit of detection was found 8.5 µM in the linear range from 43.3 µM to 375 µM. This study showed that waste plastics such as facemasks can be recycled to obtain carbon dots, which are used in different technological areas such as photocatalysis, bioimaging, etc., as well as in sensors.
Collapse
Affiliation(s)
- Dilek Öztürk
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| |
Collapse
|
87
|
Mondal S, Sarkar O, Raut J, Mandal SM, Chattopadhyay A, Sahoo P. Development of a Nanomarker for In Vivo Monitoring of Dopamine in Plants. ACS APPLIED BIO MATERIALS 2024; 7:4690-4701. [PMID: 38952293 DOI: 10.1021/acsabm.4c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Dopamine, alongside norepinephrine and epinephrine, belongs to the catecholamine group, widely distributed across both plant and animal kingdoms. In mammals, these compounds serve as neurotransmitters with roles in glycogen mobilization. In plants, their synthesis is modulated in response to stress conditions aiding plant survival by emitting these chemicals, especially dopamine that relieves their resilience against stress caused by both abiotic and biotic factors. In present studies, there is a lack of robust methods to monitor the operations of dopamine under stress conditions or any adverse situations across the plant's developmental stages from cell to cell. In our study, we have introduced a groundbreaking approach to track dopamine generation and activity in various metabolic pathways by using the simple nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs). These CQDs exhibit dominant biocompatibility, negligible toxicity, and environmentally friendly characteristics using a quenching process for fluorometric dopamine detection. This innovative nanomarker can detect even small amounts of dopamine within plant cells, providing insights into plant responses to strain and anxiety. Confocal microscopy has been used to corroborate this occurrence and to provide visual proof of the process of binding dopamine with these N, S-CQDs inside the cells.
Collapse
Affiliation(s)
- Shrodha Mondal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati University, Santiniketan 731235, India
| | - Jiko Raut
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
88
|
He J, Wang L, Liu H, Sun B. Recent advances in molecularly imprinted polymers (MIPs) for visual recognition and inhibition of α-dicarbonyl compound-mediated Maillard reaction products. Food Chem 2024; 446:138839. [PMID: 38428083 DOI: 10.1016/j.foodchem.2024.138839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are important intermediates and precursors of harmful Maillard reaction products (e.g., acrylamide and late glycosylation end-products), and they exist widely in thermoprocessed sugar- or fat-rich foods. α-DCs and their end-products are prone to accumulation in the human body and lead to the development of various chronic diseases. Therefore, detection of α-DCs and their associated hazards in food samples is crucial. This paper reviews the preparation of molecularly imprinted polymers (MIPs) enabling visual intelligent responses and the strategies for recognition and capture of α-DCs and their associated hazards, and provides a comprehensive summary of the development of visual MIPs, including integration strategies and applications with real food samples. The visual signal responses as well as the mechanisms for hazard recognition and capture are highlighted. Current challenges and prospects for visual MIPs with advanced applications in food, agricultural and environmental samples are also discussed. This review will open new horizons regarding visual MIPs for recognition and inhibition of hazards in food safety.
Collapse
Affiliation(s)
- Jingbo He
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Lei Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
89
|
Ma F, Luo ZM, Wang JW, Ouyang G. Highly Efficient, Noble-Metal-Free, Fully Aqueous CO 2 Photoreduction Sensitized by a Robust Organic Dye. J Am Chem Soc 2024; 146:17773-17783. [PMID: 38888951 DOI: 10.1021/jacs.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 μs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
90
|
Jiang L, Li C, Hou X. Smartphone-based dual inverse signal MOFs fluorescence sensing for intelligent on-site visual detection of malachite green. Talanta 2024; 274:126039. [PMID: 38604043 DOI: 10.1016/j.talanta.2024.126039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The development of intelligent, sensitive, and visual methods for the rapid detection of veterinary drug residues is essential to ensure food quality and safety. Here, a smartphone-based dual inverse signal MOFs fluorescence sensing system was proposed for intelligent in-site visual detection of malachite green (MG). A UiO-66-NH2@RhB-dual-emission fluorescent probe was successfully synthesized in one step using a simple one-pot method. The inner filter effect (IFE) quenches the red fluorescence, while hydrogen bonding interaction enhances the blue fluorescence, enabling highly sensitive, accurate, and visual detection of MG dual inverse signals through fluorescence analysis. The probe showed great linearity over a wide range of 0.1-100 μmol/L, with a limit of detection (LOD) of 20 nmol/L. By integrating smartphone photography and RGB (red, green, and blue) analysis, accurate quantitative analysis of MG in water and actual fish samples can be achieved within 5 min. This developed platform holds great promise for the on-site detection of MG in practical applications, with the advantages of simplicity, cost-effectiveness, and rapidity. Consequently, it may open up a new pathway for on-site evaluation of food safety and environmental health.
