51
|
Akagi A, Fukushima S, Okada K, Jiang CJ, Yoshida R, Nakayama A, Shimono M, Sugano S, Yamane H, Takatsuji H. WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. PLANT MOLECULAR BIOLOGY 2014; 86:171-83. [PMID: 25033935 PMCID: PMC4133022 DOI: 10.1007/s11103-014-0221-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/01/2014] [Indexed: 05/19/2023]
Abstract
Plant activators such as benzothiadiazole (BTH) protect plants against diseases by priming the salicylic acid (SA) signaling pathway. In rice, the transcription factor WRKY45 plays a central role in this process. To investigate the mechanism involved in defense-priming by BTH and the role of WRKY45 in this process, we analyzed the transcripts of biosynthetic genes for diterpenoid phytoalexins (DPs) during the rice-Magnaporthe oryzae interaction. The DP biosynthetic genes were barely upregulated in BTH-treated rice plants, but were induced rapidly after M. oryzae infection in a WRKY45-dependent manner. These results indicate that the DP biosynthetic genes were primed by BTH through WRKY45. Rapid induction of the DP biosynthetic genes was also observed after M. oryzae infection to WRKY45-overexpressing (WRKY45-ox) plants. The changes in gene transcription resulted in accumulation of DPs in WRKY45-ox and BTH-pretreated rice after M. oryzae infection. Previously, we reported that cytokinins (CKs), especially isopentenyladenines, accumulated in M. oryzae-infected rice. Here, we show that DP biosynthetic genes are regulated by the SA/CK synergism in a WRKY45-dependent manner. Together, we propose that CK plays a role in mediating the signal of M. oryzae infection to trigger the induction of DP biosynthetic genes in BTH-primed plants.
Collapse
Affiliation(s)
- Aya Akagi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Bayer CropScience, Tokyo, 100-8262 Japan
| | - Setsuko Fukushima
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Riichiro Yoshida
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Faculty of Agriculture, Kagoshima University, Kohrimoto, Kagoshima, 890-0065 Japan
| | - Akira Nakayama
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Maebashi Institute of Technology, Maebashi, 371-0816 Japan
| | - Masaki Shimono
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
- Present Address: Department of Plant Pathology, Michigan State University, 104 Center for Integrated Plant Systems, East Lansing, MI 48824 USA
| | - Shoji Sugano
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| | - Hisakazu Yamane
- Present Address: Department of Biosciences, Teikyo University, Toyosatodai 1-1, Utsunomiya, Tochigi 320-8551 Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 Japan
| |
Collapse
|
52
|
Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. MOLECULAR PLANT 2014; 7:1267-1287. [PMID: 24777989 PMCID: PMC4168297 DOI: 10.1093/mp/ssu049] [Citation(s) in RCA: 852] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Growth-defense tradeoffs are thought to occur in plants due to resource restrictions, which demand prioritization towards either growth or defense, depending on external and internal factors. These tradeoffs have profound implications in agriculture and natural ecosystems, as both processes are vital for plant survival, reproduction, and, ultimately, plant fitness. While many of the molecular mechanisms underlying growth and defense tradeoffs remain to be elucidated, hormone crosstalk has emerged as a major player in regulating tradeoffs needed to achieve a balance. In this review, we cover recent advances in understanding growth-defense tradeoffs in plants as well as what is known regarding the underlying molecular mechanisms. Specifically, we address evidence supporting the growth-defense tradeoff concept, as well as known interactions between defense signaling and growth signaling. Understanding the molecular basis of these tradeoffs in plants should provide a foundation for the development of breeding strategies that optimize the growth-defense balance to maximize crop yield to meet rising global food and biofuel demands.
Collapse
Affiliation(s)
- Bethany Huot
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA
| | - Jian Yao
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA
| | - Beronda L Montgomery
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, MI 48824, USA; Department of Plant Biology, Michigan State University, MI 48824, USA; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Michigan State University, MI 48933, USA.
