51
|
Bolgina T, Somashekarappa V, Cappa SF, Cherkasova Z, Feurra M, Malyutina S, Sapuntsova A, Shtyrov Y, Dragoy O. Repetitive transcranial magnetic stimulation modulates action naming over the left but not right inferior frontal gyrus. Brain Struct Funct 2022; 227:2797-2808. [PMID: 36194276 DOI: 10.1007/s00429-022-02574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]
Abstract
fMRI language mapping studies report right-hemispheric contribution to language in healthy individuals. However, it remains unclear whether these right-hemispheric patterns of activity are critical for language, which is highly relevant for clinical preoperative language mapping. The available findings are controversial. In this study, we first measured individual patterns of language lateralization with an fMRI language localizer in healthy participants with different handedness (N = 31). Then, the same participants received rTMS over the individual coordinates of peak fMRI-based activation in the left and right inferior frontal gyri. During rTMS, participants performed a picture naming task. It included both objects and actions to test whether naming of nouns and verbs would be equally modulated by rTMS. Stimulation of the left inferior frontal gyrus resulted in accuracy facilitation of verb production regardless of individual language lateralization. No modulation of object naming was found at any stimulation site in terms of accuracy nor reaction time. This study causally confirmed the critical contribution of the left, but not the right hemisphere to verb production regardless of the language lateralization patterns observed with fMRI. Also, the results stress that action rather than object naming is the task of choice for mapping language in the frontal lobe.
Collapse
Affiliation(s)
- Tatiana Bolgina
- Centre for Brain and Language, HSE University, 3 Krivokolenny pereulok, Moscow, Russia, 101000.
| | - Vidya Somashekarappa
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000
| | - Stefano F Cappa
- IUSS Cognitive Neuroscience Centre, Institute of Advanced Study, Pavia, Italy
| | - Zoya Cherkasova
- Centre for Brain and Language, HSE University, 3 Krivokolenny pereulok, Moscow, Russia, 101000
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000
| | - Svetlana Malyutina
- Centre for Brain and Language, HSE University, 3 Krivokolenny pereulok, Moscow, Russia, 101000
| | | | - Yury Shtyrov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia, 101000.,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Olga Dragoy
- Centre for Brain and Language, HSE University, 3 Krivokolenny pereulok, Moscow, Russia, 101000.,Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
52
|
Natalizi F, Piras F, Vecchio D, Spalletta G, Piras F. Preoperative Navigated Transcranial Magnetic Stimulation: New Insight for Brain Tumor-Related Language Mapping. J Pers Med 2022; 12:1589. [PMID: 36294728 PMCID: PMC9604795 DOI: 10.3390/jpm12101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Preoperative brain mapping methods are particularly important in modern neuro-oncology when a tumor affects eloquent language areas since damage to parts of the language circuits can cause significant impairments in daily life. This narrative review examines the literature regarding preoperative and intraoperative language mapping using repetitive navigated transcranial magnetic stimulation (rnTMS) with or without direct electrical stimulation (DES) in adult patients with tumors in eloquent language areas. The literature shows that rnTMS is accurate in detecting preexisting language disorders and positive intraoperative mapping regions. In terms of the region extent and clinical outcomes, rnTMS has been shown to be accurate in identifying positive sites to guide resection, reducing surgery duration and craniotomy size and thus improving clinical outcomes. Before incorporating rnTMS into the neurosurgical workflow, the refinement of protocols and a consensus within the neuro-oncology community are required.
Collapse
Affiliation(s)
- Federica Natalizi
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
- Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy
- PhD Program in Behavioral Neuroscience, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neurophychiatry, IRCSS Santa Lucia Fundation, Via Ardeatina 306, 00134 Rome, Italy
| |
Collapse
|
53
|
Carrabba G, Fiore G, Di Cristofori A, Bana C, Borellini L, Zarino B, Conte G, Triulzi F, Rocca A, Giussani C, Caroli M, Locatelli M, Bertani G. Diffusion tensor imaging, intra-operative neurophysiological monitoring and small craniotomy: Results in a consecutive series of 103 gliomas. Front Oncol 2022; 12:897147. [PMID: 36176387 PMCID: PMC9513471 DOI: 10.3389/fonc.2022.897147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows visualization of the main white matter tracts while intraoperative neurophysiological monitoring (IONM) represents the gold standard for surgical resection of gliomas. In recent years, the use of small craniotomies has gained popularity thanks to neuronavigation and to the low morbidity rates associated with shorter surgical procedures. The aim of this study was to review a series of patients operated for glioma using DTI, IONM, and tumor-targeted craniotomies. The retrospective analysis included patients with supratentorial glioma who met the following inclusion criteria: preoperative DTI, intraoperative IONM, tumor-targeted craniotomy, pre- and postoperative MRI, and complete clinical charts. The DTI was performed on a 3T scanner. The IONM included electroencephalography (EEG), transcranial (TC) and/or cortical motor-evoked potentials (MEP), electrocorticography (ECoG), and direct electrical stimulation (DES). Outcomes included postoperative neurological deficits, volumetric extent of resection (EOR), and overall survival (OS). One hundred and three patients (61 men, 42 women; mean age 54 ± 14 years) were included and presented the following WHO histologies: 65 grade IV, 19 grade III, and 19 grade II gliomas. After 3 months, only three patients had new neurological deficits. The median postoperative volume was 0cc (IQR 3). The median OS for grade IV gliomas was 15 months, while for low-grade gliomas it was not reached. In our experience, a small craniotomy and a tumor resection supported by IONM and DTI permitted to achieve satisfactory results in terms of neurological outcomes, EOR, and OS for glioma patients.
Collapse
Affiliation(s)
- Giorgio Carrabba
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
- *Correspondence: Giorgio Carrabba,
| | - Giorgio Fiore
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Andrea Di Cristofori
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
| | - Cristina Bana
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Linda Borellini
- Neurophysiopathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milano, Italy
| | - Barbara Zarino
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Giorgio Conte
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Fabio Triulzi
- Neuroradiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Alessandra Rocca
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Carlo Giussani
- Neurosugery, Azienda Socio Sanitaria Territoriale Monza - Ospedale San Gerardo di Monza, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Milan, Italy
| | - Manuela Caroli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Marco Locatelli
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Giulio Bertani
- Neurosurgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
54
|
Lioumis P, Rosanova M. The role of neuronavigation in TMS-EEG studies: current applications and future perspectives. J Neurosci Methods 2022; 380:109677. [PMID: 35872153 DOI: 10.1016/j.jneumeth.2022.109677] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) allows measuring non-invasively the electrical response of the human cerebral cortex to a direct perturbation. Complementing TMS-EEG with a structural neuronavigation tool (nTMS-EEG) is key for accurately selecting cortical areas, targeting them, and adjusting the stimulation parameters based on some relevant anatomical priors. This step, together with the employment of visualization tools designed to perform a quality check of TMS-evoked potentials (TEPs) in real-time during acquisition, is key for maximizing the impact of the TMS pulse on the cortex and in ensuring highly reproducible measurements within sessions and across subjects. Moreover, storing stimulation parameters in the neuronavigation system can help in reproducing the stimulation parameters within and across experimental sessions and sharing them across research centers. Finally, the systematic employment of neuronavigation in TMS-EEG studies is also key to standardize measurements in clinical populations in search for reliable diagnostic and prognostic TMS-EEG-based biomarkers for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
55
|
Jin F, Bruijn SM, Daffertshofer A. Accounting for Stimulations That Do Not Elicit Motor-Evoked Potentials When Mapping Cortical Representations of Multiple Muscles. Front Hum Neurosci 2022; 16:920538. [PMID: 35814946 PMCID: PMC9263445 DOI: 10.3389/fnhum.2022.920538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
The representation of muscles in the cortex can be mapped using navigated transcranial magnetic stimulation. The commonly employed measure to quantify the mapping are the center of gravity or the centroid of the region of excitability as well as its size. Determining these measures typically relies only on stimulation points that yield motor-evoked potentials (MEPs); stimulations that do not elicit an MEP, i.e., non-MEP points, are ignored entirely. In this study, we show how incorporating non-MEP points may affect the estimates of the size and centroid of the excitable area in eight hand and forearm muscles after mono-phasic single-pulse TMS. We performed test-retest assessments in twenty participants and estimated the reliability of centroids and sizes of the corresponding areas using inter-class correlation coefficients. For most muscles, the reliability turned out good. As expected, removing the non-MEP points significantly decreased area sizes and area weights, suggesting that conventional approaches that do not account for non-MEP points are likely to overestimate the regions of excitability.
Collapse
Affiliation(s)
- Fang Jin
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Faculty of Behavioural and Movement Sciences, Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sjoerd M. Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Faculty of Behavioural and Movement Sciences, Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Faculty of Behavioural and Movement Sciences, Institute Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Andreas Daffertshofer,
| |
Collapse
|
56
|
Schiavao LJV, Neville Ribeiro I, Yukie Hayashi C, Gadelha Figueiredo E, Russowsky Brunoni A, Jacobsen Teixeira M, Pokorny G, Silva Paiva W. Assessing the Capabilities of Transcranial Magnetic Stimulation (TMS) to Aid in the Removal of Brain Tumors Affecting the Motor Cortex: A Systematic Review. Neuropsychiatr Dis Treat 2022; 18:1219-1235. [PMID: 35734549 PMCID: PMC9208734 DOI: 10.2147/ndt.s359855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction The brain tumor is frequently related to severe motor impairment and impacts the quality of life. The corticospinal tract can sometimes be affected depending on the type and size of the neoplasm, so different tools can evaluate motor function and connections. It is essential to organize surgical procedures and plan the approach. Functional motor status is mapped before, during, and after surgery. Studying corticospinal tract status can help map the functional areas, predict postoperative outcomes, and help the decision, reducing neurological deficits, aiming to preserve functional networks, using the concepts of white matters localization and fibbers connections. Nowadays, there are new techniques that provide functional information regarding the motor cortex, such as transcranial magnetic stimulation (TMS), direct cortical stimulation (DCS), and navigated TMS (nTMS). These tools can be used to plan a customized surgical strategy and the role of motor evoked potentials (MEPs) is well described during intra-operative, using intraoperative neuromonitoring. MEPs can help to localize primary motor areas and delineate the cut-off point of resection in real-time, using direct stimulation. In the post-operative, the MEP has increased your function as a predictive marker of permanent or transitory neurological lesion marker. Methods Systematic review performed in MEDLINE via PUBMED, EMBASE, and SCOPUS databases regarding the post-operative assessment of MEP in patients with brain tumors. The search strategy included the following terms: (("Evoked Potentials, Motor"[Mesh]) AND "Neoplasms"[Mesh]) AND "Transcranial Magnetic Stimulation"[Mesh] AND "Brain Tumor"[Mesh]), the analysis followed the PRISMA guidelines for systematic reviews, the review spanned until 06/04/2021, inclusion criteria were studies presenting confirmed diagnosis of brain tumor (primary or metastatic), patients >18 y/o, using TMS, Navigated TMS, and/or Evoked Potentials as tools in preoperative planning or at the intra-operative helping the evaluation of the neurological status of the motor cortex, articles published in peer-reviewed journals, and written in English or Portuguese. Results A total of 38 studies were selected for this review, of which 14 investigated the potential of nTMS to predict the occurrence of motor deficits, while 25 of the articles investigated the capabilities of the nTMS technique in performing pre/intraoperative neuro mapping of the motor cortex. Conclusion Further studies regarding motor function assessment are needed and standardized protocols for MEPs also need to be defined.
