51
|
Fernández-Cruz I, Sánchez-Díaz I, Narváez-Padilla V, Reynaud E. Rpt2 proteasome subunit reduction causes Parkinson's disease like symptoms in Drosophila. IBRO Rep 2020; 9:65-77. [PMID: 32715147 PMCID: PMC7369354 DOI: 10.1016/j.ibror.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/01/2020] [Indexed: 01/15/2023] Open
Abstract
The dysfunction of the proteasome-ubiquitin system is commonly reported in several neurodegenerative diseases. Post mortem samples of brains of patients with Parkinson´s disease present cytoplasmic inclusions that are rich in proteins such as ubiquitin, Tau, and α-synuclein. In Parkinson´s disease, a specific reduction of some of the proteasome subunits has also been reported. However, the specific role of the different proteasome subunits in dopaminergic neuron degeneration has not been thoroughly explored. In this work, we used the Gal4/UAS system to test fourteen Drosophila melanogaster RNAi lines from the Bloomington Drosophila Stock Center. Each of these lines targets a different proteasome subunit. To identify the strains that were able to induce neurodegeneration, we drove the expression of these lines to the eye and cataloged them as a function of the extent of neurodegeneration that they induced. The targeted proteasomal subunits are conserved in mammals and therefore may be relevant to study proteasome related diseases. The RNAi line among the regulatory subunits with the most penetrant phenotype targeted the proteasomal subunit Rpt2 and we decided to further characterize its phenotypes. Rpt2 knockdown in the Drosophila central nervous system reduced the activity of the proteasome, augmented the amount of insoluble ubiquitinated protein, and elicited motor and non-motor phenotypes that were similar to the ones found in Drosophila and other models for Parkinson's disease. When Rpt2 is silenced pan-neurally, third instar larvae have locomotion dysfunctions and die during pupation. Larval lethality was avoided using the Gal80-Gal4 system to induce the expression of the Rpt2 RNAi to dopaminergic neurons only after pupation. The reduction of Rpt2 in adult dopaminergic neurons causes reduced survival, hyperactivity, neurodegeneration, and sleep loss; probably recapitulating some of the sleep disorders that Parkinson's disease patients have before the appearance of locomotion disorders.
Collapse
Affiliation(s)
- Iván Fernández-Cruz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Iván Sánchez-Díaz
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Narváez-Padilla
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Enrique Reynaud
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
52
|
Kasabova-Angelova A, Tzankova D, Mitkov J, Georgieva M, Tzankova V, Zlatkov A, Kondeva-Burdina M. Xanthine Derivatives as Agents Affecting Non-dopaminergic Neuroprotection in Parkinson`s Disease. Curr Med Chem 2020; 27:2021-2036. [PMID: 30129404 DOI: 10.2174/0929867325666180821153316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and debilitating disease that affects 1% of the elderly population. Patient's motor disability results in extreme difficulty to deal with daily activities. Conventional treatment is limited to dopamine replacement therapy, which fails to delay disease's progression and is often associated with a number of adverse reactions. Recent progress in understanding the mechanisms involved in PD has revealed new molecular targets for therapeutic approaches. Among them, caffeine and xanthine derivatives are promising drug candidates, because of the possible symptomatic benefits in PD. In fact, consumption of coffee correlates with a reduced risk of PD. Over the last decades, a lot of efforts have been made to uncover the therapeutic potential of xanthine structures. The substituted xanthine molecule is used as a scaffold for the synthesis of new compounds with protective effects in neurodegenerative diseases, including PD, asthma, cancer and others. The administration of the xanthines has been proposed as a non-dopaminergic strategy for neuroprotection in PD and the mechanisms of protection have been associated with antagonism of adenosine A2A receptors and Monoamine Oxidase type B (MAO-B) inhibition. The current review summarizes frequently suspected non-dopaminergic neuroprotective mechanisms and the possible beneficial effects of the xanthine derivatives in PD, along with some synthetic approaches to produce perspective xanthine derivatives as non-dopaminergic agents in PD treatment.
Collapse
Affiliation(s)
- Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
53
|
Creation of a gene expression classifier for predicting Parkinson's disease rate of progression. J Neural Transm (Vienna) 2020; 127:755-762. [PMID: 32385576 DOI: 10.1007/s00702-020-02194-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) etiology is heterogeneous, genetic, and multi-factorial, resulting in a varied disease from a mild slow progression to a more severe rapid progression. Prognostic information on the nature of the patient's disease at diagnosis aids the physician in counseling patients on treatment options and life planning. In a cohort of PD patients from the PPMI study, the relative gene expression levels of SKP1A, UBE2K, ALDH1A1, PSMC4, HSPA8 and LAMB2 were measured in baseline blood samples by real-time quantitative PCR. At baseline PD patients were up to 2 years from diagnosis, H&Y scale ≤ 2 and PD treatment naïve. PD-Prediction algorithm comprised of ALDH1A1, LAMB2, UBE2K, SKP1A and age was created by logistic regression for predicting progression to ≤ 70% Modified Schwab and England Activities of Daily Living (S&E-ADL). In relation to patients negative for PD-Prediction (n = 180), patients positive (n = 30) for Cutoff-1 (at 82% specificity, 80.0% sensitivity) had positive hazard ratio (HR+) of 10.6 (95% CI, 2.2-50.1), and positive (n = 23) for Cutoff-2 (at 93% specificity, 47% sensitivity) had HR+ of 17.1 (95% CI, 3.2-89.9) to progress to ≤ 70% S&E-ADL within 3 years (P value < 0.0001). Likewise, patients positive for PD-Prediction Cutoff-1 (n = 49) had HR+ 4.3 (95% CI, 1.6-11.6) for faster time to H&Y 3 in relation to patients negative (n = 170) for PD-Prediction (P value = 0.0002). Our findings show an algorithm that seems to predict fast PD progression and may potentially be used as a tool to assist the physician in choosing an optimal treatment plan, improving the patient's quality of life and overall health outcome.
Collapse
|
54
|
Chuang YH, Lu AT, Paul KC, Folle AD, Bronstein JM, Bordelon Y, Horvath S, Ritz B. Longitudinal Epigenome-Wide Methylation Study of Cognitive Decline and Motor Progression in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:389-400. [PMID: 30958317 DOI: 10.3233/jpd-181549] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND DNA methylation studies in Parkinson's disease (PD) thus far have focused on disease susceptibility but not progression. OBJECTIVE In this epigenome-wide association study (EWAS), we aim to identify methylation markers associated with faster cognitive decline or motor progression in PD. METHODS We included 232 PD patients from the Parkinson's Environment and Gene follow-up study who provided blood samples at enrolment. Information on cognitive and motor function was collected using the Mini-Mental State Examination (MMSE) and Unified Parkinson's Disease Rating Scale (UPDRS). For EWAS analyses, we used a robust measure of correlation: biweight midcorrelations, t-tests, and Cox proportional hazard models. We also conducted weighted correlation network analysis (WGCNA) to identify CpG modules associated with cognitive decline or motor progression in PD. RESULTS Among 197 individuals of European ancestry, with our EWAS approach we identified 7 genome-wide significant CpGs associated with a MMSE 4-point decline and 8 CpGs associated with faster motor progression (i.e., rate of UPDRS increase ≥5-point/year). The most interesting CpGs for cognitive decline include cg17445913 in KCNB1 (cor = 0.36, p = 6.85×10-7) and cg02920897 in DLEU2 (cor = 0.34, p = 3.23×10-6), while for motor progression it was cg01754178 in PTPRN2 (cor = - 0.34, p = 2.07×10-6). In WGCNA, motor progression related modules were enriched for genes related to neuronal synaptic functions, Wnt signaling pathway, and mitochondrial apoptosis. CONCLUSIONS Our study provides the first epigenetic evidence that differential methylation in genes previously identified as being associated with cognitive impairment, neuronal synaptic function, Wnt signaling pathway, and mitochondrial apoptosis is associated with cognitive and motor progression in PD.
Collapse
Affiliation(s)
- Yu-Hsuan Chuang
- Department of Epidemiology, Fielding School of Public Health (FSPH), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health (FSPH), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Aline D Folle
- Department of Epidemiology, Fielding School of Public Health (FSPH), University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yvette Bordelon
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Department of Biostatistics, FSPH, UCLA, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health (FSPH), University of California Los Angeles (UCLA), Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Department of Environmental Health, FSPH, UCLA, Los Angeles, CA, USA
| |
Collapse
|
55
|
Genetic Analysis of EGLN1 C127S Variant in Taiwanese Parkinson’s Disease. PARKINSON'S DISEASE 2020; 2020:9582317. [PMID: 32377332 PMCID: PMC7196998 DOI: 10.1155/2020/9582317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/16/2020] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder related to nigrostriatal dopaminergic neuron degeneration and iron accumulation. As a cellular oxygen sensor, prolyl hydroxylase domain containing protein 2 (PHD2, encoded by egl-9 family hypoxia inducible factor 1, EGLN1) modifies hypoxia-inducible factor alpha (HIF-α) protein for proteasomal destruction under normoxic condition. In addition, 2-oxoglutarate- (OG-) dependent dioxygenase activity of PHD2 is involved in the oxygen and iron regulation of iron-responsive element binding protein 2 (IRP2) stability. Previously increased expression of EGLN1 was found in the substantia nigra of the parkinsonian brain. We investigated the possible role of c.380 G > C (p.C127S) of EGLN1 gene in Taiwanese patients with PD. 479 patients and 435 healthy controls were recruited. Polymerase chain reaction and BsmAI restriction enzyme analysis were applied for analysis. An association between CC genotype and reduced PD risk in the recessive model (CC vs. GG + GC) was found. Our study provides a link between EGLN1 c.380 G > C SNP and the development of PD.
