51
|
Boekhoudt GH, McGrath AG, Swisher JFA, Feldman GM. Immune Complexes Suppress IFN-γ–Induced Responses in Monocytes by Activating Discrete Members of the SRC Kinase Family. THE JOURNAL OF IMMUNOLOGY 2014; 194:983-9. [DOI: 10.4049/jimmunol.1401649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
52
|
Liu X, Liu K, Qin J, Hao L, Li X, Liu Y, Zhang X, Liu X, Li P, Han S, Mao Z, Shen L. C/EBPβ promotes angiogenesis through secretion of IL-6, which is inhibited by genistein, in EGFRvIII-positive glioblastoma. Int J Cancer 2014; 136:2524-34. [PMID: 25382637 DOI: 10.1002/ijc.29319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
To study the mechanisms underlying the IL-6-promoted angiogenic microenvironment in EGFRvIII-positive glioblastoma, VEGF expression in EGFRvIII-positive/negative tumors was determined by optical molecular imaging. Next, the HUVEC tube formation assay, Western blot, qPCR, RNA silencing, chromatin immunoprecipitation, luciferase reporter and ELISA assays were performed to examine the role of IL-6 and C/EBPβ in the formation of the angiogenic microenvironment in EGFRvIII-positive tumors. Finally, in vitro and in vivo genistein treatment experiments were conducted to challenge the interaction between the IL-6 promoter and C/EBPβ. Optical imaging revealed greater VEGF expression in EGFRvIII-positive tumor-bearing mice, suggesting an angiogenic microenvironment. In vitro experiments demonstrated that C/EBPβ-mediated regulation of IL-6 was indispensable for maintenance of this angiogenic microenvironment. In contrast, genistein-mediated upregulation of CHOP impeded C/EBPβ interaction with the IL-6 promoter, thus disturbing the angiogenic microenvironment. This more malignant microenvironment in EGFRvIII glioblastoma is generated, at least in part, by greater VEGF, IL-6 and C/EBPβ expression. Interaction of C/EBPβ with the IL-6 promoter maintains this angiogenic microenvironment, while disturbance of this dynamically balanced interaction inhibits EGFRvIII tumor proliferation by reducing both VEGF and IL-6 expression.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Cell Biology, Peking University Health Science Center, Beijing, People's Republic of China; Peking University Stem Cell Research Center, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tsai TT, Chuang YJ, Lin YS, Chang CP, Wan SW, Lin SH, Chen CL, Lin CF. Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 2014; 8:e3320. [PMID: 25412261 PMCID: PMC4239119 DOI: 10.1371/journal.pntd.0003320] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear. Principle Finding We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication. Significance These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication. IL-10 has multiple cellular functions, including anti-inflammatory and immunomodulatory effects. Clinical studies have demonstrated that the serum levels of IL-10 are significantly increased in DENV-infected patients with severe disorders. However, the molecular mechanism underlying DENV-induced IL-10 production is still unresolved. In this study, we demonstrate a molecular mechanism for DENV-induced IL-10 production, which may be exacerbated by ADE through Fcγ receptor-mediated extrinsic and intrinsic pathways, leading to IL-10/SOCS3-mediated advantages for viral replication. With or without Fcγ receptor- or CLEC5A-mediated DENV infection, a common Syk/PKA-regulated PI3K/PKB activation results in a decrease in GSK-3β activity followed by an increase in CREB-mediated IL-10 expression not only in THP-1 monocytic cells but also in human monocytes. Taken together, we demonstrate a potential regulation and a pathological role for ADE-induced IL-10 overproduction during DENV replication. Therefore, inhibiting immunosuppression by targeting the IL-10 pathways identified in this study may help to prevent the progression of severe dengue diseases.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jui Chuang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
54
|
Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 2014; 15:707-16. [PMID: 25045879 DOI: 10.1038/ni.2939] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/09/2014] [Indexed: 12/15/2022]
Abstract
Antibodies produced in response to a foreign antigen are characterized by polyclonality, not only in the diverse epitopes to which their variable domains bind but also in the various effector molecules to which their constant regions (Fc domains) engage. Thus, the antibody's Fc domain mediates diverse effector activities by engaging two distinct classes of Fc receptors (type I and type II) on the basis of the two dominant conformational states that the Fc domain may adopt. These conformational states are regulated by the differences among antibody subclasses in their amino acid sequence and by the complex, biantennary Fc-associated N-linked glycan. Here we discuss the diverse downstream proinflammatory, anti-inflammatory and immunomodulatory consequences of the engagement of type I and type II Fc receptors in the context of infectious, autoimmune, and neoplastic disorders.
Collapse
Affiliation(s)
- Andrew Pincetic
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - Stylianos Bournazos
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - David J DiLillo
- 1] The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA. [2]
| | - Jad Maamary
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | - Taia T Wang
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | - Rony Dahan
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| | | | - Jeffrey V Ravetch
- The Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
55
|
Eckhardt CL, Astermark J, Nagelkerke SQ, Geissler J, Tanck MWT, Peters M, Fijnvandraat K, Kuijpers TW. The Fc gamma receptor IIa R131H polymorphism is associated with inhibitor development in severe hemophilia A. J Thromb Haemost 2014; 12:1294-301. [PMID: 24916518 DOI: 10.1111/jth.12631] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The development of factor (F) VIII neutralizing alloantibodies (inhibitors) is a major complication of treatment with FVIII concentrates in hemophilia A and the etiology is still poorly understood. The low-affinity Fc gamma receptors (FcγR), which are expressed on immune cells, provide an important link between cellular and humoral immunity by interacting with IgG subtypes. Genetic variations of the genes encoding FcγRs (FCGR genes) have been associated with susceptibility to infectious and autoimmune diseases. OBJECTIVES The aim of this study was to investigate the association between genetic variation of FCGR and inhibitor development in severe hemophilia A. PATIENTS/METHODS In this case-control study samples of 85 severe hemophilia A patients (siblings from 44 families) were included. Single nucleotide polymorphisms and copy number variation of the FCGR2 and FCGR3 gene cluster were studied in an FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared in a generalized estimating equation regression model. RESULTS Thirty-six patients (42%) had a positive history of inhibitor development. The polymorphism 131R > H in the FCGR2A gene was associated with an increased risk of inhibitor development (odds ratio [OR] per H-allele, 1.8; 95% confidence interval [CI], 1.1-2.9). This association persisted in 29 patients with high titer inhibitors (OR per H-allele, 1.9; 95% CI, 1.2-3.2) and in 44 patients with the F8 intron 22 inversion (OR per H-allele, 2.6; 95% CI, 1.1-6.6). CONCLUSIONS Hemophilia A patients with the HH genotype of the FCGR2A polymorphism 131R > H have a more than 3-fold increased risk of inhibitor development compared with patients with the RR genotype.
Collapse
Affiliation(s)
- C L Eckhardt
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Belperron AA, Liu N, Booth CJ, Bockenstedt LK. Dual role for Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice. Front Cell Infect Microbiol 2014; 4:75. [PMID: 24967215 PMCID: PMC4052197 DOI: 10.3389/fcimb.2014.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022] Open
Abstract
Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR) interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR) are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ−/− mice) harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88−/− mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ−/−MyD88−/− mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC), Xcr1 (Gpr5), IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi-infected MyD88−/− mice.
Collapse
Affiliation(s)
- Alexia A Belperron
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Nengyin Liu
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Carmen J Booth
- Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA
| | - Linda K Bockenstedt
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
57
|
Gillis C, Gouel-Chéron A, Jönsson F, Bruhns P. Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Front Immunol 2014; 5:254. [PMID: 24910634 PMCID: PMC4038777 DOI: 10.3389/fimmu.2014.00254] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/14/2014] [Indexed: 11/13/2022] Open
Abstract
The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 104 to 8 × 107 M−1. The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.
Collapse
Affiliation(s)
- Caitlin Gillis
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Aurélie Gouel-Chéron
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France ; Department of Anesthesia and Intensive Care, Hospital of Bichat-Claude Bernard, Public Assistance-Hospitals of Paris , Paris , France
| | - Friederike Jönsson
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| | - Pierre Bruhns
- Laboratoire Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur , Paris , France ; U760, INSERM , Paris , France
| |
Collapse
|
58
|
Liu Z, Sun X, Liu H, Ma T, Shi J, Jia B, Zhao H, Wang F. Early assessment of tumor response to gefitinib treatment by noninvasive optical imaging of tumor vascular endothelial growth factor expression in animal models. J Nucl Med 2014; 55:818-23. [PMID: 24639458 DOI: 10.2967/jnumed.113.133660] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Epidermal growth factor receptor (EGFR) expression is upregulated in many types of tumors, and the EGFR tyrosine kinase inhibitor gefitinib has high potential as an anticancer drug. However, accumulating clinical evidence has indicated that only a subset of patients benefit from gefitinib treatment. This study aimed to determine whether optical imaging of vascular endothelial growth factor (VEGF) expression can be an early biomarker for tumor response to gefitinib therapy. METHODS A VEGF-targeting fluorescent probe Dye-BevF(ab')2 was prepared and tested in vivo. Longitudinal optical imaging studies using Dye-BevF(ab')2 were performed in both 22B (gefitinib-resistant) and A549 (gefitinib-responsive) tumor models at different times (days 0, 2, and 5) before and after gefitinib treatment. The imaging results were validated by ex vivo immunofluorescence staining and enzyme-linked immunosorbent assay. RESULTS Dye-BevF(ab')2 exhibited high specificity for VEGF in vivo. There was no significant change in the Dye-BevF(ab')2 uptake in gefitinib-treated 22B tumors, compared with the control group. In contrast, the A549 tumor uptake of Dye-BevF(ab')2 in the gefitinib-treated group was significantly lower on days 2 and 5 than that in the control group and at the baseline. An in vivo gefitinib treatment study confirmed that 22B tumors were gefitinib-resistant, whereas A549 tumors were gefitinib-responsive. Immunofluorescence staining and enzyme-linked immunosorbent assay confirmed that changes in the Dye-BevF(ab')2 uptake were correlated with VEGF expression levels in tumors. CONCLUSION Optical imaging of VEGF expression with Dye-BevF(ab')2 can be used for the early assessment of tumor response to gefitinib therapy. This approach may also be valuable for preclinical high-throughput screening of novel antiangiogenic drugs.