Collapse
Affiliation(s)
- Lucas Jose Vaz Schiavao
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
- Neurology, Instituto do Câncer do Estado de São Paulo – ICESP, São Paulo, Brazil
| | - Iuri Neville Ribeiro
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
- Neurology, Instituto do Câncer do Estado de São Paulo – ICESP, São Paulo, Brazil
| | - Cintya Yukie Hayashi
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
| | - Eberval Gadelha Figueiredo
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
| | - Andre Russowsky Brunoni
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
| | | | - Wellingson Silva Paiva
- Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo- FMUSP – University of São Paulo, São Paulo, Brazil
| |
Collapse
|
57
|
Ojala J, Vanhanen J, Harno H, Lioumis P, Vaalto S, Kaunisto MA, Putaala J, Kangasniemi M, Kirveskari E, Mäkelä JP, Kalso E. A Randomized, Sham-Controlled Trial of Repetitive Transcranial Magnetic Stimulation Targeting M1 and S2 in Central Poststroke Pain: A Pilot Trial. Neuromodulation 2022; 25:538-548. [PMID: 35670063 DOI: 10.1111/ner.13496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Central poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment. MATERIALS AND METHODS This prospective, randomized, double-blind, sham-controlled three-arm crossover trial assessed navigated rTMS (nrTMS) targeted to M1 and S2 (10 sessions, 5050 pulses per session at 10 Hz). Participants were evaluated for pain, depression, anxiety, health-related quality of life, upper limb function, and three plasticity-related gene polymorphisms including Dopamine D2 Receptor (DRD2). We monitored pain intensity and interference before and during stimulations and at one month. A conditioned pain modulation test was performed using the cold pressor test. This assessed the efficacy of the descending inhibitory system, which may transmit TMS effects in pain control. RESULTS We prescreened 73 patients, screened 29, and included 21, of whom 17 completed the trial. NrTMS targeted to S2 resulted in long-term (from baseline to one-month follow-up) pain intensity reduction of ≥30% in 18% (3/17) of participants. All stimulations showed a short-term effect on pain (17-20% pain relief), with no difference between M1, S2, or sham stimulations, indicating a strong placebo effect. Only nrTMS targeted to S2 resulted in a significant long-term pain intensity reduction (15% pain relief). The cold pressor test reduced CPSP pain intensity significantly (p = 0.001), indicating functioning descending inhibitory controls. The homozygous DRD2 T/T genotype is associated with the M1 stimulation response. CONCLUSIONS S2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.
Collapse
Affiliation(s)
- Juhani Ojala
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Jukka Vanhanen
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna Harno
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pantelis Lioumis
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Selja Vaalto
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jukka Putaala
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marko Kangasniemi
- HUS Diagnostic Center, Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erika Kirveskari
- HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
58
|
Diehl C, Rosenkranz E, Mißlbeck M, Schwendner M, Sollmann N, Ille S, Meyer B, Combs S, Bernhardt D, Krieg S. nTMS-derived DTI-based motor fiber tracking in radiotherapy treatment planning of high-grade gliomas for avoidance of motor structures. Radiother Oncol 2022; 171:189-197. [DOI: 10.1016/j.radonc.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
59
|
Forearm and Hand Muscles Exhibit High Coactivation and Overlapping of Cortical Motor Representations. Brain Topogr 2022; 35:322-336. [PMID: 35262840 PMCID: PMC9098558 DOI: 10.1007/s10548-022-00893-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Most of the motor mapping procedures using navigated transcranial magnetic stimulation (nTMS) follow the conventional somatotopic organization of the primary motor cortex (M1) by assessing the representation of a particular target muscle, disregarding the possible coactivation of synergistic muscles. In turn, multiple reports describe a functional organization of the M1 with an overlapping among motor representations acting together to execute movements. In this context, the overlap degree among cortical representations of synergistic hand and forearm muscles remains an open question. This study aimed to evaluate the muscle coactivation and representation overlapping common to the grasping movement and its dependence on the stimulation parameters. The nTMS motor maps were obtained from one carpal muscle and two intrinsic hand muscles during rest. We quantified the overlapping motor maps in size (area and volume overlap degree) and topography (similarity and centroid Euclidean distance) parameters. We demonstrated that these muscle representations are highly overlapped and similar in shape. The overlap degrees involving the forearm muscle were significantly higher than only among the intrinsic hand muscles. Moreover, the stimulation intensity had a stronger effect on the size compared to the topography parameters. Our study contributes to a more detailed cortical motor representation towards a synergistic, functional arrangement of M1. Understanding the muscle group coactivation may provide more accurate motor maps when delineating the eloquent brain tissue during pre-surgical planning.
Collapse
|
60
|
Braden AA, Weatherspoon SE, Boardman T, Williard T, Adkins A, Gibbs SK, Wheless JW, Narayana S. Image-guided TMS is safe in a predominately pediatric clinical population. Clin Neurophysiol 2022; 137:193-206. [DOI: 10.1016/j.clinph.2022.01.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
|
61
|
Ohlerth AK, Bastiaanse R, Nickels L, Neu B, Zhang W, Ille S, Sollmann N, Krieg SM. Dual-Task nTMS Mapping to Visualize the Cortico-Subcortical Language Network and Capture Postoperative Outcome-A Patient Series in Neurosurgery. Front Oncol 2022; 11:788122. [PMID: 35127493 PMCID: PMC8814635 DOI: 10.3389/fonc.2021.788122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Perioperative assessment of language function in brain tumor patients commonly relies on administration of object naming during stimulation mapping. Ample research, however, points to the benefit of adding verb tasks to the testing paradigm in order to delineate and preserve postoperative language function more comprehensively. This research uses a case series approach to explore the feasibility and added value of a dual-task protocol that includes both a noun task (object naming) and a verb task (action naming) in perioperative delineation of language functions. MATERIALS AND METHODS Seven neurosurgical cases underwent perioperative language assessment with both object and action naming. This entailed preoperative baseline testing, preoperative stimulation mapping with navigated Transcranial Magnetic Stimulation (nTMS) with subsequent white matter visualization, intraoperative mapping with Direct Electrical Stimulation (DES) in 4 cases, and postoperative imaging and examination of language change. RESULTS We observed a divergent pattern of language organization and decline between cases who showed lesions close to the delineated language network and hence underwent DES mapping, and those that did not. The latter displayed no new impairment postoperatively consistent with an unharmed network for the neural circuits of both object and action naming. For the cases who underwent DES, on the other hand, a higher sensitivity was found for action naming over object naming. Firstly, action naming preferentially predicted the overall language state compared to aphasia batteries. Secondly, it more accurately predicted intraoperative positive language areas as revealed by DES. Thirdly, double dissociations between postoperatively unimpaired object naming and impaired action naming and vice versa indicate segregated skills and neural representation for noun versus verb processing, especially in the ventral stream. Overlaying postoperative imaging with object and action naming networks revealed that dual-task nTMS mapping can explain the drop in performance in those cases where the network appeared in proximity to the resection cavity. CONCLUSION Using a dual-task protocol for visualization of cortical and subcortical language areas through nTMS mapping proved to be able to capture network-to-deficit relations in our case series. Ultimately, adding action naming to clinical nTMS and DES mapping may help prevent postoperative deficits of this seemingly segregated skill.
Collapse
Affiliation(s)
- Ann-Katrin Ohlerth
- Center for Language and Cognition Groningen, Groningen, Netherlands
- International Doctorate in Experimental Approaches to Language and Brain (IDEALAB, Universities of Groningen, Potsdam, Newcastle, and Macquarie University), Sydney, NSW, Australia
| | - Roelien Bastiaanse
- Center for Language and Brain, Higher School of Economics, National Research University, Moscow, Russia
| | - Lyndsey Nickels
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Beate Neu
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wei Zhang
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
62
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
63
|
Neuronavigated repetitive transcranial magnetic stimulation as novel mapping technique provides insights into language function in primary progressive aphasia. Brain Imaging Behav 2021; 16:1208-1216. [PMID: 34964088 PMCID: PMC9107445 DOI: 10.1007/s11682-021-00605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/13/2022]
Abstract
Navigated repetitive transcranial magnetic stimulation (nrTMS) is an innovative technique that provides insight into language function with high accuracy in time and space. So far, nrTMS has mainly been applied in presurgical language mapping of patients with intracranial neoplasms. For the present study, nrTMS was used for language mapping in primary progressive aphasia (PPA). Seven patients (median age: 70 years, 4 males) with the non-fluent variant of PPA (nfvPPA) were included in this pilot study. Trains of nrTMS (5 Hz, 100% resting motor threshold) caused virtual lesions at 46 standardized cortical stimulation targets per hemisphere. Patients’ errors in a naming task during stimulation were counted. The majority of errors induced occurred during frontal lobe stimulation (34.3%). Timing errors and non-responses were most frequent. More errors were induced in the right hemisphere (58%) than in the left hemisphere (42%). Mapping was tolerated by all patients, however, discomfort or pain was reported for stimulation of frontal areas. The elevated right-hemispheric error rate in our study could be due to a partial shift of language function to the right hemisphere in neurodegenerative aphasia during the course of disease and therefore points to the existence of neuronal plasticity in nfvPPA. While this is an interesting finding for neurodegenerative disorders per se, its promotion might also harbor future therapeutic targets.
Collapse
|
64
|
Zhang H, Ille S, Sogerer L, Schwendner M, Schröder A, Meyer B, Wiestler B, Krieg SM. Elucidating the structural-functional connectome of language in glioma-induced aphasia using nTMS and DTI. Hum Brain Mapp 2021; 43:1836-1849. [PMID: 34951084 PMCID: PMC8933329 DOI: 10.1002/hbm.25757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/24/2022] Open
Abstract
Glioma‐induced aphasia (GIA) is frequently observed in patients with newly diagnosed gliomas. Previous studies showed an impact of gliomas not only on local brain regions but also on the functionality and structure of brain networks. The current study used navigated transcranial magnetic stimulation (nTMS) to localize language‐related regions and to explore language function at the network level in combination with connectome analysis. Thirty glioma patients without aphasia (NA) and 30 patients with GIA were prospectively enrolled. Tumors were located in the vicinity of arcuate fasciculus‐related cortical and subcortical regions. The visualized ratio (VR) of each tract was calculated based on their respective fractional anisotropy (FA) and maximal FA. Using a thresholding method of each tract at 25% VR and 50% VR, DTI‐based tractography was performed to construct structural brain networks for graph‐based connectome analysis, containing functional data acquired by nTMS. The average degree of left hemispheric networks (Mleft) was higher in the NA group than in the GIA group for both VR thresholds. Differences of global and local efficiency between 25% and 50% VR thresholds were significantly lower in the NA group than in the GIA group. Aphasia levels correlated with connectome properties in Mleft and networks based on positive nTMS mapping regions (Mpos). A more substantial relation to language performance was found in Mpos and Mleft compared to the network of negative mapping regions (Mneg). Gliomas causing deterioration of language are related to various cerebral networks. In NA patients, mainly Mneg was impacted, while Mpos was impacted in GIA patients.
