51
|
Anderson JC, Dubetz C, Palace VP. Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:409-22. [PMID: 25461043 DOI: 10.1016/j.scitotenv.2014.09.090] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 05/04/2023]
Abstract
Developed to replace organophosphate and carbamate insecticides, neonicotinoids are structurally similar to nicotine. The three main neonicotinoid insecticides, imidacloprid, clothianidin, and thiamethoxam, are being re-evaluated by Health Canada's Pest Management Regulatory Agency (PMRA). An important aspect of the re-evaluation is the potential for effects in non-target organisms, including aquatic organisms. Leaching into surface waters is one of the major concerns surrounding extensive use of neonicotinoids, especially in close proximity to water bodies. The PMRA has classified IMI as 'persistent' with a 'high' leaching potential. Globally, neonicotinoids have been detected in a variety of water bodies, typically at concentrations in the low μg/L range. While IMI has been included in some monitoring exercises, there are currently very few published data for the presence of CLO and THM in Canadian water bodies. The majority of neonicotinoid toxicity studies have been conducted with IMI due to its longer presence on the market and high prevalence of use. Aquatic insects are particularly vulnerable to neonicotinoids and chronic toxicity has been observed at concentrations of IMI below 1 μg/L. Acute toxicity has been reported at concentrations below 20 μg/L for the most sensitive species, including Hyalella azteca, ostracods, and Chironomus riparius. Fish, algae, amphibians, and molluscs are relatively insensitive to IMI. However, the biological effects of THM and CLO have not been as well explored. The Canadian interim water quality guideline for IMI is 0.23 μg/L, but there is currently insufficient use, fate, and toxicological information available to establish guidelines for CLO and THM. Based on concentrations of neonicotinoids reported in surface waters in Canada and globally, there is potential for aquatic invertebrates to be negatively impacted by neonicotinoids. Therefore, it is necessary to address knowledge gaps to inform decisions around guidelines and registration status for neonicotinoid insecticides in Canada to protect our aquatic ecosystems.
Collapse
Affiliation(s)
- J C Anderson
- Stantec Consulting Ltd., 603-386 Broadway Avenue, Winnipeg, MB R3C 3R6, Canada
| | - C Dubetz
- Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada
| | - V P Palace
- Stantec Consulting Ltd., 603-386 Broadway Avenue, Winnipeg, MB R3C 3R6, Canada.
| |
Collapse
|
52
|
Keller TA, Husted EM. Dewatering as a non-toxic control of nuisance midge larvae in algal wastewater treatment floways. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:9-14. [PMID: 25607663 DOI: 10.2166/wst.2014.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Attached-algae floways have tremendous potential for use in wastewater treatment because natural algal communities show high nutrient removal efficiencies, have low operating costs, and are easy to maintain. Algal wastewater floways may also serve as a sustainable option for producing renewable energy because algae grow rapidly, are easily harvested, and can serve as a source of biomass for biofuel. However, pests such as chironomids (Diptera) colonize open channel periphyton floways and their larvae damage the biofilms. While pesticides can control midge larvae, little information is known about alternative, non-toxic controls. This study examined the effectiveness of periodic, short-term dewatering (4 hours every 9 days) on midge abundance and periphyton growth in 16 recirculating, outdoor floways (3 m long, 0.1 m wide). We compared midge abundance and algal accumulation (chlorophyll a, b, c, and pheophytin) among control (n=8) and dewatered (n=8) floways filled with secondarily treated wastewater (27 days, 10 hours of daylight). Dewatered flumes had 42% fewer midges and 28-49% lower algal productivity (as measured by chlorophyll a, b, c, and pheophytin pigments). Chlorophyll a production rates averaged (±1 SD) 0.5±0.2 μg/cm2/day in control floways compared to 0.3±0.1 μg/cm2/day dewatered floways. Short-term dewatering effectively reduced midges but also damaged periphyton. To maximize the recovery of periphyton biomass, operators should harvest periphyton from floways during dewatering events before periphyton is damaged by desiccation or direct exposure to sunlight.