Collapse
Affiliation(s)
- Zhaofei Liu
- Medical Isotopes Research Center, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Wu J, Lin R, Huang J, Guan W, Oetting WS, Sriramarao P, Blumenthal MN. Functional Fcgamma receptor polymorphisms are associated with human allergy. PLoS One 2014; 9:e89196. [PMID: 24586589 PMCID: PMC3931680 DOI: 10.1371/journal.pone.0089196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/16/2014] [Indexed: 01/13/2023] Open
Abstract
Objective IgG Fc receptors (FcγRs) play important roles in immune responses. It is not clear whether FcγR receptors play a role in human asthma and allergy. The aim of current study was to investigate whether functional single nucleotide polymorphisms (SNPs) of FcγR genes (FCGR) are associated with human asthma and allergy. Methods Functional SNPs of FCGR2A (FcγRIIA-131His>Arg, rs1801274), FCGR2B (FcγRIIB-187Ile>Thr, rs1050501), FCGR2C (FcγRIIC-13Gln>Stop, rs10917661), FCGR3A (FcγRIIIA-158Val>Phe, rs396991), and FCGR3B variants (FcγRIIIB NA1 and NA2) were genotyped in an asthma family cohort including 370 atopy positive, 239 atopy negative, and 169 asthma positive subjects. The genotype and phenotype data (asthma, bronchial hyper-responsiveness, and atopy) of subjects were analyzed using family-based association tests (FBAT) and logistic regression adjusted for age and sex. Result The FcγRIIA-131His>Arg SNP is significantly associated with atopy in a family-based association test (P = 0.00287) and in a logistic regression analysis (P = 0.0269, OR 0.732, 95% CI: 0.555–0.965). The FcγRIIA-131His (or rs1801274-A) allele capable of binding human IgG2 has a protective role against atopy. In addition, the rare FcγRIIB-187Thr (or rs1050501-C) allele defective for the receptor-mediated inhibitory signals is a risk factor for atopy (P = 0.0031, OR 1.758, 95% CI: 1.209–2.556) and IgE production (P<0.001). However, variants of activating FcγRIIIA (rs396991), and FcγRIIIB (NA1 and NA2), and FcγRIIC (rs10917661) are not associated with asthma, BHR, and atopy (P>0.05). Conclusions FcγRIIA and FcγRIIB functional polymorphisms may have a role in the pathogenesis of allergy.
Collapse
Affiliation(s)
- Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Rui Lin
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jinhai Huang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - P. Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Malcolm N. Blumenthal
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
60
|
Cortes HD, Lillico DME, Zwozdesky MA, Pemberton JG, O'Brien A, Montgomery BCS, Wiersma L, Chang JP, Stafford JL. Induction of phagocytosis and intracellular signaling by an inhibitory channel catfish leukocyte immune-type receptor: evidence for immunoregulatory receptor functional plasticity in teleosts. J Innate Immun 2014; 6:435-55. [PMID: 24504017 DOI: 10.1159/000356963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/01/2013] [Indexed: 12/21/2022] Open
Abstract
Immunoregulatory receptors are categorized as stimulatory or inhibitory based on their engagement of unique intracellular signaling networks. These proteins also display functional plasticity, which adds versatility to the control of innate immunity. Here we demonstrate that an inhibitory catfish leukocyte immune-type receptor (IpLITR) also displays stimulatory capabilities in a representative myeloid cell model. Previously, the receptor IpLITR 1.1b was shown to inhibit natural killer cell-mediated cytotoxicity. Here we expressed IpLITR 1.1b in rat basophilic leukemia-2H3 cells and monitored intracellular signaling and functional responses. Although IpLITR 1.1b did not stimulate cytokine secretion, activation of this receptor unexpectedly induced phagocytosis as well as extracellular signal-related kinase 1/2- and protein kinase B (Akt)-dependent signal transduction. This novel IpLITR 1.1b-mediated response was independent of an association with the FcRγ chain and was likely due to phosphotyrosine-dependent adaptors associating with prototypical signaling motifs within the distal region of its cytoplasmic tail. Furthermore, compared to a stimulatory IpLITR, IpLITR 1.1b displayed temporal differences in the induction of intracellular signaling, and IpLITR 1.1b-mediated phagocytosis had reduced sensitivity to EDTA and cytochalasin D. Overall, this is the first demonstration of functional plasticity for teleost LITRs, a process likely important for the fine-tuning of conserved innate defenses.
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alta., Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kimura J, Ichii O, Nakamura T, Horino T, Otsuka S, Kon Y. BXSB-type genome causes murine autoimmune glomerulonephritis: pathological correlation between telomeric region of chromosome 1 and Yaa. Genes Immun 2014; 15:182-9. [PMID: 24477164 DOI: 10.1038/gene.2014.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022]
Abstract
The autoimmune-prone BXSB/MpJ-Yaa mouse is a model of membranous proliferative glomerulonephritis (MPGN). Severe MPGN has been reported only in male BXSB/MpJ-Yaa mice because of the Y-linked autoimmune accelerator (Yaa) locus. However, we show that female BXSB/MpJ mice develop age-related MPGN without Yaa. Female BXSB/MpJ mice clearly developed MPGN characterized by increased mesangial cells, thickening of the glomerular basement membrane (GBM), double contouring and spike formation of GBM with T-cell infiltrations and podocyte injuries corresponding with increased autoantibody production and albuminuria. Analysis of the renal levels of the Fc gamma receptor (Fcgr) and interferon-activated gene 200 (Ifi200) family genes, which are MPGN candidate genes localized to the telomeric region of chromosome 1 (Chr.1), showed that Fcgr2b levels decreased, whereas Fcgr3 and Ifi202b levels increased in female BXSB/MpJ mice compared with healthy C57BL/6 mice. Furthermore, in isolated glomeruli, microarray analysis revealed that Fcgr3, Fcgr4 and Ifi202b expression was higher in male BXSB/MpJ-Yaa mice than in male BXSB/MpJ mice. These findings indicate that the BXSB/MpJ-type genome causes age-related MPGN with significant contribution from the telomeric region of Chr.1, and Yaa enhances the expression of genes localizing to this locus, thereby leading to severe MPGN in male mice.
Collapse
Affiliation(s)
- J Kimura
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - O Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - T Nakamura
- 1] Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan [2] Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - T Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - S Otsuka
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Y Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
62
|
Nishio S, Yamamoto T, Kaneko K, Tanaka-Matsumoto N, Muraoka S, Kaburaki M, Kusunoki Y, Takagi K, Kawai S. Pharmacokinetic study and Fcγ receptor gene analysis in two patients with rheumatoid arthritis controlled by low-dose infliximab. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0158-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
63
|
The FcγR of humans and non-human primates and their interaction with IgG: implications for induction of inflammation, resistance to infection and the use of therapeutic monoclonal antibodies. Curr Top Microbiol Immunol 2014; 382:321-52. [PMID: 25116107 DOI: 10.1007/978-3-319-07911-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considerable effort has focused on the roles of the individual members of the FcγR receptor (FcγR) family in inflammatory diseases and humoral immunity. Recent work has revealed major roles in infection and in particular HIV pathogenesis and immunity. In addition, FcγR functions underpin the action of many of the successful therapeutic monoclonal antibodies. This emphasises the need for a greater understanding of FcγR function in humans and in the NHP which provides a key model for human immunity and preclinical testing of antibodies. We discuss recent key aspects of the human FcγR receptor biology and structure to define differences and similarities in activity between the human and macaque Fc receptors. These differences and similarities nuance the interpretation of infection and vaccine studies in the macaque. Indeed passive IgG antibody protection in lentivirus infection models in the macaque provided early evidence for the role of Fc receptors in anti-HIV immunity that have subsequently gained support from human vaccine trials. None-the-less the diverse functions and cellular contexts of FcγR receptor expression ensure there is much still to understand of the protective and deleterious effects of FcγRs in HIV infection. Careful comparative studies of human and non-human primate FcγRs will facilitate our appreciation of what attributes of HIV specific IgG antibodies, either acquired naturally or via vaccination, are most important for protection.