Collapse
Affiliation(s)
- Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Lisa Sogerer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- School of Medicine, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Translational Cancer Research of the TUM (TranslaTUM), Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,School of Medicine, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
65
|
Nazarova M, Asmolova A. Towards more reliable TMS studies - How fast can we probe cortical excitability? Clin Neurophysiol Pract 2021; 7:21-22. [PMID: 35036660 PMCID: PMC8752992 DOI: 10.1016/j.cnp.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 101000, Krivokolenny per. 3 Entrance 2, Moscow, Russian Federation
- Federal State Budgetary Institution Federal Center for Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117513 Ostrovityanova Street 1/10, Russian Federation
| | - Anastasia Asmolova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, 101000, Krivokolenny per. 3 Entrance 2, Moscow, Russian Federation
| |
Collapse
|
66
|
Ohlerth AK, Bastiaanse R, Negwer C, Sollmann N, Schramm S, Schröder A, Krieg SM. Benefit of Action Naming Over Object Naming for Visualization of Subcortical Language Pathways in Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging-Fiber Tracking. Front Hum Neurosci 2021; 15:748274. [PMID: 34803634 PMCID: PMC8603927 DOI: 10.3389/fnhum.2021.748274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Visualization of functionally significant subcortical white matter fibers is needed in neurosurgical procedures in order to avoid damage to the language network during resection. In an effort to achieve this, positive cortical points revealed during preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) can be employed as regions of interest (ROIs) for diffusion tensor imaging (DTI) fiber tracking. However, the effect that the use of different language tasks has on nTMS mapping and subsequent DTI-fiber tracking remains unexplored. The visualization of ventral stream tracts with an assumed lexico-semantic role may especially benefit from ROIs delivered by the lexico-semantically demanding verb task, Action Naming. In a first step, bihemispheric nTMS language mapping was administered in 18 healthy participants using the standard task Object Naming and the novel task Action Naming to trigger verbs in a small sentence context. Cortical areas in which nTMS induced language errors were identified as language-positive cortical sites. In a second step, nTMS-based DTI-fiber tracking was conducted using solely these language-positive points as ROIs. The ability of the two tasks’ ROIs to visualize the dorsal tracts Arcuate Fascicle and Superior Longitudinal Fascicle, the ventral tracts Inferior Longitudinal Fascicle, Uncinate Fascicle, and Inferior Fronto-Occipital Fascicle, the speech-articulatory Cortico-Nuclear Tract, and interhemispheric commissural fibers was compared in both hemispheres. In the left hemisphere, ROIs of Action Naming led to a significantly higher fraction of overall visualized tracts, specifically in the ventral stream’s Inferior Fronto-Occipital and Inferior Longitudinal Fascicle. No difference was found between tracking with Action Naming vs. Object Naming seeds for dorsal stream tracts, neither for the speech-articulatory tract nor the inter-hemispheric connections. While the two tasks appeared equally demanding for phonological-articulatory processes, ROI seeding through the task Action Naming seemed to better visualize lexico-semantic tracts in the ventral stream. This distinction was not evident in the right hemisphere. However, the distribution of tracts exposed was, overall, mirrored relative to those in the left hemisphere network. In presurgical practice, mapping and tracking of language pathways may profit from these findings and should consider inclusion of the Action Naming task, particularly for lesions in ventral subcortical regions.
Collapse
Affiliation(s)
- Ann-Katrin Ohlerth
- Center for Language and Cognition Groningen, University of Groningen, Groningen, Netherlands.,International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), University of Groningen, Groningen, Netherlands
| | - Roelien Bastiaanse
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Chiara Negwer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Severin Schramm
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
67
|
Ille S, Schroeder A, Hostettler IC, Wostrack M, Meyer B, Krieg SM. Impacting the Treatment of Highly Eloquent Supratentorial Cerebral Cavernous Malformations by Noninvasive Functional Mapping-An Observational Cohort Study. Oper Neurosurg (Hagerstown) 2021; 21:467-477. [PMID: 34624894 DOI: 10.1093/ons/opab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCM) may cause cavernoma-related epilepsy (CRE) and intracranial hemorrhage (ICH). Functional mapping has shown its usefulness during the resection of eloquent lesions including the treatment of brain arteriovenous malformations. OBJECTIVE To evaluate the impact of noninvasive functional mapping on decision-making and resection of eloquently located CCM. METHODS Of 126 patients with intracranial cavernomas, we prospectively included 40 consecutive patients (31.7%) with highly eloquent CCM between 2012 and 2020. We performed functional mapping via navigated transcranial magnetic stimulation (nTMS) motor mapping in 30 cases and nTMS language mapping in 20 cases. Twenty patients suffered from CRE. CCM caused ICH in 18 cases. RESULTS We used functional mapping data including function-based tractography in all cases. Indication toward (31 cases) or against (9 cases) CCM resection was influenced by noninvasive functional mapping in 36 cases (90%). We resected CCMs in 24 cases, and 7 patients refused the recommendation for surgery. In 19 and 4 cases, we used additional intraoperative neuromonitoring and awake craniotomy, respectively. Patients suffered from transient postoperative motor or language deficits in 2 and 2 cases, respectively. No patient suffered from permanent deficits. After 1 yr of follow-up, anti-epileptic drugs could be discontinued in all patients who underwent surgery but 1 patient. CONCLUSION Surgery-related deficit rates are low even for highly eloquent CCM and seizure outcome is excellent. The present results show that noninvasive functional mapping and function-based tractography is a useful tool for the decision-making process and during microsurgical resection of eloquently located CCM.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel C Hostettler
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
68
|
Ntemou E, Ohlerth AK, Ille S, Krieg SM, Bastiaanse R, Rofes A. Mapping Verb Retrieval With nTMS: The Role of Transitivity. Front Hum Neurosci 2021; 15:719461. [PMID: 34539364 PMCID: PMC8442843 DOI: 10.3389/fnhum.2021.719461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/31/2021] [Indexed: 11/25/2022] Open
Abstract
Navigated Transcranial Magnetic Stimulation (nTMS) is used to understand the cortical organization of language in preparation for the surgical removal of a brain tumor. Action naming with finite verbs can be employed for that purpose, providing additional information to object naming. However, little research has focused on the properties of the verbs that are used in action naming tasks, such as their status as transitive (taking an object; e.g., to read) or intransitive (not taking an object; e.g., to wink). Previous neuroimaging data show higher activation for transitive compared to intransitive verbs in posterior perisylvian regions bilaterally. In the present study, we employed nTMS and production of finite verbs to investigate the cortical underpinnings of transitivity. Twenty neurologically healthy native speakers of German participated in the study. They underwent language mapping in both hemispheres with nTMS. The action naming task with finite verbs consisted of transitive (e.g., The man reads the book) and intransitive verbs (e.g., The woman winks) and was controlled for relevant psycholinguistic variables. Errors were classified in four different error categories (i.e., non-linguistic errors, grammatical errors, lexico-semantic errors and, errors at the sound level) and were analyzed quantitatively. We found more nTMS-positive points in the left hemisphere, particularly in the left parietal lobe for the production of transitive compared to intransitive verbs. These positive points most commonly corresponded to lexico-semantic errors. Our findings are in line with previous aphasia and neuroimaging studies, suggesting that a more widespread network is used for the production of verbs with a larger number of arguments (i.e., transitives). The higher number of lexico-semantic errors with transitive compared to intransitive verbs in the left parietal lobe supports previous claims for the role of left posterior areas in the retrieval of argument structure information.
Collapse
Affiliation(s)
- Effrosyni Ntemou
- International Doctorate in Experimental Approaches to Language and Brain (IDEALAB, Universities of Groningen, Potsdam, Newcastle, Trento and Macquarie University), Sydney, NSW, Australia.,Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| | - Ann-Katrin Ohlerth
- International Doctorate in Experimental Approaches to Language and Brain (IDEALAB, Universities of Groningen, Potsdam, Newcastle, Trento and Macquarie University), Sydney, NSW, Australia.,Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roelien Bastiaanse
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, Netherlands
| |
Collapse
|
69
|
Rosenstock T, Häni L, Grittner U, Schlinkmann N, Ivren M, Schneider H, Raabe A, Vajkoczy P, Seidel K, Picht T. Bicentric validation of the navigated transcranial magnetic stimulation motor risk stratification model. J Neurosurg 2021; 136:1194-1206. [PMID: 34534966 DOI: 10.3171/2021.3.jns2138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors sought to validate the navigated transcranial magnetic stimulation (nTMS)-based risk stratification model. The postoperative motor outcome in glioma surgery may be preoperatively predicted based on data derived by nTMS. The tumor-to-tract distance (TTD) and the interhemispheric resting motor threshold (RMT) ratio (as a surrogate parameter for cortical excitability) emerged as major factors related to a new postoperative deficit. METHODS In this bicentric study, a consecutive prospectively collected cohort underwent nTMS mapping with diffusion tensor imaging (DTI) fiber tracking of the corticospinal tract prior to surgery of motor eloquent gliomas. The authors analyzed whether the following items were associated with the patient's outcome: patient characteristics, TTD, RMT value, and diffusivity parameters (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]). The authors assessed the validity of the published risk stratification model and derived a new model. RESULTS A new postoperative motor deficit occurred in 36 of 165 patients (22%), of whom 20 patients still had a deficit after 3 months (13%; n3 months = 152). nTMS-verified infiltration of the motor cortex as well as a TTD ≤ 8 mm were confirmed as risk factors. No new postoperative motor deficit occurred in patients with TTD > 8 mm. In contrast to the previous risk stratification, the RMT ratio was not substantially correlated with the motor outcome, but high RMT values of both the tumorous and healthy hemisphere were associated with worse motor outcome. The FA value was negatively associated with worsening of motor outcome. Accuracy analysis of the final model showed a high negative predictive value (NPV), so the preoperative application may accurately predict the preservation of motor function in particular (day of discharge: sensitivity 47.2%, specificity 90.7%, positive predictive value [PPV] 58.6%, NPV 86.0%; 3 months: sensitivity 85.0%, specificity 78.8%, PPV 37.8%, NPV 97.2%). CONCLUSIONS This bicentric validation analysis further improved the model by adding the FA value of the corticospinal tract, demonstrating the relevance of nTMS/nTMS-based DTI fiber tracking for clinical decision making.
Collapse
Affiliation(s)
- Tizian Rosenstock
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin.,2Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany
| | - Levin Häni
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ulrike Grittner
- 4Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin; and
| | - Nicolas Schlinkmann
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Meltem Ivren
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Heike Schneider
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Andreas Raabe
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Kathleen Seidel
- 3Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Thomas Picht
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin.,5Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| |
Collapse
|
70
|
Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context. Brain Sci 2021; 11:brainsci11091190. [PMID: 34573211 PMCID: PMC8469437 DOI: 10.3390/brainsci11091190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) is currently based on the disruption of performance during object naming. The resulting cortical language maps, however, lack accuracy when compared to intraoperative mapping. The question arises whether nTMS results can be improved, when another language task is considered, involving verb retrieval in sentence context. Twenty healthy German speakers were tested with object naming and a novel action naming task during nTMS language mapping. Error rates and categories in both hemispheres were compared. Action naming showed a significantly higher error rate than object naming in both hemispheres. Error category comparison revealed that this discrepancy stems from more lexico-semantic errors during action naming, indicating lexico-semantic retrieval of the verb being more affected than noun retrieval. In an area-wise comparison, higher error rates surfaced in multiple right-hemisphere areas, but only trends in the left ventral postcentral gyrus and middle superior temporal gyrus. Hesitation errors contributed significantly to the error count, but did not dull the mapping results. Inclusion of action naming coupled with a detailed error analysis may be favorable for nTMS mapping and ultimately improve accuracy in preoperative planning. Moreover, the results stress the recruitment of both left- and right-hemispheric areas during naming.