| |
Collapse
|
53
|
Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. PLANT & CELL PHYSIOLOGY 2014; 55:604-19. [PMID: 24399239 DOI: 10.1093/pcp/pct204] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental stresses by altering gene expression, and several genes have been found to mediate stress-induced expression, but many additional factors are yet to be identified. OsNAP is a member of the NAC transcription factor family; it is localized in the nucleus, and shows transcriptional activator activity in yeast. Analysis of the OsNAP transcript levels in rice showed that this gene was significantly induced by ABA and abiotic stresses, including high salinity, drought and low temperature. Rice plants overexpressing OsNAP did not show growth retardation, but showed a significantly reduced rate of water loss, enhanced tolerance to high salinity, drought and low temperature at the vegetative stage, and improved yield under drought stress at the flowering stage. Microarray analysis of transgenic plants overexpressing OsNAP revealed that many stress-related genes were up-regulated, including OsPP2C06/OsABI2, OsPP2C09, OsPP2C68 and OsSalT, and some genes coding for stress-related transcription factors (OsDREB1A, OsMYB2, OsAP37 and OsAP59). Our data suggest that OsNAP functions as a transcriptional activator that plays a role in mediating abiotic stress responses in rice.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
De Vleesschauwer D, Xu J, Höfte M. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:611. [PMID: 25426127 PMCID: PMC4227482 DOI: 10.3389/fpls.2014.00611] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 05/19/2023]
Abstract
Phytohormones are not only essential for plant growth and development but also play central roles in triggering the plant immune signaling network. Historically, research aimed at elucidating the defense-associated role of hormones has tended to focus on the use of experimentally tractable dicot plants such as Arabidopsis thaliana. Emerging from these studies is a picture whereby complex crosstalk and induced hormonal changes mold plant health and disease, with outcomes largely dependent on the lifestyle and infection strategy of invading pathogens. However, recent studies in monocot plants are starting to provide additional important insights into the immune-regulatory roles of hormones, often revealing unique complexities. In this review, we address the latest discoveries dealing with hormone-mediated immunity in rice, one of the most important food crops and an excellent model for molecular genetic studies in monocots. Moreover, we highlight interactions between hormone signaling, rice defense and pathogen virulence, and discuss the differences and similarities with findings in Arabidopsis. Finally, we present a model for hormone defense networking in rice and describe how detailed knowledge of hormone crosstalk mechanisms can be used for engineering durable rice disease resistance.
Collapse
Affiliation(s)
- David De Vleesschauwer
- *Correspondence: David De Vleesschauwer, Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium e-mail:
| | | | | |
Collapse
|
55
|
Takatsuji H. Development of disease-resistant rice using regulatory components of induced disease resistance. FRONTIERS IN PLANT SCIENCE 2014; 5:630. [PMID: 25431577 PMCID: PMC4230042 DOI: 10.3389/fpls.2014.00630] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/23/2014] [Indexed: 05/07/2023]
Abstract
Infectious diseases cause huge crop losses annually. In response to pathogen attacks, plants activate defense systems that are mediated through various signaling pathways. The salicylic acid (SA) signaling pathway is the most powerful of these pathways. Several regulatory components of the SA signaling pathway have been identified, and are potential targets for genetic manipulation of plants' disease resistance. However, the resistance associated with these regulatory components is often accompanied by fitness costs; that is, negative effects on plant growth and crop yield. Chemical defense inducers, such as benzothiadiazole and probenazole, act on the SA pathway and induce strong resistance to various pathogens without major fitness costs, owing to their 'priming effect.' Studies on how benzothiadiazole induces disease resistance in rice have identified WRKY45, a key transcription factor in the branched SA pathway, and OsNPR1/NH1. Rice plants overexpressing WRKY45 were extremely resistant to rice blast disease caused by the fungus Magnaporthe oryzae and bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo), the two major rice diseases. Disease resistance is often accompanied by fitness costs; however, WRKY45 overexpression imposed relatively small fitness costs on rice because of its priming effect. This priming effect was similar to that of chemical defense inducers, although the fitness costs were amplified by some environmental factors. WRKY45 is degraded by the ubiquitin-proteasome system, and the dual role of this degradation partly explains the priming effect. The synergistic interaction between SA and cytokinin signaling that activates WRKY45 also likely contributes to the priming effect. With a main focus on these studies, I review the current knowledge of SA-pathway-dependent defense in rice by comparing it with that in Arabidopsis, and discuss potential strategies to develop disease-resistant rice using signaling components.