Collapse
|
64
|
Massoud AH, Yona M, Xue D, Chouiali F, Alturaihi H, Ablona A, Mourad W, Piccirillo CA, Mazer BD. Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol 2013; 133:853-63.e5. [PMID: 24210883 DOI: 10.1016/j.jaci.2013.09.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/02/2013] [Accepted: 09/06/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) is a polyclonal IgG preparation with potent immunomodulating properties. Our laboratory demonstrated that IVIg significantly increases numbers of forkhead box protein 3-positive regulatory T (Treg) cells through generation of tolerogenic dendritic cells (DCs) in an allergic airways disease model. OBJECTIVE We sought to investigate potential receptors on DCs mediating these events. METHODS C57BL/6 mice were either sensitized to ovalbumin (OVA) intraperitoneally or through adoptive transfer of OVA-primed DCs and then challenged with intranasal OVA. IVIg was fractionated into sialic acid-enriched IVIg (SA-IVIg) and sialic acid-depleted IVIg (non-SA-IVIg). Dendritic cell immunoreceptor (DCIR) constructs in CHO cells or on DCs were examined by using fluorescent microscopy and flow cytometry. RESULTS Administration of SA-IVIg, but not non-SA-IVIg, to OVA-sensitized and OVA-challenged mice induced Treg cells and attenuated airway hyperresponsiveness (AHR) and inflammation comparably with IVIg. Bone marrow-derived dendritic cells cultured with SA-IVIg or IVIg adoptively transferred to mice before OVA challenge induced Treg cells and inhibited AHR. IVIg-treated bone marrow-derived dendritic cells from Fcγ receptor knockout mice inhibited AHR, suggesting IVIg's action was not caused by Fcγ receptor-mediated events. Fluorescently labeled IVIg or SA-IVIg bound DCs and colocalized specifically to the C-type lectin DCIR. IVIg binding to DCIR induced phosphorylation of Src homology domain 2-containing protein tyrosine phosphatase (SHP) 2 and Src homology domain 2-containing inositol phosphatase 1 (SHIP-1) and internalization of IVIg into DCs. Inhibition of IVIg binding to DCIR by small interfering RNA completely blocked induction of Treg cells. Inhibition of SHP-2 or abrogation of IgG internalization through clatherin inhibitors rendered IVIg ineffective. CONCLUSIONS IVIg alleviates allergic airways disease through interaction of SA-IgG with DCIR. DCIR is a novel receptor for IVIg, mediating interaction of innate and adaptive immunity in tolerogenic responses.
Collapse
Affiliation(s)
- Amir H Massoud
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada; Département d'Immunologie et Microbiologie, Université de Montréal, Institute de Recherche du l'Hôpitale St-Luc, Montreal, Quebec, Canada
| | - Madelaine Yona
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Di Xue
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Fazila Chouiali
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Haydar Alturaihi
- Département d'Immunologie et Microbiologie, Université de Montréal, Institute de Recherche du l'Hôpitale St-Luc, Montreal, Quebec, Canada
| | - Aidan Ablona
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Walid Mourad
- Département d'Immunologie et Microbiologie, Université de Montréal, Institute de Recherche du l'Hôpitale St-Luc, Montreal, Quebec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Bruce D Mazer
- Meakins Christie Laboratories, the Department of Pediatrics, Division of Allergy and Immunology, The Research Institute of the McGill University Health Center, and the Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
65
|
Sharma R, Zhao H, Al-Saleem FH, Ubaid AS, Puligedda RD, Segan AT, Lindorfer MA, Bermudez R, Elias M, Adekar SP, Simpson LL, Taylor RP, Dessain SK. Mechanisms of enhanced neutralization of botulinum neurotoxin by monoclonal antibodies conjugated to antibodies specific for the erythrocyte complement receptor. Mol Immunol 2013; 57:247-54. [PMID: 24184879 DOI: 10.1016/j.molimm.2013.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 01/27/2023]
Abstract
Immune complexes formed between monoclonal antibodies (mAbs) and toxins can neutralize toxicity in vivo by multiple mechanisms. Toxin sequestration and clearance by mAbs may be improved by enhancing their ability to bind to red blood cells (RBCs) through immune adherence. This can be achieved by converting the mAbs to heteropolymers (HPs), which are antigen-specific mAbs cross-linked to mAbs targeting the complement receptor (CR1), a protein that is expressed on the surface of RBCs in primates and mediates delivery of complement C3b-containing immune complexes to tissue macrophages. Conversion of mAbs to HPs has been shown to enhance clearance of multivalent antigens from the blood circulation, but the interaction of HPs with monovalent toxins has not been examined. Using botulinum neurotoxin (BoNT) as a model system, we studied the effect of conversion of a pair of BoNT-specific mAbs into HPs on toxin neutralization and handling in vivo. Two HPs given in combination had 166-fold greater potency than un-modified mAbs, neutralizing 5000 LD50 BoNT, when tested in transgenic mice expressing human CR1 on RBC membranes. Improvement required adherence of BoNT to the RBC in vivo and 2 HPs, rather than an HP+mAb pair. The HP pair bound BoNT to RBCs in the circulation for 2h, in comparison to BoNT-neutralizing anti-serum, which induced no detectable RBC binding. HP pairs exhibited enhanced uptake by peritoneal macrophages in vitro, compared to pairs of mAbs or mAb+HP pairs. In a post-exposure therapeutic model, HPs gave complete protection from a lethal BoNT dose up to 3h after toxin exposure. In a pre-exposure prophylaxis model, mice given HP up to 5 days prior to BoNT administration were fully protected from a lethal BoNT dose. These studies elucidate general mechanisms for the neutralization of toxins by HP pairs and demonstrate the potential utility of HPs as BoNT therapeutics.
Collapse
Affiliation(s)
- Rashmi Sharma
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Szittner Z, Papp K, Sándor N, Bajtay Z, Prechl J. Application of fluorescent monocytes for probing immune complexes on antigen microarrays. PLoS One 2013; 8:e72401. [PMID: 24039758 PMCID: PMC3764206 DOI: 10.1371/journal.pone.0072401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022] Open
Abstract
Microarrayed antigens are used for identifying serum antibodies with given specificities and for generating binding profiles. Antibodies bind to these arrayed antigens forming immune complexes and are conventionally identified by secondary labelled antibodies.In the body immune complexes are identified by bone marrow derived phagocytic cells, such as monocytes. In our work we were looking into the possibility of replacing secondary antibodies with monocytoid cells for the generation of antibody profiles. Using the human monocytoid cell line U937, which expresses cell surface receptors for immune complex components, we show that cell adhesion is completely dependent on the interaction of IgG heavy chains and Fcγ receptors, and this recognition is susceptible to differences between heavy chain structures and their glycosylation. We also report data on a possible application of this system in autoimmune diagnostics.Compared to secondary antibodies, fluorescent monocytesas biosensors are superior in reflecting biological functions of microarray-bound antibodies and represent an easy and robust alternative for profiling interactions between serum proteins and antigens.
Collapse
Affiliation(s)
- Zoltán Szittner
- Department of Immunology, EötvösLoránd University, Budapest, Hungary
- Diagnosticum Ltd., Budapest, Hungary
| | - Krisztián Papp
- Immunology Research Group of the Hungarian Academy of Sciences at EötvösLoránd University, Budapest, Hungary
- Diagnosticum Ltd., Budapest, Hungary
| | - Noémi Sándor
- Immunology Research Group of the Hungarian Academy of Sciences at EötvösLoránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, EötvösLoránd University, Budapest, Hungary
| | - József Prechl
- Immunology Research Group of the Hungarian Academy of Sciences at EötvösLoránd University, Budapest, Hungary
- Diagnosticum Ltd., Budapest, Hungary
- * E-mail:
| |
Collapse
|
67
|
Gavasso S, Torkildsen Ø, Marøy TH, Ulvestad E, Myhr KM, Vedeler CA. Fcγ receptors in Norwegian multiple sclerosis patients and healthy controls. Acta Neurol Scand 2013:84-9. [PMID: 23278662 DOI: 10.1111/ane.12026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system in genetically susceptible persons. Fcγ receptors (FcγR) are involved in autoimmune diseases. PATIENTS AND METHODS Sixteen Norwegian patients with relapsing-remitting MS (RRMS) were studied to see whether treatment with either interferon-beta (INF-β) or glatiramer acetate (GA) influenced the proportion of FcγR1a, FcγR2a, and FcγR3b positive monocytes, granulocytes, or lymphocytes or FcγR1a, FcγR2a, and FcγR2b mRNA levels in leukocytes. One hundred and twenty-seven patients with RRMS and 54 Norwegian healthy blood donors were also analyzed for FcγR2b polymorphisms. RESULTS Interferon-beta or GA treatment initiated an increase in the proportion of FcγR positive lymphocytes, but did not cause major influence of the long-term proportion of FcγR positive leukocytes or their FcγR mRNA levels. No significant differences were observed between RRMS patients and healthy controls for the genotype and allele frequencies of FcγR2b polymorphisms. DISCUSSION INF-β or GA treatment probably has no major role in the regulation of FcγRs on immune cells in RRMS. Furthermore, polymorphisms of the inhibitory FcγR2b do not seem to influence the susceptibility for MS.
