51
|
Darabedian N, Thompson JW, Chuh KN, Hsieh-Wilson LC, Pratt MR. Optimization of Chemoenzymatic Mass Tagging by Strain-Promoted Cycloaddition (SPAAC) for the Determination of O-GlcNAc Stoichiometry by Western Blotting. Biochemistry 2018; 57:5769-5774. [PMID: 30169966 DOI: 10.1021/acs.biochem.8b00648] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The dynamic modification of intracellular proteins by O-linked β -N-acetylglucosamine (O-GlcNAcylation) plays critical roles in many cellular processes. Although various methods have been developed for O-GlcNAc detection, there are few techniques for monitoring glycosylation stoichiometry and state (i.e., mono-, di-, etc., O-GlcNAcylated). Measuring the levels of O-GlcNAcylation on a given substrate protein is important for understanding the biology of this critical modification and for prioritizing substrates for functional studies. One powerful solution to this limitation involves the chemoenzymatic installation of polyethylene glycol polymers of defined molecular mass onto O-GlcNAcylated proteins. These "mass tags" produce shifts in protein migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that can be detected by Western blotting. Broad adoption of this method by the scientific community has been limited, however, by a lack of commercially available reagents and well-defined protein standards. Here, we develop a "click chemistry" approach to this method using entirely commercial reagents and confirm the accuracy of the approach using a semisynthetic O-GlcNAcylated protein. Our studies establish a new, expedited experimental workflow and standardized methods that can be readily utilized by non-experts to quantify the O-GlcNAc stoichiometry and state on endogenous proteins in any cell or tissue lysate.
Collapse
Affiliation(s)
| | - John W Thompson
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | | | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | | |
Collapse
|
52
|
Abstract
O-GlcNAc is an intracellular posttranslational modification that governs myriad cell biological processes and is dysregulated in human diseases. Despite this broad pathophysiological significance, the biochemical effects of most O-GlcNAcylation events remain uncharacterized. One prevalent hypothesis is that O-GlcNAc moieties may be recognized by "reader" proteins to effect downstream signaling. However, no general O-GlcNAc readers have been identified, leaving a considerable gap in the field. To elucidate O-GlcNAc signaling mechanisms, we devised a biochemical screen for candidate O-GlcNAc reader proteins. We identified several human proteins, including 14-3-3 isoforms, that bind O-GlcNAc directly and selectively. We demonstrate that 14-3-3 proteins bind O-GlcNAc moieties in human cells, and we present the structures of 14-3-3β/α and γ bound to glycopeptides, providing biophysical insights into O-GlcNAc-mediated protein-protein interactions. Because 14-3-3 proteins also bind to phospho-serine and phospho-threonine, they may integrate information from O-GlcNAc and O-phosphate signaling pathways to regulate numerous physiological functions.
Collapse
|
53
|
Ghirardello M, Perrone D, Chinaglia N, Sádaba D, Delso I, Tejero T, Marchesi E, Fogagnolo M, Rafie K, van Aalten DMF, Merino P. UDP-GlcNAc Analogues as Inhibitors of O-GlcNAc Transferase (OGT): Spectroscopic, Computational, and Biological Studies. Chemistry 2018. [PMID: 29513364 DOI: 10.1002/chem.201801083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A series of glycomimetics of UDP-GlcNAc, in which the β-phosphate has been replaced by either an alkyl chain or a triazolyl ring and the sugar moiety has been replaced by a pyrrolidine ring, has been synthesized by the application of different click-chemistry procedures. Their affinities for human O-GlcNAc transferase (hOGT) have been evaluated and studied both spectroscopically and computationally. The binding epitopes of the best ligands have been determined in solution by means of saturation transfer difference (STD) NMR spectroscopy. Experimental, spectroscopic, and computational results are in agreement, pointing out the essential role of the binding of β-phosphate. We have found that the loss of interactions from the β-phosphate can be counterbalanced by the presence of hydrophobic groups at a pyrroline ring acting as a surrogate of the carbohydrate unit. Two of the prepared glycomimetics show inhibition at a micromolar level.
Collapse
Affiliation(s)
- Mattia Ghirardello
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Ferrara, 44121, Ferrara, Italy
| | - Nicola Chinaglia
- Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Ferrara, 44121, Ferrara, Italy
| | - David Sádaba
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Ignacio Delso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Tomas Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009, Zaragoza, Spain
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Ferrara, 44121, Ferrara, Italy
| | - Marco Fogagnolo
- Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Ferrara, 44121, Ferrara, Italy
| | - Karim Rafie
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
54
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
55
|
Pham LV, Bryant JL, Mendez R, Chen J, Tamayo AT, Xu-Monette ZY, Young KH, Manyam GC, Yang D, Medeiros LJ, Ford RJ. Targeting the hexosamine biosynthetic pathway and O-linked N-acetylglucosamine cycling for therapeutic and imaging capabilities in diffuse large B-cell lymphoma. Oncotarget 2018; 7:80599-80611. [PMID: 27716624 PMCID: PMC5348344 DOI: 10.18632/oncotarget.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/19/2016] [Indexed: 12/24/2022] Open
Abstract
The hexosamine biosynthetic pathway (HBP) requires two key nutrients glucose and glutamine for O-linked N-acetylglucosamine (O-GlcNAc) cycling, a post-translational protein modification that adds GlcNAc to nuclear and cytoplasmic proteins. Increased GlcNAc has been linked to regulatory factors involved in cancer cell growth and survival. However, the biological significance of GlcNAc in diffuse large B-cell lymphoma (DLBCL) is not well defined. This study is the first to show that both the substrate and the endpoint O-GlcNAc transferase (OGT) enzyme of the HBP were highly expressed in DLBCL cell lines and in patient tumors compared with normal B-lymphocytes. Notably, high OGT mRNA levels were associated with poor survival of DLBCL patients. Targeting OGT via small interference RNA in DLBCL cells inhibited activation of GlcNAc, nuclear factor kappa B (NF-κB), and nuclear factor of activated T-cells 1 (NFATc1), as well as cell growth. Depleting both glucose and glutamine in DLBCL cells or treating them with an HBP inhibitor (azaserine) diminished O-GlcNAc protein substrate, inhibited constitutive NF-κB and NFATc1 activation, and induced G0/G1 cell-cycle arrest and apoptosis. Replenishing glucose-and glutamine-deprived DLBCL cells with a synthetic glucose analog (ethylenedicysteine-N-acetylglucosamine [ECG]) reversed these phenotypes. Finally, we showed in both in vitro and in vivo murine models that DLBCL cells easily take up radiolabeled technetium-99m-ECG conjugate. These findings suggest that targeting the HBP has therapeutic relevance for DLBCL and underscores the imaging potential of the glucosamine analog ECG in DLBCL.
