51
|
Barbas-Bernardos C, Garcia-Perez I, Lorenzo MP, Alonso-Herranz V, Nicholson J, Garcia A. Development and validation of a high performance liquid chromatography-tandem mass spectrometry method for the absolute analysis of 17 α D-amino acids in cooked meals. J Chromatogr A 2020; 1611:460598. [DOI: 10.1016/j.chroma.2019.460598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
52
|
D-amino acids in foods. Appl Microbiol Biotechnol 2019; 104:555-574. [PMID: 31832715 DOI: 10.1007/s00253-019-10264-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100 mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future.
Collapse
|
53
|
Hou Y, Liu Z, Tong L, Zhao L, Kuang X, Kuang R, Ju H. One-step electrodeposition of the MOF@CCQDs/NiF electrode for chiral recognition of tyrosine isomers. Dalton Trans 2019; 49:31-34. [PMID: 31808491 DOI: 10.1039/c9dt04354c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrochemical enantiorecognition of tyrosine (Tyr) isomers using a MOF@CCQDs/NiF electrode prepared by electrodepositing a metal-organic framework (MOF) and chiral carbon quantum dots (CCQDs) on Ni foil is reported. MOF@CCQDs/NiF not only shows highly selective, sensitive and quantitative analysis towards Tyr enantiomers but also presents the ability to determine l-Tyr% in racemic mixtures. This proposed that chiral sensors could be considered for practical applications in the field of Tyr related medical recognition.
Collapse
Affiliation(s)
- Ying Hou
- School of Chemistry and Chemical Engineering, University of Jinan, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, Jinan 250022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
54
|
Thanzeel FY, Sripada A, Wolf C. Quantitative Chiroptical Sensing of Free Amino Acids, Biothiols, Amines, and Amino Alcohols with an Aryl Fluoride Probe. J Am Chem Soc 2019; 141:16382-16387. [PMID: 31564090 DOI: 10.1021/jacs.9b07588] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The comprehensive determination of the absolute configuration, enantiomeric ratio, and total amount of standard amino acids by optical methods adaptable to high-throughput screening with modern plate readers has remained a major challenge to date. We now present a small-molecular probe that smoothly reacts with amino acids and biothiols in aqueous solution and thereby generates distinct chiroptical responses to accomplish this task. The achiral sensor is readily available, inexpensive, and suitable for chiroptical analysis of each of the 19 standard amino acids, biothiols, aliphatic, and aromatic amines and amino alcohols. The sensing method is operationally simple, and data collection and processing are straightforward. The utility and practicality of the assay are demonstrated with the accurate analysis of 10 aspartic acid samples covering a wide concentration range and largely varying enantiomeric compositions. Accurate er sensing of 85 scalemic samples of Pro, Met, Cys, Ala, methylpyrrolidine, 1-(2-naphthyl)amine, and mixtures thereof is also presented.
Collapse
Affiliation(s)
- F Yushra Thanzeel
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Archita Sripada
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Christian Wolf
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| |
Collapse
|
55
|
Oyeyinka AT, Pillay K, Siwela M. Full title- In vitro digestibility, amino acid profile and antioxidant activity of cooked Bambara groundnut grain. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100428] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
56
|
Lactobacillus fermentum PS150 showed psychotropic properties by altering serotonergic pathway during stress. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
57
|
ISHII C, AKITA T, NAGANO M, MITA M, HAMASE K. Determination of Chiral Amino Acids in Various Fermented Products Using a Two-Dimensional HPLC-MS/MS System. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chiharu ISHII
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
58
|
Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. J Chromatogr A 2019; 1593:91-101. [DOI: 10.1016/j.chroma.2019.01.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
59
|
Abstract
Natural and nonnatural amino acids represent important building blocks for the development of peptidomimetic scaffolds, especially for targeting proteolytic enzymes and for addressing protein–protein interactions. Among all the different amino acids derivatives, proline is particularly relevant in chemical biology and medicinal chemistry due to its secondary structure’s inducing and stabilizing properties. Also, the pyrrolidine ring is a conformationally constrained template that can direct appendages into specific clefts of the enzyme binding site. Thus, many papers have appeared in the literature focusing on the use of proline and its derivatives as scaffolds for medicinal chemistry applications. In this review paper, an insight into the different biological outcomes of d-proline and l-proline in enzyme inhibitors is presented, especially when associated with matrix metalloprotease and metallo-β-lactamase enzymes.