Collapse
Affiliation(s)
- Hiroshi Takatsuji
- *Correspondence: Hiroshi Takatsuji, Disease Resistant Crops Research Unit, Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba 305-8602, Japan e-mail:
| |
Collapse
|
56
|
Nakayama A, Fukushima S, Goto S, Matsushita A, Shimono M, Sugano S, Jiang CJ, Akagi A, Yamazaki M, Inoue H, Takatsuji H. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. BMC PLANT BIOLOGY 2013; 13:150. [PMID: 24093634 PMCID: PMC3850545 DOI: 10.1186/1471-2229-13-150] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/02/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND The rice transcription factor WRKY45 plays a crucial role in salicylic acid (SA)/benzothiadiazole (BTH)-induced disease resistance. Its knockdown severely reduces BTH-induced resistance to the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Conversely, overexpression of WRKY45 induces extremely strong resistance to both of these pathogens. To elucidate the molecular basis of WRKY45-dependent disease resistance, we analyzed WRKY45-regulated gene expression using rice transformants and a transient gene expression system. RESULTS We conducted a microarray analysis using WRKY45-knockdown (WRKY45-kd) rice plants, and identified WRKY45-dependent genes among the BTH-responsive genes. The BTH-responsiveness of 260 genes was dependent on WRKY45. Among these, 220 genes (85%), many of which encoded PR proteins and proteins associated with secondary metabolism, were upregulated by BTH. Only a small portion of these genes overlapped with those regulated by OsNPR1/NH1, supporting the idea that the rice SA pathway branches into WRKY45- regulated and OsNPR1/NH1-regulated subpathways. Dexamethazone-induced expression of myc-tagged WRKY45 in rice immediately upregulated transcription of endogenous WRKY45 and genes encoding the transcription factors WRKY62, OsNAC4, and HSF1, all of which have been reported to have defense-related functions. This was followed by upregulation of defense genes encoding PR proteins and secondary metabolic enzymes. Many of these genes were also induced after M. oryzae infection. Their temporal transcription patterns were consistent with those after dexamethazone-induced WRKY45 expression. In a transient expression system consisting of particle bombardment of rice coleoptiles, WRKY45 acted as an effector to trans-activate reporter genes in which the luciferase coding sequence was fused to upstream and intragenic sequences of WRKY62 and OsNAC4. Trans-activation of transcription occurred through a W-box-containing sequence upstream of OsNAC4 and mutations in the W-boxes abolished the trans-activation. CONCLUSIONS These data suggest a role of WRKY45 in BTH-induced disease resistance as a master regulator of the transcriptional cascade regulating defense responses in one of two branches in the rice SA pathway.
Collapse
Affiliation(s)
- Akira Nakayama
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Fukushima
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Shingo Goto
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Akane Matsushita
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Du Pont Kabushiki Kaisha, 2-11-1, Nagata-cho, Chiyoda-ku, Tokyo 100-6111, Japan
| | - Masaki Shimono
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | - Shoji Sugano
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Chang-Jie Jiang
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Aya Akagi
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Present address: Bayer CropScience, Tokyo 100-8262, Japan
| | - Muneo Yamazaki
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Haruhiko Inoue
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
- Disease Resistant Crops Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305–8602, Japan
| |
Collapse
|
57
|
De Vleesschauwer D, Gheysen G, Höfte M. Hormone defense networking in rice: tales from a different world. TRENDS IN PLANT SCIENCE 2013; 18:555-65. [PMID: 23910453 DOI: 10.1016/j.tplants.2013.07.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 05/08/2023]
Abstract
Recent advances in plant immunity research underpin the pivotal role of small-molecule hormones in regulating the plant defense signaling network. Although most of our understanding comes from studies of dicot plants such as Arabidopsis thaliana, new studies in monocots are providing additional insights into the defense-regulatory role of phytohormones. Here, we review the roles of both classical and more recently identified stress hormones in regulating immunity in the model monocot rice (Oryza sativa) and highlight the importance of hormone crosstalk in shaping the outcome of rice-pathogen interactions. We also propose a defense model for rice that does not support a dichotomy between the pathogen lifestyle and the effectiveness of the archetypal defense hormones salicylic acid (SA) and jasmonic acid (JA).