Collapse
Affiliation(s)
- Troy A Keller
- Department of Earth and Space Sciences, Columbus State University, 4225 University Ave, Columbus, GA, USA
| | - Emily M Husted
- Department of Biology, Columbus State University, 4225 University Ave, Columbus, GA, USA Current address: 863, Carnellian Lane, Peachtree City, GA 30269 USA E-mail:
| |
Collapse
|
53
|
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5-34. [PMID: 25233913 PMCID: PMC4284386 DOI: 10.1007/s11356-014-3470-y] [Citation(s) in RCA: 965] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/15/2014] [Indexed: 04/15/2023]
Abstract
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Collapse
Affiliation(s)
- N Simon-Delso
- Environmental Sciences, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Conclusion on the peer review of the pesticide risk assessment for aquatic organisms for the active substance imidacloprid. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
55
|
Sánchez-Bayo F, Hyne RV. Detection and analysis of neonicotinoids in river waters--development of a passive sampler for three commonly used insecticides. CHEMOSPHERE 2014; 99:143-51. [PMID: 24296028 DOI: 10.1016/j.chemosphere.2013.10.051] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 05/03/2023]
Abstract
Increasing and widespread use of neonicotinoid insecticides all over the world, together with their environmental persistence mean that surface and ground waters need to be monitored regularly for their residues. However, current multi-residue analytical methods for waters are inadequate for trace residue analysis of these compounds, while passive sampling devices are unavailable. A new method using UltraPerformance Liquid Chromatography provided good separation of the five most common neonicotinoid compounds, with limits of quantitation in the range 0.6-1.0ng. The method was tested in a survey of rivers around Sydney (Australia), where 93% of samples contained two or more neonicotinoids in the range 0.06-4.5μgL(-1). Styrenedivinylbenzene-reverse phase sulfonated Empore™ disks were selected as the best matrix for use in passive samplers. Uptake of clothianidin, imidacloprid and thiacloprid in a flow-through laboratory system for 3weeks was linear and proportional to their water concentrations over the range 1-10μgL(-1). Sampling rates of 8-15mLd(-1) were correlated to the hydrophobicity of the individual compounds. The passive samplers and analytical methods presented here can detect trace concentrations of neonicotinoids in water.
Collapse
Affiliation(s)
| | - Ross V Hyne
- Centre for Ecotoxicology, Office of Environment & Heritage NSW, PO Box 29, Lidcombe, NSW 1825, Australia.
| |
Collapse
|
56
|
Daam MA, Santos Pereira AC, Silva E, Caetano L, Cerejeira MJ. Preliminary aquatic risk assessment of imidacloprid after application in an experimental rice plot. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 97:78-85. [PMID: 23911212 DOI: 10.1016/j.ecoenv.2013.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
The potential aquatic risk of application of the neonicotinoid insecticide imidacloprid for aphid control in rice was assessed. To this end, imidacloprid was applied as Confidor(®) 200 SC at the recommended field dose of 100g a.i./ha to a Portuguese rice plot. Subsequently, fate of the test compound in water and potential effects of water samples on a battery of test species were determined. As compared to the first-tier predicted environmental concentrations (PECs) calculated using MED-Rice (around 30µg/L depending on the scenario used) and US-EPA (78µg/L) simulations, the actual peak concentration measured in the paddy water (52µg/L) was higher and lower, respectively. As was anticipated based on 50% effect concentrations (EC50 values) for Daphnia magna published in the open literature and that calculated in the present study (48h-EC50 immobility=84mg/L), no effects were observed of field water samples on daphnids. The sediment-dwelling ostracod Heterocypris incongruens, however, appeared relatively sensitive towards imidacloprid (6d-EC50 growth inhibition=0.01-0.015mg/L) and a slight effect was indeed noted in field samples taken the first week after application. Species sensitivity distributions based on published EC50 and NOEC values also revealed that other species are likely to be affected at the peak and time-weighted average imidacloprid concentrations, respectively. By applying the relative tolerance approach (i.e. by dividing the EC50 value of a certain species with that of Daphnia magna), ostracods appear to contain the most sensitive taxa to imidacloprid, followed by EPT (Ephemeroptera, Plecoptera and Trichoptera) taxa. Future field studies into (higher-tier) fate modelling of pesticides in rice paddies and effect assessment on field communities are required to ensure protection of aquatic life and wildlife (e.g. birds) from pesticide stress.
Collapse
Affiliation(s)
- Michiel A Daam
- Instituto Superior de Agronomia, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
57
|
Radwan MA, Mohamed MS. Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 95:91-97. [PMID: 23756058 DOI: 10.1016/j.ecoenv.2013.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 05/27/2023]
Abstract
The in vivo sublethal toxic effects (0.2 and 0.6 LD50) of topically applied imidacloprid on biochemical biomarkers in the land snail, Helix aspersa was examined. Biochemical perturbations were assessed by measuring the three enzymatic (Acetylcholinesterase, AChE; catalase, CAT and glutathione-S-transferase, GST) activities and three energy reserves (protein, glycogen and lipids) in the snails. Snail samples were taken from each sublethal dose and control groups at 1, 3 and 7 days after treatment. The results revealed that there were overall decrease in AChE activity as well as depletion of lipids and glycogen contents in the imidacloprid-treated snails compared to control groups. The CAT and GST activities of treated snails with the sublethal doses of imidacloprid were significantly higher than those of untreated controls along the three times of exposure. Moreover, an increase in the level of total proteins was observed in animals treated with 0.6 LD50 imidacloprid compared to control groups. The alterations in all tested biochemical perturbations were most pronounced with the 0.6 LD50 than 0.2 LD50. This study suggests that alterations of the enzyme activities and energy reserves in this species that could be useful as biomarkers of imidacloprid exposure in the evaluation of terrestrial impacts of this insecticide.