Collapse
|
60
|
McKerchar HJ, Clerens S, Dobson RC, Dyer JM, Maes E, Gerrard JA. Protein-protein crosslinking in food: Proteomic characterisation methods, consequences and applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Piovesana S, Montone CM, Antonelli M, Cavaliere C, La Barbera G, Canepari S, Samperi R, Laganà A, Capriotti AL. Investigation of free seleno-amino acids in extra-virgin olive oil by mixed mode solid phase extraction cleanup and enantioselective hydrophilic interaction liquid chromatography-tandem mass spectrometry. Food Chem 2019; 278:17-25. [DOI: 10.1016/j.foodchem.2018.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022]
|
62
|
Iakovou K, Schulpis K. The significant role of educational status in PKU patients: the beneficial effect of psychological support in depression. Int J Adolesc Med Health 2019; 33:/j/ijamh.ahead-of-print/ijamh-2018-0233/ijamh-2018-0233.xml. [PMID: 30888965 DOI: 10.1515/ijamh-2018-0233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Classical Phenylketonuria (PKU) is a metabolic disease characterized by high phenylalanine (phe) levels in blood and brain. PKU patients are commonly treated with low phe diet supplemented with amino acid free formula. High Phe levels minimize brain tryptophan concentration, the pressure of serotonin, which is responsible for the appearance of depression symptoms. Both amino acids share the same pathway for entering CNS via BBB. Aimed to determine the effect of psychological support on different education status depressed PKU patients via adherence to their diet. METHODS PKU patients (n = 110) were divided into groups according to their education status: Primary school, High school, University degree. All patients were tasted with a Patient Health Questionnaire (PHQ-9) standardized for Greek population. Psychological support was performed in every depressed patient ones per two weeks for three successive months under the same conditions. Phe blood levels were measured before psychological support and every 15-20 days till the end of the study. RESULTS Only 2/110 (1.8%) participance had finished Primary school and were healthy. 72/110 (65.5%) High School, out of them 29 were depressed and 36/110 (32.7%) achieved a University degree, only 6 suffered from depression. High phe blood levels were measured in the depressed patients, which dropped near to normal after the end of their psychological support. Referring to depression symptoms, all participance except one presented amelioration of their mood. CONCLUSIONS Psychological support is beneficial on depressed PKU patients graduated with High School or University degree via adherence to their special diet.
Collapse
Affiliation(s)
- Kostas Iakovou
- Institute Child of Health, Inborn Errors of Metabolism, Athens, Greece
| | | |
Collapse
|
63
|
KOGA R, YOSHIDA H, NOHTA H, HAMASE K. Multi-Dimensional HPLC Analysis of Metabolic Related Chiral Amino Acids -Method Development and Biological/Clinical Applications-. CHROMATOGRAPHY 2019. [DOI: 10.15583/jpchrom.2019.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Reiko KOGA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Hitoshi NOHTA
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
64
|
Chen Z, Leinisch F, Greco I, Zhang W, Shu N, Chuang CY, Lund MN, Davies MJ. Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radic Res 2019; 53:68-81. [DOI: 10.1080/10715762.2018.1554250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhifei Chen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ines Greco
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wei Zhang
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne N. Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Pundir C, Lata S, Narwal V. Biosensors for determination of D and L- amino acids: A review. Biosens Bioelectron 2018; 117:373-384. [DOI: 10.1016/j.bios.2018.06.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 11/28/2022]
|
66
|
Friedman M. Analysis, Nutrition, and Health Benefits of Tryptophan. Int J Tryptophan Res 2018; 11:1178646918802282. [PMID: 30275700 PMCID: PMC6158605 DOI: 10.1177/1178646918802282] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
Tryptophan is an essential plant-derived amino acid that is needed for the in vivo biosynthesis of proteins. After consumption, it is metabolically transformed to bioactive metabolites, including serotonin, melatonin, kynurenine, and the vitamin niacin (nicotinamide). This brief integrated overview surveys and interprets our current knowledge of the reported multiple analytical methods for free and protein-bound tryptophan in pure proteins, protein-containing foods, and in human fluids and tissues, the nutritional significance of l-tryptophan and its isomer d-tryptophan in fortified infant foods and corn tortillas as well the possible function of tryptophan in the diagnosis and mitigation of multiple human diseases. Analytical methods include the use of acid ninhydrin, near-infrared reflectance spectroscopy, colorimetry, basic hydrolysis; acid hydrolysis of S-pyridylethylated proteins, and high-performance liquid and gas chromatography-mass spectrometry. Also covered are the nutritional values of tryptophan-fortified infant formulas and corn-based tortillas, safety of tryptophan for human consumption and the analysis of maize (corn), rice, and soybean plants that have been successfully genetically engineered to produce increasing tryptophan. Dietary tryptophan and its metabolites seem to have the potential to contribute to the therapy of autism, cardiovascular disease, cognitive function, chronic kidney disease, depression, inflammatory bowel disease, multiple sclerosis, sleep, social function, and microbial infections. Tryptophan can also facilitate the diagnosis of certain conditions such as human cataracts, colon neoplasms, renal cell carcinoma, and the prognosis of diabetic nephropathy. The described findings are not only of fundamental scientific interest but also have practical implications for agriculture, food processing, food safety, nutrition, and animal and human health. The collated information and suggested research need will hopefully facilitate and guide further studies needed to optimize the use of free and protein-bound tryptophan and metabolites to help improve animal and human nutrition and health.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research and Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| |
Collapse
|
67
|
FURUSHO A, KOGA R, AKITA T, MIYOSHI Y, MITA M, HAMASE K. Development of a Highly-Sensitive Two-Dimensional HPLC System with Narrowbore Reversed-Phase and Microbore Enantioselective Columns and Application to the Chiral Amino Acid Analysis of the Mammalian Brain. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Aogu FURUSHO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Reiko KOGA
- Graduate School of Pharmaceutical Sciences, Kyushu University
- Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeyuki AKITA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | | | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
68
|
Relevance of Alternative Routes of Kynurenic Acid Production in the Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5272741. [PMID: 29977455 PMCID: PMC5994304 DOI: 10.1155/2018/5272741] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023]
Abstract
The catabolism of tryptophan has gained great importance in recent years due to the fact that the metabolites produced during this process, with neuroactive and redox properties, are involved in physiological and pathological events. One of these metabolites is kynurenic acid (KYNA), which is considered as a neuromodulator since it can interact with NMDA, nicotinic, and GPR35 receptors among others, modulating the release of neurotransmitters as glutamate, dopamine, and acetylcholine. Kynureninate production is attributed to kynurenine aminotransferases. However, in some physiological and pathological conditions, its high production cannot be explained just with kynurenine aminotransferases. This review focuses on the alternative mechanism whereby KYNA can be produced, either from D-amino acids or by means of other enzymes as D-amino acid oxidase or by the participation of free radicals. It is important to mention that an increase in KYNA levels in processes as brain development, aging, neurodegenerative diseases, and psychiatric disorders, which share common factors as oxidative stress, inflammation, immune response activation, and participation of gut microbiota that can also be related with the alternative routes of KYNA production, has been observed.