Collapse
|
56
|
Nido GS, Dick F, Toker L, Petersen K, Alves G, Tysnes OB, Jonassen I, Haugarvoll K, Tzoulis C. Common gene expression signatures in Parkinson's disease are driven by changes in cell composition. Acta Neuropathol Commun 2020; 8:55. [PMID: 32317022 PMCID: PMC7175586 DOI: 10.1186/s40478-020-00932-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
The etiology of Parkinson’s disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue have identified several molecular signatures associated with the disease. While these studies have the potential to shed light into the pathogenesis of Parkinson’s disease, they are also limited by two major confounders: RNA post-mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA depletion followed by capture by random primers resulted in substantially more even transcript coverage, compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major confounder of differential gene expression analysis in the Parkinson’s disease brain. Accounting for cell type proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson’s disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely, pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and surface as the top differential gene expression signatures in the Parkinson’s disease prefrontal cortex. Our results indicate that differential gene expression signatures in Parkinson’s disease bulk brain tissue are significantly confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order to unveil transcriptomic signatures that represent regulatory changes in the Parkinson’s disease brain and are, therefore, more likely to be associated with underlying disease mechanisms.
Collapse
|
57
|
Keller S, Polanski WH, Enzensperger C, Reichmann H, Hermann A, Gille G. 9-Methyl-β-carboline inhibits monoamine oxidase activity and stimulates the expression of neurotrophic factors by astrocytes. J Neural Transm (Vienna) 2020; 127:999-1012. [PMID: 32285253 PMCID: PMC8592951 DOI: 10.1007/s00702-020-02189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
β-Carbolines (BC) are pyridoindoles, which can be found in various exogenous and endogenous sources. Recent studies revealed neurostimulative, neuroprotective, neuroregenerative and anti-inflammatory effects of 9-methyl-BC (9-Me-BC). Additionally, 9-me-BC increased neurite outgrowth of dopaminergic neurons independent of dopamine uptake into these neurons. In this study, the role of astrocytes in neurostimulative, neuroregenerative and neuroprotective properties of 9-me-BC was further explored. 9-Me-BC exerted anti-proliferative effects without toxic properties in dopaminergic midbrain and cortical astrocyte cultures. The organic cation transporter (OCT) but not the dopamine transporter seem to mediate at least part the effect of 9-me-BC on astrocytes. Remarkably, 9-me-BC stimulated the gene expression of several important neurotrophic factors for dopaminergic neurons like Artn, Bdnf, Egln1, Tgfb2 and Ncam1. These factors are well known to stimulate neurite outgrowth and to show neuroprotective and neuroregenerative properties to dopaminergic neurons against various toxins. Further, we show that effect of 9-me-BC is mediated through phosphatidylinositol 3-kinase (PI3K) pathway. Additionally, 9-me-BC showed inhibitory properties to monoamine oxidase (MAO) activity with an IC50 value of 1 µM for MAO-A and of 15.5 µM for MAO-B. The inhibition of MAO by 9-me-BC might contribute to the observed increased dopamine content and anti-apoptotic properties in cell culture after 9-me-BC treatment in recent studies. Thus, 9-me-BC have a plethora of beneficial effects on dopaminergic neurons warranting its exploration as a new multimodal anti-parkinsonian medication.
Collapse
Affiliation(s)
- Sebastian Keller
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Witold Henryk Polanski
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Department of Neurosurgery, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Christoph Enzensperger
- Institute of Pharmacy, Friedrich Schiller University of Jena, Philosophenweg 14, 07743, Jena, Germany
- SmartDyeLivery GmbH, Botzstraße 5, 07743, Jena, Germany
| | - Heinz Reichmann
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147, Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Gabriele Gille
- Department of Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
58
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
59
|
VCP expression decrease as a biomarker of preclinical and early clinical stages of Parkinson's disease. Sci Rep 2020; 10:827. [PMID: 31964996 PMCID: PMC6972783 DOI: 10.1038/s41598-020-57938-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Valosin-containing human protein (VCP) or p97 performs enzyme functions associated with the maintenance of protein homeostasis and control of protein quality. Disruption of its normal functioning might be associated with the development of Parkinson’s disease (PD). Tissues of mice with toxin-induced presymptomatic and early symptomatic stages of PD, as well as 52 treated and untreated patients with newly diagnosed PD and nine patients with a “predicted” form of PD, were investigated. Significant changes in Vcp gene expression were observed in almost all studied mouse tissues. A significant decrease in VCP expression specific for PD was also detected at both the late preclinical and the early clinical stages of PD in untreated patients. Thus, a decrease in VCP expression is important for changes in the function of the nervous system at early stages of PD. Analysis of changes in VCP expression in all patients with PD and in Vcp in the peripheral blood of mice used as models of PD revealed significant decreases in expression specific for PD. These data suggest that a decrease in the relative levels of VCP mRNA might serve as a biomarker for the development of pathology at the early clinical and preclinical stages of human PD.
Collapse
|
60
|
Palese F, Pontis S, Realini N, Piomelli D. A protective role for N-acylphosphatidylethanolamine phospholipase D in 6-OHDA-induced neurodegeneration. Sci Rep 2019; 9:15927. [PMID: 31685899 PMCID: PMC6828692 DOI: 10.1038/s41598-019-51799-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) catalyzes the cleavage of membrane NAPEs into bioactive fatty-acid ethanolamides (FAEs). Along with this precursor role, NAPEs might also serve autonomous signaling functions. Here, we report that injections of 6-hydroxydopamine (6-OHDA) into the mouse striatum cause a local increase in NAPE and FAE levels, which precedes neuronal cell death. NAPE, but not FAE, accumulation is enhanced in mice lacking NAPE-PLD, which display a substantial reduction in 6-OHDA-induced neurotoxicity, as shown by increased survival of substantia nigra dopamine neurons, integrity of striatal dopaminergic fibers, and striatal dopamine metabolite content. Reduced damage is accompanied by attenuation of the motor response evoked by apomorphine. Furthermore, NAPE-PLD silencing protects cathecolamine-producing SH-SY5Y cells from 6-OHDA-induced reactive oxygen species formation, caspase-3 activation and death. Mechanistic studies in mice suggest the existence of multiple molecular contributors to the neuroprotective effects of NAPE-PLD deletion, including suppression of Rac1 activity and attenuated transcription of several genes (Cadps, Casp9, Egln1, Kcnj6, Spen, and Uchl1) implicated in dopamine neuron survival and/or Parkinson's disease. The findings point to a previously unrecognized role for NAPE-PLD in the regulation of dopamine neuron function, which may be linked to the control of NAPE homeostasis in membranes.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA
| | - Silvia Pontis
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Natalia Realini
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology and Biological Chemistry, University of California, Irvine, CA, 92697-4625, USA.
| |
Collapse
|
61
|
Salas-Leal AC, Sandoval-Carrillo A, Romero-Gutiérrez E, Castellanos-Juárez FX, Méndez-Hernández EM, La Llave-León O, Quiñones-Canales G, Arias-Carrión O, Salas-Pacheco JM. rs3764435 Associated With Parkinson's Disease in Mexican Mestizos: Case-Control Study Reveals Protective Effects Against Disease Development and Cognitive Impairment. Front Neurol 2019; 10:1066. [PMID: 31649613 PMCID: PMC6794556 DOI: 10.3389/fneur.2019.01066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/20/2019] [Indexed: 01/21/2023] Open
Abstract
Parkinson's disease (PD) is the second most common movement disorder. Genetic risk factors provide information about the pathophysiology of PD that could potentially be used as biomarkers. The ALDH1A1 gene encodes for the aldehyde dehydrogenase enzyme, which is involved in the disposal of toxic metabolites of dopamine. Due to the cytotoxic nature of aldehydes, their detoxification is essential for cellular homeostasis. It has been reported that ALDH1A1 expression levels and activity are decreased in PD patients. A deficit in ALDH1A1 activity in the substantia nigra, may lead to the accumulation of neurotoxic aldehydes and eventually the cell death seen in PD. One of the single nucleotide polymorphisms (SNP) that may modulate ALDH1A1 activity levels is rs3764435 (A/C). To investigate whether a statistical association exists between PD and the SNP rs3764435, we carried out a population-based Case-Control association study (120 PD patients and 178 non-PD subjects) in Mexican mestizos. DNA was extracted from blood samples and genotyped for rs3764435 using real-time PCR. A significant difference was found between PD cases and controls in both allelic and genotypic frequencies. The calculated OR showed that the C/C genotype is a protective factor under the codominant and recessive models of inheritance. However, after stratifying by sex, the protective role of this genotype is conserved only in men. Also, under the codominant and dominant models, rs3764435 appears to exert a protective effect against cognitive impairment in PD patients. Here for the first time, we show an association between PD and rs3764435 in a Mexican mestizo population, suggesting it confers neuroprotection for dementia in PD and is neuroprotective against developing PD in the males of this population. While analysis of the SNP looks favorable, replication of our study in cell lines or rs3764435 KO mice is required to validate these results.