Collapse
Affiliation(s)
- S. Gavasso
- Department of Clinical Medicine; University of Bergen; Bergen; Norway
| | | | - T. H. Marøy
- Norwegian Multiple Sclerosis Competence Centre; Department of Neurology; Haukeland University Hospital; Bergen; Norway
| | | | | | | |
Collapse
|
68
|
Cho SH, Raybuck A, Wei M, Erickson J, Nam KT, Cox RG, Trochtenberg A, Thomas JW, Williams J, Boothby M. B cell-intrinsic and -extrinsic regulation of antibody responses by PARP14, an intracellular (ADP-ribosyl)transferase. THE JOURNAL OF IMMUNOLOGY 2013; 191:3169-78. [PMID: 23956424 DOI: 10.4049/jimmunol.1301106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The capacity to achieve sufficient concentrations of Ag-specific Ab of the appropriate isotypes is a critical component of immunity that requires efficient differentiation and interactions of Ag-specific B and Th cells along with dendritic cells. Numerous bacterial toxins catalyze mono(ADP-ribosyl)ation of mammalian proteins to influence cell physiology and adaptive immunity. However, little is known about biological functions of intracellular mammalian mono(ADP-ribosyl)transferases, such as any ability to regulate Ab responses. poly-(ADP-ribose) polymerase 14 (PARP14), an intracellular protein highly expressed in lymphoid cells, binds to STAT6 and encodes a catalytic domain with mammalian mono(ADP-ribosyl)transferase activity. In this article, we show that recall IgA as well as the STAT6-dependent IgE Ab responses are impaired in PARP14-deficient mice. Whereas PARP14 regulation of IgE involved a B cell-intrinsic process, the predominant impact on IgA was B cell extrinsic. Of note, PARP14 deficiency reduced the levels of Th17 cells and CD103⁺ DCs, which are implicated in IgA regulation. PARP14 enhanced the expression of RORα, Runx1, and Smad3 after T cell activation, and, importantly, its catalytic activity of PARP14 promoted Th17 differentiation. Collectively, the findings show that PARP14 influences the class distribution, affinity repertoire, and recall capacity of Ab responses in mice, as well as provide direct evidence of the requirement for protein mono-ADP-ribosylation in Th cell differentiation.
Collapse
Affiliation(s)
- Sung Hoon Cho
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Ankylosing spondylitis: from cells to genes. Int J Inflam 2013; 2013:501653. [PMID: 23970995 PMCID: PMC3736459 DOI: 10.1155/2013/501653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown etiology, though it is considered an autoimmune disease. HLA-B27 is the risk factor most often associated with AS, and although the mechanism of involvement is unclear, the subtypes and other features of the relationship between HLA-B27 and AS have been studied for years. Additionally, the key role of IL-17 and Th17 cells in autoimmunity and inflammation suggests that the latter and the cytokines involved in their generation could play a role in the pathogenesis of this disease. Recent studies have described the sources of IL-17 and IL-23, as well as the characterization of Th17 cells in autoimmune diseases. Other cells, such as NK and regulatory T cells, have been implicated in autoimmunity and have been evaluated to ascertain their possible role in AS. Moreover, several polymorphisms, mutations and deletions in the regulatory proteins, protein-coding regions, and promoter regions of different genes involved in immune responses have been discovered and evaluated for possible genetic linkages to AS. In this review, we analyze the features of HLA-B27 and the suggested mechanisms of its involvement in AS while also focusing on the characterization of the immune response and the identification of genes associated with AS.
Collapse
|
70
|
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 2013; 210:1283-99. [PMID: 23825232 PMCID: PMC3698517 DOI: 10.1084/jem.20122220] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/23/2013] [Indexed: 12/17/2022] Open
Abstract
Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.
| |
Collapse
|
71
|
Mallavia B, Oguiza A, Lopez-Franco O, Recio C, Ortiz-Muñoz G, Lazaro I, Lopez-Parra V, Egido J, Gomez-Guerrero C. Gene Deficiency in Activating Fcγ Receptors Influences the Macrophage Phenotypic Balance and Reduces Atherosclerosis in Mice. PLoS One 2013; 8:e66754. [PMID: 23805273 PMCID: PMC3689671 DOI: 10.1371/journal.pone.0066754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/10/2013] [Indexed: 01/18/2023] Open
Abstract
Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis.
Collapse
Affiliation(s)
- Beñat Mallavia
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Ainhoa Oguiza
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Oscar Lopez-Franco
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carlota Recio
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Guadalupe Ortiz-Muñoz
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Iolanda Lazaro
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Virginia Lopez-Parra
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Jesus Egido
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal and Vascular Inflammation Lab, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- Nephrology Department, IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- * E-mail:
| |
Collapse
|
72
|
Shashidharamurthy R, Machiah D, Aitken JD, Putty K, Srinivasan G, Chassaing B, Parkos CA, Selvaraj P, Vijay-Kumar M. Differential role of lipocalin 2 during immune complex-mediated acute and chronic inflammation in mice. ACTA ACUST UNITED AC 2013; 65:1064-73. [PMID: 23280250 DOI: 10.1002/art.37840] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 12/18/2012] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Lipocalin 2 (LCN-2) is an innate immune protein that is expressed by a variety of cells and is highly up-regulated during several pathologic conditions, including immune complex (IC)-mediated inflammatory/autoimmune disorders. However, the function of LCN-2 during IC-mediated inflammation is largely unknown. Therefore, this study was undertaken to investigate the role of LCN-2 in IC-mediated diseases. METHODS The up-regulation of LCN-2 was determined by enzyme-linked immunosorbent assay in 3 different mouse models of IC-mediated autoimmune disease: systemic lupus erythematosus, collagen-induced arthritis, and serum-transfer arthritis. The in vivo role of LCN-2 during IC-mediated inflammation was investigated using LCN-2-knockout mice and their wild-type littermates. RESULTS LCN-2 levels were significantly elevated in all 3 of the autoimmune disease models. Further, in an acute skin inflammation model, LCN-2-knockout mice exhibited a 50% reduction in inflammation, with histopathologic analysis revealing notably reduced immune cell infiltration as compared to wild-type mice. Administration of recombinant LCN-2 to LCN-2-knockout mice restored inflammation to levels observed in wild-type mice. Neutralization of LCN-2 using a monoclonal antibody significantly reduced inflammation in wild-type mice. In contrast, LCN-2-knockout mice developed more severe serum-induced arthritis compared to wild-type mice. Histologic analysis revealed extensive tissue and bone destruction, with significantly reduced neutrophil infiltration but considerably more macrophage migration, in LCN-2-knockout mice compared to wild-type mice. CONCLUSION These results demonstrate that LCN-2 may regulate immune cell recruitment to the site of inflammation, a process essential for the controlled initiation, perpetuation, and resolution of inflammatory processes. Thus, LCN-2 may present a promising target in the treatment of IC-mediated inflammatory/autoimmune diseases.
Collapse
Affiliation(s)
- Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine, Suwanee, Georgia 30024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Gunderson AJ, Coussens LM. B cells and their mediators as targets for therapy in solid tumors. Exp Cell Res 2013; 319:1644-9. [PMID: 23499742 DOI: 10.1016/j.yexcr.2013.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/02/2013] [Indexed: 11/25/2022]
Abstract
B cells have recently been appreciated as paracrine mediators of solid tumor development. Their ability to influence various hallmarks of cancer development, aside from antigen presentation, can be attributed to the diversity of soluble mediators they express, including cytokines and immunoglobulins, that can act directly and indirectly on the diversity of leukocyte subsets that infiltrate developing tumors, evolving neoplastic cells, as well as select T cell populations in secondary lymphoid organs and within tumor stroma. Herein, we review the literature supporting these interactions and discuss novel approaches to ameliorate protumoral B cell effects for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrew J Gunderson
- Department of Cell and Developmental Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Mail Code L215, Rm 5508, Richard Jones Hall, Portland, OR 97239-3098, USA
| | - Lisa M Coussens
- Department of Cell and Developmental Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Mail Code L215, Rm 5508, Richard Jones Hall, Portland, OR 97239-3098, USA; Knight Cancer Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Mail Code L215, Rm 5508, Richard Jones Hall, Portland, OR 97239-3098, USA.
| |
Collapse
|
74
|
Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b. J Virol 2013; 87:5468-76. [PMID: 23468489 DOI: 10.1128/jvi.03403-12] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While development of an HIV vaccine that can induce neutralizing antibodies remains a priority, decades of research have proven that this is a daunting task. However, accumulating evidence suggests that antibodies with the capacity to harness innate immunity may provide some protection. While significant research has focused on the cytolytic properties of antibodies in acquisition and control, less is known about the role of additional effector functions. In this study, we investigated antibody-dependent phagocytosis of HIV immune complexes, and we observed significant differences in the ability of antibodies from infected subjects to mediate this critical effector function. We observed both quantitative differences in the capacity of antibodies to drive phagocytosis and qualitative differences in their FcγR usage profile. We demonstrate that antibodies from controllers and untreated progressors exhibit increased phagocytic activity, altered Fc domain glycosylation, and skewed interactions with FcγR2a and FcγR2b in both bulk plasma and HIV-specific IgG. While increased phagocytic activity may directly influence immune activation via clearance of inflammatory immune complexes, it is also plausible that Fc receptor usage patterns may regulate the immune response by modulating downstream signals following phagocytosis--driving passive degradation of internalized virus, release of immune modulating cytokines and chemokines, or priming of a more effective adaptive immune response.