Collapse
Affiliation(s)
- Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jerry L Bryant
- Division of Translational Medicine, Cell>Point Pharmaceuticals, Centennial, CO, USA
| | - Richard Mendez
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Archito T Tamayo
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Yang
- Division of Translational Medicine, Cell>Point Pharmaceuticals, Centennial, CO, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard J Ford
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
56
|
Kongkaew T, Aung WPP, Supanchart C, Makeudom A, Langsa-ard S, Sastraruji T, Chaiyarit P, Krisanaprakornkit S. O
-GlcNAcylation in oral squamous cell carcinoma. J Oral Pathol Med 2018; 47:260-267. [DOI: 10.1111/jop.12680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Tassaporn Kongkaew
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Win Pa Pa Aung
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Sarawat Langsa-ard
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Thanapat Sastraruji
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Ponlatham Chaiyarit
- Department of Oral Diagnosis; Faculty of Dentistry; Khon Kaen University; Khon Kaen Thailand
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health; Khon Kaen University; Khon Kaen Thailand
| | - Suttichai Krisanaprakornkit
- Center of Excellence in Oral and Maxillofacial Biology; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
57
|
Jiang M, Qiu Z, Zhang S, Fan X, Cai X, Xu B, Li X, Zhou J, Zhang X, Chu Y, Wang W, Liang J, Horvath T, Yang X, Wu K, Nie Y, Fan D. Elevated O-GlcNAcylation promotes gastric cancer cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling. Oncotarget 2018; 7:61390-61402. [PMID: 27542217 PMCID: PMC5308659 DOI: 10.18632/oncotarget.11359] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways. In vivo xenograft assays also demonstrated that the hyper-O-GlcNAc level markedly promoted the proliferation of tumors. Moreover, compared with noncancerous tissues, the O-GlcNAcylation level was increased in cancerous tissues. GC patients with higher levels of O-GlcNAcylation exhibited large tumor sizes (≥5 cm), deep tumor invasion (T3 and T4), high AJCC stages (stage III and IV), more lymph node metastases and lower overall survival. Notably, the phosphorylation level of ERK 1/2 was increased progressively with the increase of O-GlcNAcylation in both SGC 7901 and AGS cells. Consistently, human GC tissue arrays also revealed that ERK 1/2 signaling was positively correlated to O-GlcNAcylation (r = 0.348; P = 0.015). Taken together, here we reported that hyper-O-GlcNAcylation significantly promotes GC cells proliferation by modulating cell cycle related proteins and ERK 1/2 signaling, suggesting that inhibition of OGT may be a potential novel therapeutic target of GC.
Collapse
Affiliation(s)
- Mingzuo Jiang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyan Qiu
- Department of General Surgery, The General Hospital of People's Liberation Army, 301 Hospital, Beijing, China
| | - Song Zhang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xing Fan
- Institute of Plastic Surgery of The Chinese PLA, The Fourth Military Medical University, Xi'an, China
| | - Xiqiang Cai
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinfeng Zhou
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weijie Wang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tamas Horvath
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Xiaoyong Yang
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
58
|
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018; 9:51-72. [PMID: 28982002 DOI: 10.1021/acschemneuro.7b00271] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a posttranslational modification that affects more than half of all known proteins. Glycans covalently bound to biomolecules modulate their functions by both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that contribute to the control of protein conformation, stability, and turnover. The focus of this Review is the discussion of aberrant glycosylation related to brain cancer. Altered sialylation and fucosylation of N- and O-glycans play a role in the development and progression of brain cancer. Additionally, aberrant O-glycan expression has been implicated in brain cancer. This Review also addresses the clinical potential and applications of aberrant glycosylation for the detection and treatment of brain cancer. The viable roles glycans may play in the development of brain cancer therapeutics are addressed as well as cancer-glycoproteomics and personalized medicine. Glycoprotein alterations are considered as a hallmark of cancer while high expression in body fluids represents an opportunity for cancer assessment.
Collapse
Affiliation(s)
- Lucas Veillon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| | - Christina Fakih
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| |
Collapse
|
59
|
Liu T, Zhang W, Zhang Z, Chen M, Wang J, Qian X, Qin W. Sensitive Western-Blot Analysis of Azide-Tagged Protein Post Translational Modifications Using Thermoresponsive Polymer Self-Assembly. Anal Chem 2018; 90:2186-2192. [DOI: 10.1021/acs.analchem.7b04531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tong Liu
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Wanjun Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Zheng Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Mingli Chen
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jianhua Wang
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xiaohong Qian
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| | - Weijie Qin
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, PR China
| |
Collapse
|
60
|
Kim M, Kim YS, Kim H, Kang MY, Park J, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Park JK, Cho JW, Shin JK, Choi WS. O-linked N-acetylglucosamine transferase promotes cervical cancer tumorigenesis through human papillomaviruses E6 and E7 oncogenes. Oncotarget 2018; 7:44596-44607. [PMID: 27331873 PMCID: PMC5190121 DOI: 10.18632/oncotarget.10112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 12/03/2022] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) increases O-GlcNAc modification (O-GlcNAcylation), and transcriptional co-regulator host cell factor 1 (HCF-1) is one of OGT targets. High-risk Human Papillomaviruses (HPVs) encode E6 and E7 oncoproteins, which promote cervical cancer. Here, we tested whether O-GlcNAc modification of HCF-1 affects HPV E6 and E7 expressions and tumorigenesis of cervical cancer. We found that depleting OGT with OGT-specific shRNA significantly decreased levels of E6 and E7 oncoproteins, and cervical cancer tumorigenesis, while OGT overexpression greatly increased levels of E6 and E7 oncoproteins. Notably, OGT overexpression caused dose-dependent increases in the transcriptional activity of E6 and E7, and this activity was decreased when HCF-1 was depleted with HCF-1-specific siRNA. Moreover, OGT depletion reduced proliferation, invasion, and metastasis in cervical cancer cells. Further, high glucose enhanced the interaction between OGT and HCF-1, paralleling increased levels of E6 and E7 in cervical cancer cells. Most importantly, we found that reducing OGT in HeLa cells caused decreased tumor growth in vivo. These findings identify OGT as a novel cellular factor involved in E6 and E7 expressions and cervical cancer tumorigenesis, suggesting that targeting OGT in cervical cancer may have potential therapeutic benefit.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hwajin Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Min Young Kang
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jeongsook Park
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Ji Kwon Park
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jeong Kyu Shin
- Department of Obstetrics and Gynecology, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
61
|
Cox NJ, Luo PM, Smith TJ, Bisnett BJ, Soderblom EJ, Boyce M. A Novel Glycoproteomics Workflow Reveals Dynamic O-GlcNAcylation of COPγ1 as a Candidate Regulator of Protein Trafficking. Front Endocrinol (Lausanne) 2018; 9:606. [PMID: 30459710 PMCID: PMC6232944 DOI: 10.3389/fendo.2018.00606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is an abundant and essential intracellular form of protein glycosylation in animals and plants. In humans, dysregulation of O-GlcNAcylation occurs in a wide range of diseases, including cancer, diabetes, and neurodegeneration. Since its discovery more than 30 years ago, great strides have been made in understanding central aspects of O-GlcNAc signaling, including identifying thousands of its substrates and characterizing the enzymes that govern it. However, while many O-GlcNAcylated proteins have been reported, only a small subset of these change their glycosylation status in response to a typical stimulus or stress. Identifying the functionally important O-GlcNAcylation changes in any given signaling context remains a significant challenge in the field. To address this need, we leveraged chemical biology and quantitative mass spectrometry methods to create a new glycoproteomics workflow for profiling stimulus-dependent changes in O-GlcNAcylated proteins. In proof-of-principle experiments, we used this new workflow to interrogate changes in O-GlcNAc substrates in mammalian protein trafficking pathways. Interestingly, our results revealed dynamic O-GlcNAcylation of COPγ1, an essential component of the coat protein I (COPI) complex that mediates Golgi protein trafficking. Moreover, we detected 11 O-GlcNAc moieties on COPγ1 and found that this modification is reduced by a model secretory stress that halts COPI trafficking. Our results suggest that O-GlcNAcylation may regulate the mammalian COPI system, analogous to its previously reported roles in other protein trafficking pathways. More broadly, our glycoproteomics workflow is applicable to myriad systems and stimuli, empowering future studies of O-GlcNAc in a host of biological contexts.