Collapse
Affiliation(s)
- Alma C Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Elizabeth Romero-Gutiérrez
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | | | - Edna M Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico.,Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - José M Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Mexico
| |
Collapse
|
62
|
Naicker M, Abbai N, Naidoo S. Bipolar limbic expression of auto-immune thyroid targets: thyroglobulin and thyroid-stimulating hormone receptor. Metab Brain Dis 2019; 34:1281-1298. [PMID: 31197680 DOI: 10.1007/s11011-019-00437-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
The associations between thyroid auto-immunity and neuro-psychiatric disorders are well-documented. However, there exists limited literature specifically linking auto-immune thyroid disease (AITD) to bipolar disorder (BD). Thus, we investigated the likely association between Hashimoto's disease and BD through the extra-thyroidal localisation of thyroid-stimulating hormone receptor (TSH-R) and thyroglobulin (TG) in limbic regions of normal and bipolar human adult brain. Further, we hypothesised that changes in thyroid expression in bipolar limbic cortex may contribute to mood dysregulation associated with BD. Immuno-chemistry and in-situ PCR were used to localise TSH-R/TG within the amygdala, cingulate gyrus and frontal cortex of normal (n = 5) and bipolar (n = 5) brains. Reverse-transcriptase qPCR provided fold-change differences in TSH-R gene expression. The results demonstrated reduced thyroid protein expression in bipolar limbic regions; these novel results correlate with other neuro-imaging reports that describe reduced cortico-limbic tissue volumes and neuro-physiological activity during BD. We also demonstrated TG-like proteins exclusive to bipolar amygdala neurons, and which relates to previous neuro-imaging studies of amygdala hyperactivity and enhanced emotional sensitivity in BD. Indeed, reduced TSH-R/TG in limbic regions may predispose to, or bear relevance in the pathophysiology of mood dysregulation and symptoms of BD. Further, we attribute mood dysregulation in BD to limbic-derived TSH-R, which probably provides potential targets for thyroid auto-immune factors during Hashimoto's disease. Consequently, this may lead to inactivated and/or damaged neurons. The neuro-pathology of diminished neuronal functioning or neuronal atrophy suggests a novel neuro-degeneration mechanism in BD.
Collapse
Affiliation(s)
- Meleshni Naicker
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa.
| | - Nathlee Abbai
- School of Clinical Medicine Research Laboratory, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Strinivasen Naidoo
- Therapeutics and Medicines Management, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private bag X7, Durban, 4001, South Africa
| |
Collapse
|
63
|
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019; 14:35. [PMID: 31488222 PMCID: PMC6728988 DOI: 10.1186/s13024-019-0332-6] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
A full understanding of Parkinson's Disease etiopathogenesis and of the causes of the preferential vulnerability of nigrostriatal dopaminergic neurons is still an unsolved puzzle. A multiple-hit hypothesis has been proposed, which may explain the convergence of familial, environmental and idiopathic forms of the disease. Among the various determinants of the degeneration of the neurons in Substantia Nigra pars compacta, in this review we will focus on the endotoxicity associated to dopamine dyshomeostasis. In particular, we will discuss the relevance of the reactive dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) in the catechol-induced neurotoxicity. Indeed, the synergy between the catechol and the aldehyde moieties of DOPAL exacerbates its reactivity, resulting in modification of functional protein residues, protein aggregation, oxidative stress and cell death. Interestingly, αSynuclein, whose altered proteostasis is a recurrent element in Parkinson's Disease pathology, is considered a preferential target of DOPAL modification. DOPAL triggers αSynuclein oligomerization leading to synapse physiology impairment. Several factors can be responsible for DOPAL accumulation at the pre-synaptic terminals, i.e. dopamine leakage from synaptic vesicles, increased rate of dopamine conversion to DOPAL by upregulated monoamine oxidase and decreased DOPAL degradation by aldehyde dehydrogenases. Various studies report the decreased expression and activity of aldehyde dehydrogenases in parkinsonian brains, as well as genetic variants associated to increased risk in developing the pathology. Thus, we discuss how the deregulation of these enzymes might be considered a contributing element in the pathogenesis of Parkinson's Disease or a down-stream effect. Finally, we propose that a better understanding of the impaired dopamine metabolism in Parkinson's Disease would allow a more refined patients stratification and the design of more targeted and successful therapeutic strategies.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, and National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
64
|
Pinho R, Paiva I, Jercic KG, Fonseca-Ornelas L, Gerhardt E, Fahlbusch C, Garcia-Esparcia P, Kerimoglu C, Pavlou MAS, Villar-Piqué A, Szego É, Lopes da Fonseca T, Odoardi F, Soeroes S, Rego AC, Fischle W, Schwamborn JC, Meyer T, Kügler S, Ferrer I, Attems J, Fischer A, Becker S, Zweckstetter M, Borovecki F, Outeiro TF. Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum Mol Genet 2019; 28:31-50. [PMID: 30219847 DOI: 10.1093/hmg/ddy326] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 11/14/2022] Open
Abstract
Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Raquel Pinho
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases, Barcelona, Spain
| | - Cemil Kerimoglu
- Department for Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Maria A S Pavlou
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Anna Villar-Piqué
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Éva Szego
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Tomás Lopes da Fonseca
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Francesca Odoardi
- Institute of Neuroimmunology and Institute for Multiple Sclerosis Research, University Medical Centre Göttingen, Göttingen, Germany
| | - Szabolcs Soeroes
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Göttingen, Germany.,Oxford Nanopore Technologies LTD, Oxford, United Kingdom
| | - Ana Cristina Rego
- Center for Neuroscience and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Wolfgang Fischle
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Göttingen, Germany.,King Abdullah University of Science and Technology, Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Jens C Schwamborn
- Development and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Meyer
- Klinik für Psychosomatische Medizin und Psychotherapie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, University of Barcelona, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat; Biomedical Research Center of Neurodegenerative Diseases, Barcelona, Spain
| | - Johannes Attems
- Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - André Fischer
- Department for Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Department of Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Structural Biology in Dementia, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,Institute of Neuroscience, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom.,Chronic Disease Research Center, NOVA Medical School, Lisboa, Portugal.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
65
|
Gerez JA, Prymaczok NC, Rockenstein E, Herrmann US, Schwarz P, Adame A, Enchev RI, Courtheoux T, Boersema PJ, Riek R, Peter M, Aguzzi A, Masliah E, Picotti P. A cullin-RING ubiquitin ligase targets exogenous α-synuclein and inhibits Lewy body-like pathology. Sci Transl Med 2019; 11:eaau6722. [PMID: 31167929 PMCID: PMC10697662 DOI: 10.1126/scitranslmed.aau6722] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/16/2018] [Accepted: 05/08/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading. We found that stable αSyn fibrils substantially accumulate in different cell lines upon internalization, whereas αSyn monomers, oligomers, and dissociable fibrils do not. Our data indicate that the uptake-mediated accumulation of αSyn in a human-derived neuroblastoma cell line triggered an adaptive response that involved proteins linked to ubiquitin ligases of the S-phase kinase-associated protein 1 (SKP1), cullin-1 (Cul1), and F-box domain-containing protein (SCF) family. We found that SKP1, Cul1, and the F-box/LRR repeat protein 5 (FBXL5) colocalized and physically interacted with internalized αSyn in cultured cells. Moreover, the SCF containing the F-box protein FBXL5 (SCFFBXL5) catalyzed αSyn ubiquitination in reconstitution experiments in vitro using recombinant proteins and in cultured cells. In the human brain, SKP1 and Cul1 were recruited into Lewy bodies from brainstem and neocortex of patients with PD and related neurological disorders. In both transgenic and nontransgenic mice, intracerebral administration of exogenous αSyn fibrils triggered a Lewy body-like pathology, which was amplified by SKP1 or FBXL5 loss of function. Our data thus indicate that SCFFXBL5 regulates αSyn in vivo and that SCF ligases may constitute targets for the treatment of PD and other α-synucleinopathies.
Collapse
Affiliation(s)
- Juan A Gerez
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Natalia C Prymaczok
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Uli S Herrmann
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Thibault Courtheoux
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Paul J Boersema
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich CH-8091, Switzerland
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, San Diego, CA 92093, USA
| | - Paola Picotti
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
66
|
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Front Neurosci 2019; 13:457. [PMID: 31133790 PMCID: PMC6524622 DOI: 10.3389/fnins.2019.00457] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
Despite decades of research, current therapeutic interventions for Parkinson’s disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways. It is generally accepted that deficits in proteostasis are linked to various neurodegenerative diseases including PD. While the proteasome fails to degrade large protein aggregates, particularly alpha-synuclein (α-SYN) in PD, drug-induced activation of autophagy can efficiently remove aggregates and prevent degeneration of dopaminergic (DA) neurons. Therefore, maintenance of these mechanisms is essential to preserve all cellular functions relying on a correctly folded proteome. The correlations between endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway are well-established. However, while mild insults increase the activity of chaperones, prolonged cell stress, or insufficient adaptive response causes cell death. Modulating the activity of molecular chaperones, such as protein disulfide isomerase which assists refolding and contributes to the removal of unfolded proteins, and their associated pathways may offer a new approach for disease-modifying treatment. Here, we summarize some of the key concepts and emerging ideas on the relation of protein aggregation and imbalanced proteostasis with an emphasis on PD as our area of main expertise. Furthermore, we discuss recent insights into the strategies for reducing the toxic effects of protein unfolding in PD by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tuuli-Maria Sonninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gundars Goldsteins
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
67
|
Dal Ben M, Bongiovanni R, Tuniz S, Fioriti E, Tiribelli C, Moretti R, Gazzin S. Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra. Int J Mol Sci 2019; 20:2224. [PMID: 31064126 PMCID: PMC6539377 DOI: 10.3390/ijms20092224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
The current treatments of Parkinson disease (PD) are ineffective mainly due to the poor understanding of the early events causing the decline of dopaminergic neurons (DOPAn). To overcome this problem, slow progressively degenerating models of PD allowing the study of the pre-clinical phase are crucial. We recreated in a short ex vivo time scale (96 h) all the features of human PD (needing dozens of years) by challenging organotypic culture of rat substantia nigra with low doses of rotenone. Thus, taking advantage of the existent knowledge, the model was used to perform a time-dependent comparative study of the principal possible causative molecular mechanisms undergoing DOPAn demise. Alteration in the redox state and inflammation started at 3 h, preceding the reduction in DOPAn number (pre-diagnosis phase). The number of DOPAn declined to levels compatible with diagnosis only at 12 h. The decline was accompanied by a persistent inflammation and redox imbalance. Significant microglia activation, apoptosis, a reduction in dopamine vesicle transporters, and the ubiquitination of misfolded protein clearance pathways were late (96 h, consequential) events. The work suggests inflammation and redox imbalance as simultaneous early mechanisms undergoing DOPAn sufferance, to be targeted for a causative treatment aimed to stop/delay PD.