Collapse
|
71
|
Schramm S, Mehta A, Auguste KI, Tarapore PE. Navigated transcranial magnetic stimulation mapping of the motor cortex for preoperative diagnostics in pediatric epilepsy. J Neurosurg Pediatr 2021; 28:287-294. [PMID: 34171834 DOI: 10.3171/2021.2.peds20901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0-17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.
Collapse
Affiliation(s)
- Severin Schramm
- 1Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Aashna Mehta
- 2Berkeley School of Public Health, University of California, Berkeley; and
| | - Kurtis I Auguste
- 3Department of Neurosurgery, University of California, San Francisco, California
| | - Phiroz E Tarapore
- 3Department of Neurosurgery, University of California, San Francisco, California
| |
Collapse
|
72
|
Faghihpirayesh R, Yarossi M, Imbiriba T, Brooks DH, Tunik E, Erdogmus D. Efficient TMS-Based Motor Cortex Mapping Using Gaussian Process Active Learning. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1679-1689. [PMID: 34406942 PMCID: PMC8452135 DOI: 10.1109/tnsre.2021.3105644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) can be used to map cortical motor topography by spatially sampling the sensorimotor cortex while recording Motor Evoked Potentials (MEP) with surface electromyography (EMG). Traditional sampling strategies are time-consuming and inefficient, as they ignore the fact that responsive sites are typically sparse and highly spatially correlated. An alternative approach, commonly employed when TMS mapping is used for presurgical planning, is to leverage the expertise of the coil operator to use MEPs elicited by previous stimuli as feedback to decide which loci to stimulate next. In this paper, we propose to automatically infer optimal future stimulus loci using active learning Gaussian Process-based sampling in place of user expertise. We first compare the user-guided (USRG) method to the traditional grid selection method and randomized sampling to verify that the USRG approach has superior performance. We then compare several novel active Gaussian Process (GP) strategies with the USRG approach. Experimental results using real data show that, as expected, the USRG method is superior to the grid and random approach in both time efficiency and MEP map accuracy. We also found that an active warped GP entropy and a GP random-based strategy performed equally as well as, or even better than, the USRG method. These methods were completely automatic, and succeeded in efficiently sampling the regions in which the MEP response variations are largely confined. This work provides the foundation for highly efficient, fully automatized TMS mapping, especially when considered in the context of advances in robotic coil operation.
Collapse
|
73
|
Sondergaard RE, Martino D, Kiss ZHT, Condliffe EG. TMS Motor Mapping Methodology and Reliability: A Structured Review. Front Neurosci 2021; 15:709368. [PMID: 34489629 PMCID: PMC8417420 DOI: 10.3389/fnins.2021.709368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Motor cortical representation can be probed non-invasively using a transcranial magnetic stimulation (TMS) technique known as motor mapping. The mapping technique can influence features of the maps because of several controllable elements. Here we review the literature on six key motor mapping parameters, as well as their influence on outcome measures and discuss factors impacting their selection. 132 of 1,587 distinct records were examined in detail and synthesized to form the basis of our review. A summary of mapping parameters, their impact on outcome measures and feasibility considerations are reported to support the design and interpretation of TMS mapping studies.
Collapse
Affiliation(s)
- Rachel E. Sondergaard
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Davide Martino
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zelma H. T. Kiss
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elizabeth G. Condliffe
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
74
|
Nettekoven C, Pieczewski J, Neuschmelting V, Jonas K, Goldbrunner R, Grefkes C, Weiss Lucas C. Improving the efficacy and reliability of rTMS language mapping by increasing the stimulation frequency. Hum Brain Mapp 2021; 42:5309-5321. [PMID: 34387388 PMCID: PMC8519874 DOI: 10.1002/hbm.25619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022] Open
Abstract
Repetitive TMS (rTMS) with a frequency of 5–10 Hz is widely used for language mapping. However, it may be accompanied by discomfort and is limited in the number and reliability of evoked language errors. We, here, systematically tested the influence of different stimulation frequencies (i.e., 10, 30, and 50 Hz) on tolerability, number, reliability, and cortical distribution of language errors aiming at improved language mapping. 15 right‐handed, healthy subjects (m = 8, median age: 29 yrs) were investigated in two sessions, separated by 2–5 days. In each session, 10, 30, and 50 Hz rTMS were applied over the left hemisphere in a randomized order during a picture naming task. Overall, 30 Hz rTMS evoked significantly more errors (20 ± 12%) compared to 50 Hz (12 ± 8%; p <.01), whereas error rates were comparable between 30/50 and 10 Hz (18 ± 11%). Across all conditions, a significantly higher error rate was found in Session 1 (19 ± 13%) compared to Session 2 (13 ± 7%, p <.05). The error rate was poorly reliable between sessions for 10 (intraclass correlation coefficient, ICC = .315) and 30 Hz (ICC = .427), whereas 50 Hz showed a moderate reliability (ICC = .597). Spatial reliability of language errors was low to moderate with a tendency toward increased reliability for higher frequencies, for example, within frontal regions. Compared to 10 Hz, both, 30 and 50 Hz were rated as less painful. Taken together, our data favor the use of rTMS‐protocols employing higher frequencies for evoking language errors reliably and with reduced discomfort, depending on the region of interest.
Collapse
Affiliation(s)
- Charlotte Nettekoven
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Julia Pieczewski
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Volker Neuschmelting
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Kristina Jonas
- Faculty of Human Sciences, Department of Rehabilitation and Special Education, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital, Department of Neurology, University of Cologne, Cologne, Germany.,Juelich Research Centre, Institute of Neuroscience and Medicine (INM-3), Juelich, Germany
| | - Carolin Weiss Lucas
- Faculty of Medicine and University Hospital, Center for Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| |
Collapse
|
75
|
Jeltema HR, Ohlerth AK, de Wit A, Wagemakers M, Rofes A, Bastiaanse R, Drost G. Comparing navigated transcranial magnetic stimulation mapping and "gold standard" direct cortical stimulation mapping in neurosurgery: a systematic review. Neurosurg Rev 2021; 44:1903-1920. [PMID: 33009990 PMCID: PMC8338816 DOI: 10.1007/s10143-020-01397-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
The objective of this systematic review is to create an overview of the literature on the comparison of navigated transcranial magnetic stimulation (nTMS) as a mapping tool to the current gold standard, which is (intraoperative) direct cortical stimulation (DCS) mapping. A search in the databases of PubMed, EMBASE, and Web of Science was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations were used. Thirty-five publications were included in the review, describing a total of 552 patients. All studies concerned either mapping of motor or language function. No comparative data for nTMS and DCS for other neurological functions were found. For motor mapping, the distances between the cortical representation of the different muscle groups identified by nTMS and DCS varied between 2 and 16 mm. Regarding mapping of language function, solely an object naming task was performed in the comparative studies on nTMS and DCS. Sensitivity and specificity ranged from 10 to 100% and 13.3-98%, respectively, when nTMS language mapping was compared with DCS mapping. The positive predictive value (PPV) and negative predictive value (NPV) ranged from 17 to 75% and 57-100% respectively. The available evidence for nTMS as a mapping modality for motor and language function is discussed.
Collapse
Affiliation(s)
- Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands.
| | - Ann-Katrin Ohlerth
- Center for Language and Cognition Groningen, University of Groningen, Oude Kijk in 't Jatstraat 26, 9712 EK, Groningen, the Netherlands
| | - Aranka de Wit
- Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands
| | - Adrià Rofes
- Center for Language and Cognition Groningen, University of Groningen, Oude Kijk in 't Jatstraat 26, 9712 EK, Groningen, the Netherlands
| | - Roelien Bastiaanse
- Center for Language and Cognition Groningen, University of Groningen, Oude Kijk in 't Jatstraat 26, 9712 EK, Groningen, the Netherlands
- Center for Language and Brain, National Research University, Higher School of Economics, Moscow, Russian Federation
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
76
|
Silva LL, Tuncer MS, Vajkoczy P, Picht T, Rosenstock T. Distinct approaches to language pathway tractography: comparison of anatomy-based, repetitive navigated transcranial magnetic stimulation (rTMS)-based, and rTMS-enhanced diffusion tensor imaging-fiber tracking. J Neurosurg 2021; 136:589-600. [PMID: 34330091 DOI: 10.3171/2020.12.jns204028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Visualization of subcortical language pathways by means of diffusion tensor imaging-fiber tracking (DTI-FT) is evolving as an important tool for surgical planning and decision making in patients with language-suspect brain tumors. Repetitive navigated transcranial magnetic stimulation (rTMS) cortical language mapping noninvasively provides additional functional information. Efforts to incorporate rTMS data into DTI-FT are promising, but the lack of established protocols makes it hard to assess clinical utility. The authors performed DTI-FT of important language pathways by using five distinct approaches in an effort to evaluate the respective clinical usefulness of each approach. METHODS Thirty patients with left-hemispheric perisylvian lesions underwent preoperative rTMS language mapping and DTI. FT of the principal language tracts was conducted according to different strategies: Ia, anatomical landmark based; Ib, lesion-focused landmark based; IIa, rTMS based; IIb, rTMS based with postprocessing; and III, rTMS enhanced (based on a combination of structural and functional data). The authors analyzed the respective success of each method in revealing streamlines and conducted a multinational survey with expert clinicians to evaluate aspects of clinical utility. RESULTS The authors observed high usefulness and accuracy ratings for anatomy-based approaches (Ia and Ib). Postprocessing of rTMS-based tractograms (IIb) led to more balanced perceived information content but did not improve the usefulness for surgical planning and risk assessment. Landmark-based tractography (Ia and Ib) was most successful in delineating major language tracts (98% success), whereas rTMS-based tractography (IIa and IIb) frequently failed to reveal streamlines and provided less complete tractograms than the landmark-based approach (p < 0.001). The lesion-focused landmark-based (Ib) and the rTMS-enhanced (III) approaches were the most preferred methods. CONCLUSIONS The lesion-focused landmark-based approach (Ib) achieved the best ratings and enabled visualization of the principal language tracts in almost all cases. The rTMS-enhanced approach (III) was positively evaluated by the experts because it can reveal cortico-subcortical connections, but the functional relevance of these connections is still unclear. The use of regions of interest derived solely from cortical rTMS mapping (IIa and IIb) leads to cluttered images that are of limited use in clinical practice.