Collapse
Affiliation(s)
- Nathan J. Cox
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Peter M. Luo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Timothy J. Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Brittany J. Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Michael Boyce
| |
Collapse
|
62
|
Harris RBS. Source of dietary sucrose influences development of leptin resistance in male and female rats. Am J Physiol Regul Integr Comp Physiol 2017; 314:R598-R610. [PMID: 29351425 DOI: 10.1152/ajpregu.00384.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Male rats offered 30% sucrose solution in addition to chow develop leptin resistance without an increase in energy intake or body fat. This study tested whether the leptin resistance was dependent on the physical form of the sucrose. Sprague-Dawley rats were offered a sucrose-free (NS) diet, a 66.6% of energy as sucrose (HS) diet, or the NS diet + 30% sucrose solution (LS). Sucrose intake of LS rats equaled that of HS rats, but total carbohydrate intake exceeded that of HS rats. After 33 days, male and female LS rats were resistant to the inhibitory effect of peripherally administered leptin on food intake. LS rats drank small, frequent meals of sucrose during light and dark periods, whereas HS rats consumed more meals during the dark than the light period and remained responsive to leptin. Diet did not affect daily energy intake or insulin sensitivity. There was a small increase in body fat in the female rats. Leptin sensitivity was restored within 5 days of withdrawal from sucrose in male LS rats. This rapid reversal suggested that leptin resistance was associated with the metabolic impact of drinking sucrose. An experiment was carried out to test whether activity of the hexosamine biosynthetic pathway and glycation of leptin signaling proteins were increased in LS rats, but the results were equivocal. A final experiment determined that female LS rats were leptin-resistant within 18 days of access to sucrose solution and that the small, but significant, increase in body fat was associated with increased adipocyte glucose utilization and insulin responsiveness, which may have been secondary to adipocyte leptin resistance.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
63
|
Kim MJ, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Kim YS, Choi WS. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer. Oncotarget 2017; 9:4625-4636. [PMID: 29435130 PMCID: PMC5797001 DOI: 10.18632/oncotarget.23588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G0/G1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
64
|
Tarbet HJ, Toleman CA, Boyce M. A Sweet Embrace: Control of Protein-Protein Interactions by O-Linked β-N-Acetylglucosamine. Biochemistry 2017; 57:13-21. [PMID: 29099585 DOI: 10.1021/acs.biochem.7b00871] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a critical post-translational modification (PTM) of thousands of intracellular proteins. Reversible O-GlcNAcylation governs many aspects of cell physiology and is dysregulated in numerous human diseases. Despite this broad pathophysiological significance, major aspects of O-GlcNAc signaling remain poorly understood, including the biochemical mechanisms through which O-GlcNAc transduces information. Recent work from many laboratories, including our own, has revealed that O-GlcNAc, like other intracellular PTMs, can control its substrates' functions by inhibiting or inducing protein-protein interactions. This dynamic regulation of multiprotein complexes exerts diverse downstream signaling effects in a range of processes, cell types, and organisms. Here, we review the literature about O-GlcNAc-regulated protein-protein interactions and suggest important questions for future studies in the field.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Clifford A Toleman
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| |
Collapse
|
65
|
Hu J, Li Y, Li Y, Tang B, Zhang CY. Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Anal Chem 2017; 89:12992-12999. [DOI: 10.1021/acs.analchem.7b04065] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan Hu
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Yueying Li
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ying Li
- School
of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Bo Tang
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of
Chemistry, Chemical Engineering and Materials Science, Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Key Laboratory of Molecular and Nano Probes,
Ministry of Education, Shandong Provincial Key Laboratory of Clean
Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
66
|
Chen PH, Smith TJ, Wu J, Siesser PF, Bisnett BJ, Khan F, Hogue M, Soderblom E, Tang F, Marks JR, Major MB, Swarts BM, Boyce M, Chi JT. Glycosylation of KEAP1 links nutrient sensing to redox stress signaling. EMBO J 2017; 36:2233-2250. [PMID: 28663241 PMCID: PMC5538768 DOI: 10.15252/embj.201696113] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
O-GlcNAcylation is an essential, nutrient-sensitive post-translational modification, but its biochemical and phenotypic effects remain incompletely understood. To address this question, we investigated the global transcriptional response to perturbations in O-GlcNAcylation. Unexpectedly, many transcriptional effects of O-GlcNAc transferase (OGT) inhibition were due to the activation of NRF2, the master regulator of redox stress tolerance. Moreover, we found that a signature of low OGT activity strongly correlates with NRF2 activation in multiple tumor expression datasets. Guided by this information, we identified KEAP1 (also known as KLHL19), the primary negative regulator of NRF2, as a direct substrate of OGT We show that O-GlcNAcylation of KEAP1 at serine 104 is required for the efficient ubiquitination and degradation of NRF2. Interestingly, O-GlcNAc levels and NRF2 activation co-vary in response to glucose fluctuations, indicating that KEAP1 O-GlcNAcylation links nutrient sensing to downstream stress resistance. Our results reveal a novel regulatory connection between nutrient-sensitive glycosylation and NRF2 signaling and provide a blueprint for future approaches to discover functionally important O-GlcNAcylation events on other KLHL family proteins in various experimental and disease contexts.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Priscila F Siesser
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Farhan Khan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Maxwell Hogue
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Erik Soderblom
- Duke Proteomics and Metabolomics Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Flora Tang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Jeffrey R Marks
- Division of Surgical Sciences, Department of Surgery, Duke University, Durham, NC, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
67
|
De Leon CA, Levine PM, Craven TW, Pratt MR. The Sulfur-Linked Analogue of O-GlcNAc (S-GlcNAc) Is an Enzymatically Stable and Reasonable Structural Surrogate for O-GlcNAc at the Peptide and Protein Levels. Biochemistry 2017. [PMID: 28627871 DOI: 10.1021/acs.biochem.7b00268] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Synthetic proteins bearing site-specific posttranslational modifications have revolutionized our understanding of their biological functions in vitro and in vivo. One such modification, O-GlcNAcylation, is the dynamic addition of β-N-acetyl glucosamine to the side chains of serine and threonine residues of proteins, yet our understanding of the site-specific impact of O-GlcNAcylation remains difficult to evaluate in vivo because of the potential for enzymatic removal by endogenous O-GlcNAcase (OGA). Thioglycosides are generally perceived to be enzymatically stable structural mimics of O-GlcNAc; however, in vitro experiments with small-molecule GlcNAc thioglycosides have demonstrated that OGA can hydrolyze these linkages, indicating that S-linked β-N-acetyl glucosamine (S-GlcNAc) on peptides or proteins may not be completely stable. Here, we first develop a robust synthetic route to access an S-GlcNAcylated cysteine building block for peptide and protein synthesis. Using this modified amino acid, we establish that S-GlcNAc is an enzymatically stable surrogate for O-GlcNAcylation in its native protein setting. We also applied nuclear magnetic resonance spectroscopy and computational modeling to find that S-GlcNAc is an good structural mimic of O-GlcNAc. Finally, we demonstrate that site-specific S-GlcNAcylation results in biophysical characteristics that are the same as those of O-GlcNAc within the context of the protein α-synuclein. While this study is limited in focus to two model systems, these data suggest that S-GlcNAc broadly resembles O-GlcNAc and that it is indeed a stable analogue in the context of peptides and proteins.