Collapse
Affiliation(s)
- Matteo Dal Ben
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | | | - Simone Tuniz
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Emanuela Fioriti
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| | - Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34100 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato, AREA Science Park, 34149 Trieste, Italy.
| |
Collapse
|
68
|
Segura-Aguilar J. The importance of choosing a preclinical model that reflects what happens in Parkinson's disease. Neurochem Int 2019; 126:203-209. [PMID: 30922924 DOI: 10.1016/j.neuint.2019.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
One of the major problems in the translation of successful preclinical results to clinical studies and new therapies in Parkinson's disease is the use of preclinical models based on exogenous neurotoxins that do not replicate what happens in the disease. The loss of dopaminergic neurons containing neuromelanin in Parkinson´s disease takes years, contrasting the very rapid degeneration induced by exogenous neurotoxins. We discuss the role of endogenous neurotoxins generated during dopamine oxidation and its possible use as new preclinical models for Parkinson´s disease.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, 8350453, Independencia, Santiago, Chile.
| |
Collapse
|
69
|
Monteiro AFM, Viana JDO, Nayarisseri A, Zondegoumba EN, Mendonça Junior FJB, Scotti MT, Scotti L. Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7912765. [PMID: 30693065 PMCID: PMC6332933 DOI: 10.1155/2018/7912765] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's and Alzheimer's, are understood as occurring through genetic, cellular, and multifactor pathophysiological mechanisms. Several natural products such as flavonoids have been reported in the literature for having the capacity to cross the blood-brain barrier and slow the progression of such diseases. The present article reports on in silico enzymatic target studies and natural products as inhibitors for the treatment of Parkinson's and Alzheimer's diseases. In this study we evaluated 39 flavonoids using prediction of molecular properties and in silico docking studies, while comparing against 7 standard reference compounds: 4 for Parkinson's and 3 for Alzheimer's. Osiris analysis revealed that most of the flavonoids presented no toxicity and good absorption parameters. The Parkinson's docking results using selected flavonoids as compared to the standards with four proteins revealed similar binding energies, indicating that the compounds 8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, capensinidin, and rosinidin are potential leads with the necessary pharmacological and structural properties to be drug candidates. The Alzheimer's docking results suggested that seven of the 39 flavonoids studied, being those with the best molecular docking results, presenting no toxicity risks, and having good absorption rates (8-prenylnaringenin, europinidin, epicatechin gallate, homoeriodictyol, aspalathin, butin, and norartocarpetin) for the targets analyzed, are the flavonoids which possess the most adequate pharmacological profiles.
Collapse
Affiliation(s)
- Alex France M. Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Jéssika De O. Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Bioscience, Inodre - 452010, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences, Indore - 452010, Madhya Pradesh, India
| | - Ernestine N. Zondegoumba
- Department of Organic Chemistry, Faculty of Science, University of Yaounde I, PO Box 812, Yaoundé, Cameroon
| | | | - Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil
- Teaching and Research Management-University Hospital, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
70
|
T. dos Santos MC, Scheller D, Schulte C, Mesa IR, Colman P, Bujac SR, Bell R, Berteau C, Perez LT, Lachmann I, Berg D, Maetzler W, Nogueira da Costa A. Evaluation of cerebrospinal fluid proteins as potential biomarkers for early stage Parkinson's disease diagnosis. PLoS One 2018; 13:e0206536. [PMID: 30383831 PMCID: PMC6211693 DOI: 10.1371/journal.pone.0206536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) has often been used as the source of choice for biomarker discovery with the goal to support the diagnosis of neurodegenerative diseases. For this study, we selected 15 CSF protein markers which were identified in previously published clinical investigations and proposed as potential biomarkers for PD diagnosis. We aimed at investigating and confirming their suitability for early stage diagnosis of the disease. The current study was performed in a two-fold confirmatory approach. Firstly, the CSF protein markers were analysed in confirmatory cohort I comprising 80 controls and 80 early clinical PD patients. Through univariate analysis we found significant changes of six potential biomarkers (α-syn, DJ-1, Aβ42, S100β, p-Tau and t-Tau). In order to increase robustness of the observations for potential patient differentiation, we developed-based on a machine learning approach-an algorithm which enabled identifying a panel of markers which would improve clinical diagnosis. Based on that model, a panel comprised of α-syn, S100β and UCHL1 were suggested as promising candidates. Secondly, we aimed at replicating our observations in an independent cohort (confirmatory cohort II) comprising 30 controls and 30 PD patients. The univariate analysis demonstrated Aβ42 as the only reproducible potential biomarker. Taking into account both technical and clinical aspects, these observations suggest that the large majority of the investigated CSF proteins currently proposed as potential biomarkers lack robustness and reproducibility in supporting diagnosis in the early clinical stages of PD.
Collapse
Affiliation(s)
| | | | - Claudia Schulte
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
| | - Irene R. Mesa
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Peter Colman
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Sarah R. Bujac
- Exploratory Statistics, Global Exploratory Development, UCB Pharma SA, Slough, United Kingdom
| | - Rosie Bell
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Caroline Berteau
- Translational Medicine, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | - Luis Tosar Perez
- Bioanalytical Sciences, Non Clinical Development, UCB Biopharma SPRL, Braine L’Alleud, Belgium
| | | | - Daniela Berg
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Walter Maetzler
- Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, University of Tuebingen and German Center for Neurodegenerative Diseases, Tuebingen, Germany
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
71
|
Reduction of HIP2 expression causes motor function impairment and increased vulnerability to dopaminergic degeneration in Parkinson's disease models. Cell Death Dis 2018; 9:1020. [PMID: 30282965 PMCID: PMC6170399 DOI: 10.1038/s41419-018-1066-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/08/2022]
Abstract
Huntingtin interaction protein 2 (HIP2) is an E2 ubiquitin-conjugating enzyme associated with neurodegenerative diseases, and HIP2 mRNA has been implicated as a potential blood biomarker for Parkinson's disease (PD). However, it is unclear whether the alteration of HIP2 expression may contribute to the development of PD, and whether the change of HIP2 in blood could reflect its expression in the brain or motor functions in PD patients. In this study, we established a mouse line with HIP2 haploinsufficiency. The reduction of the HIP2 expression led to spontaneous motor function impairment and dopaminergic neuronal loss. Furthermore, HIP2 haploinsufficiency increased the susceptibility of mice to 6-hydroxydopamine (6-OHDA) and caused severe loss of dopaminergic neurons. Interestingly, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model for PD, we observed concurrent, highly correlated decrease of HIP2 expression in the brain and in the blood. Using blood samples from more than 300 patients, we validated the decreased HIP2 mRNA in PD patients, including de novo patients. Finally, in a 1-year, 20-patient study, we observed reversed blood HIP2 mRNA levels accompanying improved motor and overall daily functions in 75% of the PD patients with instructed Tai Chi training. Therefore, our in vivo studies have indicated HIP2 insufficiency as a contributing factor for PD, and functionally validated blood HIP2 as a useful and reversible biomarker for PD.
Collapse
|
72
|
Supandi F, van Beek JHGM. Computational prediction of changes in brain metabolic fluxes during Parkinson's disease from mRNA expression. PLoS One 2018; 13:e0203687. [PMID: 30208076 PMCID: PMC6135490 DOI: 10.1371/journal.pone.0203687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson’s disease is a widespread neurodegenerative disorder which affects brain metabolism. Although changes in gene expression during disease are often measured, it is difficult to predict metabolic fluxes from gene expression data. Here we explore the hypothesis that changes in gene expression for enzymes tend to parallel flux changes in biochemical reaction pathways in the brain metabolic network. This hypothesis is the basis of a computational method to predict metabolic flux changes from post-mortem gene expression measurements in Parkinson’s disease (PD) brain. Results We use a network model of central metabolism and optimize the correspondence between relative changes in fluxes and in gene expression. To this end we apply the Least-squares with Equalities and Inequalities algorithm integrated with Flux Balance Analysis (Lsei-FBA). We predict for PD (1) decreases in glycolytic rate and oxygen consumption and an increase in lactate production in brain cortex that correspond with measurements (2) relative flux decreases in ATP synthesis, in the malate-aspartate shuttle and midway in the TCA cycle that are substantially larger than relative changes in glucose uptake in the substantia nigra, dopaminergic neurons and most other brain regions (3) shifts in redox shuttles between cytosol and mitochondria (4) in contrast to Alzheimer’s disease: little activation of the gamma-aminobutyric acid shunt pathway in compensation for decreased alpha-ketoglutarate dehydrogenase activity (5) in the globus pallidus internus, metabolic fluxes are increased, reflecting increased functional activity. Conclusion Our method predicts metabolic changes from gene expression data that correspond in direction and order of magnitude with presently available experimental observations during Parkinson’s disease, indicating that the hypothesis may be useful for some biochemical pathways. Lsei-FBA generates predictions of flux distributions in neurons and small brain regions for which accurate metabolic flux measurements are not yet possible.