Collapse
|
69
|
Hsu CN, Tain YL. Hydrogen Sulfide in Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2018; 19:ijms19051438. [PMID: 29751631 PMCID: PMC5983690 DOI: 10.3390/ijms19051438] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Adverse environments occurring during kidney development may produce long-term programming effects, namely renal programming, to create increased vulnerability to the development of later-life hypertension and kidney disease. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life, even before the onset of clinical symptoms, which may counter the rising epidemic of hypertension and kidney disease. Hydrogen sulfide (H2S), the third gasotransmitter, plays a key role in blood pressure regulation and renal physiology. This review will first present the role of H2S in the renal system and provide evidence for the links between H2S signaling and the underlying mechanisms of renal programming, including the renin–angiotensin system, oxidative stress, nutrient-sensing signals, sodium transporters, and epigenetic regulation. This will be followed by potential H2S treatment modalities that may serve as reprogramming strategies to prevent hypertension and kidney disease of developmental origins. These H2S treatment modalities include precursors for H2S synthesis, H2S donors, and natural plant-derived compounds. Despite emerging evidence from experimental studies in support of reprogramming strategies targeting the H2S signaling pathway to protect against hypertension and kidney disease of developmental origins, these results need further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
70
|
Li J, Chen X, Cui Y, Liu W, Feng J, Wu Q, Zhu D. Enzymatic synthesis of d-alanine from a renewable starting material by co-immobilized dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
71
|
Cheng X, Chen X, Feng J, Wu Q, Zhu D. Structure-guided engineering ofmeso-diaminopimelate dehydrogenase for enantioselective reductive amination of sterically bulky 2-keto acids. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-guided reshaping the substrate-binding pocket of ameso-diaminopimelate dehydrogenase (StDAPDH) led to a mutant W121L/H227I, which catalyzed the enantioselective reductive amination of some sterically bulky 2-keto acids.
Collapse
Affiliation(s)
- Xinkuan Cheng
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Xi Chen
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Jinhui Feng
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Qiaqing Wu
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Dunming Zhu
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| |
Collapse
|
72
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
73
|
Zhang Z, Liu Y, Liu P, Yang L, Jiang X, Luo D, Yang D. Non-invasive detection of gastric cancer relevant d-amino acids with luminescent DNA/silver nanoclusters. NANOSCALE 2017; 9:19367-19373. [PMID: 29199749 DOI: 10.1039/c7nr07337b] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chirality plays essential roles in life systems such that l-amino acids (LAAs) are predominantly found as the building units of protein for organisms. The presence of the d-enantiomer (DAA) has been found to be specifically relevant to gastric cancer. We herein construct a luminescent DNA/silver nanocluster based biosensing system to achieve rapid and specific detection of DAAs. As a proof of application, we detected DAAs in saliva samples from patients with gastric cancer, and the test results exhibited excellent specificity. Our detection system has the following major advantages: (i) the detection is rapid, being completed in less than 1 hour; (ii) the limit of detection falls in the effective range of DAA concentrations of gastric cancer at an early stage, indicating that our method is potentially suitable for early diagnosis of gastric cancer; (iii) the non-invasive sampling manner provides an adaptable system for point-of-care testing (POCT); and (iv) the system does not require any massive instruments or expensive reagents, which enables POCT as well.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China.