Collapse
Affiliation(s)
| | | | - Timothy W Craven
- Department of Biochemistry, University of Washington , Seattle, Washington 98195, United States
| | | |
Collapse
|
68
|
Kim EJ. In Vitro Biochemical Assays for O-GlcNAc-Processing Enzymes. Chembiochem 2017; 18:1462-1472. [PMID: 28474822 DOI: 10.1002/cbic.201700138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 12/27/2022]
Abstract
O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are the only enzymes that regulate the dynamics of protein O-GlcNAcylation. Protein O-GlcNAcylation is an important post-translational modification (PTM) of nuclear and cytoplasmic proteins with O-linked β-N-acetyl-glucosamine (O-GlcNAc). O-GlcNAc and its enzymes are involved in a wide variety of cellular processes and are linked to the pathological progression of chronic diseases. Considering their emerging biological significance, systematic and rapid methods to determine the activities of OGT and OGA have become essential, and several chemical/biochemical methods for measuring the activities of these enzymes have been developed. This minireview mainly focuses on the various biochemical assay methods developed to date, while also providing a description of the fundamental principles underlying the monitoring of O-GlcNAc enzyme activities.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, 15, Jilyang, Gyeongsan-si, GyeongBuk, 712-714, Republic of Korea
| |
Collapse
|
69
|
Chuh KN, Batt AR, Zaro BW, Darabedian N, Marotta NP, Brennan CK, Amirhekmat A, Pratt MR. The New Chemical Reporter 6-Alkynyl-6-deoxy-GlcNAc Reveals O-GlcNAc Modification of the Apoptotic Caspases That Can Block the Cleavage/Activation of Caspase-8. J Am Chem Soc 2017; 139:7872-7885. [PMID: 28528544 PMCID: PMC6225779 DOI: 10.1021/jacs.7b02213] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
O-GlcNAc modification (O-GlcNAcylation) is required for survival in mammalian cells. Genetic and biochemical experiments have found that increased modification inhibits apoptosis in tissues and cell culture and that lowering O-GlcNAcylation induces cell death. However, the molecular mechanisms by which O-GlcNAcylation might inhibit apoptosis are still being elucidated. Here, we first synthesize a new metabolic chemical reporter, 6-Alkynyl-6-deoxy-GlcNAc (6AlkGlcNAc), for the identification of O-GlcNAc-modified proteins. Subsequent characterization of 6AlkGlcNAc shows that this probe is selectively incorporated into O-GlcNAcylated proteins over cell-surface glycoproteins. Using this probe, we discover that the apoptotic caspases are O-GlcNAcylated, which we confirmed using other techniques, raising the possibility that the modification affects their biochemistry. We then demonstrate that changes in the global levels of O-GlcNAcylation result in a converse change in the kinetics of caspase-8 activation during apoptosis. Finally, we show that caspase-8 is modified at residues that can block its cleavage/activation. Our results provide the first evidence that the caspases may be directly affected by O-GlcNAcylation as a potential antiapoptotic mechanism.
Collapse
Affiliation(s)
- Kelly N. Chuh
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Anna R. Batt
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Balyn W. Zaro
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Narek Darabedian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Nicholas P. Marotta
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Caroline K. Brennan
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Arya Amirhekmat
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, United States
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| |
Collapse
|
70
|
Liu Y, Huang H, Cao Y, Wu Q, Li W, Zhang J. Suppression of OGT by microRNA24 reduces FOXA1 stability and prevents breast cancer cells invasion. Biochem Biophys Res Commun 2017; 487:755-762. [DOI: 10.1016/j.bbrc.2017.04.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
71
|
Levine ZG, Walker S. The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells? Annu Rev Biochem 2017; 85:631-57. [PMID: 27294441 DOI: 10.1146/annurev-biochem-060713-035344] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.
Collapse
Affiliation(s)
- Zebulon G Levine
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115; ,
| |
Collapse
|
72
|
Zhang W, Liu T, Dong H, Bai H, Tian F, Shi Z, Chen M, Wang J, Qin W, Qian X. Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry. Anal Chem 2017; 89:5810-5817. [DOI: 10.1021/acs.analchem.6b04960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wanjun Zhang
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Tong Liu
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Hangyan Dong
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Haihong Bai
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Fang Tian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Zhaomei Shi
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Mingli Chen
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jianhua Wang
- Research
Center for Analytical Sciences, College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State Key Laboratory of Proteomics,
Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| |
Collapse
|
73
|
Ma Z, Chalkley RJ, Vosseller K. Hyper- O-GlcNAcylation activates nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling through interplay with phosphorylation and acetylation. J Biol Chem 2017; 292:9150-9163. [PMID: 28416608 DOI: 10.1074/jbc.m116.766568] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/23/2017] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation is the covalent addition of an O-linked β-N-acetylglucosamine (O-GlcNAc) sugar moiety to hydroxyl groups of serine/threonine residues of cytosolic and nuclear proteins. O-GlcNAcylation, analogous to phosphorylation, plays critical roles in gene expression through direct modification of transcription factors, such as NF-κB. Aberrantly increased NF-κB O-GlcNAcylation has been linked to NF-κB constitutive activation and cancer development. Therefore, it is of a great biological and clinical significance to dissect the molecular mechanisms that tune NF-κB activity. Recently, we and others have shown that O-GlcNAcylation affects the phosphorylation and acetylation of NF-κB subunit p65/RelA. However, the mechanism of how O-GlcNAcylation activates NF-κB signaling through phosphorylation and acetylation is not fully understood. In this study, we mapped O-GlcNAcylation sites of p65 at Thr-305, Ser-319, Ser-337, Thr-352, and Ser-374. O-GlcNAcylation of p65 at Thr-305 and Ser-319 increased CREB-binding protein (CBP)/p300-dependent activating acetylation of p65 at Lys-310, contributing to NF-κB transcriptional activation. Moreover, elevation of O-GlcNAcylation by overexpression of OGT increased the expression of p300, IKKα, and IKKβ and promoted IKK-mediated activating phosphorylation of p65 at Ser-536, contributing to NF-κB activation. In addition, we also identified phosphorylation of p65 at Thr-308, which might impair the O-GlcNAcylation of p65 at Thr-305. These results indicate mechanisms through which both non-pathological and oncogenic O-GlcNAcylation regulate NF-κB signaling through interplay with phosphorylation and acetylation.
Collapse
Affiliation(s)
- Zhiyuan Ma
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| | - Robert J Chalkley
- the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Keith Vosseller
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 and
| |
Collapse
|
74
|
Zaro BW, Batt AR, Chuh KN, Navarro MX, Pratt MR. The Small Molecule 2-Azido-2-deoxy-glucose Is a Metabolic Chemical Reporter of O-GlcNAc Modifications in Mammalian Cells, Revealing an Unexpected Promiscuity of O-GlcNAc Transferase. ACS Chem Biol 2017; 12:787-794. [PMID: 28135057 DOI: 10.1021/acschembio.6b00877] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glycans can be directly labeled using unnatural monosaccharide analogs, termed metabolic chemical reporters (MCRs). These compounds enable the secondary visualization and identification of glycoproteins by taking advantage of bioorthogonal reactions. Most widely used MCRs have azides or alkynes at the 2-N-acetyl position but are not selective for one class of glycoprotein over others. To address this limitation, we are exploring additional MCRs that have bioorthogonal functionality at other positions. Here, we report the characterization of 2-azido-2-deoxy-glucose (2AzGlc). We find that 2AzGlc selectively labels intracellular O-GlcNAc modifications, which further supports a somewhat unexpected, structural flexibility in this pathway. In contrast to the endogenous modification N-acetyl-glucosamine (GlcNAc), we find that 2AzGlc is not dynamically removed from protein substrates and that treatment with higher concentrations of per-acetylated 2AzGlc is toxic to cells. Finally, we demonstrate that this toxicity is an inherent property of the small-molecule, as removal of the 6-acetyl-group renders the corresponding reporter nontoxic but still results in protein labeling.