Collapse
Affiliation(s)
- Farahaniza Supandi
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Johannes H. G. M. van Beek
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, AZ Amsterdam, the Netherlands
| |
Collapse
|
73
|
Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018; 75:3159-3180. [PMID: 29947927 PMCID: PMC6063327 DOI: 10.1007/s00018-018-2854-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
74
|
Paiva I, Jain G, Lázaro DF, Jerčić KG, Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V, Halder R, Islam R, Xylaki M, Caldi Gomes LA, Roser AE, Lingor P, Schulze-Hentrich JM, Borovečki F, Fischer A, Outeiro TF. Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis 2018; 119:121-135. [PMID: 30092270 DOI: 10.1016/j.nbd.2018.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/21/2022] Open
Abstract
Alpha-synuclein (aSyn) is the major protein component of Lewy bodies and Lewy neurites, the typical pathological hallmarks in Parkinson's disease (PD) and Dementia with Lewy bodies. aSyn is capable of inducing transcriptional deregulation, but the precise effect of specific aSyn mutants associated with familial forms of PD, remains unclear. Here, we used transgenic mice overexpressing human wild-type (WT) or A30P aSyn to compare the transcriptional profiles of the two animal models. We found that A30P aSyn promotes strong transcriptional deregulation and increases DNA binding. Interestingly, COL4A2, a major component of basement membranes, was found to be upregulated in both A30P aSyn transgenic mice and in dopaminergic neurons expressing A30P aSyn, suggesting a crucial role for collagen related genes in aSyn-induced toxicity. Finally, we observed that A30P aSyn alters Golgi morphology and increases the susceptibility to endoplasmic reticulum (ER) stress in dopaminergic cells. In total, our findings provide novel insight into the putative role of aSyn on transcription and on the molecular mechanisms involved, thereby opening novel avenues for future therapeutic interventions in PD and other synucleinopathies.
Collapse
Affiliation(s)
- Isabel Paiva
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Kristina Gotovac Jerčić
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Raquel Pinho
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Èva M Szegő
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Vincenzo Capece
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rashi Halder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Mary Xylaki
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Lucas A Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, Faculty of Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen 37073, Germany; CEDOC - Chronic Diseases Research Center, Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisboa, Portugal; Max Planck Institute for Experimental Medicine, Göttingen 37075, Germany; Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle NE2 4HH, UK.
| |
Collapse
|
75
|
MTOR Pathway-Based Discovery of Genetic Susceptibility to L-DOPA-Induced Dyskinesia in Parkinson's Disease Patients. Mol Neurobiol 2018; 56:2092-2100. [PMID: 29992529 DOI: 10.1007/s12035-018-1219-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022]
Abstract
Dyskinesia induced by L-DOPA administration (LID) is one of the most invalidating adverse effects of the gold standard treatment restoring dopamine transmission in Parkinson's disease (PD). However, LID manifestation in parkinsonian patients is variable and heterogeneous. Here, we performed a candidate genetic pathway analysis of the mTOR signaling cascade to elucidate a potential genetic contribution to LID susceptibility, since mTOR inhibition ameliorates LID in PD animal models. We screened 64 single nucleotide polymorphisms (SNPs) mapping to 57 genes of the mTOR pathway in a retrospective cohort of 401 PD cases treated with L-DOPA (70 PD with moderate/severe LID and 331 with no/mild LID). We performed classic allelic, genotypic, and epistatic analyses to evaluate the association of individual or combinations of SNPs with LID onset and with LID severity after initiation of L-DOPA treatment. As for the time to LID onset, we found significant associations with SNP rs1043098 in the EIF4EBP2 gene and also with an epistatic interaction involving EIF4EBP2 rs1043098, RICTOR rs2043112, and PRKCA rs4790904. For LID severity, we found significant association with HRAS rs12628 and PRKN rs1801582 and also with a four-loci epistatic combination involving RPS6KB1 rs1292034, HRAS rs12628, RPS6KA2 rs6456121, and FCHSD1 rs456998. These findings indicate that the mTOR pathway contributes genetically to LID susceptibility. Our study could help to identify the most susceptible PD patients to L-DOPA in order to prevent the appearance of early and/or severe LID in a future. This information could also be used to stratify PD patients in clinical trials in a more accurate way.
Collapse
|
76
|
Tolosa E, Botta-Orfila T, Morató X, Calatayud C, Ferrer-Lorente R, Martí MJ, Fernández M, Gaig C, Raya Á, Consiglio A, Ezquerra M, Fernández-Santiago R. MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiol Aging 2018; 69:283-291. [PMID: 29935433 DOI: 10.1016/j.neurobiolaging.2018.05.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA (miRNA) misregulation in peripheral blood has been linked to Parkinson disease (PD) but its role in the disease progression remains elusive. We performed an explorative genome-wide study of miRNA expression levels in dopaminergic neurons (DAn) from PD patients generated by somatic cell reprogramming and induced pluripotent stem cells differentiation. We quantified expression levels of 377 miRNAs in DAn from 3 sporadic PD patients (sPD), 3 leucine-rich repeat kinase 2-associated PD patients (L2PD) (total 6 PD), and 4 healthy controls. We identified differential expression of 10 miRNA of which 5 were upregulated in PD (miR-9-5p, miR-135a-5p, miR-135b-5p, miR-449a, and miR-449b-5p) and 5 downregulated (miR-141-3p, miR-199a-5p, miR-299-5p, miR-518e-3p, and miR-519a-3p). Changes were similar in sPD and L2PD. Integrative analysis revealed significant correlations between miRNA/mRNA expression. Moreover, upregulation of miR-9-5p and miR-135b-5p was associated with downregulation of transcription factors related to the DNA hypermethylation of enhancer elements in PD DAn (FOXA1 and NR3C1). In summary, miRNA changes are associated with monogenic L2PD and sPD and co-occur with epigenetic changes in DAn from PD patients.
Collapse
Affiliation(s)
- Eduard Tolosa
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Teresa Botta-Orfila
- Gene Function and Evolution Group, Centre for Genomic Regulation (CRG), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Morató
- Departament Patologia i Terapèutica Experimental, Unitat de Farmacologia, Facultat de Medicina, IDIBELL-Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carles Calatayud
- Department of Pathology and Experimental Therapeutics, Institute of Biomedicine of the University of Barcelona (IBUB), Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - María-José Martí
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manel Fernández
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carles Gaig
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Neurology, Multidisciplinary Sleep Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ángel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, Hospitalet de Llobregat, Barcelona, Spain; Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonella Consiglio
- Department of Pathology and Experimental Therapeutics, Institute of Biomedicine of the University of Barcelona (IBUB), Bellvitge University Hospital-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, IDIBELL- University of Barcelona, Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Brescia, Italy.
| | - Mario Ezquerra
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Rubén Fernández-Santiago
- Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
77
|
Sex-Specific Transcriptome Differences in Substantia Nigra Tissue: A Meta-Analysis of Parkinson's Disease Data. Genes (Basel) 2018; 9:genes9060275. [PMID: 29799491 PMCID: PMC6027313 DOI: 10.3390/genes9060275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common progressive neurodegenerative diseases. Clinical and epidemiological studies indicate that sex differences, as well as genetic components and ageing, can influence the prevalence, age at onset and symptomatology of PD. This study undertook a systematic meta-analysis of substantia nigra microarray data using the Transcriptome Mapper (TRAM) software to integrate and normalize a total of 10 suitable datasets from multiple sources. Four different analyses were performed according to default parameters, to better define the segments differentially expressed between PD patients and healthy controls, when comparing men and women data sets. The results suggest a possible regulation of specific sex-biased systems in PD susceptibility. TRAM software allowed us to highlight the different activation of some genomic regions and loci involved in molecular pathways related to neurodegeneration and neuroinflammatory mechanisms.
Collapse
|
78
|
Werner-Allen JW, Monti S, DuMond JF, Levine RL, Bax A. Isoindole Linkages Provide a Pathway for DOPAL-Mediated Cross-Linking of α-Synuclein. Biochemistry 2018; 57:1462-1474. [PMID: 29394048 PMCID: PMC6120588 DOI: 10.1021/acs.biochem.7b01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a toxic and reactive product of dopamine catabolism. In the catecholaldehyde hypothesis for Parkinson's disease, it is a critical driver of the selective loss of dopaminergic neurons that characterizes the disease. DOPAL also cross-links α-synuclein, the main component of Lewy bodies, which are a pathological hallmark of the disease. We previously described the initial adduct formed in reactions between DOPAL and α-synuclein, a dicatechol pyrrole lysine (DCPL). Here, we examine the chemical basis for DOPAL-based cross-linking. We find that autoxidation of DCPL's catechol rings spurs its decomposition, yielding an intermediate dicatechol isoindole lysine (DCIL) product formed by an intramolecular reaction of the two catechol rings to give an unstable tetracyclic structure. DCIL then reacts with a second DCIL to give a dimeric, di-DCIL. This product is formed by an intermolecular carbon-carbon bond between the isoindole rings of the two DCILs that generates two structurally nonequivalent and separable atropisomers. Using α-synuclein, we demonstrate that the DOPAL-catalyzed formation of oligomers can be separated into two steps. The initial adduct formation occurs robustly within an hour, with DCPL as the main product, and the second step cross-links α-synuclein molecules. Exploiting this two-stage reaction, we use an isotopic labeling approach to show the predominant cross-linking mechanism is an interadduct reaction. Finally, we confirm that a mass consistent with a di-DCIL linkage can be observed in dimeric α-synuclein by mass spectrometry. Our work elucidates previously unknown pathways of catechol-based oxidative protein damage and will facilitate efforts to detect DOPAL-based cross-links in disease-state neurons.