Collapse
Affiliation(s)
- Luca L Silva
- Departments of1Neurosurgery and.,2Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | | | | | - Thomas Picht
- Departments of1Neurosurgery and.,3Cluster of Excellence: "Matters of Activity. Image Space Material"-Humboldt University, Berlin; and
| | - Tizian Rosenstock
- Departments of1Neurosurgery and.,4Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
77
|
Sollmann N, Krieg SM, Säisänen L, Julkunen P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci 2021; 11:brainsci11070897. [PMID: 34356131 PMCID: PMC8305823 DOI: 10.3390/brainsci11070897] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) has developed into a reliable non-invasive clinical and scientific tool over the past decade. Specifically, it has undergone several validating clinical trials that demonstrated high agreement with intraoperative direct electrical stimulation (DES), which paved the way for increasing application for the purpose of motor mapping in patients harboring motor-eloquent intracranial neoplasms. Based on this clinical use case of the technique, in this article we review the evidence for the feasibility of motor mapping and derived models (risk stratification and prediction, nTMS-based fiber tracking, improvement of clinical outcome, and assessment of functional plasticity), and provide collected sets of evidence for the applicability of quantitative mapping with nTMS. In addition, we provide evidence-based demonstrations on factors that ensure methodological feasibility and accuracy of the motor mapping procedure. We demonstrate that selection of the stimulation intensity (SI) for nTMS and spatial density of stimuli are crucial factors for applying motor mapping accurately, while also demonstrating the effect on the motor maps. We conclude that while the application of nTMS motor mapping has been impressively spread over the past decade, there are still variations in the applied protocols and parameters, which could be optimized for the purpose of reliable quantitative mapping.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA 94143, USA
- Correspondence:
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- Department of Neurosurgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - Laura Säisänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, 70029 Kuopio, Finland; (L.S.); (P.J.)
- Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
78
|
Provocation and prediction of visual peripersonal neglect-like symptoms in preoperative planning and during awake brain surgery. Acta Neurochir (Wien) 2021; 163:1941-1947. [PMID: 33821318 PMCID: PMC8195910 DOI: 10.1007/s00701-021-04822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/18/2021] [Indexed: 11/15/2022]
Abstract
Neglect is a severe neuropsychological/neurological deficit that usually develops due to lesions of the posterior inferior parietal area of the right hemisphere and is characterized by a lack of attention to the left side. Our case is a proven right-handed, 30-year-old female patient with a low-grade glioma, which was located in the temporo-opercular region and also in the superior temporal gyrus of the right hemisphere. Upon presurgical planning, the motor, language, and visuospatial functions were mapped. In order to achieve this, the protocol for routine magnetic resonance imaging and navigated transcranial magnetic stimulation has been expanded, accordingly.
Collapse
|
79
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
80
|
Adaptation of a semantic picture-word interference paradigm for future language mapping with transcranial magnetic stimulation: A behavioural study. Behav Brain Res 2021; 412:113418. [PMID: 34153427 DOI: 10.1016/j.bbr.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
Neuro-navigated transcranial magnetic stimulation (TMS) helps to identify language-related cortical regions prior to brain tumour surgery. We adapted a semantic picture-word interference (PWI) paradigm from psycholinguistics to high-resolution TMS language mapping which prospectively can be used to specifically address the level of semantic processing. In PWI, pictures are presented along with distractor words which facilitate or inhibit the lexical access to the picture name. These modulatory effects of distractors can be annihilated in language-sensitive areas by the inhibitory effects of TMS on language processing. The rationale here is to observe the distractor effect without active stimulation and then to observe presumably its elimination by interference of the TMS stimulation. The special requirements to use PWI in this setting are (1) identifying word material for accelerating reliably naming latencies, choosing (2) the ideal presentation modality, and (3) the appropriate timing of distractor presentation. These are then controlled in real TMS language mapping. To adapt a semantic PWI naming paradigm for TMS application we employed 30 object-pictures in spoken German language. Part-whole associative semantic related or unrelated distractors were presented in two experiments including 15 healthy volunteers each, once auditorily and once visually. Data analysis across the entire stimulus set revealed a trend for facilitation in the visual condition, whereas no effects were observed for auditory distractors. In a sub-set, we found a significant facilitation effect for visual semantic distractors. Thus, with this study we provide a well-controlled item set for future studies implementing effective TMS language mapping applying visual semantic PWI.
Collapse
|
81
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
82
|
Rosenstock T, Tuncer MS, Münch MR, Vajkoczy P, Picht T, Faust K. Preoperative nTMS and Intraoperative Neurophysiology - A Comparative Analysis in Patients With Motor-Eloquent Glioma. Front Oncol 2021; 11:676626. [PMID: 34094981 PMCID: PMC8175894 DOI: 10.3389/fonc.2021.676626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
Background The resection of a motor-eloquent glioma should be guided by intraoperative neurophysiological monitoring (IOM) but its interpretation is often difficult and may (unnecessarily) lead to subtotal resection. Navigated transcranial magnetic stimulation (nTMS) combined with diffusion-tensor-imaging (DTI) is able to stratify patients with motor-eloquent lesion preoperatively into high- and low-risk cases with respect to a new motor deficit. Objective To analyze to what extent preoperative nTMS motor risk stratification can improve the interpretation of IOM phenomena. Methods In this monocentric observational study, nTMS motor mapping with DTI fiber tracking of the corticospinal tract was performed before IOM-guided surgery for motor-eloquent gliomas in a prospectively collected cohort from January 2017 to October 2020. Descriptive analyses were performed considering nTMS data (motor cortex infiltration, resting motor threshold (RMT), motor evoked potential (MEP) amplitude, latency) and IOM data (transcranial MEP monitoring, intensity of monopolar subcortical stimulation (SCS), somatosensory evoked potentials) to examine the association with the postoperative motor outcome (assessed at day of discharge and at 3 months). Results Thirty-seven (56.1%) of 66 patients (27 female) with a median age of 48 years had tumors located in the right hemisphere, with glioblastoma being the most common diagnosis with 39 cases (59.1%). Three patients (4.9%) had a new motor deficit that recovered partially within 3 months and 6 patients had a persistent deterioration (9.8%). The more risk factors of the nTMS risk stratification model (motor cortex infiltration, tumor-tract distance (TTD) ≤8mm, RMTratio <90%/>110%) were detected, the higher was the risk for developing a new postoperative motor deficit, whereas no patient with a TTD >8mm deteriorated. Irreversible MEP amplitude decrease >50% was associated with worse motor outcome in all patients, while a MEP amplitude decrease ≤50% or lower SCS intensities ≤4mA were particularly correlated with a postoperative worsened motor status in nTMS-stratified high-risk cases. No patient had postoperative deterioration of motor function (except one with partial recovery) when intraoperative MEPs remained stable or showed only reversible alterations. Conclusions The preoperative nTMS-based risk assessment can help to interpret ambiguous IOM phenomena (such as irreversible MEP amplitude decrease ≤50%) and adjustment of SCS stimulation intensity.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Biomedical Innovation Academy, Berlin, Germany
| | - Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Max Richard Münch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
83
|
Narayana S, Gibbs SK, Fulton SP, McGregor AL, Mudigoudar B, Weatherspoon SE, Boop FA, Wheless JW. Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Front Neurol 2021; 12:650830. [PMID: 34093397 PMCID: PMC8170483 DOI: 10.3389/fneur.2021.650830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Accurate presurgical mapping of motor, speech, and language cortices, while crucial for neurosurgical planning and minimizing post-operative functional deficits, is challenging in young children with neurological disease. In such children, both invasive (cortical stimulation mapping) and non-invasive functional mapping imaging methods (MEG, fMRI) have limited success, often leading to delayed surgery or adverse post-surgical outcomes. We therefore examined the clinical utility of transcranial magnetic stimulation (TMS) in young children who require functional mapping. In a retrospective chart review of TMS studies performed on children with refractory epilepsy or a brain tumor, at our institution, we identified 47 mapping sessions in 36 children 3 years of age or younger, in whom upper and lower extremity motor mapping was attempted; and 13 children 5–6 years old in whom language mapping, using a naming paradigm, was attempted. The primary hand motor cortex was identified in at least one hemisphere in 33 of 36 patients, and in both hemispheres in 27 children. In 17 children, primary leg motor cortex was also successfully identified. The language cortices in temporal regions were successfully mapped in 11 of 13 patients, and in six of them language cortices in frontal regions were also mapped, with most children (n = 5) showing right hemisphere dominance for expressive language. Ten children had a seizure that was consistent with their clinical semiology during or immediately following TMS, none of which required intervention or impeded completion of mapping. Using TMS, both normal motor, speech, and language developmental patterns and apparent disease induced reorganization were demonstrated in this young cohort. The successful localization of motor, speech, and language cortices in young children improved the understanding of the risk-benefit ratio prior to surgery and facilitated surgical planning aimed at preserving motor, speech, and language functions. Post-operatively, motor function was preserved or improved in nine out of 11 children who underwent surgery, as was language function in all seven children who had surgery for lesions near eloquent cortices. We provide feasibility data that TMS is a safe, reliable, and effective tool to map eloquent cortices in young children.
Collapse
Affiliation(s)
- Shalini Narayana
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Savannah K Gibbs
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Stephen P Fulton
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Amy Lee McGregor
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Basanagoud Mudigoudar
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Sarah E Weatherspoon
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Frederick A Boop
- Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States.,Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James W Wheless
- Division of Pediatric Neurology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| |
Collapse
|
84
|
Navigated repetitive transcranial magnetic stimulation improves the outcome of postsurgical paresis in glioma patients - A randomized, double-blinded trial. Brain Stimul 2021; 14:780-787. [PMID: 33984536 DOI: 10.1016/j.brs.2021.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Navigated repetitive transcranial magnetic stimulation (nrTMS) is effective therapy for stroke patients. Neurorehabilitation could be supported by low-frequency stimulation of the non-damaged hemisphere to reduce transcallosal inhibition. OBJECTIVE The present study examines the effect of postoperative nrTMS therapy of the unaffected hemisphere in glioma patients suffering from acute surgery-related paresis of the upper extremity (UE) due to subcortical ischemia. METHODS We performed a randomized, sham-controlled, double-blinded trial on patients suffering from acute surgery-related paresis of the UE after glioma resection. Patients were randomly assigned to receive either low frequency nrTMS (1 Hz, 15 min) or sham stimulation directly before physical therapy for 7 consecutive days. We performed primary and secondary outcome measures on day 1, on day 7, and at a 3-month follow-up (FU). The primary endpoint was the change in Fugl-Meyer Assessment (FMA) at FU compared to day 1 after surgery. RESULTS Compared to the sham stimulation, nrTMS significantly improved outcomes between day 1 and FU based on the FMA (mean [95% CI] +31.9 [22.6, 41.3] vs. +4.2 [-4.1, 12.5]; P = .001) and the National Institutes of Health Stroke Scale (NIHSS) (-5.6 [-7.5, -3.6] vs. -2.4 [-3.6, -1.2]; P = .02). To achieve a minimal clinically important difference of 10 points on the FMA scale, the number needed to treat is 2.19. CONCLUSION The present results show that patients suffering from acute surgery-related paresis of the UE due to subcortical ischemia after glioma resection significantly benefit from low-frequency nrTMS stimulation therapy of the unaffected hemisphere. CLINICAL TRIAL REGISTRATION Local institutional registration: 12/15; ClinicalTrials.gov number: NCT03982329.