Collapse
Affiliation(s)
- Lianshuang Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory of Green Chemistry & Technology, Ministry of Education, and College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
91
|
El-Semary MS, Belal F, El-Emam AA, El-Shaheny RN, El-Masry AA. A new fabricated hetero-atom doped carbon quantum dots as a fluorescent probe for metronidazole determination using garlic and red lentils with microwave assistance. LUMINESCENCE 2024; 39:e4826. [PMID: 39004784 DOI: 10.1002/bio.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
Biocompatible and highly fluorescent phosphorus, nitrogen and sulfur carbon quantum dots (P,N,S-CQDs) were synthesized using a quick and ecologically friendly process inspired from plant sources. Garlic and red lentils were utilized as natural and inexpensive sources for efficient synthesis of the carbon-based quantum dots using green microwave-irradiation, which provides an ultrafast route for carbonization of the organic biomass and subsequent fabrication of P,N,S-CQDs within only 3 min. The formed P,N,S-CQDs showed excellent blue fluorescence at λem = 412 nm when excited at 325 nm with a quantum yield up to 26.4%. These fluorescent dots were used as a nano-sensor for the determination of the commonly used antibacterial and antiprotozoal drug, metronidazole (MTR). As MTR lacked native fluorescence and prior published techniques had several limitations, the proposed methodology became increasingly relevant. This approach affords sensitive detection with a wide linear range of 0.5-100.0 μM and LOD and LOQ values of 0.14 μM and 0.42 μM, respectively. As well as, it is cost-effective and ecologically benign. The MTT test was used to evaluate the in-vitro cytotoxicity of the fabricated P,N,S-CQDs. The findings supported a minimally cytotoxic impact and good biocompatibility, which provide a future perspective for the applicability of these CQDs in biomedical applications.
Collapse
Affiliation(s)
- Mariam S El-Semary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania N El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal A El-Masry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
92
|
Vyas T, Mehta A, Choudhary S, Gogoi M, Joshi A. Evaluation of phthalic acid tri-ethylene diamine (TED) and folic acid-based carbon quantum dots for the detection of heavy metals in water resources using fibre-optic instrumentation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3533-3543. [PMID: 37248828 DOI: 10.1080/09593330.2023.2220089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Heavy metal pollution and toxicity from water resources have remained a great concern for the entire population. This research demonstrates the capability of carbon quantum dots (CQDs) for fluorescence-based heavy metal detection in different water resources using a fibre-optic spectrometer device. Two different types of CQDs phthalic acid and triethylenediamine (PT CQDs) and Folic acid (FCQDs) were synthesized using microwave irradiation and hydrothermal method, respectively. CQDs were characterized using several techniques such as TEM, EDX, XPS and FTIR. PTCQD and FCQDs both were tested for sensing capability in water reservoirs like household and river water. The results indicate that both CQDs were able to detect all six heavy metal ions (Pb2+, Co2+, Mn3+, Hg2+, Ni2+, Cr3+) tested in the study in the range of 0-100 µM. It was found that FCQDs show a three-fold higher sensitivity and greater resolution than PTCQDs for all the heavy metals samples. The CQDs' sensing capability shows that they can achieve a limit of detection in the range of 0.15-3 µM along with 100% accuracy in terms of recovery with minimal error, these results indicate that both CQDs have a tremendous potential to be used as a sensor for the detection of heavy metals even in complex water matrices. FCQDs show more sensitivity for all metals compared to PTCQDs and used in future as a sensing tool for heavy metal detection with better sensitivity and accuracy with less response time.