Collapse
Affiliation(s)
- Jonathan W. Werner-Allen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Sarah Monti
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jenna F. DuMond
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rodney L. Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
79
|
Hsp90 Co-chaperone p23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson's disease. Neurotoxicology 2018; 65:166-173. [PMID: 29471019 DOI: 10.1016/j.neuro.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
The heat shock factor 90 (hsp90) complex has long been associated with neuropathological phenotypes linked to Parkinson's disease (PD) and its inhibition is neuroprotective in disease models. Hsp90 is conventionally believed to act by suppressing induction of hsp70. Here, we report a novel hsp70-independent mechanism by which Hsp90 may also contribute to PD-associated neuropathology. We previously reported that inhibition of the enzyme prolyl hydroxylase domain 2 (PHD2) in conjunction with increases in hypoxia-inducible factor 1 alpha (HIF1α) results in protection of vulnerable dopaminergic substantia nigra pars compacta (DAergic SNpc) neurons in in vitro and in vivo models of PD. We discovered an increased interaction between PHD2 and the p23:Hsp90 chaperone complex in response to mitochondrial stress elicited by the mitochondrial neurotoxin 1-methyl-4-phenylpyridine (MPP+) within cultured DAergic cells. Genetic p23 knockdown was found to result in decreases in steady-state PHD2 protein and activity and reduced susceptibility to MPP+ neurotoxicity. Administration of the p23 inhibitor gedunin was also neuroprotective in these cells as well as in human induced pluripotent stem cell (iPSC)-derived neurons. Our data suggests that mitochondrial stress-mediated elevations in PHD2 interaction with the p23-hsp90 complex have detrimental effects on the survival of DAergic neurons, while p23 inhibition is neuroprotective. We propose that neurotoxic effects are tied to enhanced PHD2 stabilization by the hsp90-p23 chaperone complex that is abrogated by p23 inhibition. This demonstrates a novel connection between two independent pathways previously linked to PD, hsp90 and PHD2-HIF1α, which could have important implications for here-to-fore unexplored mechanisms underlying PD neuropathology.
Collapse
|
80
|
González-Casacuberta I, Morén C, Juárez-Flores DL, Esteve-Codina A, Sierra C, Catalán-García M, Guitart-Mampel M, Tobías E, Milisenda JC, Pont-Sunyer C, Martí MJ, Cardellach F, Tolosa E, Artuch R, Ezquerra M, Fernández-Santiago R, Garrabou G. Transcriptional alterations in skin fibroblasts from Parkinson's disease patients with parkin mutations. Neurobiol Aging 2018; 65:206-216. [PMID: 29501959 DOI: 10.1016/j.neurobiolaging.2018.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.
Collapse
Affiliation(s)
- Ingrid González-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Diana-Luz Juárez-Flores
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Esteve-Codina
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Sierra
- Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Tobías
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - José César Milisenda
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Claustre Pont-Sunyer
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Martí
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Tolosa
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Biochemistry, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Mario Ezquerra
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Rubén Fernández-Santiago
- Laboratory of Parkison Disease and Other Neurodegenerative Movement Disorders: Clinical and Experimental Research-CELLEX, IDIBAPS, Faculty of Medicine and Health Sciences, UB, Department of Neurology-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function-CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences, University of Barcelona (UB), Department of Internal Medicine-Hospital Clínic of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
81
|
Segura-Aguilar J. Neurotoxins as Preclinical Models for Parkinson's Disease. Neurotox Res 2018; 34:870-877. [PMID: 29313219 DOI: 10.1007/s12640-017-9856-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson's disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson's disease based on neurotoxins.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Department of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
82
|
Differential Alterations in Metabolism and Proteolysis-Related Proteins in Human Parkinson's Disease Substantia Nigra. Neurotox Res 2017; 33:560-568. [PMID: 29218503 DOI: 10.1007/s12640-017-9843-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/13/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is the most common neurodegenerative disorder after Alzheimer's disease, with the majority of cases being sporadic or "idiopathic". The aetiology of the sporadic form is still unknown, but there is a broad consensus that Parkinson's disease involves multiple pathways. In previous human post-mortem studies investigating substantia nigra of parkinsonian subjects, gene expression alterations in various metabolic pathways including protein folding, trafficking, aggregation, ubiquitination and oxidative stress were found. These studies revealed transcriptomic dysregulation of various genes, amongst others Skp1A and PSMC4 (part of ubiquitin-proteasome system), HSC70 (belonging to the chaperone family) and ALDH1A1 (an enzyme involved in the catabolism of dopamine). To investigate whether these alterations are manifested at the protein level, we performed immunohistochemical analysis in the substantia nigra of Parkinson's disease and compared them to Alzheimer's disease and non-neurological post-mortem controls. We were able to confirm cell-specific reductions in the protein content of ALHD1A1 and Skp1A in the dopaminergic neurons of the substantia nigra of Parkinsonian patients compared to Alzheimer's and control subjects. Furthermore, we observed particular distribution for HSC70 and PSMC4 in the cytoplasm and accumulation within Lewy body in the dopaminergic neurons of the substantia nigra in Parkinson patients. These findings, together with previous evidence, suggest a malfunction of the ubiquitin-proteasome and possible autophagy systems as major players in protein misfolding and aggregation in Parkinson's disease. Nevertheless, this needs further proof, possibly with trajectory time line.
Collapse
|
83
|
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S. A review of genome-wide transcriptomics studies in Parkinson's disease. Eur J Neurosci 2017; 47:1-16. [DOI: 10.1111/ejn.13760] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Genevie Borrageiro
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - William Haylett
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| | - Soraya Seedat
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
- Department of Psychiatry; Faculty of Medicine and Health Sciences; Stellenbosch University; Cape Town South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences; Faculty of Medicine and Health Sciences; Stellenbosch University; PO Box 241 Cape Town South Africa
| |
Collapse
|
84
|
Mythri RB, Raghunath NR, Narwade SC, Pandareesh MDR, Sabitha KR, Aiyaz M, Chand B, Sule M, Ghosh K, Kumar S, Shankarappa B, Soundararajan S, Alladi PA, Purushottam M, Gayathri N, Deobagkar DD, Laxmi TR, Srinivas Bharath MM. Manganese- and 1-methyl-4-phenylpyridinium-induced neurotoxicity display differences in morphological, electrophysiological and genome-wide alterations: implications for idiopathic Parkinson's disease. J Neurochem 2017; 143:334-358. [DOI: 10.1111/jnc.14147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Rajeswara Babu Mythri
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayana Reddy Raghunath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Mirazkar Dasharatha Rao Pandareesh
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Kollarkandi Rajesh Sabitha
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Mohamad Aiyaz
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Bipin Chand
- Genotypic Technology Pvt. Ltd; Bangalore Karnataka India
| | - Manas Sule
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Krittika Ghosh
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Senthil Kumar
- InterpretOmics; Shezan Lavelle; Bangalore Karnataka India
| | - Bhagyalakshmi Shankarappa
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Soundarya Soundararajan
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Phalguni Anand Alladi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Meera Purushottam
- Molecular Genetics Laboratory - Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Narayanappa Gayathri
- Department of Neuropathology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | | | - Thenkanidiyoor Rao Laxmi
- Department of Neurophysiology; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| | - Muchukunte Mukunda Srinivas Bharath
- Department of Neurochemistry; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
- Neurotoxicology Laboratory-Neurobiology Research Center; National Institute of Mental Health and Neurosciences (NIMHANS); Bangalore Karnataka India
| |
Collapse
|
85
|
Segura-Aguilar J. On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease. Neural Regen Res 2017; 12:897-901. [PMID: 28761417 PMCID: PMC5514859 DOI: 10.4103/1673-5374.208560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2017] [Indexed: 11/30/2022] Open
Abstract
For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
86
|
Dysregulation of the causative genes for hereditary parkinsonism in the midbrain in Parkinson's disease. Mov Disord 2017; 32:1211-1220. [DOI: 10.1002/mds.27019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/26/2017] [Accepted: 03/17/2017] [Indexed: 11/07/2022] Open
|
87
|
Paiva I, Pinho R, Pavlou MA, Hennion M, Wales P, Schütz AL, Rajput A, Szegő ÉM, Kerimoglu C, Gerhardt E, Rego AC, Fischer A, Bonn S, Outeiro TF. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum Mol Genet 2017; 26:2231-2246. [DOI: 10.1093/hmg/ddx114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/19/2017] [Indexed: 02/07/2023] Open
|
88
|
Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol Res 2017; 119:169-177. [PMID: 28167240 DOI: 10.1016/j.phrs.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Extensive studies have reported the significant roles of numerous cellular features and processes in properly maintaining neuronal morphology and function throughout the lifespan of an animal. Any alterations in their homeostasis appear to be strongly associated with neuronal aging and the pathogenesis of various neurodegenerative diseases, even before the occurrence of prominent neuronal death. However, until recently, the primary focus of studies regarding many neurodegenerative diseases has been on the massive cell death occurring at the late stages of disease progression. Thus, our understanding on early neuropathy in these diseases remains relatively limited. The complicated nature of various neuropathic features manifested early in neurodegenerative diseases suggests the involvement of a system-wide transcriptional regulation and epigenetic control. Epigenetic alterations and consequent changes in the neuronal transcriptome are now begun to be extensively studied in various neurodegenerative diseases. Upon the catastrophic incident of neuronal death in disease progression, it is utterly difficult to reverse the deleterious defects by pharmacological treatments, and therefore, therapeutics targeting the system-wide transcriptional dysregulation associated with specific early neuropathy is considered a better option. Here, we review our current understanding on the system-wide transcriptional dysregulation that is likely associated with early neuropathy shown in various neurodegenerative diseases and discuss the possible future developments of pharmaceutical therapeutics.
Collapse
|
89
|
DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci Rep 2017; 7:40699. [PMID: 28084443 PMCID: PMC5233976 DOI: 10.1038/srep40699] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration.