Collapse
|
75
|
Flego M, Ascione A, Cianfriglia M, Vella S. Clinical development of monoclonal antibody-based drugs in HIV and HCV diseases. BMC Med 2013; 11:4. [PMID: 23289632 PMCID: PMC3565905 DOI: 10.1186/1741-7015-11-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/04/2013] [Indexed: 12/21/2022] Open
Abstract
Today there are many licensed antiviral drugs, but the emergence of drug resistant strains sometimes invalidates the effects of the current therapies used in the treatment of infectious diseases. Compared to conventional antiviral drugs, monoclonal antibodies (mAbs) used as pharmacological molecules have particular physical characteristics and modes of action, and, therefore, they should be considered as a distinct therapeutic class. Despite being historically validated, antibodies may represent a novel tool for combatting infectious diseases. The current high cost of mAbs' production, storage and administration (by injection only) and the consequent obstacles to development are outweighed by mAbs' clinical advantages. These are related to a low toxicity combined with high specificity and versatility, which allows a specific antibody to mediate various biological effects, ranging from the virus neutralization mechanisms to the modulation of immune responses.This review briefly summarizes the recent technological advances in the field of immunoglobulin research, and the current status of mAb-based drugs in clinical trials for HIV and HCV diseases. For each clinical trial the available data are reported and the emerging conceptual problems of the employed mAbs are highlighted.This overview helps to give a clear picture of the efficacy and challenges of the mAbs in the field of these two infectious diseases which have such a global impact.
Collapse
Affiliation(s)
- Michela Flego
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
76
|
Intravenous Immunoglobulin Replacement Therapy in the Treatment of Patients with Common Variable Immunodeficiency Disease. Clin Drug Investig 2012; 31:299-307. [DOI: 10.1007/bf03256928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
77
|
Lopez-Parra V, Mallavia B, Lopez-Franco O, Ortiz-Muñoz G, Oguiza A, Recio C, Blanco J, Nimmerjahn F, Egido J, Gomez-Guerrero C. Fcγ receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol 2012; 23:1518-27. [PMID: 22859852 DOI: 10.1681/asn.2011080822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among patients with diabetes, increased production of immunoglobulins against proteins modified by diabetes is associated with proteinuria and cardiovascular risk, suggesting that immune mechanisms may contribute to the development of diabetes complications, such as nephropathy. We investigated the contribution of IgG Fcγ receptors to diabetic renal injury in hyperglycemic, hypercholesterolemic mice. We used streptozotocin to induce diabetes in apolipoprotein E-deficient mice and in mice deficient in both apolipoprotein E and γ-chain, the common subunit of activating Fcγ receptors. After 15 weeks, the mice lacking Fcγ receptors had significantly less albuminuria and renal hypertrophy, despite similar degrees of hyperglycemia and hypercholesterolemia, immunoglobulin production, and glomerular immune deposits. Moreover, diabetic Fcγ receptor-deficient mice had less mesangial matrix expansion, inflammatory cell infiltration, and collagen and α-smooth muscle actin content in their kidneys. Accordingly, expression of genes involved in leukocyte infiltration, fibrosis, and oxidative stress was significantly reduced in diabetic kidneys and in mesangial cells cultured from Fcγ receptor-deficient mice. In summary, preventing the activation of Fcγ receptors alleviates renal hypertrophy, inflammation, and fibrosis in hypercholesterolemic mice with diabetes, suggesting that modulating Fcγ receptor signaling may be renoprotective in diabetic nephropathy.
Collapse
Affiliation(s)
- Virginia Lopez-Parra
- Renal and Vascular Inflammation Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University, Avda Reyes Catolicos, 2 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Dimitrova P, Ivanovska N, Belenska L, Milanova V, Schwaeble W, Stover C. Abrogated RANKL expression in properdin-deficient mice is associated with better outcome from collagen-antibody-induced arthritis. Arthritis Res Ther 2012; 14:R173. [PMID: 22830570 PMCID: PMC3580567 DOI: 10.1186/ar3926] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023] Open
Abstract
Introduction Properdin amplifies the alternative pathway of complement activation. In the present study, we evaluated its role in the development of collagen antibody-induced arthritis (CAIA). Methods Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient (KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations, their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase (TRAP). Results Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of disease. The frequencies of Ly6G+CD11b+ cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT CAIA mice. The receptor activator of nuclear factor κB ligand (RANKL) was downregulated on arthritic KO neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of CD5aR+-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G+ cells as a result of low receptor engagement. Circulating CD4+ T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-γ and to express RANKL. In KO CAIA mice, decreased frequencies of CD4+ T cells in the spleen were related to low CD86 expression on Ly6GhighCD11b+ cells. Arthritic KO T cells spontaneously secreted IFN-γ but not IL-17 and IL-6, and responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive mature osteoclasts were found in KO BM cell cultures. Conclusions Our data show that the active involvement of properdin in arthritis is related to an increased proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-dependent osteoclast differentiation.
Collapse
|
79
|
Montgomery BC, Cortes HD, Burshtyn DN, Stafford JL. Channel catfish leukocyte immune-type receptor mediated inhibition of cellular cytotoxicity is facilitated by SHP-1-dependent and -independent mechanisms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:151-163. [PMID: 21945134 DOI: 10.1016/j.dci.2011.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are immunoregulatory proteins belonging to the immunoglobulin superfamily that likely play an important role in the regulation of teleost immune cell effector responses. IpLITRs are expressed by myeloid and lymphoid subsets and based on their structural features can be classified as either putative stimulatory or inhibitory forms. We have recently demonstrated at the biochemical and functional levels that stimulatory IpLITR-types induced intracellular signaling cascades resulting in immune cell activation. Alternatively, we have shown that putative inhibitory IpLITRs may abrogate immune cell responses by recruiting teleost Src homology 2 (SH2) domain-containing cytoplasmic phosphatases (SHP) to their tyrosine-containing cytoplasmic tails. In the present study, we used vaccinia virus to express recombinant chimeric proteins encoding the extracellular and transmembrane regions of human KIR2DL3 fused with the cytoplasmic tails of two putative inhibitory IpLITRs (i.e. IpLITR1.2a and IpLITR1.1b) in mouse spleen-derived cytotoxic lymphocytes. This approach allowed us to study the specific effects of IpLITR-induced signaling on lymphocyte killing of B cell targets (e.g. 721.221 cells) using a standard chromium release assay. Our results suggest that both IpLITR1.2a and IpLITR1.1b are potent inhibitors of lymphocyte-mediated cellular cytotoxicity. Furthermore, using a catalytically inactive SHP-1 mutant in combination with site-directed mutagenesis and co-immunoprecipitations, we also demonstrate that the IpLITR1.2a-mediated functional inhibitory response is SHP-1-dependent. Alternatively, IpLITR1.1b-mediated inhibition of cellular cytotoxicity is facilitated by both SHP-1-dependent and independent mechanisms, possibly involving the C-terminal Src kinase (Csk). The involvement of this inhibitory kinase requires binding to a tyrosine residue encoded in the unique membrane proximal cytoplasmic tail region of IpLITR1.1b. Overall, this represents the first functional information for inhibitory IpLITR-types and reveals that catfish LITRs engage SHP-dependent and -independent inhibitory signaling pathways to abrogate lymphocyte-mediated killing.
Collapse
|
80
|
Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 2012; 11:311-31. [PMID: 22460124 DOI: 10.1038/nrd2909] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The direct or indirect targeting of antibody Fc receptors (FcRs) presents unique opportunities and interesting challenges for the treatment of inflammatory diseases, cancer and infection. Biological responses induced via the Fc portions of antibodies are powerful, complex and unusual, and comprise both activating and inhibitory effects. These properties can be exploited in the engineering of therapeutic monoclonal antibodies to improve their activity in vivo. FcRs have also emerged as key participants in the pathogenesis of several important autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. Therapeutic approaches based on antagonizing FcR function with small molecules or biological drugs such as monoclonal antibodies and recombinant soluble FcR ectodomains have gained momentum. This Review addresses various strategies to manipulate FcR function to overcome immune complex-mediated inflammatory diseases, and considers approaches to improve antibody-based anticancer therapies.