Collapse
Affiliation(s)
- Balyn W. Zaro
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Anna R. Batt
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Kelly N. Chuh
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Marisol X. Navarro
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| | - Matthew R. Pratt
- Department
of Chemistry and ‡Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0744, United States
| |
Collapse
|
75
|
Kim EJ, Bond MR, Nam G, Hanover JA. Evaluation of the Chemical Reporter Analog PNP-6AzGlcNAc as an O-GlcNAcase Substrate. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eun J. Kim
- Department of Science Education-Chemistry Major; Daegu University; GyeongBuk 712-714 S. Korea
| | - Michelle R. Bond
- Laboratory of Cell Biochemistry and Biology; NIDDK, National Institute of Health; Bethesda MD 20892 USA
| | - Ghilsoo Nam
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology; Seoul 136-791 S. Korea
| | - John A. Hanover
- Laboratory of Cell Biochemistry and Biology; NIDDK, National Institute of Health; Bethesda MD 20892 USA
| |
Collapse
|
76
|
Wanichthanarak K, Fan S, Grapov D, Barupal DK, Fiehn O. Metabox: A Toolbox for Metabolomic Data Analysis, Interpretation and Integrative Exploration. PLoS One 2017; 12:e0171046. [PMID: 28141874 PMCID: PMC5283729 DOI: 10.1371/journal.pone.0171046] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Similar to genomic and proteomic platforms, metabolomic data acquisition and analysis is becoming a routine approach for investigating biological systems. However, computational approaches for metabolomic data analysis and integration are still maturing. Metabox is a bioinformatics toolbox for deep phenotyping analytics that combines data processing, statistical analysis, functional analysis and integrative exploration of metabolomic data within proteomic and transcriptomic contexts. With the number of options provided in each analysis module, it also supports data analysis of other 'omic' families. The toolbox is an R-based web application, and it is freely available at http://kwanjeeraw.github.io/metabox/ under the GPL-3 license.
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dmitry Grapov
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Dinesh Kumar Barupal
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, California, United States of America
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
77
|
Schilde U, Kelling A, Umbreen S, Linker T. Crystal structures of three bicyclic carbohydrate derivatives. Acta Crystallogr E Crystallogr Commun 2016; 72:1839-1844. [PMID: 27980845 PMCID: PMC5137623 DOI: 10.1107/s2056989016018727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/23/2016] [Indexed: 11/10/2022]
Abstract
The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis-(acet-yloxy)-7-oxo-2-oxabi-cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet-yloxy-7-hy-droxy-imino-2-oxobi-cyclo-[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis-(acet-yloxy)-2-oxo-octa-hydro-pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.
Collapse
Affiliation(s)
- Uwe Schilde
- Universität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Alexandra Kelling
- Universität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Sumaira Umbreen
- Universität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| | - Torsten Linker
- Universität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
78
|
Ghirardello M, Delso I, Tejero T, Merino P. Synthesis of Amino-Acid-Nucleoside Conjugates. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mattia Ghirardello
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| | - Ignacio Delso
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
- Servicio De Resonancia Magnética Nuclear; Centro de Química y Materiales de Aragón (CEQMA); Universidad de Zaragoza, CSIC; 50009 Zaragoza Aragón Spain
| | - Tomas Tejero
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| | - Pedro Merino
- Departamento de Síntesis y Estructura de Biomoléculas; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza. CSIC; 50009 Zaragoza Aragón Spain
| |
Collapse
|
79
|
Chuh KN, Batt AR, Pratt MR. Chemical Methods for Encoding and Decoding of Posttranslational Modifications. Cell Chem Biol 2016; 23:86-107. [PMID: 26933738 DOI: 10.1016/j.chembiol.2015.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
Abstract
A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full complement of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come.
Collapse
Affiliation(s)
- Kelly N Chuh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna R Batt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
80
|
Zhao L, Feng Z, Yang X, Liu J. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome. Free Radic Res 2016; 50:1080-1088. [PMID: 27646831 DOI: 10.1080/10715762.2016.1239017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nutrients excess is one of the leading causes of metabolic syndrome globally. Protein post-translational O-GlcNAc modification has been recognized as an essential nutrient sensor of the cell. Emerging studies suggest that O-GlcNAcylation lies at the core linking nutritional stress to insulin resistance. Mitochondria are the major site for ATP production in most eukaryotes. Mitochondrial dysfunction and oxidative stress have long been considered as an important mechanism underlying insulin resistance. The metabolic process is under the influence of environmental and nutritional factors, thus sensing and transducing nutritional signals sit at the pivot of metabolism control. For a long time little was known about O-GlcNAcylation within mitochondria since mitochondrial O-GlcNAcylation was regarded rare. Recent findings have demonstrated that O-GlcNAcylation is widely spread among mitochondrial proteins, and that mitochondrial function and oxidative stress both can be regulated by O-GlcNAcylation, particularly under diabetic circumstances.
Collapse
Affiliation(s)
- Lin Zhao
- a Center for Mitochondrial Biology and Medicine, the Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Zhihui Feng
- a Center for Mitochondrial Biology and Medicine, the Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Xiaoyong Yang
- b Section of Comparative Medicine and Department of Cellular and Molecular Physiology , Yale University School of Medicine , New Haven , CT , USA
| | - Jiankang Liu
- a Center for Mitochondrial Biology and Medicine, the Key Laboratory of Biomedical Information Engineering of Ministry of Education , School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
81
|
High extent of O-GlcNAcylation in breast cancer cells correlates with the levels of HAS enzymes, accumulation of hyaluronan, and poor outcome. Breast Cancer Res Treat 2016; 160:237-247. [DOI: 10.1007/s10549-016-3996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
|
82
|
Saeed MT, Ahmad J, Kanwal S, Holowatyj AN, Sheikh IA, Zafar Paracha R, Shafi A, Siddiqa A, Bibi Z, Khan M, Ali A. Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression. PeerJ 2016; 4:e2348. [PMID: 27703839 PMCID: PMC5047222 DOI: 10.7717/peerj.2348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT), an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.
Collapse
Affiliation(s)
- Muhammad Tariq Saeed
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Jamil Ahmad
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan; School of Computer Science and IT, Stratford University, VA, United States
| | - Shahzina Kanwal
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou , China
| | - Andreana N Holowatyj
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute , Detroit , MI , United States
| | - Iftikhar A Sheikh
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Aamir Shafi
- School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan; College of Computer Science and Information Technology, University of Dammam, Al Khobar, Kingdom of Saudi Arabia
| | - Amnah Siddiqa
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Zurah Bibi
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Mukaram Khan
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| | - Amjad Ali
- Atta-ur-Rehman School of Applied Bio-science (ASAB), National University of Sciences and Technology (NUST) , Islamabad , Pakistan
| |
Collapse
|
83
|
de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells. J Biol Chem 2016; 291:18897-914. [PMID: 27402830 DOI: 10.1074/jbc.m116.734533] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Indexed: 12/14/2022] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma.