| | | | | | | | | | | | | |
Collapse
|
74
|
Hsu CN, Lin YJ, Lu PC, Tain YL. Early Supplementation of d-Cysteine or l-Cysteine Prevents Hypertension and Kidney Damage in Spontaneously Hypertensive Rats Exposed to High-Salt Intake. Mol Nutr Food Res 2017; 62. [PMID: 28981205 DOI: 10.1002/mnfr.201700596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Indexed: 12/24/2022]
Abstract
SCOPE We investigate whether early supplementation of precursors of hydrogen sulfide (H2 S), d- or l-cysteine can prevent hypertension and kidney damage in spontaneously hypertensive rats (SHR) treated with high-salt. METHODS AND RESULTS We examine 12-week-old male SHRs from four groups: SHR, high salt SHR (SHRs received 1% NaCl in drinking water for 8 weeks), high salt SHR+d (SHRs received high salt and d-cysteine), and high salt SHR+l (SHRs received high salt and l-cysteine). d- or l-cysteine was supplemented at 8 mmol kg-1 body weight/day between 4 and 6 weeks of ages. High salt intake exacerbate hypertension and kidney damage in SHRs, which is prevented by d- or l-cysteine supplementation. d- or l-Cysteine supplementation reduce the degree of high salt-induced oxidative stress damage. Renal 3-mercaptopyruvate sulphurtransferase (3MST) protein levels and activity are reduced by d- or l-cysteine supplementation. Additionally, d- or l-Cysteine supplementation reduce renal angiotensin I and angiotensin II concentrations, decrease mRNA expression of Ren, and increase protein levels of type 2 angiotensin II receptor. CONCLUSION Early supplementation of d- or l-cysteine before hypertension becomes evident and may protect against hypertension and kidney damage in adult SHRs exposed to high salt consumption via regulation of oxidative stress, renin-angiotensin system, and H2 S-generating pathways.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Pei-Chen Lu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
75
|
Gleixner AM, Hutchison DF, Sannino S, Bhatia TN, Leak LC, Flaherty PT, Wipf P, Brodsky JL, Leak RK. N-Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Mol Pharmacol 2017; 92:564-575. [PMID: 28830914 DOI: 10.1124/mol.117.109926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
N-acetyl-l-cysteine (NAC) exhibits protective properties in brain injury models and has undergone a number of clinical trials. Most studies of NAC have focused on neurons. However, neuroprotection may be complemented by the protection of astrocytes because healthier astrocytes can better support the viability of neurons. Here, we show that NAC can protect astrocytes against protein misfolding stress (proteotoxicity), the hallmark of neurodegenerative disorders. Although NAC is thought to be a glutathione precursor, NAC protected primary astrocytes from the toxicity of the proteasome inhibitor MG132 without eliciting any increase in glutathione. Furthermore, glutathione depletion failed to attenuate the protective effects of NAC. MG132 elicited a robust increase in the folding chaperone heat shock protein 70 (Hsp70), and NAC mitigated this effect. Nevertheless, three independent inhibitors of Hsp70 function ablated the protective effects of NAC, suggesting that NAC may help preserve Hsp70 chaperone activity and improve protein quality control without need for Hsp70 induction. Consistent with this view, NAC abolished an increase in ubiquitinated proteins in MG132-treated astrocytes. However, NAC did not affect the loss of proteasome activity in response to MG132, demonstrating that it boosted protein homeostasis and cell viability without directly interfering with the efficacy of this proteasome inhibitor. The thiol-containing molecules l-cysteine and d-cysteine both mimicked the protective effects of NAC, whereas the thiol-lacking molecule N-acetyl-S-methyl-l-cysteine failed to exert protection or blunt the rise in ubiquitinated proteins. Collectively, these findings suggest that the thiol group in NAC is required for its effects on glial viability and protein quality control.
Collapse
Affiliation(s)
- Amanda M Gleixner
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Daniel F Hutchison
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Sara Sannino
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Tarun N Bhatia
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Lillian C Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Patrick T Flaherty
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Peter Wipf
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Jeffrey L Brodsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania (A.M.G., D.F.H., T.N.B., L.C.L., P.T.F., R.K.L.); and Departments of Biological Sciences (S.S., J.L.B.) and Chemistry and Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W.)
| |
Collapse
|
76
|
Abstract
More than half a century ago researchers thought that D-amino acids had a minor function compared to L-enantiomers in biological processes. Many evidences have shown that D-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. D-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, D-aspartate (D-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. D-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain D-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of D-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of D-amino acids: amino acid racemase in the synthesis and D-amino acid oxidase in the degradation.
Collapse
|
77
|
Shibui Y, Sakai R, Manabe Y, Masuyama T. Comparisons of l-cysteine and d-cysteine toxicity in 4-week repeated-dose toxicity studies of rats receiving daily oral administration. J Toxicol Pathol 2017; 30:217-229. [PMID: 28798529 PMCID: PMC5545674 DOI: 10.1293/tox.2017-0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023] Open
Abstract
Two 4-week repeated-dose toxicity studies were conducted to evaluate the potential toxicity of l-cysteine and d-cysteine. In one study, three groups of 6 male rats were each administered l-cysteine once daily by gavage at doses of 500, 1,000, or 2,000 mg/kg/day for 28 consecutive days. The control group was administered a 0.5% methylcellulose vehicle solution. The other study followed a similar protocol except that the experimental groups received d-cysteine. Toxicological observations showed that the l-cysteine-treated groups exhibited renal injuries such as basophilic tubules with eosinophilic material in the lumen, and there were increased numbers of basophilic tubules in all treated groups. In 1,000 or 2,000 mg/kg/day-treated groups, salivation and necropsy findings indicative of focal erosion in the stomach mucosa were found. Increases in reticulocyte counts were observed in the 2,000 mg/kg/day-treated group. Toxicological findings obtained for the d-cysteine-treated groups included anemia and renal injuries such as basophilic tubules with eosinophilic material in the lumen, increased numbers of basophilic tubules, and crystal deposition in the medulla in the 2,000 mg/kg/day-treated group. Additional findings included sperm granuloma in the epididymis, necropsy findings suggestive of focal erosion in the stomach mucosa, and salivation in the 1,000 or 2,000 mg/kg/day-treated groups. One rat in the 2,000 mg/kg/day-treated group died due to renal failure. In conclusion, the no-observed-adverse-effect levels (NOAELs) were estimated to be less than 500 mg/kg/day for l-cysteine and 500 mg/kg/day for d-cysteine under our study conditions. The toxicological profiles were similar for l-cysteine and d-cysteine; however, there were slight differences in the dose responses. The mechanisms underlying these differences remain to be determined.