Collapse
Affiliation(s)
- Tanmay Vyas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Akshay Mehta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Sandeep Choudhary
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Manashjit Gogoi
- Department of Biomedical Engineering, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
93
|
Ren H, Chen Y, Labidi A, Zhao K, Xu X, Othman SI, Allam AA, Rudayni HA, Wang C. Transforming bio-waste lignin into amine functionalized carbon quantum dots for selective detection of trace Cu 2+ in aqueous system. Int J Biol Macromol 2024; 273:133118. [PMID: 38871106 DOI: 10.1016/j.ijbiomac.2024.133118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Developing carbon quantum dots (CQDs) from bio-waste lignin for effectively detecting Cu2+ is of great significance for promoting the value-added utilization of lignin resources. However, the limited amount of surface-active groups and low quantum yield of lignin-based CQDs hinder their application in this regard. Herein, bio-waste lignin was converted into value-added amine functionalized CQDs using a facile two-step hydrothermal approach. The as-synthesized CQDs modified with amino groups exhibit bright green fluorescence, abundant surface functional groups, high water solubility and uniform particle size (3.9 nm). Systematic analysis demonstrates that the rich NH2 groups (~12.3 %) on the CQDs backbone improve their fluorescence properties (quantum yield increased from 3.4 % to 21.1 %) and specific detection ability for Cu2+. The developed NH2-CQDs serve as an efficient fluorescent probe, displaying high sensitivity and selectivity towards Cu2+ in aqueous system, with a detection limit of 2.42 μmol/L, which is lower than the maximum permitted amount of Cu2+ in drinking water (20 μmol/L). The detection mechanism of NH2-CQDs for Cu2+ is attributed to the synergy of static quenching and photo-induced electron transfer. This study provides a valuable reference for the synthesis of high-quality fluorescent CQDs from lignin resources and the effective detection of trace Cu2+ in aquatic environments.
Collapse
Affiliation(s)
- Haitao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuqing Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Ke Zhao
- College of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control, Xinjiang 832003, PR China
| | - Xiaoqian Xu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. BOX 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Hassan Ahmad Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
94
|
Rizk M, Ramzy E, Toubar S, Mahmoud AM, A. El Hamd M, Alshehri S, Helmy MI. Bioinspired Carbon Dots-Based Fluorescent Sensor for the Selective Determination of a Potent Anti-Inflammatory Drug in the Presence of Its Photodegradation Products. ACS OMEGA 2024; 9:27517-27527. [PMID: 38947834 PMCID: PMC11209878 DOI: 10.1021/acsomega.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Herein, we synthesized biogenic carbon dots (CDs) with blue-shifted maximum excitation (λex/λem of 320/404 nm) from largely wasted tangerine seeds for the first time via a one-step hydrothermal method. The biogenic CDs exhibit a maximum excitation wavelength that overlaps with the absorption spectrum of ketorolac tromethamine (KETO) at 320 nm. The developed CDs serve as a turn-off fluorescent probe via an inner filter effect (IFE) quenching mechanism. The resulting CDs have high quantum yield (QY) (39% ± 2.89%, n = 5) and exhibited great performance toward KETO over a concentration range of 0.50-16.00 μg/mL with a limit of detection (LOD) = 0.17 μg/mL. The nanoprobe achieved a high % recovery in assaying KETO in tablet dosage form and had not been significantly affected by various interferents including co-formulated and co-administered drugs. The nanoprobe shows selectivity toward KETO, even in the presence of its photocatalytic degradation products. It can effectively investigate the elimination of KETO from aquatic systems and test its stability in pharmaceutical preparations. The developed nanoprobe underwent a comprehensive evaluation of its environmental impact using analytical eco-scale (AES), complex green analytical procedure index (Complex GAPI), and the Analytical GREEnness calculator (AGREE). The sustainability of the developed nano sensor was assessed and compared to the reported metal-based quantum dots probe for KETO using the innovative RGB 12 model, considering 12 white analytical chemistry (WAC) perspectives.