Collapse
|
81
|
Duan ZH, Pan FM, Zeng Z, Zhang TC, Wang S, Li GX, Mei Y, Gao J, Ge R, Ye DQ, Zou YF, Xu SQ, Xu JH, Zhang L. TheFCGR2Brs10917661 polymorphism may confer susceptibility to ankylosing spondylitis in Han Chinese: a case–control study. Scand J Rheumatol 2012; 41:219-22. [DOI: 10.3109/03009742.2011.625972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
82
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
83
|
Cortes HD, Montgomery BC, Verheijen K, García-García E, Stafford JL. Examination of the stimulatory signaling potential of a channel catfish leukocyte immune-type receptor and associated adaptor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:62-73. [PMID: 21703302 DOI: 10.1016/j.dci.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Expressed by various subsets of myeloid and lymphoid immune cells, channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are predicted to play a key role in the initiation and termination of teleost cellular effector responses. These type I transmembrane proteins belong to the immunoglobulin superfamily and display features of immunoregulatory receptors with inhibitory and/or stimulatory signaling potential. Expanding on our previous work, which demonstrated that putative stimulatory IpLITR-types associated with the catfish adaptor proteins IpFcRγ and FcRγ-L, this study focuses on the functional significance of this immune receptor-adaptor signaling complex. Specifically, we generated an epitope-tagged chimeric receptor construct by fusing the extracellular domain of IpLITR 2.6b with the transmembrane region and cytoplasmic tail of IpFcRγ-L. This chimera was stably expressed in a rat basophilic leukemia (RBL) cell line, RBL-2H3, and following cross-linking of the surface receptor with an anti-hemagglutinin monoclonal antibody or opsonized microspheres, the chimeric teleost receptor induced cellular degranulation and phagocytic responses, respectively. Site-directed mutagenesis of the immunoreceptor tyrosine-based activation motif encoded within the cytoplasmic tail of the chimera confirmed that these functional responses were dependent on the phosphorylated tyrosines within this motif. Using a combination of phospho-specific antibodies and pharmacological inhibitors, we also demonstrate that the IpLITR/IpFcRγ-L-induced degranulation response requires the activity of Src homology 2 domain containing protein tyrosine phosphatases, phosphatidylinositol 3-kinase, protein kinase C, and mitogen-activated protein kinases but appears independent of the c-Jun N-terminal kinase and p38 MAP kinase pathways. In addition to this first look at stimulatory IpLITR-mediated signaling and its influence on cellular effector responses, the advantage of generating RBL-2H3 cells stably expressing a functional IpLITR-adaptor chimera will be discussed.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Basophils/drug effects
- Basophils/immunology
- Basophils/metabolism
- Basophils/pathology
- Cell Degranulation/drug effects
- Cell Line, Tumor
- Fish Proteins/genetics
- Fish Proteins/metabolism
- Ictaluridae
- Immunity, Cellular
- Mutagenesis, Site-Directed
- Phagocytosis
- Phosphorylation
- Protein Structure, Tertiary/genetics
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transgenes/genetics
- src Homology Domains/genetics
Collapse
Affiliation(s)
- Herman D Cortes
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
84
|
Sigalov AB. Interplay Between Protein Order, Disorder and Oligomericity in Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:50-73. [DOI: 10.1007/978-1-4614-0659-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
85
|
Montgomery BC, Cortes HD, Mewes-Ares J, Verheijen K, Stafford JL. Teleost IgSF immunoregulatory receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1223-1237. [PMID: 21414352 DOI: 10.1016/j.dci.2011.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In all animals innate immunity is the first line of immune defense from invading pathogens. The prototypical innate cellular responses such as phagocytosis, degranulation, and cellular cytotoxicity are elicited by leukocytes in a diverse range of animals including fish, amphibians, birds and mammals reinforcing the importance of such primordial defense mechanisms. In mammals, these responses are intricately controlled and coordinated at the cellular level by distinct subsets of immunoregulatory receptors. Many of these surface proteins belong to the immunoglobulin superfamily and in mammals elaborate immunoregulatory receptor networks play a major role in the control of infectious diseases. Recent examination of teleost immunity has begun to further illustrate the complexities of these receptor networks in lower vertebrates. However, little is known about the mechanisms that control how immunoregulatory receptors influence cellular decision making in ectothermic vertebrates. This review focuses on several families of recently discovered immunoglobulin superfamily members in fish that share structural, phylogenetic and in some cases functional relationships with mammalian immunoregulatory receptors. Further characterization of these teleost innate immune receptor families will provide detailed information regarding the conservation and importance of innate immune defense strategies throughout vertebrate evolution.
Collapse
|
86
|
McAndrew EG, Dugast AS, Licht AF, Eusebio JR, Alter G, Ackerman ME. Determining the phagocytic activity of clinical antibody samples. J Vis Exp 2011:e3588. [PMID: 22143444 PMCID: PMC3308623 DOI: 10.3791/3588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antibody-driven phagocytosis is induced via the engagement of Fc receptors on professional phagocytes, and can contribute to both clearance as well as pathology of disease. While the properties of the variable domains of antibodies have long been considered critical to in vivo function, the ability of antibodies to recruit innate immune cells via their Fc domains has become increasingly appreciated as a major factor in their efficacy, both in the setting of recombinant monoclonal antibody therapy, as well as in the course of natural infection or vaccination(1-3). Importantly, despite its nomenclature as a constant domain, the antibody Fc domain does not have constant function, and is strongly modulated by IgG subclass (IgG1-4) and glycosylation at Asparagine 297(4-6). Thus, this method to study functional differences of antigen-specific antibodies in clinical samples will facilitate correlation of the phagocytic potential of antibodies to disease state, susceptibility to infection, progression, or clinical outcome. Furthermore, this effector function is particularly important in light of the documented ability of antibodies to enhance infection by providing pathogens access into host cells via Fc receptor-driven phagocytosis(7). Additionally, there is some evidence that phagocytic uptake of immune complexes can impact the Th1/Th2 polarization of the immune response(8). Here, we describe an assay designed to detect differences in antibody-induced phagocytosis, which may be caused by differential IgG subclass, glycan structure at Asn297, as well as the ability to form immune complexes of antigen-specific antibodies in a high-throughput fashion. To this end, 1 μm fluorescent beads are coated with antigen, then incubated with clinical antibody samples, generating fluorescent antigen specific immune complexes. These antibody-opsonized beads are then incubated with a monocytic cell line expressing multiple FcγRs, including both inhibitory and activating. Assay output can include phagocytic activity, cytokine secretion, and patterns of FcγRs usage, and are determined in a standardized manner, making this a highly useful system for parsing differences in this antibody-dependent effector function in both infection and vaccine-mediated protection(9).
Collapse
|
87
|
Shashidharamurthy R, Machiah D, Bozeman EN, Srivatsan S, Patel J, Cho A, Jacob J, Selvaraj P. Hydrodynamic delivery of plasmid DNA encoding human FcγR-Ig dimers blocks immune-complex mediated inflammation in mice. Gene Ther 2011; 19:877-85. [PMID: 22113315 PMCID: PMC3296821 DOI: 10.1038/gt.2011.175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcgamma receptor –Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness to purified molecules in blocking immune-complex (IC) mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16AF-Ig, CD32AR-Ig and CD32AH-Ig) reached a maximum of 130 μg/ml of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and Western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with a FcγR-Ig gene can be used to study the consequences of blocking IC-binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.
Collapse
Affiliation(s)
- R Shashidharamurthy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Liang Y, Qiu H, Glinka Y, Lazarus AH, Ni H, Prud'homme GJ, Wang Q. Immunity against a therapeutic xenoprotein/Fc construct delivered by gene transfer is reduced through binding to the inhibitory receptor FcγRIIb. J Gene Med 2011; 13:470-7. [DOI: 10.1002/jgm.1598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Yaming Liang
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute; St Michael's Hospital; Toronto; Ontario; Canada
| | - Hongmin Qiu
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute; St Michael's Hospital; Toronto; Ontario; Canada
| | - Yelena Glinka
- Department of Laboratory Medicine & Pathobiology; University of Toronto; Toronto; Ontario; Canada
| | - Alan H. Lazarus
- Department of Laboratory Medicine & Pathobiology; University of Toronto; Toronto; Ontario; Canada
| | - Heyu Ni
- Department of Laboratory Medicine & Pathobiology; University of Toronto; Toronto; Ontario; Canada
| | - Gerald J. Prud'homme
- Department of Laboratory Medicine & Pathobiology; University of Toronto; Toronto; Ontario; Canada
| | | |
Collapse
|
89
|
Zhang CY, Booth JW. Differences in endocytosis mediated by FcγRIIA and FcγRIIB2. Mol Immunol 2011; 49:329-37. [PMID: 21945020 DOI: 10.1016/j.molimm.2011.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 08/15/2011] [Accepted: 09/05/2011] [Indexed: 01/04/2023]
Abstract
An important function of Fcγ receptors is the removal of IgG-containing immune complexes from the circulation. The activating receptor FcγRIIA and inhibitory receptor FcγRIIB2 are both expressed on human myeloid cells, and are both capable of mediating endocytosis of immune complexes. We studied endocytosis of these two receptors expressed by transfection in ts20 Chinese hamster fibroblasts. We find that while FcγRIIA-mediated endocytosis requires the participation of the ubiquitin-conjugating system, the endocytosis of FcγRIIB2 does not. Little if any ubiquitylation of FcγRIIB2 was observed in response to immune complex binding. FcγRIIB2 mediates internalization of immune complexes at a faster rate than FcγRIIA, and facilitates the endocytosis of FcγRIIA upon co-engagement of both receptors. This may represent a novel mechanism by which the inhibitory receptor can reduce signalling from the activating Fcγ receptor.