Collapse
Affiliation(s)
- Yusuke Shibui
- Safety Evaluation Research Group, Fundamental Technology Labs., Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Ryosei Sakai
- Safety Evaluation Research Group, Fundamental Technology Labs., Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Yasuhiro Manabe
- Safety Evaluation Research Group, Fundamental Technology Labs., Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| | - Takeshi Masuyama
- Safety Evaluation Research Group, Fundamental Technology Labs., Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan
| |
Collapse
|
78
|
Qiu J, Wang J, Xu Z, Liu H, Ren J. Quantitation of underivatized branched-chain amino acids in sport nutritional supplements by capillary electrophoresis with direct or indirect UV absorbance detection. PLoS One 2017. [PMID: 28640882 PMCID: PMC5481027 DOI: 10.1371/journal.pone.0179892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The branched-chain amino acids (BCAAs) including leucine (Leu), isoleucine (Ile) and valine (Val) play a pivotal role in the human body. Herein, we developed capillary electrophoresis (CE) coupled with conventional UV detector to quantify underivatized BCAAs in two kinds of sport nutritional supplements. For direct UV detection at 195 nm, the BCAAs (Leu, two enantiomers of Ile and Val) were separated in a background electrolyte (BGE) consisting of 40.0 mmol/L sodium tetraborate, and 40.0 mmol/L β-cyclodextrin (β-CD) at pH 10.2. In addition, the indirect UV detection at 264 nm was achieved in a BGE of 2.0 mmol/L Na2HPO4, 10.0 mmol/L p-aminosalicylic acid (PAS) as UV absorbing probe, and 40.0 mmol/L β-CD at pH 12.2. The β-CD significantly benefited the isomeric separation of Leu, L- and D-Ile. The optimal conditions allowed the LODs (limit of detections) of direct and indirect UV absorption detection to be tens μmol/L level, which was comparable to the reported CE inline derivatization method. The RSDs (relative standard deviations) of migration time and peak area were less than 0.91% and 3.66% (n = 6). Finally, CE with indirect UV detection method was applied for the quantitation of BCAAs in two commercial sport nutritional supplements, and good recovery and precision were obtained. Such simple CE method without tedious derivatization process is feasible of quality control and efficacy evaluation of the supplemental proteins.
Collapse
Affiliation(s)
- Jun Qiu
- Shanghai Research Institute of Sports Science, Shanghai, China
| | - Jinhao Wang
- Shanghai Research Institute of Sports Science, Shanghai, China
| | - Zhongqi Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
- * E-mail: (ZQX); (JR)
| | - Huiqing Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Jie Ren
- China Table Tennis College, Shanghai University of Sport, Shanghai, China
- * E-mail: (ZQX); (JR)
| |
Collapse
|
79
|
Thanzeel FY, Wolf C. Substrate‐Specific Amino Acid Sensing Using a Molecular
d
/
l
‐Cysteine Probe for Comprehensive Stereochemical Analysis in Aqueous Solution. Angew Chem Int Ed Engl 2017; 56:7276-7281. [DOI: 10.1002/anie.201701188] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/10/2017] [Indexed: 01/07/2023]
Affiliation(s)
- F. Yushra Thanzeel
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
80
|
Thanzeel FY, Wolf C. Substratspezifische Analyse von Aminosäuren mit Sensoren für
d
/
l
‐Cystein: umfassende stereochemische Untersuchungen in wässriger Lösung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- F. Yushra Thanzeel
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
81
|
Mittal R, Debs LH, Patel AP, Nguyen D, Patel K, O'Connor G, Grati M, Mittal J, Yan D, Eshraghi AA, Deo SK, Daunert S, Liu XZ. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J Cell Physiol 2017; 232:2359-2372. [PMID: 27512962 DOI: 10.1002/jcp.25518] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitters, including catecholamines and serotonin, play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the "fight or flight" response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in GI and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, GI innate immune system, and the microbiome. Furthermore, in pathological states, such as inflammatory bowel disease (IBD) and Parkinson's disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of GI symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state-of-the-art research and literature regarding the role of neurotransmitters in regulation of normal GI physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. J. Cell. Physiol. 232: 2359-2372, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Luca H Debs
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Amit P Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Kunal Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sapna K Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
82
|
The identification of ᴅ-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian Dugesia ryukyuensis. Sci Rep 2017; 7:45175. [PMID: 28338057 PMCID: PMC5364533 DOI: 10.1038/srep45175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/20/2017] [Indexed: 12/24/2022] Open
Abstract