Collapse
Affiliation(s)
- Rafaela Muniz de Queiroz
- From the Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-902RJ, Brazil
| | - Rashna Madan
- Division of Hematology/Oncology, Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | - Wagner Barbosa Dias
- From the Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, 21941-902RJ, Brazil,
| | - Chad Slawson
- the Departments of Biochemistry and Molecular Biology and
| |
Collapse
|
84
|
Salah Ud-Din AIM, Tikhomirova A, Roujeinikova A. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT). Int J Mol Sci 2016; 17:E1018. [PMID: 27367672 PMCID: PMC4964394 DOI: 10.3390/ijms17071018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/17/2022] Open
Abstract
General control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) catalyze the transfer of an acyl moiety from acyl coenzyme A (acyl-CoA) to a diverse group of substrates and are widely distributed in all domains of life. This review of the currently available data acquired on GNAT enzymes by a combination of structural, mutagenesis and kinetic methods summarizes the key similarities and differences between several distinctly different families within the GNAT superfamily, with an emphasis on the mechanistic insights obtained from the analysis of the complexes with substrates or inhibitors. It discusses the structural basis for the common acetyltransferase mechanism, outlines the factors important for the substrate recognition, and describes the mechanism of action of inhibitors of these enzymes. It is anticipated that understanding of the structural basis behind the reaction and substrate specificity of the enzymes from this superfamily can be exploited in the development of novel therapeutics to treat human diseases and combat emerging multidrug-resistant microbial infections.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Alexandra Tikhomirova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute; Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
85
|
Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB. Sci Rep 2016; 6:27853. [PMID: 27290989 PMCID: PMC4904198 DOI: 10.1038/srep27853] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
O-GlcNAcylation, an O-linked protein glycosylation with a single molecule of N-acetylglucosamine (GlcNAc), is reversibly controlled by O-GlcNAc transferase (OGT) and N-acetyl D-glucosaminidase (OGA). Aberrant O-GlcNAcylation contributes an important role in initiation and progression of many human cancers. Elevation of O-GlcNAcylation in tumor tissues and poor prognosis of cholangiocarcinoma (CCA) patients have been reported. In this study, the role of O-GlcNAcylation in promoting tumor progression was further investigated in CCA cell lines. Suppression of O-GlcNAcylation using small interfering RNAs of OGT (siOGT) significantly reduced cell migration and invasion of CCA cells whereas siOGA treated cells exhibited opposite effects. Manipulating levels of O-GlcNAcylation did affect the nuclear translocation of NF-κB and Akt-phosphorylation together with expression of matrix-metalloproteinases (MMPs). O-GlcNAcylation and nuclear translocation of NF-κB, the upstream signaling cascade of MMP activation were shown to be important for MMP activation. Immunoprecipitation revealed the elevation of O-GlcNAc-modified NF-κB with increased cellular O-GlcNAcylation. Involvement of O-GlcNAcylation in MMP-mediated migration and invasion of CCA cells was shown to be via O-GlcNAcylation and nuclear translocation of NF-κB. This information indicates the significance of O-GlcNAcylation in controlling the metastatic ability of CCA cells, hence, O-GlcNAcylation and its products may be new targets for treatment of metastatic CCA.
Collapse
|
86
|
Coloff JL, Murphy JP, Braun CR, Harris IS, Shelton LM, Kami K, Gygi SP, Selfors LM, Brugge JS. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells. Cell Metab 2016; 23:867-80. [PMID: 27133130 DOI: 10.1016/j.cmet.2016.03.016] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/14/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022]
Abstract
Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation.
Collapse
Affiliation(s)
- Jonathan L Coloff
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Patrick Murphy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig R Braun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Shelton
- Human Metabolome Technologies America, Boston, MA 02134, USA
| | - Kenjiro Kami
- Human Metabolome Technologies, Tsuruoka, 997-0052 Japan
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
87
|
Lewis BA, Burlingame AL, Myers SA. Human RNA Polymerase II Promoter Recruitment in Vitro Is Regulated by O-Linked N-Acetylglucosaminyltransferase (OGT). J Biol Chem 2016; 291:14056-14061. [PMID: 27129214 DOI: 10.1074/jbc.m115.684365] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Although the O-linked N-acetylglucosamine (O-GlcNAc) modification of the RNA polymerase II C-terminal domain was described 20 years ago, the function of this RNA polymerase II (pol II) species is not known. We show here that an O-GlcNAcylated pol II species (pol IIγ) exists on promoters in vitro Inhibition of O-GlcNAc-transferase activity and O-GlcNAcylation prevents pol II entry into the promoter, and O-GlcNAc removal from pol II is an ATP-dependent step during initiation. These data indicate that O-GlcNAc-transferase activity is essential for RNA pol II promoter recruitment and that pol II goes through a cycling of O-GlcNAcylation at the promoter. Mass spectrometry shows that serine residues 2 and 5 of the pol II C-terminal domain are O-GlcNAcylated, suggesting an overlap with the transcription factor IIH (TFIIH)-dependent serine 5 phosphorylation events during initiation and P-TEFb (positive transcriptional elongation factor b) events during elongation. These data provide unexpected and important insights into the role of a previously ill-defined species of RNA polymerase II in regulating transcription.
Collapse
Affiliation(s)
- Brian A Lewis
- Transcriptional Regulation and Biochemistry Unit, Metabolism Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Samuel A Myers
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| |
Collapse
|
88
|
Wang X, Yuan ZF, Fan J, Karch KR, Ball LE, Denu JM, Garcia BA. A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics. Mol Cell Proteomics 2016; 15:2462-75. [PMID: 27114449 DOI: 10.1074/mcp.o115.049627] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/28/2022] Open
Abstract
Over the past decades, protein O-GlcNAcylation has been found to play a fundamental role in cell cycle control, metabolism, transcriptional regulation, and cellular signaling. Nevertheless, quantitative approaches to determine in vivo GlcNAc dynamics at a large-scale are still not readily available. Here, we have developed an approach to isotopically label O-GlcNAc modifications on proteins by producing (13)C-labeled UDP-GlcNAc from (13)C6-glucose via the hexosamine biosynthetic pathway. This metabolic labeling was combined with quantitative mass spectrometry-based proteomics to determine protein O-GlcNAcylation turnover rates. First, an efficient enrichment method for O-GlcNAc peptides was developed with the use of phenylboronic acid solid-phase extraction and anhydrous DMSO. The near stoichiometry reaction between the diol of GlcNAc and boronic acid dramatically improved the enrichment efficiency. Additionally, our kinetic model for turnover rates integrates both metabolomic and proteomic data, which increase the accuracy of the turnover rate estimation. Other advantages of this metabolic labeling method include in vivo application, direct labeling of the O-GlcNAc sites and higher confidence for site identification. Concentrating only on nuclear localized GlcNAc modified proteins, we are able to identify 105 O-GlcNAc peptides on 42 proteins and determine turnover rates of 20 O-GlcNAc peptides from 14 proteins extracted from HeLa nuclei. In general, we found O-GlcNAcylation turnover rates are slower than those published for phosphorylation or acetylation. Nevertheless, the rates widely varied depending on both the protein and the residue modified. We believe this methodology can be broadly applied to reveal turnovers/dynamics of protein O-GlcNAcylation from different biological states and will provide more information on the significance of O-GlcNAcylation, enabling us to study the temporal dynamics of this critical modification for the first time.