Collapse
Affiliation(s)
- Christine Y Zhang
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
90
|
Ramsland PA, Farrugia W, Bradford TM, Tan Sardjono C, Esparon S, Trist HM, Powell MS, Szee Tan P, Cendron AC, Wines BD, Scott AM, Hogarth PM. Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3208-17. [PMID: 21856937 PMCID: PMC3282893 DOI: 10.4049/jimmunol.1101467] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.
Collapse
Affiliation(s)
- Paul A. Ramsland
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Surgery, Austin Hospital, University of Melbourne, Heidelberg, Victoria 3084, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia
| | - William Farrugia
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Tessa M. Bradford
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Sandra Esparon
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Halina M. Trist
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Maree S. Powell
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| | - Peck Szee Tan
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Angela C. Cendron
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Bruce D. Wines
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| | - Andrew M. Scott
- Tumour Targeting Program, Ludwig Institute for Cancer Research, Austin Health, Heidelberg, Victoria 3084, Australia
| | - P. Mark Hogarth
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia,Department of Immunology, Monash University, Melbourne, Victoria 3004, Australia,Department of Pathology, University of Melbourne, Parkville, Victoria 3056, Australia
| |
Collapse
|
91
|
Adekar SP, Segan AT, Chen C, Bermudez R, Elias MD, Selling BH, Kapadnis BP, Simpson LL, Simon PM, Dessain SK. Enhanced neutralization potency of botulinum neurotoxin antibodies using a red blood cell-targeting fusion protein. PLoS One 2011; 6:e17491. [PMID: 21399689 PMCID: PMC3047547 DOI: 10.1371/journal.pone.0017491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/03/2011] [Indexed: 01/17/2023] Open
Abstract
Botulinum neurotoxin (BoNT) potently inhibits cholinergic signaling at the neuromuscular junction. The ideal countermeasures for BoNT exposure are monoclonal antibodies or BoNT antisera, which form BoNT-containing immune complexes that are rapidly cleared from the general circulation. Clearance of opsonized toxins may involve complement receptor-mediated immunoadherence to red blood cells (RBC) in primates or to platelets in rodents. Methods of enhancing immunoadherence of BoNT-specific antibodies may increase their potency in vivo. We designed a novel fusion protein (FP) to link biotinylated molecules to glycophorin A (GPA) on the RBC surface. The FP consists of an scFv specific for murine GPA fused to streptavidin. FP:mAb:BoNT complexes bound specifically to the RBC surface in vitro. In a mouse model of BoNT neutralization, the FP increased the potency of single and double antibody combinations in BoNT neutralization. A combination of two antibodies with the FP gave complete neutralization of 5,000 LD50 BoNT in mice. Neutralization in vivo was dependent on biotinylation of both antibodies and correlated with a reduction of plasma BoNT levels. In a post-exposure model of intoxication, FP:mAb complexes gave complete protection from a lethal BoNT/A1 dose when administered within 2 hours of toxin exposure. In a pre-exposure prophylaxis model, mice were fully protected for 72 hours following administration of the FP:mAb complex. These results demonstrate that RBC-targeted immunoadherence through the FP is a potent enhancer of BoNT neutralization by antibodies in vivo.
Collapse
Affiliation(s)
- Sharad P. Adekar
- Lankenau Institute for Medical Research,
Wynnewood, Pennsylvania, United States of America
- Immunome, Inc., Wynnewood, Pennsylvania,
United States of America
- Augmenta Biologicals, LLC, Wynnewood,
Pennsylvania, United States of America
| | - Andrew T. Segan
- Lankenau Institute for Medical Research,
Wynnewood, Pennsylvania, United States of America
| | - Cindy Chen
- Lankenau Institute for Medical Research,
Wynnewood, Pennsylvania, United States of America
| | - Rodney Bermudez
- Immunome, Inc., Wynnewood, Pennsylvania,
United States of America
| | - M. D. Elias
- Division of Infectious Diseases and
Environmental Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania,
United States of America
| | - Bernard H. Selling
- Impact Biologicals, Inc. Wallingford,
Pennsylvania, United States of America
| | - B. P. Kapadnis
- Department of Microbiology, University of
Pune, Pune, India
| | - Lance L. Simpson
- Division of Infectious Diseases and
Environmental Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania,
United States of America
| | - Paul M. Simon
- Augmenta Biologicals, LLC, Wynnewood,
Pennsylvania, United States of America
- * E-mail: (SKD); (PMS)
| | - Scott K. Dessain
- Lankenau Institute for Medical Research,
Wynnewood, Pennsylvania, United States of America
- * E-mail: (SKD); (PMS)
| |
Collapse
|
92
|
Kasztalska K, Ciebiada M, Cebula-Obrzut B, Górski P. Intravenous Immunoglobulin Replacement Therapy in the Treatment of Patients with Common Variable Immunodeficiency Disease. Clin Drug Investig 2011. [DOI: 10.2165/11586710-000000000-00000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
93
|
Ban JY, Kim BS, Kim SC, Kim DH, Chung JH. Microarray Analysis of Gene Expression Profiles in Response to Treatment with Melatonin in Lipopolysaccharide Activated RAW 264.7 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:23-9. [PMID: 21461237 DOI: 10.4196/kjpp.2011.15.1.23] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 01/03/2023]
Abstract
Melatonin, which is the main product of the pineal gland, has well documented antioxidant and immune-modulatory effects. Macrophages produce molecules that are known to play roles in inflammatory responses. We conducted microarray analysis to evaluate the global gene expression profiles in response to treatment with melatonin in lipopolysaccharide (LPS) activated RAW 264.7 macrophage cells. In addition, eight genes were subjected to real-time reverse transcription polymerase chain reaction (RT-PCR) to confirm the results of the microarray. The cells were treated with LPS or melatonin plus LPS for 24 hr. LPS induced the up-regulation of 1073 genes and the down-regulation of 1144 genes when compared to the control group. Melatonin pretreatment of LPS-stimulated RAW 264.7 cells resulted in the down regulation of 241 genes and up regulation of 164 genes. Interestingly, among genes related to macrophage-mediated immunity, LPS increased the expression of seven genes (Adora2b, Fcgr2b, Cish, Cxcl10, Clec4n, Il1a, and Il1b) and decreased the expression of one gene (Clec4a3). These changes in expression were attenuated by melatonin. Furthermore, the results of real-time PCR were similar to those of the microarray. Taken together, these results suggest that melatonin may have a suppressive effect on LPS-induced expression of genes involved in the regulation of immunity and defense in RAW 264.7 macrophage cells. Moreover, these results may explain beneficial effects of melatonin in the treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Ju Yeon Ban
- Department of Pharmacology and Institute of Tissue Regeneration Engineering (ITREN), College of Dentistry, Dankook University, Cheonan 330-714, Korea
| | | | | | | | | |
Collapse
|
94
|
Zhuang Y, Xu W, Shen Y, Li J. Fcγ receptor polymorphisms and clinical efficacy of rituximab in non-Hodgkin lymphoma and chronic lymphocytic leukemia. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 10:347-52. [PMID: 21030347 DOI: 10.3816/clml.2010.n.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been 40 years since the discovery of Fcγ receptors (FcγRs) and their function. FcγRs regulate a variety of immune responses, including phagocytosis, degranulation, antibody-dependent cellular cytotoxicity, transcriptional regulation of cytokines, chemokine expression, B-cell activation, and immune complex clearance. It is well known that FcγRs serve as a critical link between the humoral and cellular branches of the immune system and play an important role in many conditions, including infection, cancer, and autoimmune diseases. Recent studies suggest that FcγR polymorphisms influence efficacy and side effects of monoclonal antibody-based immunotherapy, which might provide a useful prognostic marker for treatment in the future. Rituximab has been proven effective in treating patients with non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Some FcγR genotypes correlate with rituximab efficacy in patients with NHL but not in patients with CLL. In this review, FcγR function and the association between FcγR polymorphisms and rituximab efficacy in NHL and CLL are discussed.
Collapse
Affiliation(s)
- Yun Zhuang
- Department of Hematology, Wuxi People Hospital Affiliated of Nanjing Medical University, Wuxi, Jiangsu, China
| | | | | | | |
Collapse
|
95
|
Nguyen DC, Scinicariello F, Attanasio R. Characterization and allelic polymorphisms of rhesus macaque (Macaca mulatta) IgG Fc receptor genes. Immunogenetics 2011; 63:351-62. [PMID: 21327607 DOI: 10.1007/s00251-011-0514-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/11/2011] [Indexed: 01/26/2023]
Abstract
Macaque models are invaluable for AIDS research. Indeed, initial development of HIV-1 vaccines relies heavily on simian immunodeficiency virus-infected rhesus macaques. Neutralizing antibodies, a major component of anti-HIV protective responses, ultimately interact with Fc receptors on phagocytic and natural killer cells to eliminate the pathogen. Despite the major role that Fc receptors play in protective responses, there is very limited information available on these molecules in rhesus macaques. Therefore, in this study, rhesus macaque CD32 (FcγRII) and CD64 (FcγRI) homologues were genetically characterized. In addition, presence of CD16 (FcγRIII), CD32, and CD64 allelic polymorphisms were determined in a group of nine animals. Results from this study show that the predicted structures of macaque CD32 and CD64 are highly similar to their human counterparts. Macaque and human CD32 and CD64 extracellular domains are 88-90% and 94-95% homologous, respectively. Although all cysteines are conserved between the two species, macaque CD32 exhibits two additional N-linked glycosylation sites, whereas CD64 lacks three of them when compared to humans. Five CD32, three CD64, and three CD16 distinct allelic sequences were indentified in the nine animals examined, indicating a relatively high level of polymorphism in macaque Fcγ receptors. Together, these results validate rhesus macaques as models for vaccine development and antibody responses, while at the same time, underscoring the need to take into account the high degree of genetic heterogeneity present in this species when designing experimental protocols.