Many metazoans start germ cell development during embryogenesis, while some metazoans possessing pluripotent stem cells undergo postembryonic germ cell development. The latter reproduce asexually but develop germ cells from pluripotent stem cells or dormant primordial germ cells when they reproduce sexually. Sexual induction of the planarian Dugesia ryukyuensis is an important model for postembryonic germ cell development. In this experimental system, hermaphroditic reproductive organs are differentiated in presumptive gonadal regions by the administration of a crude extract from sexual planarians to asexual ones. However, the substances involved in the first event during postembryonic germ cell development, i.e., ovarian development, remain unknown. Here, we aimed to identify a bioactive compound associated with postembryonic ovarian development. Bioassay-guided fractionation identified ʟ-tryptophan (Trp) on the basis of electrospray ionization–mass spectrometry, circular dichroism, and nuclear magnetic resonance spectroscopy. Originally masked by a large amount of ʟ-Trp, ᴅ-Trp was detected by reverse-phase high-performance liquid chromatography. The ovary-inducing activity of ᴅ-Trp was 500 times more potent than that of ʟ-Trp. This is the first report describing a role for an intrinsic ᴅ-amino acid in postembryonic germ cell development. Our findings provide a novel insight into the mechanisms of germ cell development regulated by low-molecular weight bioactive compounds.
Collapse
|
83
|
Ikeda H, Nagasawa M, Yamaguchi T, Minaminaka K, Goda R, Chowdhury VS, Yasuo S, Furuse M. Disparities in activity levels and learning ability between Djungarian hamster ( Phodopus sungorus) and Roborovskii hamster ( Phodopus roborovskii). Anim Sci J 2017; 88:533-545. [DOI: 10.1111/asj.12659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Hiromi Ikeda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mao Nagasawa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Takeshi Yamaguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Kimie Minaminaka
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Ryosei Goda
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Vishwajit S. Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science; Kyushu University; Fukuoka Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
84
|
MORIKAWA A, FUKUOKA H, UEZONO K, MITA M, KOYANAGI S, OHDO S, ZAITSU K, HAMASE K. Sleep-Awake Profile Related Circadian D-Alanine Rhythm in Human Serum and Urine. CHROMATOGRAPHY 2017. [DOI: 10.15583/jpchrom.2017.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Akiko MORIKAWA
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Hideoki FUKUOKA
- Research Institute for Science and Engineering, Waseda University
| | | | | | - Satoru KOYANAGI
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Shigehiro OHDO
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kiyoshi ZAITSU
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kenji HAMASE
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
85
|
Krivosudský L, Schwendt P, Filo J. Vanadium(V)-catalyzed epimerization of isoleucine. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
86
|
Choi SH, Kozukue N, Kim HJ, Friedman M. Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavonoid content and antioxidative properties of potato tubers, peels, and cortexes (pulps). J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG, Beauchamp GK. Genetics of Amino Acid Taste and Appetite. Adv Nutr 2016; 7:806S-22S. [PMID: 27422518 PMCID: PMC4942865 DOI: 10.3945/an.115.011270] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite.
Collapse
Affiliation(s)
| | | | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY
| | - Masashi Inoue
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA
| | - Satoshi Manita
- Monell Chemical Senses Center, Philadelphia, PA; Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | - Yuko Murata
- Monell Chemical Senses Center, Philadelphia, PA; National Research Institute of Fisheries Science, Yokohama, Japan; and
| | | | | | - Gary K Beauchamp
- Monell Chemical Senses Center, Philadelphia, PA; Department of Psychology and School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
88
|
Pérez-Míguez R, Marina ML, Castro-Puyana M. Enantiomeric separation of non-protein amino acids by electrokinetic chromatography. J Chromatogr A 2016; 1467:409-416. [PMID: 27372417 DOI: 10.1016/j.chroma.2016.06.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/17/2016] [Indexed: 12/22/2022]
Abstract
New analytical methodologies enabling the enantiomeric separation of a group of non-protein amino acids of interest in the pharmaceutical and food analysis fields were developed in this work using Electrokinetic Chromatography. The use of FMOC as derivatization reagent and the subsequent separation using acidic conditions (formate buffer at pH 2.0) and anionic cyclodextrins as chiral selectors allowed the chiral separation of eight from the ten non-protein amino acids studied. Pyroglutamic acid, norvaline, norleucine, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, and selenomethionine were enantiomericaly separated using sulfated-α-CD while sulfated-γ-CD enabled the enantiomeric separation of norvaline, 3,4-dihydroxyphenilalanine, 2-aminoadipic acid, selenomethionie, citrulline, and pipecolic acid. Moreover, the potential of the developed methodologies was demonstrated in the analysis of citrulline and its enantiomeric impurity in food supplements. For that purpose, experimental and instrumental variables were optimized and the analytical characteristics of the proposed method were evaluated. LODs of 2.1×10-7 and 1.8×10-7M for d- and l-citrulline, respectively, were obtained. d-Cit was not detectable in any of the six food supplement samples analyzed showing that the effect of storage time on the racemization of citrulline was negligible.