Collapse
Affiliation(s)
- Xiaoshi Wang
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Zuo-Fei Yuan
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jing Fan
- §Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53715
| | - Kelly R Karch
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Lauren E Ball
- ¶Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - John M Denu
- §Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53715
| | - Benjamin A Garcia
- From the ‡Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
89
|
Shi J, Sharif S, Ruijtenbeek R, Pieters RJ. Activity Based High-Throughput Screening for Novel O-GlcNAc Transferase Substrates Using a Dynamic Peptide Microarray. PLoS One 2016; 11:e0151085. [PMID: 26960196 PMCID: PMC4784888 DOI: 10.1371/journal.pone.0151085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022] Open
Abstract
O-GlcNAcylation is a reversible and dynamic protein post-translational modification in mammalian cells. The O-GlcNAc cycle is catalyzed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation plays important role in many vital cellular events including transcription, cell cycle regulation, stress response and protein degradation, and altered O-GlcNAcylation has long been implicated in cancer, diabetes and neurodegenerative diseases. Recently, numerous approaches have been developed to identify OGT substrates and study their function, but there is still a strong demand for highly efficient techniques. Here we demonstrated the utility of the peptide microarray approach to discover novel OGT substrates and study its specificity. Interestingly, the protein RBL-2, which is a key regulator of entry into cell division and may function as a tumor suppressor, was identified as a substrate for three isoforms of OGT. Using peptide Ala scanning, we found Ser 420 is one possible O-GlcNAc site in RBL-2. Moreover, substitution of Ser 420, on its own, inhibited OGT activity, raising the possibility of mechanism-based development for selective OGT inhibitors. This approach will prove useful for both discovery of novel OGT substrates and studying OGT specificity.
Collapse
Affiliation(s)
- Jie Shi
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - Suhela Sharif
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Utrecht, The Netherlands
- PamGene International BV, ‘s-Hertogenbosch, The Netherlands
| | - Roland J. Pieters
- Department of Medicinal Chemistry and Chemical Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
90
|
Oikari S, Makkonen K, Deen AJ, Tyni I, Kärnä R, Tammi RH, Tammi MI. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis. Glycobiology 2016; 26:710-22. [PMID: 26887390 DOI: 10.1093/glycob/cww019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022] Open
Abstract
UDP-N-acetylglucosamine (UDP-GlcNAc) is a glucose metabolite with pivotal functions as a key substrate for the synthesis of glycoconjugates like hyaluronan, and as a metabolic sensor that controls cell functions through O-GlcNAc modification of intracellular proteins. However, little is known about the regulation of hexosamine biosynthesis that controls UDP-GlcNAc content. Four enzymes can catalyze the crucial starting point of the pathway, conversion of fructose-6-phosphate (Fru6P) to glucosamine-6-phosphate (GlcN6P): glutamine-fructose-6-phosphate aminotransferases (GFAT1 and 2) and glucosamine-6-phosphate deaminases (GNPDA1 and 2). Using siRNA silencing, we studied the contributions of these enzymes to UDP-GlcNAc content and hyaluronan synthesis in human keratinocytes. Depletion of GFAT1 reduced the cellular pool of UDP-GlcNAc and hyaluronan synthesis, while simultaneous blocking of both GNPDA1 and GDPDA2 exerted opposite effects, indicating that in standard culture conditions keratinocyte GNPDAs mainly catalyzed the reaction from GlcN6P back to Fru6P. However, when hexosamine biosynthesis was blocked by GFAT1 siRNA, the effect by GNPDAs was reversed, now catalyzing Fru6P towards GlcN6P, likely in an attempt to maintain UDP-GlcNAc content. Silencing of these enzymes also changed the gene expression of related enzymes: GNPDA1 siRNA induced GFAT2 which was hardly measurable in these cells under standard culture conditions, GNPDA2 siRNA increased GFAT1, and GFAT1 siRNA increased the expression of hyaluronan synthase 2 (HAS2). Silencing of GFAT1 stimulated GNPDA1 and GDPDA2, and inhibited cell migration. The multiple delicate adjustments of these reactions demonstrate the importance of hexosamine biosynthesis in cellular homeostasis, known to be deranged in diseases like diabetes and cancer.
Collapse
Affiliation(s)
- Sanna Oikari
- Institutes of Biomedicine Department of Dentistry, University of Eastern Finland, Yliopistonranta 1E, PO Box 1627, Kuopio 70211, Finland
| | - Katri Makkonen
- Institutes of Biomedicine Department of Dentistry, University of Eastern Finland, Yliopistonranta 1E, PO Box 1627, Kuopio 70211, Finland
| | | | | | | | | | | |
Collapse
|
91
|
Cekic N, Heinonen JE, Stubbs KA, Roth C, He Y, Bennet AJ, McEachern EJ, Davies GJ, Vocadlo DJ. Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human O-GlcNAcase. Chem Sci 2016; 7:3742-3750. [PMID: 29997861 PMCID: PMC6008586 DOI: 10.1039/c6sc00370b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
2′-Aminothiazoline inhibitors of human OGA are tight binding transition state mimics for which binding depends on inhibitor pKa.
The modification of nucleocytoplasmic proteins with O-linked N-acetylglucosamine (O-GlcNAc) plays diverse roles in multicellular organisms. Inhibitors of O-GlcNAc hydrolase (OGA), the enzyme that removes O-GlcNAc from proteins, lead to increased O-GlcNAc levels in cells and are seeing widespread adoption in the field as a research tool used in cells and in vivo. Here we synthesize and study a series of tight binding carbohydrate-based inhibitors of human OGA (hOGA). The most potent of these 2′-aminothiazolines binds with a sub-nanomolar Ki value to hOGA (510 ± 50 pM) and the most selective has greater than 1 800 000-fold selectivity for hOGA over mechanistically related human lysosomal β-hexosaminidase. Structural data of inhibitors in complex with an hOGA homologue reveals the basis for variation in binding among these compounds. Using linear free energy analyses, we show binding of these 2′-aminothiazoline inhibitors depends on the pKa of the aminothiazoline ring system, revealing the protonation state of the inhibitor is a key driver of binding. Using series of inhibitors and synthetic substrates, we show that 2′-aminothiazoline inhibitors are transition state analogues of hOGA that bind to the enzyme up to 1-million fold more tightly than the substrate. These collective data support an oxazoline, rather than a protonated oxazolinium ion, intermediate being formed along the reaction pathway. Inhibitors from this series will prove generally useful tools for the study of O-GlcNAc. The new insights gained here, into the catalytic mechanism of hOGA and the fundamental drivers of potency and selectivity of OGA inhibitors, should enable tuning of hOGA inhibitors with desirable properties.
Collapse
Affiliation(s)
- N Cekic
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - J E Heinonen
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - K A Stubbs
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada . .,School of Chemistry and Biochemistry , The University of Western Australia (M313) , 35 Stirling Highway , Crawley , WA 6009 , Australia
| | - C Roth
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - Y He
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - A J Bennet
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - E J McEachern
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - G J Davies
- York Structural Biology Laboratory , Department of Chemistry , The University of York , YO10 5DD , UK
| | - D J Vocadlo
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada . .,Department of Molecular Biology and Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
92
|
Salunke RV, Ramesh NG. A Concise Total Synthesis of the Stereoisomers of (-)-Pochonicine. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
|
94
|
O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun 2015; 6:8468. [PMID: 26399441 PMCID: PMC4598839 DOI: 10.1038/ncomms9468] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/13/2022] Open
Abstract
The pentose phosphate pathway (PPP) plays a critical role in macromolecule biosynthesis and maintaining cellular redox homoeostasis in rapidly proliferating cells. Upregulation of the PPP has been shown in several types of cancer. However, how the PPP is regulated to confer a selective growth advantage on cancer cells is not well understood. Here we show that glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, is dynamically modified with an O-linked β-N-acetylglucosamine sugar in response to hypoxia. Glycosylation activates G6PD activity and increases glucose flux through the PPP, thereby providing precursors for nucleotide and lipid biosynthesis, and reducing equivalents for antioxidant defense. Blocking glycosylation of G6PD reduces cancer cell proliferation in vitro and impairs tumor growth in vivo. Importantly, G6PD glycosylation is increased in human lung cancers. Our findings reveal a mechanistic understanding of how O-glycosylation directly regulates the PPP to confer a selective growth advantage to tumours. The pentose phosphate pathway is aberrantly activated in cancer cells but the mechanism is unclear. Here, the authors show that G6PD, the rate-limiting enzyme in the pathway, is post-translationally modified with a sugar moiety under hypoxic conditions leading to increased production of precursors for macromolecular synthesis and antioxidants.