Collapse
Affiliation(s)
- Doan C Nguyen
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
96
|
Weersma RK, Crusius JBA, Roberts RL, Koeleman BPC, Palomino-Morales R, Wolfkamp S, Hollis-Moffatt JE, Festen EAM, Meisneris S, Heijmans R, Noble CL, Gearry RB, Barclay ML, Gómez-Garcia M, Lopez-Nevot MA, Nieto A, Rodrigo L, Radstake TRDJ, van Bodegraven AA, Wijmenga C, Merriman TR, Stokkers PCF, Peña AS, Martín J, Alizadeh BZ. Association of FcgR2a, but not FcgR3a, with inflammatory bowel diseases across three Caucasian populations. Inflamm Bowel Dis 2010; 16:2080-9. [PMID: 20848524 DOI: 10.1002/ibd.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The Fc receptors II and III (FcgR2a, and FcgR3a) play a crucial role in the regulation of the immune response. The FcgR2a*519GG and FcgR3a*559CC genotypes have been associated with several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, nephritis, and possibly to type I diabetes, and celiac disease. In a large multicenter, two-stage study of 6570 people, we tested whether the FcgR2a and FcgR3a genes were also involved in inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC). METHODS We genotyped the FcgR2a*A519G and FcgR3a*A559C functional variants in 4205 IBD patients in six well-phenotyped Caucasian IBD cohorts and 2365 ethnically matched controls recruited from the Netherlands, Spain, and New Zealand. RESULTS In the initial Dutch study we found a significant association of FcgR2a genotypes with IBD (P-genotype = 0.02); while the FcgR2a*519GG was more common in controls (23%) than in IBD patients (18%; odds ratio [OR] = 0.75; 95% confidence interval [CI] 0.61-0.92; P = 0.004). This association was corroborated by a combined analysis across all the study populations (Mantel-Haenszel [MH] OR = 0.84; 0.74-0.95; P = 0.005) in the next stage. The Fcgr2a*GG genotype was associated with both UC (MH-OR = 0.84; 0.72-0.97; P = 0.01) and CD (MH-OR = 0.84; 0.73-0.97; P = 0.01), suggesting that this genotype confers a protective effect against IBD. There was no association of FcgR3a*A559C genotypes with IBD, CD, or UC in any of the three studied populations. CONCLUSIONS The FcgR2a*519G functional variant was associated with IBD and reduced susceptibility to UC and to CD in Caucasians. There was no association between FcgR3a*5A559C and IBD, CD or UC.
Collapse
Affiliation(s)
- Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Jung ST, Kang TH, Georgiou G. Efficient expression and purification of human aglycosylated Fcgamma receptors in Escherichia coli. Biotechnol Bioeng 2010; 107:21-30. [PMID: 20506277 DOI: 10.1002/bit.22785] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effector Fc gamma receptors (FcgammaRs) are expressed on the surface of a variety of cells of hematopoietic lineage and serve as a bridge between adaptive and innate immune responses. The interaction between immune complexes, formed by IgG class antibodies that are crosslinked with antigen, and FcgammaRs triggers signaling cascades that result in numerous cellular responses including the activation or donwregulation of cytotoxic responses, cytokine release, and antibody synthesis. Here, the extracellular domains of the human type I transmembrane FcgammaRs were expressed in Escherichia coli and their interactions to subclass IgGs (IgG1, IgG2, IgG3, and IgG4) antibodies were analyzed. Expression using fully synthetic E. coli codon optimized FcgammaR genes and optimization of sequences for N-terminal translation initiation region through mRNA secondary structure prediction enabled us to achieve high yield of purified, bacterially expressed receptors, including FcgammaRI and FcgammaRIIIa which have not been successfully expressed in bacteria until now. The aglycosylated FcgammaRs showed similar IgG subclass binding selectivity compared to the respective glycosylated FcgammaRs expressed in mammalian cells.
Collapse
Affiliation(s)
- Sang Taek Jung
- Department of Chemical Engineering, University of Texas, Austin, 78712, USA
| | | | | |
Collapse
|
98
|
Mori K, Yoshida K. Viral infection in induction of Hashimoto's thyroiditis: a key player or just a bystander? Curr Opin Endocrinol Diabetes Obes 2010; 17:418-24. [PMID: 20625285 DOI: 10.1097/med.0b013e32833cf518] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Viral infection activates both the innate and adaptive immunity and is implicated as a trigger of autoimmune diseases including Hashimoto's thyroiditis. This review summarizes our knowledge respecting the role of viral infection in the cause of Hashimoto's thyroiditis. RECENT FINDINGS Components of several viruses such as hepatitis C virus, human parvovirus B19, coxsackie virus and herpes virus are detected in the thyroid of Hashimoto's thyroiditis patients. Bystander activation of autoreactive T cells may be involved in triggering intrathyroidal inflammation. Signaling molecules associated with antiviral responses including Toll-like receptors may participate in Hashimoto's thyroiditis induction. However, studies have provided insufficient direct evidence for the viral hypothesis in Hashimoto's thyroiditis. SUMMARY Despite interesting circumstantial evidence, whether viral infection is responsible for Hashimoto's thyroiditis remains unclear. Studies addressing this issue are required to substantiate a contribution from viral infection to Hashimoto's thyroiditis and, consequently, the prospect for developing preventive modalities for Hashimoto's thyroiditis.
Collapse
Affiliation(s)
- Kouki Mori
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan. mail:
| | | |
Collapse
|
99
|
Sigalov AB. The SCHOOL of nature: IV. Learning from viruses. SELF/NONSELF 2010; 1:282-298. [PMID: 21487503 PMCID: PMC3062383 DOI: 10.4161/self.1.4.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that modulate signaling mediated by cell surface receptors. Despite tremendous advancement in recent years, the exact molecular mechanisms underlying these critical points in viral pathogenesis remain unknown. In this work, based on a novel platform of receptor signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, I suggest specific mechanisms used by different viruses such as human immunodeficiency virus (HIV), cytomegalovirus (CMV), severe acute respiratory syndrome coronavirus, human herpesvirus 6 and others, to modulate receptor signaling. I also use the example of HIV and CMV to illustrate how two unrelated enveloped viruses use a similar SCHOOL mechanism to modulate the host immune response mediated by two functionally different receptors: T cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly non-viral pathogens. Learning from viruses how to target cell surface receptors not only helps us understand viral strategies to escape from the host immune surveillance, but also provides novel avenues in rational drug design and the development of new therapies for immune disorders.
Collapse
|
100
|
Wang Q, Chen K, Liu R, Zhao F, Gupta S, Zhang N, Prud'homme GJ. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist. PLoS One 2010; 5:e12734. [PMID: 20856794 PMCID: PMC2939854 DOI: 10.1371/journal.pone.0012734] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 08/13/2010] [Indexed: 01/11/2023] Open
Abstract
GLP-1 has a variety of anti-diabetic effects. However, native GLP-1 is not suitable for therapy of diabetes due to its short half-life (t1/2<2 min). To circumvent this, we developed a long-lasting GLP-1 receptor agonist by the fusion of GLP-1 with human IgG2 Fc (GLP-1/hIgG2). ELISA-based receptor binding assay demonstrated that GLP-1/hIgG2 had high binding affinity to the GLP-1R in INS-1 cells (Kd = 13.90±1.52 nM). Upon binding, GLP-1/hIgG2 was rapidly internalized by INS-1 cells in a dynamin-dependent manner. Insulin RIA showed that GLP-1/IgG2 dose-dependently stimulated insulin secretion from INS-1 cells. Pharmacokinetic studies in CD1 mice showed that with intraperitoneal injection (i.p.), the GLP-1/hIgG2 peaked at 30 minutes in circulation and maintained a plateau for >168 h. Intraperitoneal glucose tolerance test (IPGTT) in mice showed that GLP-1/hIgG2 significantly decreased glucose excursion. Furthermore, IPGTT performed on mice one week after a single drug-injection also displayed significantly reduced glucose excursion, indicating that GLP-1/hIgG2 fusion protein has long-lasting effects on the modulation of glucose homeostasis. GLP-1/hIgG2 was found to be effective in reducing the incidence of diabetes in multiple-low-dose streptozotocin-induced type 1 diabetes in mice. Together, the long-lasting bioactive GLP-1/hIgG2 retains native GLP-1 activities and thus may serve as a potent GLP-1 receptor agonist.
Collapse
Affiliation(s)
- Qinghua Wang
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|