Collapse
Affiliation(s)
- Raquel Pérez-Míguez
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Biología, Ciencias Ambientales y Química, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
89
|
Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct 2016; 6:1752-72. [PMID: 25989363 DOI: 10.1039/c5fo00320b] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
90
|
Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016; 8:nu8010056. [PMID: 26805875 PMCID: PMC4728667 DOI: 10.3390/nu8010056] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
The serotonergic system forms a diffuse network within the central nervous system and plays a significant role in the regulation of mood and cognition. Manipulation of tryptophan levels, acutely or chronically, by depletion or supplementation, is an experimental procedure for modifying peripheral and central serotonin levels. These studies have allowed us to establish the role of serotonin in higher order brain function in both preclinical and clinical situations and have precipitated the finding that low brain serotonin levels are associated with poor memory and depressed mood. The gut-brain axis is a bi-directional system between the brain and gastrointestinal tract, linking emotional and cognitive centres of the brain with peripheral functioning of the digestive tract. An influence of gut microbiota on behaviour is becoming increasingly evident, as is the extension to tryptophan and serotonin, producing a possibility that alterations in the gut may be important in the pathophysiology of human central nervous system disorders. In this review we will discuss the effect of manipulating tryptophan on mood and cognition, and discuss a possible influence of the gut-brain axis.
Collapse
|
91
|
Simultaneous analysis of d-alanine, d-aspartic acid, and d-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J Pharm Biomed Anal 2015; 115:123-9. [DOI: 10.1016/j.jpba.2015.05.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
|
92
|
Zhou J, Du X, Li J, Yamagata N, Xu B. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly. J Am Chem Soc 2015; 137:10040-3. [PMID: 26235707 PMCID: PMC4544318 DOI: 10.1021/jacs.5b06181] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Indexed: 02/08/2023]
Abstract
Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Natsuko Yamagata
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
93
|
Capillary electrophoresis determination of non-protein amino acids as quality markers in foods. J Chromatogr A 2015; 1428:97-114. [PMID: 26233255 DOI: 10.1016/j.chroma.2015.07.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022]
Abstract
Non-protein amino acids mainly exist in food as products formed during food processing, as metabolic intermediates or as additives to increase nutritional and functional properties of food. This fact makes their analysis and determination an attractive field in food science since they can give interesting information on the quality and safety of foods. This article presents a comprehensive review devoted to describe the latest advances in the development of (achiral and chiral) analytical methodologies by capillary electrophoresis and microchip capillary electrophoresis for the analysis of non-protein amino acids in a variety of food samples. Most relevant information related to sample treatment, experimental separation and detection conditions, preconcentration strategies and limits of detection will be provided.
Collapse
|
94
|
Appavu R, Chesson CB, Koyfman AY, Snook JD, Kohlhapp FJ, Zloza A, Rudra JS. Enhancing the Magnitude of Antibody Responses through Biomaterial Stereochemistry. ACS Biomater Sci Eng 2015; 1:601-609. [DOI: 10.1021/acsbiomaterials.5b00139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Frederick J. Kohlhapp
- Departments
of Microbiology/Immunology and Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Andrew Zloza
- Departments
of Microbiology/Immunology and Internal Medicine, Rush University Medical Center, Chicago, Illinois 60612, United States
| | | |
Collapse
|
95
|
Liu W, Guo RT, Chen X, Li Z, Gao X, Huang CH, Wu Q, Feng J, Zhu D. Structural analysis reveals the substrate-binding mechanism for the expanded substrate specificity of mutant meso-diaminopimelate dehydrogenase. Chembiochem 2015; 16:924-9. [PMID: 25754803 DOI: 10.1002/cbic.201402632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 01/19/2023]
Abstract
A meso-diaminopimelate dehydrogenase (DAPDH) from Clostridium tetani E88 (CtDAPDH) was found to have low activity toward the D-amino acids other than its native substrate. Site-directed mutagenesis similar to that carried out on the residues mutated by Vedha-Peters et al. resulted in a mutant enzyme with highly improved catalytic ability for the synthesis of D-amino acids. The crystal structures of the CtDAPDH mutant in apo form and in complex with meso-diaminopimelate (meso-DAP), D-leucine (D-leu), and 4-methyl-2-oxopentanoic acid (MOPA) were solved. meso-DAP was found in an area outside the catalytic cavity; this suggested a possible two-step substrate-binding mechanism for meso-DAP. D-leu and MOPA each bound both to Leu154 and to Gly155 in the open form of CtDAPDH, and structural analysis revealed the molecular basis for the expanded substrate specificity of the mutant meso-diaminopimelate dehydrogenases.