Collapse
Affiliation(s)
- Mohamed Rizk
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Emad Ramzy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Safaa Toubar
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Amr M. Mahmoud
- Department
of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed A. El Hamd
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa I. Helmy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| |
Collapse
|
95
|
Xu J, Zhang L, Shi Y, Liu C. Carbazolyl-Modified Neutral Ir(III) Complexes for Efficient Detection of Picric Acid in Aqueous Media. SENSORS (BASEL, SWITZERLAND) 2024; 24:4074. [PMID: 39000852 PMCID: PMC11244125 DOI: 10.3390/s24134074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Based on the electron-deficient property of picric acid (PA), two neutral Ir(III) complexes 1 and 2 modified with the electron-rich carbazolyl groups were synthesized and characterized. Both 1 and 2 exhibit aggregation-induced phosphorescence emission (AIPE) properties in THF/H2O. Among them, 2 is extremely sensitive for detecting PA with a limit of detection of 0.15 μM in THF/H2O. Furthermore, the selectivity for PA is significantly higher compared to other analytes, enabling the efficient detection of PA in four common water samples. The density functional theory calculations and the spectroscopic results confirm that the sensing mechanism is photo-induced electron transfer (PET).
Collapse
Affiliation(s)
- Jiangchao Xu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Liyan Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Chun Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
96
|
Lang B, Ma W, Liao X, Duan Y, Ren C, Chen H. Modifying carbon dots with L-phenylalanine for rapid discrimination of tryptophan enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3907-3916. [PMID: 38829128 DOI: 10.1039/d4ay00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
New chiral carbon dots (CDs), L-PCDs, for discriminating tryptophan (Trp) enantiomers were prepared in this work. Firstly, original CDs were synthesized through a hydrothermal method using pyridine-2,6-dicarboxylic acid and o-phenylenediamine as raw materials. Then, the surface of original CDs was modified with L-phenylalanine to create chiral fluorescent carbon L-PCDs. In the presence of D-Trp, the fluorescence intensity of L-PCDs decreased significantly while it remained unchanged in the presence of L-Trp. The chiral sensing system used in this study has a rapid response time of 3 minutes and can identify enantiomers with an enantioselectivity (ID/IL) of up to 3.3. For D-Trp, a good linear relationship can be obtained in the range of 0.3-4.2 mM with a limit of detection of 0.06 mM. This sensor allows for both quantitative detection of D-Trp and determination of enantiomeric percentage in the racemate. The chiral recognition mechanism is attributed to the different interaction between D-/L-Trp and L-PCDs.
Collapse
Affiliation(s)
- Bozhi Lang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Wenming Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yaning Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Key Laboratory of Special Function Materials and Structure Design (MOE), Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
97
|
Hu L, Rossetti M, Bergua JF, Parolo C, Álvarez-Diduk R, Rivas L, Idili A, Merkoçi A. Harnessing Bioluminescent Bacteria to Develop an Enzymatic-free Enzyme-linked immunosorbent assay for the Detection of Clinically Relevant Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30636-30647. [PMID: 38651970 PMCID: PMC11194763 DOI: 10.1021/acsami.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is the gold standard technique for measuring protein biomarkers due to its high sensitivity, specificity, and throughput. Despite its success, continuous advancements in ELISA and immunoassay formats are crucial to meet evolving global challenges and to address new analytical needs in diverse applications. To expand the capabilities and applications of immunoassays, we introduce a novel ELISA-like assay that we call Bioluminescent-bacteria-linked immunosorbent assay (BBLISA). BBLISA is an enzyme-free assay that utilizes the inner filter effect between the bioluminescent bacteriaAllivibrio fischeriand metallic nanoparticles (gold nanoparticles and gold iridium oxide nanoflowers) as molecular absorbers. Functionalizing these nanoparticles with antibodies induces their accumulation in wells upon binding to molecular targets, forming the classical immune-sandwich complex. Thanks to their ability to adsorb the light emitted by the bacteria, the nanoparticles can suppress the bioluminescence signal, allowing the rapid quantification of the target. To demonstrate the bioanalytical properties of the novel immunoassay platform, as a proof of principle, we detected two clinically relevant biomarkers (human immunoglobulin G and SARS-CoV-2 nucleoprotein) in human serum, achieving the same sensitivity and precision as the classic ELISA. We believe that BBLISA can be a promising alternative to the standard ELISA techniques, offering potential advancements in biomarker detection and analysis by combining nanomaterials with a low-cost, portable bioluminescent platform.