Collapse
|
85
|
Baro V, Caliri S, Sartori L, Facchini S, Guarrera B, Zangrossi P, Anglani M, Denaro L, d’Avella D, Ferreri F, Landi A. Preoperative Repetitive Navigated TMS and Functional White Matter Tractography in a Bilingual Patient with a Brain Tumor in Wernike Area. Brain Sci 2021; 11:brainsci11050557. [PMID: 33924964 PMCID: PMC8145512 DOI: 10.3390/brainsci11050557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
Awake surgery and intraoperative neuromonitoring represent the gold standard for surgery of lesion located in language-eloquent areas of the dominant hemisphere, enabling the maximal safe resection while preserving language function. Nevertheless, this functional mapping is invasive; it can be executed only during surgery and in selected patients. Moreover, the number of neuro-oncological bilingual patients is constantly growing, and performing awake surgery in this group of patients can be difficult. In this scenario, the application of accurate, repeatable and non-invasive preoperative mapping procedures is needed, in order to define the anatomical distribution of both languages. Repetitive navigated transcranial magnetic stimulation (rnTMS) associated with functional subcortical fiber tracking (nTMS-based DTI-FT) represents a promising and comprehensive mapping tool to display language pathway and function reorganization in neurosurgical patients. Herein we report a case of a bilingual patient affected by brain tumor in the left temporal lobe, who underwent rnTMS mapping for both languages (Romanian and Italian), disclosing the true eloquence of the anterior part of the lesion in both tests. After surgery, language abilities were intact at follow-up in both languages. This case represents a preliminary application of nTMS-based DTI-FT in neurosurgery for brain tumor in eloquent areas in a bilingual patient.
Collapse
Affiliation(s)
- Valentina Baro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
- Correspondence:
| | - Samuel Caliri
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Luca Sartori
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Silvia Facchini
- Department of Neuroscience DNS, University of Padova, 35128 Padova, Italy;
| | - Brando Guarrera
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Pietro Zangrossi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | | | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Domenico d’Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| | - Florinda Ferreri
- Unit of Neurology and Neurophysiology, Department of Neuroscience, University of Padova, 35128 Padova, Italy;
| | - Andrea Landi
- Academic Neurosurgery, Department of Neuroscience, University of Padova, 35128 Padova, Italy; (S.C.); (L.S.); (B.G.); (P.Z.); (L.D.); (D.d.); (A.L.)
| |
Collapse
|
86
|
Reijonen J, Könönen M, Tuunanen P, Määttä S, Julkunen P. Atlas-informed computational processing pipeline for individual targeting of brain areas for therapeutic navigated transcranial magnetic stimulation. Clin Neurophysiol 2021; 132:1612-1621. [PMID: 34030058 DOI: 10.1016/j.clinph.2021.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is targeted at different cortical sites for diagnostic, therapeutic, and neuroscientific purposes. Correct identification of the cortical target areas is important for achieving desired effects, but it is challenging when no direct responses arise upon target area stimulation. We aimed at utilizing atlas-based marking of cortical areas for nTMS targeting to present a convenient, rater-independent method for overlaying the individual target sites with brain anatomy. METHODS We developed a pipeline, which fits a brain atlas to the individual brain and enables visualization of the target areas during the nTMS session. We applied the pipeline to our previous nTMS data, focusing on depression and schizophrenia patients. Furthermore, we included examples of Tourette syndrome and tinnitus therapies, as well as neurosurgical and motor mappings. RESULTS In depression and schizophrenia patients, the visually selected dorsolateral prefrontal cortex (DLPFC) targets were close to the border between atlas areas A9/46 and A8. In the other areas, the atlas-based areas were in agreement with the treatment targets. CONCLUSIONS The atlas-based target areas agreed well with the cortical targets selected by experts during the treatments. SIGNIFICANCE Overlaying atlas information over the navigation view is a convenient and useful add-on for improving nTMS targeting.
Collapse
Affiliation(s)
- Jusa Reijonen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mervi Könönen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Pasi Tuunanen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
87
|
Hazem SR, Awan M, Lavrador JP, Patel S, Wren HM, Lucena O, Semedo C, Irzan H, Melbourne A, Ourselin S, Shapey J, Kailaya-Vasan A, Gullan R, Ashkan K, Bhangoo R, Vergani F. Middle Frontal Gyrus and Area 55b: Perioperative Mapping and Language Outcomes. Front Neurol 2021; 12:646075. [PMID: 33776898 PMCID: PMC7988187 DOI: 10.3389/fneur.2021.646075] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The simplistic approaches to language circuits are continuously challenged by new findings in brain structure and connectivity. The posterior middle frontal gyrus and area 55b (pFMG/area55b), in particular, has gained a renewed interest in the overall language network. Methods: This is a retrospective single-center cohort study of patients who have undergone awake craniotomy for tumor resection. Navigated transcranial magnetic simulation (nTMS), tractography, and intraoperative findings were correlated with language outcomes. Results: Sixty-five awake craniotomies were performed between 2012 and 2020, and 24 patients were included. nTMS elicited 42 positive responses, 76.2% in the inferior frontal gyrus (IFG), and hesitation was the most common error (71.4%). In the pMFG/area55b, there were seven positive errors (five hesitations and two phonemic errors). This area had the highest positive predictive value (43.0%), negative predictive value (98.3%), sensitivity (50.0%), and specificity (99.0%) among all the frontal gyri. Intraoperatively, there were 33 cortical positive responses—two (6.0%) in the superior frontal gyrus (SFG), 15 (45.5%) in the MFG, and 16 (48.5%) in the IFG. A total of 29 subcortical positive responses were elicited−21 in the deep IFG–MFG gyri and eight in the deep SFG–MFG gyri. The most common errors identified were speech arrest at the cortical level (20 responses−13 in the IFG and seven in the MFG) and anomia at the subcortical level (nine patients—eight in the deep IFG–MFG and one in the deep MFG–SFG). Moreover, 83.3% of patients had a transitory deterioration of language after surgery, mainly in the expressive component (p = 0.03). An increased number of gyri with intraoperative positive responses were related with better preoperative (p = 0.037) and worse postoperative (p = 0.029) outcomes. The involvement of the SFG–MFG subcortical area was related with worse language outcomes (p = 0.037). Positive nTMS mapping in the IFG was associated with a better preoperative language outcome (p = 0.017), relating to a better performance in the expressive component, while positive mapping in the MFG was related to a worse preoperative receptive component of language (p = 0.031). Conclusion: This case series suggests that the posterior middle frontal gyrus, including area 55b, is an important integration cortical hub for both dorsal and ventral streams of language.
Collapse
Affiliation(s)
- Sally Rosario Hazem
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Mariam Awan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Hilary Margaret Wren
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Oeslle Lucena
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Carla Semedo
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hassna Irzan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Shapey
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ahilan Kailaya-Vasan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom.,King's Neuro Lab, Department of Neurosurgery, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
88
|
Müller DMJ, Robe PA, Ardon H, Barkhof F, Bello L, Berger MS, Bouwknegt W, Van den Brink WA, Conti Nibali M, Eijgelaar RS, Furtner J, Han SJ, Hervey-Jumper SL, Idema AJS, Kiesel B, Kloet A, De Munck JC, Rossi M, Sciortino T, Vandertop WP, Visser M, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, De Witt Hamer PC. Quantifying eloquent locations for glioblastoma surgery using resection probability maps. J Neurosurg 2021; 134:1091-1101. [PMID: 32244208 DOI: 10.3171/2020.1.jns193049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions.
Collapse
Affiliation(s)
- Domenique M J Müller
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Robe
- 2Department of Neurology & Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - Hilko Ardon
- 3Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Frederik Barkhof
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
- 5Institutes of Neurology and Healthcare Engineering, University College London, United Kingdom
| | - Lorenzo Bello
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Mitchel S Berger
- 7Department of Neurological Surgery, University of California, San Francisco, California
| | - Wim Bouwknegt
- 8Department of Neurosurgery, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | - Marco Conti Nibali
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Roelant S Eijgelaar
- 10Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia Furtner
- 11Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Austria
| | - Seunggu J Han
- 12Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Shawn L Hervey-Jumper
- 7Department of Neurological Surgery, University of California, San Francisco, California
| | - Albert J S Idema
- 13Department of Neurosurgery, Northwest Clinics, Alkmaar, The Netherlands
| | - Barbara Kiesel
- 14Department of Neurosurgery, Medical University Vienna, Austria
| | - Alfred Kloet
- 15Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
| | - Jan C De Munck
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
| | - Marco Rossi
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Tommaso Sciortino
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - W Peter Vandertop
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Martin Visser
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
| | - Michiel Wagemakers
- 16Department of Neurosurgery, University of Groningen, University Medical Center Groningen, The Netherlands; and
| | - Georg Widhalm
- 14Department of Neurosurgery, Medical University Vienna, Austria
| | - Marnix G Witte
- 10Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- 17Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip C De Witt Hamer
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
89
|
Senova S, Lefaucheur JP, Brugières P, Ayache SS, Tazi S, Bapst B, Abhay K, Langeron O, Edakawa K, Palfi S, Bardel B. Case Report: Multimodal Functional and Structural Evaluation Combining Pre-operative nTMS Mapping and Neuroimaging With Intraoperative CT-Scan and Brain Shift Correction for Brain Tumor Surgical Resection. Front Hum Neurosci 2021; 15:646268. [PMID: 33716700 PMCID: PMC7947337 DOI: 10.3389/fnhum.2021.646268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 01/11/2023] Open
Abstract
Background: Maximum safe resection of infiltrative brain tumors in eloquent area is the primary objective in surgical neuro-oncology. This goal can be achieved with direct electrical stimulation (DES) to perform a functional mapping of the brain in patients awake intraoperatively. When awake surgery is not possible, we propose a pipeline procedure that combines advanced techniques aiming at performing a dissection that respects the anatomo-functional connectivity of the peritumoral region. This procedure can benefit from intraoperative monitoring with computerized tomography scan (iCT-scan) and brain shift correction. Associated with this intraoperative monitoring, the additional value of preoperative investigation combining brain mapping by navigated transcranial magnetic stimulation (nTMS) with various neuroimaging modalities (tractography and resting state functional MRI) has not yet been reported. Case Report: A 42-year-old left-handed man had increased intracranial pressure (IICP), left hand muscle deficit, and dysarthria, related to an infiltrative tumor of the right frontal lobe with large mass effect and circumscribed contrast enhancement in motor and premotor cortical areas. Spectroscopy profile and intratumoral calcifications on CT-scan suggested an WHO grade III glioma, later confirmed by histology. The aforementioned surgical procedure was considered, since standard awake surgery was not appropriate for this patient. In preoperative time, nTMS mapping of motor function (deltoid, first interosseous, and tibialis anterior muscles) was performed, combined with magnetic resonance imaging (MRI)-based tractography reconstruction of 6 neural tracts (arcuate, corticospinal, inferior fronto-occipital, uncinate and superior and inferior longitudinal fasciculi) and resting-state functional MRI connectivity (rs-fMRI) of sensorimotor and language networks. In intraoperative time, DES mapping was performed with motor evoked response recording and tumor resection was optimized using non-rigid image transformation of the preoperative data (nTMS, tractography, and rs-fMRI) to iCT data. Image guidance was updated with correction for brain shift and tissue deformation using biomechanical modeling taking into account brain elastic properties. This correction was done at crucial surgical steps, i.e., when tumor bulged through the craniotomy after dura mater opening and when approaching the presumed eloquent brain regions. This procedure allowed a total resection of the tumor region with contrast enhancement as well as a complete regression of IICP and dysarthria. Hand paresis remained stable with no additional deficit. Postoperative nTMS mapping confirmed the good functional outcome. Conclusion: This case report and technical note highlights the value of preoperative functional evaluation by nTMS updated intraoperatively with correction of brain deformation by iCT. This multimodal approach may become the optimized technique of reference for patients with brain tumors in eloquent areas that are unsuitable for awake brain surgery.