Collapse
|
95
|
Di Bussolo V, Calvaresi EC, Granchi C, Del Bino L, Frau I, Lang MCD, Tuccinardi T, Macchia M, Martinelli A, Hergenrother PJ, Minutolo F. Synthesis and biological evaluation of non-glucose glycoconjugated N-hydroyxindole class LDH inhibitors as anticancer agents. RSC Adv 2015; 5:19944-19954. [PMID: 26167277 PMCID: PMC4497792 DOI: 10.1039/c5ra00946d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inhibitors of human lactate dehydrogenase A (LDH-A) are promising therapeutic agents against cancer. The development of LDH-A inhibitors that possess cellular activities has so far proved to be particularly challenging, since the enzyme's active site is narrow and highly polar. In the recent past, we were able to develop a glucose-conjugated N-hydroxyindole-based LDH-A inhibitor designed to exploit the sugar avidity expressed by cancer cells (the Warburg effect). Herein we describe a structural modulation of the sugar moiety of this class of inhibitors, with the insertion of α-D-mannose, β-D-gulose, or β-N-acetyl-D-glucosamine portions in their structures. Their stereospecific chemical synthesis, which involves a substrate-dependent stereospecific glycosylation step, and their biological activity in reducing lactate production and proliferation in cancer cells are reported. Interestingly, the α-D-mannose conjugate displayed the best properties in the cellular assays, demonstrating an efficient antiglycolytic and antiproliferative activity in cancer cells.
Collapse
Affiliation(s)
- Valeria Di Bussolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Emilia C. Calvaresi
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Linda Del Bino
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ileana Frau
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Tiziano Tuccinardi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Marco Macchia
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Adriano Martinelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Paul J. Hergenrother
- Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
96
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
97
|
Kim EJ. The Utilities of Chemical Reactions and Molecular Tools for O-GlcNAc Proteomic Studies. Chembiochem 2015; 16:1397-409. [PMID: 26096757 DOI: 10.1002/cbic.201500183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 11/05/2022]
Abstract
The post-translational modification of nuclear and cytoplasmic proteins with O-linked β-N-acetylglucosamine (O-GlcNAc) is involved in a wide variety of cellular processes and is associated with the pathological progression of chronic diseases. Considering its emerging biological significance, systematic identification, site mapping, and quantification of O-GlcNAc proteins are essential and have led to the development of several approaches for O-GlcNAc protein profiling. This minireview mainly focuses on the various useful chemical reactions and molecular tools with detailed reaction mechanisms widely adopted for O-GlcNAc protein/peptide enrichment and its quantification for comprehensive O-GlcNAc protein profiling.
Collapse
Affiliation(s)
- Eun Ju Kim
- Department of Science Education-Chemistry Major, Daegu University, Gyeongsan-si, GyeongBuk 712-714 (Republic of Korea). ,
| |
Collapse
|
98
|
Liu Y, Dai S, Xing L, Xu Y, Chong K. O-linked β-N-acetylglucosamine modification and its biological functions. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0816-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
99
|
Robey RB, Weisz J, Kuemmerle NB, Salzberg AC, Berg A, Brown DG, Kubik L, Palorini R, Al-Mulla F, Al-Temaimi R, Colacci A, Mondello C, Raju J, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Williams GP, Lowe L, Meyer J, Martin FL, Bisson WH, Chiaradonna F, Ryan EP. Metabolic reprogramming and dysregulated metabolism: cause, consequence and/or enabler of environmental carcinogenesis? Carcinogenesis 2015; 36 Suppl 1:S203-31. [PMID: 26106140 PMCID: PMC4565609 DOI: 10.1093/carcin/bgv037] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
Environmental contributions to cancer development are widely accepted, but only a fraction of all pertinent exposures have probably been identified. Traditional toxicological approaches to the problem have largely focused on the effects of individual agents at singular endpoints. As such, they have incompletely addressed both the pro-carcinogenic contributions of environmentally relevant low-dose chemical mixtures and the fact that exposures can influence multiple cancer-associated endpoints over varying timescales. Of these endpoints, dysregulated metabolism is one of the most common and recognizable features of cancer, but its specific roles in exposure-associated cancer development remain poorly understood. Most studies have focused on discrete aspects of cancer metabolism and have incompletely considered both its dynamic integrated nature and the complex controlling influences of substrate availability, external trophic signals and environmental conditions. Emerging high throughput approaches to environmental risk assessment also do not directly address the metabolic causes or consequences of changes in gene expression. As such, there is a compelling need to establish common or complementary frameworks for further exploration that experimentally and conceptually consider the gestalt of cancer metabolism and its causal relationships to both carcinogenesis and the development of other cancer hallmarks. A literature review to identify environmentally relevant exposures unambiguously linked to both cancer development and dysregulated metabolism suggests major gaps in our understanding of exposure-associated carcinogenesis and metabolic reprogramming. Although limited evidence exists to support primary causal roles for metabolism in carcinogenesis, the universality of altered cancer metabolism underscores its fundamental biological importance, and multiple pleiomorphic, even dichotomous, roles for metabolism in promoting, antagonizing or otherwise enabling the development and selection of cancer are suggested.
Collapse
Affiliation(s)
- R Brooks Robey
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03756, USA,
| | - Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nancy B Kuemmerle
- Research and Development Service, Veterans Affairs Medical Center, White River Junction, VT 05009, USA, Departments of Medicine and of
| | - Anna C Salzberg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Arthur Berg
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Laura Kubik
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Roberta Palorini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057 USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Graeme P Williams
- Department of Molecular Medicine, University of Reading, Reading RG6 6UB, UK
| | - Leroy Lowe
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK, Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada, and
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Francis L Martin
- Centre for Biophotonics, LEC, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Ferdinando Chiaradonna
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, 20126, Italy, SYSBIO Center for Systems Biology, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| |
Collapse
|
100
|
Abstract
Hyaluronan (HA) is a critical component of cancer microenvironment that is known to increase tumor progression and aggressiveness. The synthesis of HA starts from the cytosolic precursors UDP-N-acetylglucosamine and UDP-glucuronic acid. These two sugar nucleotides have several functions in addition to glycoconjugate synthesis and glucuronidation reactions, each of which can have a critical role in cancer. HA is synthesized by a family of three HA synthase (HAS) enzymes and, in this review, we described the main posttranslational modifications that are known to regulate HA metabolism. In particular, as the main HAS in adult tissues is HAS2, we focused on the role of AMPK-mediated phosphorylation and glycosylation by O-linked N-acetylglucosamine (O-GlcNAcylation) of HAS2 which mediate HAS2 inactivation and activation, respectively. HA catabolism, furnishing glucuronic acid and N-acetylglucosamine, can represent for a cancer cell a valid source of substrates to sustain complex tumor metabolism, and we highlight a presumable metabolic fate of such sugars in tumor cells.
Collapse
Affiliation(s)
- Davide Vigetti
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Varese, Italy
| | - Alberto Passi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Varese, Italy.
| |
Collapse
|