Collapse
Affiliation(s)
- M A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt.
| | | |
Collapse
|
58
|
Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP. Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 2013; 8:e62374. [PMID: 23650513 PMCID: PMC3641074 DOI: 10.1371/journal.pone.0062374] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/20/2013] [Indexed: 11/18/2022] Open
Abstract
Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expected that surface water pollution with imidacloprid would negatively impact aquatic ecosystems. Availability of extensive monitoring data on the abundance of aquatic macro-invertebrate species, and on imidacloprid concentrations in surface water in the Netherlands enabled us to test this hypothesis. Our regression analysis showed a significant negative relationship (P<0.001) between macro-invertebrate abundance and imidacloprid concentration for all species pooled. A significant negative relationship was also found for the orders Amphipoda, Basommatophora, Diptera, Ephemeroptera and Isopoda, and for several species separately. The order Odonata had a negative relationship very close to the significance threshold of 0.05 (P = 0.051). However, in accordance with previous research, a positive relationship was found for the order Actinedida. We used the monitoring field data to test whether the existing three water quality norms for imidacloprid in the Netherlands are protective in real conditions. Our data show that macrofauna abundance drops sharply between 13 and 67 ng l(-1). For aquatic ecosystem protection, two of the norms are not protective at all while the strictest norm of 13 ng l(-1) (MTR) seems somewhat protective. In addition to the existing experimental evidence on the negative effects of imidacloprid on invertebrate life, our study, based on data from large-scale field monitoring during multiple years, shows that serious concern about the far-reaching consequences of the abundant use of imidacloprid for aquatic ecosystems is justified.
Collapse
Affiliation(s)
- Tessa C. Van Dijk
- Environmental Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
59
|
Tennekes HA, Sánchez-Bayo F. The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 2013; 309:39-51. [PMID: 23603429 DOI: 10.1016/j.tox.2013.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022]
Abstract
Understanding the toxicity of chemicals to organisms requires considering the molecular mechanisms involved as well as the relationships between exposure concentration and toxic effects with time. Our current knowledge about such relationships is mainly explained from a toxicodynamic and toxicokinetic perspective. This paper re-introduces an old approach that takes into account the biochemical mode of action and their resulting biological effects over time of exposure. Empirical evidence demonstrates that the Druckrey-Küpfmüller toxicity model, which was validated for chemical carcinogens in the early 1960s, is also applicable to a wide range of toxic compounds in ecotoxicology. According to this model, the character of a poison is primarily determined by the reversibility of critical receptor binding. Chemicals showing irreversible or slowly reversible binding to specific receptors will produce cumulative effects with time of exposure, and whenever the effects are also irreversible (e.g. death) they are reinforced over time; these chemicals have time-cumulative toxicity. Compounds having non-specific receptor binding, or involving slowly reversible binding to some receptors that do not contribute to toxicity, may also be time-dependent; however, their effects depend primarily on the exposure concentration, with time playing a minor role. Consequently, the mechanism of toxic action has important implications for risk assessment. Traditional risk approaches cannot predict the impacts of toxicants with time-cumulative toxicity in the environment. New assessment procedures are needed to evaluate the risk that the latter chemicals pose on humans and the environment. An example is shown to explain how the risk of time-dependent toxicants is underestimated when using current risk assessment protocols.
Collapse
Affiliation(s)
- Henk A Tennekes
- Experimental Toxicology Services (ETS) Nederland BV, Frankensteeg 4, 7201 KN Zutphen, The Netherlands.
| | | |
Collapse
|
60
|
Hayasaka D, Korenaga T, Suzuki K, Saito F, Sánchez-Bayo F, Goka K. Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 80:355-362. [PMID: 22521688 DOI: 10.1016/j.ecoenv.2012.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/26/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Agricultural landscapes, including paddies, play an important role in maintaining biodiversity, but this biodiversity has been under the threat of toxic agro-chemicals. Our knowledge about how aquatic communities react to, and recover from, pesticides, particularly in relation to their residues, is deficient, despite the importance of such information for realistic environmental impact assessment of pesticides. The cumulative ecological impacts on aquatic paddy communities and their recovery processes after two successive annual applications of two systemic insecticides, imidacloprid and fipronil, were monitored between mid-May and mid-September each year. The abundance of benthic organisms during both years was significantly lower in both insecticide-treated fields than in the controls. Large-impacts of fipronil on aquatic arthropods were found after the two years. Growth of medaka fish, both adults and their juveniles, was affected by the application of the two insecticides. A Principal Response Curve analysis (PRC) showed the escalation and prolongation of changes in aquatic community composition by the successive annual treatments of each insecticide over two years. Residues of fipronil in soil, which are more persistent than those of imidacloprid, had a high level of impact on aquatic communities over time. For some taxonomic groups, particularly for water surface-dwelling and water-borne arthropods, the second annual treatment had far greater impacts than the initial treatment, indicating that impacts of these insecticides under normal use patterns cannot be accurately assessed during short-term monitoring studies, i.e., lasting less than one year. It is concluded that realistic prediction and assessment of pesticide effects at the community level should also include the long-term ecological risks of their residues whenever these persist in paddies over a year.
Collapse
Affiliation(s)
- D Hayasaka
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | | | | | |
Collapse
|