Collapse
Affiliation(s)
- Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Comparison of centrally injected tryptophan-related substances inducing sedation in acute isolation stress-induced neonatal chicks. Pharmacol Biochem Behav 2015; 129:1-6. [DOI: 10.1016/j.pbb.2014.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 11/21/2022]
|
97
|
Lorenzo MP, Dudzik D, Varas E, Gibellini M, Skotnicki M, Zorawski M, Zarzycki W, Pellati F, García A. Optimization and validation of a chiral GC-MS method for the determination of free D-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J Pharm Biomed Anal 2015; 107:480-7. [PMID: 25679092 DOI: 10.1016/j.jpba.2015.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 12/31/2022]
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance with onset or first recognition during pregnancy. It is affecting approximately up to 14% of all pregnancies with an increasing tendency. GDM has been related to relevant short-term and long-term health complications for both mother and offspring. Recent studies strongly emphasized the role of several essential amino acids in the pathogenesis of obesity and highlighted their strong correlation with insulin resistance, but there are no references related to modifications in D-AAs in biological fluids. As D-AA elimination proceeds mainly by renal excretion, urine was the selected sample to evaluate the alterations in free D-AAs ratio in a GDM study. Only 1 mL of first void urine or standard solution was required for purification, by using a Discovery DSC-SCX SPE cartridge (500 mg/3 mL) and derivatization into their N(O)-pentafluoropropionyl amino acid 2-propyl esters. Enantiomeric separation was carried out by GC-MS on a Chirasil-L-Val N-propionyl-L-valine-tert-butylamide polysiloxane fused-silica capillary column (25 m×0.25 mm I.D., 0.12 μm film thickness, Agilent Technologies, Waldbronn, Germany), under programmed temperature elution. Detection was performed with an ion trap mass analyzer, operating in the full scan mode in the m/z 50-350 range. 14 pairs of derivatives of D-and L-AAs were separated. The steps of sample preparation, derivatization and GC-MS conditions were optimized for both urine and standards. Several conditions affecting the SPE procedure, such as sorbent mass/volume ratio of the cartridge, sample dilution and pH, were optimized. Volume of reagents and solvents and reaction temperature and time were also tested for the derivatization. Regarding the GC-MS parameters, split ratio, temperature program and mass range were optimized. The final method was validated in terms of linearity, sensitivity, accuracy and precision for D-Ala, D-Pro, D-Ser, D-Met, D-Phe, D-Glu, D-Orn and D-Lys. Identification of AAs in urine samples was based on retention time and mass spectra. Urine from 20 women with GDM and 20 pregnant women with normal glucose tolerance (after 2-h 75-g oral glucose tolerance test), matched according to the week of gestation and age (22-28 week of gestation and age 24-37 years), were enrolled into the study. %D-Relative amounts were determined for Ala, Val, Thr, Ser, Leu, Asx (Asp+Asn), Glx (Glu+Gln), Met, Phe, Tyr, Orn and Lys. Statistically significant differences (p<0.05) were observed only for D-Phe and higher values were found in the GDM group. It is possible that D-Phe could be involved in metabolic/signaling pathways to compensate early stages of insulin resistance, although further work is necessary to confirm this hypothesis.
Collapse
Affiliation(s)
- Ma Paz Lorenzo
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Danuta Dudzik
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain; Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Elena Varas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Manuel Gibellini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 183, 41125 Modena, Italy
| | - Mariusz Skotnicki
- Clinical Department of Perinatology, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Zorawski
- Department of Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Wieslaw Zarzycki
- Clinical Department of Endocrinology, Diabetology and Internal Diseases, Public Clinic Hospital, Medical University of Bialystok, Bialystok, Poland
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 183, 41125 Modena, Italy
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain.
| |
Collapse
|
98
|
Chung SY, Reed S. IgE binding to peanut allergens is inhibited by combined d-aspartic and d-glutamic acids. Food Chem 2015; 166:248-253. [DOI: 10.1016/j.foodchem.2014.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/05/2014] [Accepted: 06/03/2014] [Indexed: 01/11/2023]
|
99
|
Fujiwara T, Yasuda H, Nishimura Y, Nambu H, Yakura T. Synthesis of 10b-fluorinated analogues of protubonine A and its 11a-epimer via fluorocyclisation of tryptophan-containing dipeptides. RSC Adv 2015. [DOI: 10.1039/c4ra08741k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The 10b-fluorinated analogues of protubonine A and its 11a-epimer were synthesisedviafluorocyclisation of tryptophan-containing dipeptides withN-fluoro-2,4,6-trimethylpyridinium triflate.
Collapse
Affiliation(s)
- Tomoya Fujiwara
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Hiroko Yasuda
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Yushi Nishimura
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Hisanori Nambu
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| | - Takayuki Yakura
- Graduate School of Medicine and Pharmaceutical Sciences
- University of Toyama
- Toyama 930-0194
- Japan
| |
Collapse
|
100
|
Rawson M, Haggard W, Jennings JA. Osteocompatibility of biofilm inhibitors. Open Orthop J 2014; 8:442-9. [PMID: 25505496 PMCID: PMC4260234 DOI: 10.2174/1874325001408010442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/19/2014] [Indexed: 11/22/2022] Open
Abstract
The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics.
Collapse
Affiliation(s)
- Monica Rawson
- Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Warren Haggard
- Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Jessica A Jennings
- Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|