Collapse
Affiliation(s)
- Suhan Senova
- Department of Neurosurgery, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Translational Psychiatry (Equipe 15), IMRB - INSERM U955, Univ Paris-Est Creteil, Creteil, France
| | - Jean-Pascal Lefaucheur
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Excitabilite Nerveuse et Therapeutique, EA 4391, Univ Paris-Est Creteil, Creteil, France
| | - Pierre Brugières
- Department of Neuroradiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France
| | - Samar S Ayache
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Excitabilite Nerveuse et Therapeutique, EA 4391, Univ Paris-Est Creteil, Creteil, France
| | - Sanaa Tazi
- Department of Neurosurgery, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Translational Psychiatry (Equipe 15), IMRB - INSERM U955, Univ Paris-Est Creteil, Creteil, France
| | - Blanche Bapst
- Department of Neuroradiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France
| | - Kou Abhay
- Department of Anesthesiology and Critical Care, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France
| | - Olivier Langeron
- Department of Anesthesiology and Critical Care, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Experimental Neuropathology Unit, Institut Pasteur, Paris, France
| | - Kohtaroh Edakawa
- Department of Neurosurgery, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Translational Psychiatry (Equipe 15), IMRB - INSERM U955, Univ Paris-Est Creteil, Creteil, France.,Department of Neurosurgery, Graduate School of Medicine Osaka University, Suita, Japan
| | - Stéphane Palfi
- Department of Neurosurgery, DMU CARe, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Translational Psychiatry (Equipe 15), IMRB - INSERM U955, Univ Paris-Est Creteil, Creteil, France
| | - Benjamin Bardel
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Creteil, France.,Excitabilite Nerveuse et Therapeutique, EA 4391, Univ Paris-Est Creteil, Creteil, France
| |
Collapse
|
90
|
Di Cristofori A, Basso G, de Laurentis C, Mauri I, Sirtori MA, Ferrarese C, Isella V, Giussani C. Perspectives on (A)symmetry of Arcuate Fasciculus. A Short Review About Anatomy, Tractography and TMS for Arcuate Fasciculus Reconstruction in Planning Surgery for Gliomas in Language Areas. Front Neurol 2021; 12:639822. [PMID: 33643213 PMCID: PMC7902861 DOI: 10.3389/fneur.2021.639822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gliomas are brain tumors that are treated with surgical resection. Prognosis is influenced by the extent of resection and postoperative neurological status. As consequence, given the extreme interindividual and interhemispheric variability of subcortical white matter (WM) surgical planning requires to be patient's tailored. According to the “connectionist model,” there is a huge variability among both cortical areas and subcortical WM in all human beings, and it is known that brain is able to reorganize itself and to adapt to WM lesions. Brain magnetic resonance imaging diffusion tensor imaging (DTI) tractography allows visualization of WM bundles. Nowadays DTI tractography is widely available in the clinical setting for presurgical planning. Arcuate fasciculus (AF) is a long WM bundle that connects the Broca's and Wernicke's regions with a complex anatomical architecture and important role in language functions. Thus, its preservation is important for the postoperative outcome, and DTI tractography is usually performed for planning surgery within the language-dominant hemisphere. High variability among individuals and an asymmetrical pattern has been reported for this WM bundle. However, the functional relevance of AF in the contralateral non-dominant hemisphere in case of tumoral or surgical lesion of the language-dominant AF is unclear. This review focuses on AF anatomy with special attention to its asymmetry in both normal and pathological conditions and how it may be explored with preoperative tools for planning surgery on gliomas in language areas. Based on the findings available in literature, we finally speculate about the potential role of preoperative evaluation of the WM contralateral to the surgical site.
Collapse
Affiliation(s)
| | - Gianpaolo Basso
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neuroradiology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Camilla de Laurentis
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Ilaria Mauri
- Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | | | - Carlo Ferrarese
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Valeria Isella
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Neurology Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Giussani
- Neurosurgery Unit, San Gerardo Hospital, ASST Monza, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
91
|
Sprugnoli G, Golby AJ, Santarnecchi E. Newly discovered neuron-to-glioma communication: new noninvasive therapeutic opportunities on the horizon? Neurooncol Adv 2021; 3:vdab018. [PMID: 33738449 PMCID: PMC7954106 DOI: 10.1093/noajnl/vdab018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The newly discovered functional integration of glioma cells into brain networks in mouse models provides groundbreaking insight into glioma aggressiveness and resistance to treatments, also suggesting novel potential therapeutic avenues and targets. In the context of such neuron-to-glioma communication, noninvasive brain modulation techniques traditionally applied to modulate neuronal function in neurological and psychiatric diseases (eg, increase/decrease cortical excitability and plasticity) could now be tested in patients with brain tumors to suppress glioma’s activity and its pathological crosstalk with healthy brain tissue.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.,Departments of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra J Golby
- Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
92
|
Colella M, Paffi A, De Santis V, Apollonio F, Liberti M. Effect of skin conductivity on the electric field induced by transcranial stimulation techniques in different head models. Phys Med Biol 2021; 66:035010. [PMID: 33496268 DOI: 10.1088/1361-6560/abcde7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aims at quantifying the effect that using different skin conductivity values has on the estimation of the electric (E)-field distribution induced by transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) in the brain of two anatomical models. The induced E-field was calculated with numerical simulations inside MIDA and Duke models, assigning to the skin a conductivity value estimated from a multi-layered skin model and three values taken from literature. The effect of skin conductivity variations on the local E-field induced by tDCS in the brain was up to 70%. In TMS, minor local differences, in the order of 20%, were obtained in regions of interest for the onset of possible side effects. Results suggested that an accurate model of the skin is necessary in all numerical studies that aim at precisely estimating the E-field induced during TMS and tDCS applications. This also highlights the importance of further experimental studies on human skin characterization, especially at low frequencies.
Collapse
Affiliation(s)
- Micol Colella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Valerio De Santis
- Department of Industrial and Information Engineering and Economics (DIIEE), University of L'Aquila, L'Aquila, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
93
|
Haddad AF, Young JS, Berger MS, Tarapore PE. Preoperative Applications of Navigated Transcranial Magnetic Stimulation. Front Neurol 2021; 11:628903. [PMID: 33551983 PMCID: PMC7862711 DOI: 10.3389/fneur.2020.628903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Preoperative mapping of cortical structures prior to neurosurgical intervention can provide a roadmap of the brain with which neurosurgeons can navigate critical cortical structures. In patients undergoing surgery for brain tumors, preoperative mapping allows for improved operative planning, patient risk stratification, and personalized preoperative patient counseling. Navigated transcranial magnetic stimulation (nTMS) is one modality that allows for highly accurate, image-guided, non-invasive stimulation of the brain, thus allowing for differentiation between eloquent and non-eloquent cortical regions. Motor mapping is the best validated application of nTMS, yielding reliable maps with an accuracy similar to intraoperative cortical mapping. Language mapping is also commonly performed, although nTMS language maps are not as highly concordant with direct intraoperative cortical stimulation maps as nTMS motor maps. Additionally, nTMS has been used to localize cortical regions involved in other functions such as facial recognition, calculation, higher-order motor processing, and visuospatial orientation. In this review, we evaluate the growing literature on the applications of nTMS in the preoperative setting. First, we analyze the evidence in support of the most common clinical applications. Then we identify usages that show promise but require further validation. We also discuss developing nTMS techniques that are still in the experimental stage, such as the use of nTMS to enhance postoperative recovery. Finally, we highlight practical considerations when utilizing nTMS and, importantly, its safety profile in neurosurgical patients. In so doing, we aim to provide a comprehensive review of the role of nTMS in the neurosurgical management of a patient with a brain tumor.
Collapse
Affiliation(s)
- Alexander F Haddad
- School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
94
|
Poydasheva AG, Semenova OV, Suponeva NA, Timerbaeva SL, Piradov MA. [Issues of diagnostic and therapeutic use of transcranial magnetic stimulation in patients with writing cramp]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:49-56. [PMID: 33459541 DOI: 10.17116/jnevro202012012149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To study diagnostic and therapeutic values of transcranial magnetic stimulation (TMS) in writing cramp (WC). MATERIAL AND METHODS Twelve right-handed patients with WC were enrolled in the study. All patients underwent low-frequency repetitive TMS (rTMS) of the premotor cortex of contralateral to affected hand hemisphere. The clinical efficacy was assessed using the Writer's Cramp Rating Scale (WCRS) and the Medical Outcomes Study-Short Form (MOS-SF-36). Before and after last rTMS session, motor mapping of Abductor pollicis brevis muscle (APB) was performed using navigated TMS (nTMS). Localization, area, and amplitude-weighted area of the APB muscle cortical representations were compared with the healthy controls. After the rTMS course, the dynamics of the studied parameters was assessed. RESULTS Ten sessions of low-frequency rTMS of premotor cortex reduced the severity of WS clinical symptoms with a duration of effect of at least 1 month (p<0.05). There was no statistically significant difference between the area and the weighted area of cortical muscle representations between patients and healthy controls or in patients before and after rTMS. When assessing the localization of cortical muscle representations, two trends were noted: in 4 patients, the localization remained stable, with a shift in the center of gravity of less than 4 mm; in the other 8 patients, a shift in the center of mass of more than 5 mm was noted. No significant correlation between the stability of the cortical muscle representations (the magnitude of the shift in the center of gravity) and the improvement on the WCRS were found. CONCLUSION The low-frequency rTMS of the premotor cortex of the contralateral to affected hand hemisphere can be used as an adjuvant therapy for WC. The TMS-motor mapping study did not show its diagnostic value.