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
58
|
Morales AMAP, O Rourke JA, van de Mortel M, Scheider KT, Bancroft TJ, Bor M AZ, Nelson RT, Nettleton D, Baum TJ, Shoemaker RC, Frederick RD, Abdelnoor RV, Pedley KF, Whitham SA, Graham MA. Transcriptome analyses and virus induced gene silencing identify genes in the Rpp4-mediated Asian soybean rust resistance pathway. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1029-1047. [PMID: 32481171 DOI: 10.1071/fp12296] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/12/2013] [Indexed: 05/24/2023]
Abstract
Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P. pachyrhizi-infected leaves of resistant soybean accession PI459025B (Rpp4) and the susceptible cultivar (Williams 82) across a 12-day time course. Unexpectedly, two biphasic responses were identified. In the incompatible reaction, genes induced at 12h after infection (hai) were not differentially expressed at 24 hai, but were induced at 72 hai. In contrast, genes repressed at 12 hai were not differentially expressed from 24 to 144 hai, but were repressed 216 hai and later. To differentiate between basal and resistance-gene (R-gene) mediated defence responses, we compared gene expression in Rpp4-silenced and empty vector-treated PI459025B plants 14 days after infection (dai) with P. pachyrhizi. This identified genes, including transcription factors, whose differential expression is dependent upon Rpp4. To identify differentially expressed genes conserved across multiple P. pachyrhizi resistance pathways, Rpp4 expression datasets were compared with microarray data previously generated for Rpp2 and Rpp3-mediated defence responses. Fourteen transcription factors common to all resistant and susceptible responses were identified, as well as fourteen transcription factors unique to R-gene-mediated resistance responses. These genes are targets for future P. pachyrhizi resistance research.
Collapse
Affiliation(s)
- Aguida M A P Morales
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Jamie A O Rourke
- USDA-Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN 55108, USA
| | - Martijn van de Mortel
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Katherine T Scheider
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | | | - Alu Zio Bor M
- Universidade Federal de Viçosa, Departamento de Fitotecnia, 36.570-000, Viçosa, MG, Brazil
| | - Rex T Nelson
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50014, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Randy C Shoemaker
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| | - Reid D Frederick
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Ricardo V Abdelnoor
- Laboratório de Biotecnologia Vegetal e Bioinformática, Embrapa Soja, Rod. Carlos João Strass, 86001-970, Londrina - PR, Brazil
| | - Kerry F Pedley
- USDA- Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MA 21702, USA
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50014, USA
| | - Michelle A Graham
- USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50014, USA
| |
Collapse
|
59
|
Baldoni E, Mattana M, Locatelli F, Consonni R, Cagliani LR, Picchi V, Abbruscato P, Genga A. Analysis of transcript and metabolite levels in Italian rice (Oryza sativa L.) cultivars subjected to osmotic stress or benzothiadiazole treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:492-503. [PMID: 23860229 DOI: 10.1016/j.plaphy.2013.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/19/2013] [Indexed: 04/30/2023]
Abstract
One of the major objectives of rice (Oryza sativa L.) breeding programs is the development of new varieties with higher tolerance/resistance to both abiotic and biotic stresses. In this study, Italian rice cultivars were subjected to osmotic stress or benzothiadiazole (BTH) treatments. An analysis of the expression of selected genes known to be involved in the stress response and (1)H nuclear magnetic resonance ((1)H NMR) metabolic profiling were combined with multivariate statistical analyses to elucidate potential correlations between gene expression or metabolite content and observed tolerant/resistant phenotypes. We observed that the expression of three chosen genes (two WRKY genes and one peroxidase encoding gene) differed between susceptible and resistant cultivars in response to BTH treatments. Moreover, the analysis of metabolite content, in particular in the osmotic stress experiment, enabled discrimination between selected cultivars based on differences in the accumulation of some primary metabolites, primarily sugars. This research highlights the potential usefulness of this approach to characterise rice varieties based on transcriptional or metabolic changes due to adverse environmental conditions.
Collapse
Affiliation(s)
- Elena Baldoni
- Istituto di Biologia e Biotecnologia Agraria, C.N.R., via E. Bassini 15, 20133 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H. MAP kinases phosphorylate rice WRKY45. PLANT SIGNALING & BEHAVIOR 2013; 8:e24510. [PMID: 23603961 PMCID: PMC3908937 DOI: 10.4161/psb.24510] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
WRKY45 transcription factor is a central regulator of disease resistance mediated by the salicylic acid (SA) signaling pathway in rice. SA-activated WRKY45 protein induces the accumulation of its own mRNA. However, the mechanism underlying this regulation is still unknown. Here, we report three lines of evidence showing that a mitogen-activated protein kinase (MAPK) cascade is involved in this regulation. An inhibitor of MAPK kinase (MAPKK) suppressed the increase in WRKY45 transcript level in response to SA. Two MAPKs, OsMPK4 and OsMPK6, phosphorylated WRKY45 protein in vitro. The activity of OsMPK6 was rapidly upregulated by SA treatment in rice cells. These results suggest that WRKY45 is regulated by MAPK-dependent phosphorylation in the SA pathway.