Collapse
Affiliation(s)
- Liming Hu
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Marianna Rossetti
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - José Francisco Bergua
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Claudio Parolo
- Barcelona
Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Lourdes Rivas
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Andrea Idili
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Arben Merkoçi
- Nanobioelectronics
& Biosensors Group, Catalan Institute
of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
98
|
Liu Y, Ge G, Liu H, Wang Y, Zhou P, Li B, Zhu G. Fast and eco-friendly synthesis of carbon dots from pinecone for highly effective detection of 2,4,6-trinitrophenol in environmental samples. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38887014 DOI: 10.1080/09593330.2024.2367725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
2,4,6-Trinitrophenol (TNP) has high explosive risks and biological toxicity, and there has been considerable concern over the determination of TNP. In the present work, fluorescent carbon dots (CDs) stemmed from a green carbon source of pinecone by the facile hydrothermal approach. A novel environment- friendly fluorescent probe was developed to efficiently detect TNP by using the obtained CDs with remarkable fluorescence stability. The fluorescent CDs exhibited obvious excitation dependence with the highest peaks for excitation and emission occurring at 321 and 411 nm, respectively. The fluorescence intensity is significantly reduced by TNP owing to the inner filter effect with the CDs. The probe exhibited good linearity with TNP concentrations in the range of 0.025-20 μg mL-1, and the limit of detection was as low as 8.5 ng mL-1. Additionally, the probe proved successful in sensing TNP quantitatively in actual environmental samples with satisfied recoveries of 95.6-99.6%. The developed fluorescent probe offered an environment-friendly, efficient, rapid, and reliable platform for detecting trace TNP in the environmental field.HighlightsNovel carbon dots were synthesised from green precursors of pineal powder.The highly effective quenching process was put down to the inner filter effect.The as-constructed fluorescent probe was successfully utilised for sensing 2,4,6-trinitrophenol in environmental samples.The proposed method was simple, rapid, efficient, economical, and eco-friendly.
Collapse
Affiliation(s)
- Yongli Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guobei Ge
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Huanjia Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Yuxin Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Penghui Zhou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Bin Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| | - Guifen Zhu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, Henan Province's International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang, People's Republic of China
| |
Collapse
|
99
|
Qureshi ZA, Dabash H, Ponnamma D, Abbas M. Carbon dots as versatile nanomaterials in sensing and imaging: Efficiency and beyond. Heliyon 2024; 10:e31634. [PMID: 38832274 PMCID: PMC11145243 DOI: 10.1016/j.heliyon.2024.e31634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Carbon dots (CDs) have emerged as a versatile and promising carbon-based nanomaterial with exceptional optical properties, including tunable emission wavelengths, high quantum yield, and photostability. CDs are appropriate for various applications with many benefits, such as biocompatibility, low toxicity, and simplicity of surface modification. Thanks to their tunable optical properties and great sensitivity, CDs have been used in sensing as fluorescent probes for detecting pH, heavy metal ions, and other analytes. In addition, CDs have demonstrated potential as luminescence converters for white organic light-emitting diodes and light emitters in optoelectronic devices due to their superior optical qualities and exciton-independent emission. CDs have been used for drug administration and bioimaging in the biomedical field due to their biocompatibility, low cytotoxicity, and ease of functionalization. Additionally, due to their stability, efficient charge separation, and low recombination rate, CDs have shown interesting uses in energy systems, such as photocatalysis and energy conversion. This article highlights the growing possibilities and potential of CDs as adaptable nanomaterials in a variety of interdisciplinary areas related to sensing and imaging, at the same time addressing the major challenges involved in the current research and proposing scientific solutions to apply CDs in the development of a super smart society.
Collapse
Affiliation(s)
| | - Hanan Dabash
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - M.K.G. Abbas
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
100
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|