Collapse
Affiliation(s)
| | - O V Semenova
- Vorokhobov City Clinical Hospital No. 67, Moscow, Russia
| | | | | | - M A Piradov
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
95
|
Ille S, Schroeder A, Albers L, Kelm A, Droese D, Meyer B, Krieg SM. Non-Invasive Mapping for Effective Preoperative Guidance to Approach Highly Language-Eloquent Gliomas-A Large Scale Comparative Cohort Study Using a New Classification for Language Eloquence. Cancers (Basel) 2021; 13:cancers13020207. [PMID: 33430112 PMCID: PMC7827798 DOI: 10.3390/cancers13020207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: A considerable number of gliomas require resection via direct electrical stimulation (DES) during awake craniotomy. Likewise, the feasibility of resecting language-eloquent gliomas purely based on navigated repetitive transcranial magnetic stimulation (nrTMS) has been shown. This study analyzes the outcomes after preoperative nrTMS-based and intraoperative DES-based glioma resection in a large cohort. Due to the necessity of making location comparable, a classification for language eloquence for gliomas is introduced. Methods: Between March 2015 and May 2019, we prospectively enrolled 100 consecutive cases that were resected based on preoperative nrTMS language mapping (nrTMS group), and 47 cases via intraoperative DES mapping during awake craniotomy (awake group) following a standardized clinical workflow. Outcome measures were determined preoperatively, 5 days after surgery, and 3 months after surgery. To make functional eloquence comparable, we developed a classification based on prior publications and clinical experience. Groups and classification scores were correlated with clinical outcomes. Results: The functional outcome did not differ between groups. Gross total resection was achieved in more cases in the nrTMS group (87%, vs. 72% in the awake group, p = 0.04). Nonetheless, the awake group showed significantly higher scores for eloquence than the nrTMS group (median 7 points; interquartile range 6-8 vs. 5 points; 3-6.75; p < 0.0001). Conclusion: Resecting language-eloquent gliomas purely based on nrTMS data is feasible in a high percentage of cases if the described clinical workflow is followed. Moreover, the proposed classification for language eloquence makes language-eloquent tumors comparable, as shown by its correlation with functional and radiological outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandro M. Krieg
- Correspondence: ; Tel.: +49-89-4140-2151; Fax: +49-89-4140-4889
| |
Collapse
|
96
|
Wang Z, Dreyer F, Pulvermüller F, Ntemou E, Vajkoczy P, Fekonja LS, Picht T. Support vector machine based aphasia classification of transcranial magnetic stimulation language mapping in brain tumor patients. Neuroimage Clin 2020; 29:102536. [PMID: 33360768 PMCID: PMC7772815 DOI: 10.1016/j.nicl.2020.102536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/03/2022]
Abstract
Repetitive TMS (rTMS) allows for non-invasive and transient disruption of local neuronal functioning. We used machine learning approaches to assess whether brain tumor patients can be accurately classified into aphasic and non-aphasic groups using their rTMS language mapping results as input features. Given that each tumor affects the subject-specific language networks differently, resulting in heterogenous rTMS functional mappings, we propose the use of machine learning strategies to classify potential patterns of rTMS language mapping results. We retrospectively included 90 patients with left perisylvian world health organization (WHO) grade II-IV gliomas that underwent presurgical navigated rTMS language mapping. Within our cohort, 29 of 90 (32.2%) patients suffered from at least mild aphasia as shown in the Aachen Aphasia Test based Berlin Aphasia Score (BAS). After spatial normalization to MNI 152 of all rTMS spots, we calculated the error rate (ER) in each stimulated cortical area (28 regions of interest, ROI) by automated anatomical labeling parcellation (AAL3) and IIT. We used a support vector machine (SVM) to classify significant areas in relation to aphasia. After feeding the ROIs into the SVM model, it revealed that in addition to age (w = 2.98), the ERs of the left supramarginal gyrus (w = 3.64), left inferior parietal gyrus (w = 2.28) and right pars triangularis (w = 1.34) contributed more than other features to the model. The model's sensitivity was 86.2%, the specificity was 82.0%, the overall accuracy was 85.5% and the AUC was 89.3%. Our results demonstrate an increased vulnerability of right inferior pars triangularis to rTMS in aphasic patients due to left perisylvian gliomas. This finding points towards a functional relevant involvement of the right pars triangularis in response to aphasia. The tumor location feature, specified by calculating overlaps with white and grey matter atlases, did not affect the SVM model. The left supramarginal gyrus as a feature improved our SVM model the most. Additionally, our results could point towards a decreasing potential for neuroplasticity with age.
Collapse
Affiliation(s)
- Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Dreyer
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany; Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany
| | - Friedemann Pulvermüller
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany; Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany
| | - Effrosyni Ntemou
- University of Groningen, Department of Neurolinguistics, Groningen, The Netherlands
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany.
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
97
|
Navigated TMS in the ICU: Introducing Motor Mapping to the Critical Care Setting. Brain Sci 2020; 10:brainsci10121005. [PMID: 33352857 PMCID: PMC7765929 DOI: 10.3390/brainsci10121005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is a modality for noninvasive cortical mapping. Specifically, nTMS motor mapping is an objective measure of motor function, offering quantitative diagnostic information regardless of subject cooperation or consciousness. Thus far, it has mostly been restricted to the outpatient setting. This study evaluates the feasibility of nTMS motor mapping in the intensive care unit (ICU) setting and solves the challenges encountered in this special environment. We compared neuronavigation based on computed tomography (CT) and magnetic resonance imaging (MRI). We performed motor mappings in neurocritical patients under varying conditions (e.g., sedation or hemicraniectomy). Furthermore, we identified ways of minimizing electromyography (EMG) noise in the interference-rich ICU environment. Motor mapping was performed in 21 patients (six females, median age: 69 years). In 18 patients, motor evoked potentials (MEPs) were obtained. In three patients, MEPs could not be evoked. No adverse reactions occurred. We found CT to offer a comparable neuronavigation to MRI (CT maximum e-field 52 ± 14 V/m vs. MRI maximum e-field 52 ± 11 V/m; p = 0.6574). We detailed EMG noise reduction methods and found that propofol sedation of up to 80 mcg/kg/h did not inhibit MEPs. Yet, nTMS equipment interfered with exposed pulse oximetry. nTMS motor mapping application and use was illustrated in three clinical cases. In conclusion, we present an approach for the safe and reliable use of nTMS motor mapping in the ICU setting and outline possible benefits. Our findings support further studies regarding the clinical value of nTMS in critical care settings.
Collapse
|
98
|
Konakanchi D, de Jongh Curry AL, Waters RS, Narayana S. Focality of the Induced E-Field Is a Contributing Factor in the Choice of TMS Parameters: Evidence from a 3D Computational Model of the Human Brain. Brain Sci 2020; 10:E1010. [PMID: 33353125 PMCID: PMC7766380 DOI: 10.3390/brainsci10121010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a promising, non-invasive approach in the diagnosis and treatment of several neurological conditions. However, the specific results in the cortex of the magnitude and spatial distribution of the secondary electrical field (E-field) resulting from TMS at different stimulation sites/orientations and varied TMS parameters are not clearly understood. The objective of this study is to identify the impact of TMS stimulation site and coil orientation on the induced E-field, including spatial distribution and the volume of activation in the cortex across brain areas, and hence demonstrate the need for customized optimization, using a three-dimensional finite element model (FEM). A considerable difference was noted in E-field values and distribution at different brain areas. We observed that the volume of activated cortex varied from 3000 to 7000 mm3 between the selected nine clinically relevant coil locations. Coil orientation also changed the induced E-field by a maximum of 10%, and we noted the least optimal values at the standard coil orientation pointing to the nose. The volume of gray matter activated varied by 10% on average between stimulation sites in homologous brain areas in the two hemispheres of the brain. This FEM simulation model clearly demonstrates the importance of TMS parameters for optimal results in clinically relevant brain areas. The results show that TMS parameters cannot be interchangeably used between individuals, hemispheres, and brain areas. The focality of the TMS induced E-field along with its optimal magnitude should be considered as critical TMS parameters that should be individually optimized.
Collapse
Affiliation(s)
- Deepika Konakanchi
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
| | - Amy L. de Jongh Curry
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert S. Waters
- Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA; (A.L.d.J.C.); (R.S.W.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shalini Narayana
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN 38163, USA
| |
Collapse
|
99
|
Short-Interval Intracortical Facilitation Improves Efficacy in nTMS Motor Mapping of Lower Extremity Muscle Representations in Patients with Supra-Tentorial Brain Tumors. Cancers (Basel) 2020; 12:cancers12113233. [PMID: 33147827 PMCID: PMC7692031 DOI: 10.3390/cancers12113233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Navigated transcranial magnetic stimulation (nTMS) is increasingly used for mapping of motor function prior to surgery in patients harboring motor-eloquent brain lesions. To date, single-pulse nTMS (sp-nTMS) has been predominantly used for this purpose, but novel paired-pulse nTMS (pp-nTMS) with biphasic pulse application has been made available recently. The purpose of this study was to systematically evaluate pp-nTMS with biphasic pulses in comparison to conventionally used sp-nTMS for preoperative motor mapping of lower extremity (lE) muscle representations. Thirty-nine patients (mean age: 56.3 ± 13.5 years, 69.2% males) harboring motor-eloquent brain lesions of different entity underwent motor mapping of lE muscle representations in lesion-affected hemispheres and nTMS-based tractography of the corticospinal tract (CST) using data from sp-nTMS and pp-nTMS with biphasic pulses, respectively. Compared to sp-nTMS, pp-nTMS enabled motor mapping with lower stimulation intensities (61.8 ± 13.8% versus 50.7 ± 11.6% of maximum stimulator output, p < 0.0001), and it provided reliable motor maps even in the most demanding cases where sp-nTMS failed (pp-nTMS was able to provide a motor map in five patients in whom sp-nTMS did not provide any motor-positive points, and pp-nTMS was the only modality to provide a motor map in one patient who also did not show motor-positive points during intraoperative stimulation). Fiber volumes of the tracked CST were slightly higher when motor maps of pp-nTMS were used, and CST tracking using pp-nTMS data was also possible in the five patients in whom sp-nTMS failed. In conclusion, application of pp-nTMS with biphasic pulses enables preoperative motor mapping of lE muscle representations even in the most challenging patients in whom the motor system is at high risk due to lesion location or resection.
Collapse
|
100
|
Sollmann N, Zhang H, Kelm A, Schröder A, Meyer B, Pitkänen M, Julkunen P, Krieg SM. Paired-pulse navigated TMS is more effective than single-pulse navigated TMS for mapping upper extremity muscles in brain tumor patients. Clin Neurophysiol 2020; 131:2887-2898. [PMID: 33166740 DOI: 10.1016/j.clinph.2020.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/10/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Single-pulse navigated transcranial magnetic stimulation (sp-nTMS) is used for presurgical motor mapping in patients with motor-eloquent lesions. However, recently introduced paired-pulse nTMS (pp-nTMS) with biphasic pulses could improve motor mapping. METHODS Thirty-four patients (mean age: 56.0 ± 12.7 years, 53.0% high-grade glioma) with motor-eloquent lesions underwent motor mapping of upper extremity representations and nTMS-based tractography of the corticospinal tract (CST) by both sp-nTMS and pp-nTMS with biphasic pulses for the tumor-affected hemisphere before resection. RESULTS In three patients (8.8%), conventional sp-nTMS did not provide motor-positive points, in contrast to pp-nTMS that was capable of generating motor maps in all patients. Good concordance between pp-nTMS and sp-nTMS in the spatial location of motor hotspots and center of gravity (CoG) as well as for CST tracking was observed, with pp-nTMS leading to similar motor map volumes (585.0 ± 667.8 vs. 586.8 ± 204.2 mm3, p = 0.9889) with considerably lower resting motor thresholds (35.0 ± 8.8 vs. 32.8 ± 7.6% of stimulator output, p = 0.0004). CONCLUSIONS Pp-nTMS with biphasic pulses may provide motor maps even in highly demanding cases with tumor-affected motor structures or edema, using lower stimulation intensity compared to sp-nTMS. SIGNIFICANCE Pp-nTMS with biphasic pulses could replace standardly used sp-nTMS for motor mapping and may be safer due to lower stimulation intensity.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Anna Kelm
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sandro M Krieg
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|