Collapse
|
90
|
Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep 2016; 3:40-52. [PMID: 26857251 DOI: 10.1007/s40572-016-0083-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the start of the postgenomics era, most Parkinson's disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene-environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case-control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood-brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides' neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.
Collapse
Affiliation(s)
- Beate R Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA. .,Center for Occupational and Environmental Health, UCLA, Los Angeles, CA, USA. .,Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA
| | - Jeff M Bronstein
- Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
91
|
Annesley SJ, Lay ST, De Piazza SW, Sanislav O, Hammersley E, Allan CY, Francione LM, Bui MQ, Chen ZP, Ngoei KRW, Tassone F, Kemp BE, Storey E, Evans A, Loesch DZ, Fisher PR. Immortalized Parkinson's disease lymphocytes have enhanced mitochondrial respiratory activity. Dis Model Mech 2016; 9:1295-1305. [PMID: 27638668 PMCID: PMC5117226 DOI: 10.1242/dmm.025684] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired - proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a 'normal' and a 'hyperactive' state characterized by two different metabolic rates. The apparent stability of the 'hyperactive' state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the 'hyperactive' state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the 'hyperactive' state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined.
Collapse
Affiliation(s)
- Sarah J Annesley
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Sui T Lay
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Shawn W De Piazza
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Eleanor Hammersley
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3986, Australia
| | - Claire Y Allan
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lisa M Francione
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Minh Q Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Zhi-Ping Chen
- Department of Medicine, University of Melbourne St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Kevin R W Ngoei
- Department of Medicine, University of Melbourne St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Bruce E Kemp
- Department of Medicine, University of Melbourne St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University, (Alfred Hospital Campus), Commercial Road, Melbourne, Victoria 3004, Australia
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Danuta Z Loesch
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3986, Australia
| | - Paul R Fisher
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, College of Science Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
92
|
Nkiliza A, Mutez E, Simonin C, Leprêtre F, Duflot A, Figeac M, Villenet C, Semaille P, Comptdaer T, Genet A, Sablonnière B, Devos D, Defebvre L, Destée A, Chartier-Harlin MC. RNA-binding disturbances as a continuum from spinocerebellar ataxia type 2 to Parkinson disease. Neurobiol Dis 2016; 96:312-322. [PMID: 27663142 DOI: 10.1016/j.nbd.2016.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 12/13/2022] Open
Abstract
CAG triplet expansions in Ataxin-2 gene (ATXN2) cause spinocerebellar ataxia type 2 and have a role that remains to be clarified in Parkinson's disease (PD). To study the molecular events associated with these expansions, we sequenced them and analyzed the transcriptome from blood cells of controls and three patient groups diagnosed with spinocerebellar ataxia type 2 (herein referred to as SCA2c) or PD with or without ATXN2 triplet expansions (named SCA2p). The transcriptome profiles of these 40 patients revealed three main observations: i) a specific pattern of pathways related to cellular contacts, proliferation and differentiation associated with SCA2p group, ii) similarities between the SCA2p and sporadic PD groups in genes and pathways known to be altered in PD such as Wnt, Ephrin and Leukocyte extravasation signaling iii) RNA metabolism disturbances with "RNA-binding" and "poly(A) RNA-binding" as a common feature in all groups. Remarkably, disturbances of ALS signaling were shared between SCA2p and sporadic PD suggesting common molecular dysfunctions in PD and ALS including CACNA1, hnRNP, DDX and PABPC gene family perturbations. Interestingly, the transcriptome profiles of patients with parkinsonian phenotypes were prevalently associated with alterations of translation while SCA2c and PD patients presented perturbations of splicing. While ATXN2 RNA expression was not perturbed, its protein expression in immortalized lymphoblastoid cells was significantly decreased in SCA2c and SCA2p versus control groups assuming post-transcriptional biological perturbations. In conclusion, the transcriptome data do not exclude the role of ATXN2 mutated alleles in PD but its decrease protein expression in both SCA2c and SCA2p patients suggest a potential involvement of this gene in PD. The perturbations of "RNA-binding" and "poly(A) RNA-binding" molecular functions in the three patient groups as well as gene deregulations of factors not yet described in PD but known to be deleterious in other neurological conditions, suggest the existence of RNA-binding disturbances as a continuum between spinocerebellar ataxia type 2 and Parkinson's disease.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Eugénie Mutez
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Frédéric Leprêtre
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Aurélie Duflot
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Céline Villenet
- Univ. Lille, CHU Lille, IRCL, Structural and Functional Genomics Core Facility, F-59000 Lille, France
| | - Pierre Semaille
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Thomas Comptdaer
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France
| | - Alexandre Genet
- CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - Bernard Sablonnière
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; CHU Lille, Centre de Biologie Pathologie, Unité de Neurobiologie, F-59000 Lille, France
| | - David Devos
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Luc Defebvre
- CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Alain Destée
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France; CHU Lille, Neurologie et Pathologie du Mouvement, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France; Inserm, UMR-S 1172, Team "Early stages of Parkinson's disease", F-59000 Lille, France.
| |
Collapse
|
93
|
Mariani E, Frabetti F, Tarozzi A, Pelleri MC, Pizzetti F, Casadei R. Meta-Analysis of Parkinson's Disease Transcriptome Data Using TRAM Software: Whole Substantia Nigra Tissue and Single Dopamine Neuron Differential Gene Expression. PLoS One 2016; 11:e0161567. [PMID: 27611585 PMCID: PMC5017670 DOI: 10.1371/journal.pone.0161567] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/08/2016] [Indexed: 01/21/2023] Open
Abstract
The understanding of the genetic basis of the Parkinson's disease (PD) and the correlation between genotype and phenotype has revolutionized our knowledge about the pathogenetic mechanisms of neurodegeneration, opening up exciting new therapeutic and neuroprotective perspectives. Genomic knowledge of PD is still in its early stages and can provide a good start for studies of the molecular mechanisms that underlie the gene expression variations and the epigenetic mechanisms that may contribute to the complex and characteristic phenotype of PD. In this study we used the software TRAM (Transcriptome Mapper) to analyse publicly available microarray data of a total of 151 PD patients and 130 healthy controls substantia nigra (SN) samples, to identify chromosomal segments and gene loci differential expression. In particular, we separately analyzed PD patients and controls data from post-mortem snap-frozen SN whole tissue and from laser microdissected midbrain dopamine (DA) neurons, to better characterize the specific DA neuronal expression profile associated with the late-stage Parkinson's condition. The default "Map" mode analysis resulted in 10 significantly over/under-expressed segments, mapping on 8 different chromosomes for SN whole tissue and in 4 segments mapping on 4 different chromosomes for DA neurons. In conclusion, TRAM software allowed us to confirm the deregulation of some genomic regions and loci involved in key molecular pathways related to neurodegeneration, as well as to provide new insights about genes and non-coding RNA transcripts not yet associated with the disease.
Collapse
Affiliation(s)
- Elisa Mariani
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Fabrizio Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Raffaella Casadei
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
- * E-mail:
| |
Collapse
|
94
|
Shao Y, Figeys D, Ning Z, Mailloux R, Chan HM. Methylmercury can induce Parkinson's-like neurotoxicity similar to 1-methyl-4- phenylpyridinium: a genomic and proteomic analysis on MN9D dopaminergic neuron cells. J Toxicol Sci 2016; 40:817-28. [PMID: 26558463 DOI: 10.2131/jts.40.817] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to environmental chemicals has been implicated as a possible risk factor for the development of neurodegenerative diseases. Our previous study showed that methylmercury (MeHg) exposure can disrupt synthesis, uptake and metabolism of dopamine similar to 1-methyl-4-phenylpyridinium (MPP(+)). The objective of this study was to investigate the effects of MeHg exposure on gene and protein profiles in a dopaminergic MN9D cell line. MN9D cells were treated with MeHg (1-5 μM) and MPP(+) (10-40 μM) for 48 hr. Real-time PCR Parkinson's disease (PD) arrays and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) were performed for the analysis. PD PCR array results showed that 19% genes were significantly changed in the 2.5 μM MeHg treated cells, and 39% genes were changed in the 5 μM MeHg treated cells. In comparison, MPP(+) treatment (40 µM) resulted in significant changes in 25% genes. A total of 15 common genes were altered by both MeHg and MPP(+), and dopaminergic signaling transduction was the most affected pathway. Proteomic analysis identified a total of 2496 proteins, of which 188, 233 and 395 proteins were differentially changed by 1 μM and 2.5 μM MeHg, and MPP(+) respectively. A total of 61 common proteins were changed by both MeHg and MPP(+) treatment. The changed proteins were mainly involved in energetic generation-related metabolism pathway (propanoate metabolism, pyruvate metabolism and fatty acid metabolism), oxidative phosphorylation, proteasome, PD and other neurodegenerative disorders. A total of 7 genes/proteins including Ube2l3 (Ubiquitin-conjugating enzyme E2 L3) and Th (Tyrosine 3-monooxygenase) were changed in both genomic and proteomic analysis. These results suggest that MeHg and MPP(+) share many similar signaling pathways leading to the pathogenesis of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yueting Shao
- Natural Resources and Environmental Studies Program, University of Northern British Columbia, Canada
| | | | | | | | | |
Collapse
|
95
|
Zarmouh NO, Messeha SS, Elshami FM, Soliman KFA. Natural Products Screening for the Identification of Selective Monoamine Oxidase-B Inhibitors. ACTA ACUST UNITED AC 2016; 15. [PMID: 27341283 PMCID: PMC4898948 DOI: 10.9734/ejmp/2016/26453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims Monoamine oxidase-B inhibitors (MAO-BIs) are used for the initial therapy of Parkinson’s disease. Also, MAO-BIs have shown to be effective neuroprotective agents in several neurodegenerative diseases. However, some concerns exist regarding the long-term use of these compounds. Meanwhile, natural compounds showed potential MAO-B selective inhibitions. To date, few selective natural MAO-BIs have been identified. Therefore, the current study is designed to identify plants with potent and specific MAO-B inhibition. Study Design In this work, we utilized high throughput screening to evaluate the different plants ethanolic extract for their effectiveness to inhibit recombinant human (h)MAO-A and hMAO-B and to determine the relative selectivity of the top MAO-BI. Methodology Recombinant human isozymes were verified by Western blotting, and the 155 plants were screened. A continuous fluorometric screening assay was performed followed by two separate hMAO-A and hMAO-B microtiter screenings and IC50 determinations for the top extracts. Results In the screened plants, 9% of the extracts showed more than 1.5-fold relative inhibition of hMAO-B (RIB) and another 9% showed more than 1.5-fold relative inhibition of hMAO-A. The top extracts with the most potent RIBs were Psoralea corylifolia seeds, Phellodendron amurense bark, Glycyrrhiza uralensis roots, and Ferula assafoetida roots, with the highest RIB of 5.9-fold. Furthermore, extensive maceration of the promising extracts led to increase inhibitory effects with a preserved RIB as confirmed with luminescence assay. The top four extracts hMAO-BIs were equally potent (IC50= 1.3 to 3.8 μg/mL) with highly significant relative selectivities to inhibit hMAO-B (4.1- to 13.4-fold). Conclusion The obtained results indicate that Psoralea corylifolia seeds, Ferula assafoetida, Glycyrrhiza uralensis roots, and Phellodendron amurense ethanolic extracts have selective inhibitions for human MAO-B. Investigating these plant extracts as natural resources for novel selective MAO-BIs may lead to the development of molecules that can be used in the therapeutic management of neurodegenerative diseases including Parkinson’s disease.
Collapse
Affiliation(s)
- Najla O Zarmouh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Samia S Messeha
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Faisel M Elshami
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
96
|
Caputi FF, Carboni L, Mazza D, Candeletti S, Romualdi P. Cocaine and ethanol target 26S proteasome activity and gene expression in neuroblastoma cells. Drug Alcohol Depend 2016; 161:265-75. [PMID: 26922280 DOI: 10.1016/j.drugalcdep.2016.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ethanol and cocaine are widely abused drugs triggering long-lasting changes in neuronal circuits and synaptic transmission through the regulation of enzyme activity and gene expression. Compelling evidence indicates that the ubiquitin-proteasome system plays a role in the molecular changes induced by addictive substances, impacting on several mechanisms implicated in abuse. The goal of these studies was to evaluate the effects of cocaine or ethanol on proteasome activity in neuroblastoma cells. Moreover, the gene expression of specific subunits was assessed. METHODS Chymotrypsin-like activity was measured after 2 h, 24 h, and 48 h exposure to 5 μM cocaine or 40 mM ethanol. Proteasome subunit transcripts were evaluated by qPCR at the same time-points. RESULTS Treatments modified proteasome function in opposite directions, since cocaine increased and ethanol reduced chymotrypsin-like activity. Interestingly, we observed gene expression alterations induced by these drugs. In the core particle, the β1 and α5 subunits were mainly up-regulated by cocaine, whereas α6 transcripts were mostly decreased. β2 and β5 did not change. Similarly, ethanol exposure generally increased β1 and α5 mRNAs. Moreover, the β2 subunit was significantly up-regulated by ethanol only. The β5 and α6 subunits were not altered. In the regulatory particle, Rpt3 was increased by cocaine exposure, whereas it was reduced by ethanol. No significant Rpn9 alterations were observed. CONCLUSIONS These findings support the notion that addictive substances regulate proteasome function, contributing to the dysregulations related to drug abuse since the availability of adequate subunit amounts is necessary for proper complex assembly and function.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Daria Mazza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
97
|
Efficient and biologically relevant consensus strategy for Parkinson's disease gene prioritization. BMC Med Genomics 2016; 9:12. [PMID: 26961748 PMCID: PMC4784386 DOI: 10.1186/s12920-016-0173-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The systemic information enclosed in microarray data encodes relevant clues to overcome the poorly understood combination of genetic and environmental factors in Parkinson's disease (PD), which represents the major obstacle to understand its pathogenesis and to develop disease-modifying therapeutics. While several gene prioritization approaches have been proposed, none dominate over the rest. Instead, hybrid approaches seem to outperform individual approaches. METHODS A consensus strategy is proposed for PD related gene prioritization from mRNA microarray data based on the combination of three independent prioritization approaches: Limma, machine learning, and weighted gene co-expression networks. RESULTS The consensus strategy outperformed the individual approaches in terms of statistical significance, overall enrichment and early recognition ability. In addition to a significant biological relevance, the set of 50 genes prioritized exhibited an excellent early recognition ability (6 of the top 10 genes are directly associated with PD). 40 % of the prioritized genes were previously associated with PD including well-known PD related genes such as SLC18A2, TH or DRD2. Eight genes (CCNH, DLK1, PCDH8, SLIT1, DLD, PBX1, INSM1, and BMI1) were found to be significantly associated to biological process affected in PD, representing potentially novel PD biomarkers or therapeutic targets. Additionally, several metrics of standard use in chemoinformatics are proposed to evaluate the early recognition ability of gene prioritization tools. CONCLUSIONS The proposed consensus strategy represents an efficient and biologically relevant approach for gene prioritization tasks providing a valuable decision-making tool for the study of PD pathogenesis and the development of disease-modifying PD therapeutics.
Collapse
|
98
|
Lysines, Achilles' heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Ageing Res Rev 2016; 26:62-71. [PMID: 26690800 DOI: 10.1016/j.arr.2015.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein aggregation is associated with Parkinson's disease and other neurodegenerative disorders termed synucleinopathies. The sequence of alpha-synuclein has a remarkable amount of lysines, which may be a target for modifications by several aldehydes found at increased concentration in parkinsonian brains. The involved aldehydes are the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, the lipid peroxidation products 4-hydroxynonenal, acrolein and malondialdehyde, and advanced glycation end-products. Moreover, both relative expression levels and enzymatic activity of aldehyde dehydrogenases, which are responsible for aldehydes detoxification in cells, are altered in Parkinson's disease brains. The effects of aldehyde modifications can include: (i) a perturbation in the equilibrium of cytosolic and membrane-bound alpha-synuclein, that may alter protein function and lead to aggregation; (ii) the reduction of alpha-synuclein ubiquitination and SUMOylation, affecting its cellular localization and clearance; (iii) a decreased susceptibility to cleavage at specific sites by extracellular proteases; (iv) a reduced availability of identified lysine acetylation sites; (v) the production of toxic oligomeric alpha-synuclein-aldehyde species, able to damage lipid membranes and transmissible from unhealthy to healthy neurons. All of these observations point to a complex interaction between alpha-synuclein and aldehydes in brain, which may lead to the accumulation of dysfunctional alpha-synuclein and its oligomerization.
Collapse
|
99
|
Gene dysregulation is restored in the Parkinson's disease MPTP neurotoxic mice model upon treatment of the therapeutic drug Cu(II)(atsm). Sci Rep 2016; 6:22398. [PMID: 26928495 PMCID: PMC4772163 DOI: 10.1038/srep22398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/15/2016] [Indexed: 12/04/2022] Open
Abstract
The administration of MPTP selectively targets the dopaminergic system resulting in Parkinsonism-like symptoms and is commonly used as a mice model of Parkinson’s disease. We previously demonstrated that the neuroprotective compound CuII(atsm) rescues nigral cell loss and improves dopamine metabolism in the MPTP model. The mechanism of action of CuII(atsm) needs to be further defined to understand how the compound promotes neuronal survival. Whole genome transcriptomic profiling has become a popular method to examine the relationship between gene expression and function. Substantia nigra samples from MPTP-lesioned mice were evaluated using whole transcriptome sequencing to investigate the genes altered upon CuII(atsm) treatment. We identified 143 genes affected by MPTP lesioning that are associated with biological processes related to brain and cognitive development, dopamine synthesis and perturbed synaptic neurotransmission. Upon CuII(atsm) treatment, the expression of 40 genes involved in promoting dopamine synthesis, calcium signaling and synaptic plasticity were restored which were validated by qRT-PCR. The study provides the first detailed whole transcriptomic analysis of pathways involved in MPTP-induced Parkinsonism. In addition, we identify key therapeutic pathways targeted by a potentially new class of neuroprotective agents which may provide therapeutic benefits for other neurodegenerative disorders.
Collapse
|
100
|
Walker DG, Lue LF, Serrano G, Adler CH, Caviness JN, Sue LI, Beach TG. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases. Front Neurosci 2016; 9:507. [PMID: 26834537 PMCID: PMC4712383 DOI: 10.3389/fnins.2015.00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples. This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum. Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity, patterns of expression indicated involvement of certain T-cell cytokines, vascular changes, and loss of certain growth factors, with disease progression. The results demonstrate the feasibility of profiling inflammatory molecules using diseased human brain samples, and have provided additional targets to validate in relation to PD pathology.
Collapse
Affiliation(s)
- Douglas G Walker
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Lih-Fen Lue
- Banner Sun Health Research InstituteSun City, AZ, USA; Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State UniversityTempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute Sun City, AZ, USA
| | - Charles H Adler
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - John N Caviness
- Neurology, Mayo Clinic College of Medicine Scottsdale, AZ, USA
| | - Lucia I Sue
- Banner Sun Health Research Institute Sun City, AZ, USA
| | | |
Collapse
|