Collapse
|
61
|
Blast resistance of CC-NB-LRR protein Pb1 is mediated by WRKY45 through protein-protein interaction. Proc Natl Acad Sci U S A 2013; 110:9577-82. [PMID: 23696671 DOI: 10.1073/pnas.1222155110] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panicle blast 1 (Pb1) is a panicle blast resistance gene derived from the indica rice cultivar "Modan." Pb1 encodes a coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NB-LRR) protein and confers durable, broad-spectrum resistance to Magnaporthe oryzae races. Here, we investigated the molecular mechanisms underlying Pb1-mediated blast resistance. The Pb1 protein interacted with WRKY45, a transcription factor involved in induced resistance via the salicylic acid signaling pathway that is regulated by the ubiquitin proteasome system. Pb1-mediated panicle blast resistance was largely compromised when WRKY45 was knocked down in a Pb1-containing rice cultivar. Leaf-blast resistance by Pb1 overexpression (Pb1-ox) was also compromised in WRKY45 knockdown/Pb1-ox rice. Blast infection induced higher accumulation of WRKY45 in Pb1-ox than in control Nipponbare rice. Overexpression of Pb1-Quad, a coiled-coil domain mutant that had weak interaction with WRKY45, resulted in significantly weaker blast resistance than that of wild-type Pb1. Overexpression of Pb1 with a nuclear export sequence failed to confer blast resistance to rice. These results suggest that the blast resistance of Pb1 depends on its interaction with WRKY45 in the nucleus. In a transient system using rice protoplasts, coexpression of Pb1 enhanced WRKY45 accumulation and increased WRKY45-dependent transactivation activity, suggesting that protection of WRKY45 from ubiquitin proteasome system degradation is possibly involved in Pb1-dependent blast resistance.
Collapse
|
62
|
Yang DL, Yang Y, He Z. Roles of plant hormones and their interplay in rice immunity. MOLECULAR PLANT 2013; 6:675-85. [PMID: 23589608 DOI: 10.1093/mp/sst056] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant hormones have been extensively studied for their importance in innate immunity particularly in the dicotyledonous model plant Arabidopsis thaliana. However, only in the last decade, plant hormones were demonstrated to play conserved and divergent roles in fine-tuning immune in rice (Oryza sativa L.), a monocotyledonous model crop plant. Emerging evidence showed that salicylic acid (SA) plays a role in rice basal defense but is differentially required by rice pattern recognition receptor (PRR) and resistance (R) protein-mediated immunity, and its function is likely dependent on the signaling pathway rather than the change of endogenous levels. Jasmonate (JA) plays an important role in rice basal defense against bacterial and fungal infection and may be involved in the SA-mediated resistance. Ethylene (ET) can act as a positive or negative modulator of disease resistance, depending on the pathogen type and environmental conditions. Brassinosteroid (BR) signaling and abscisic acid (ABA) either promote or defend against infection of pathogens with distinct infection/colonization strategies. Auxin and gibberellin (GA) are generally thought of as negative regulators of innate immunity in rice. Moreover, GA interacts antagonistically with JA signaling in rice development and immunity through the DELLA protein as a master regulator of the two hormone pathways. In this review, we summarize the roles of plant hormones in rice immunity and discuss their interplay/crosstalk mechanisms and the complex regulatory network of plant hormone pathways in fine-tuning rice immunity and growth.
Collapse
Affiliation(s)
- Dong-Lei Yang
- The Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
63
|
Transcriptional profiling of rice early response to Magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS One 2013; 8:e59720. [PMID: 23544090 PMCID: PMC3609760 DOI: 10.1371/journal.pone.0059720] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/17/2013] [Indexed: 01/25/2023] Open
Abstract
Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. Therefore, we carried out a transcriptome study on rice early defense response to M. oryzae. We found that the transcriptional profiles of rice compatible and incompatible interactions with M. oryzae were mostly similar, with genes regulated more prominently in the incompatible interactions. The functional analysis showed that the genes involved in signaling and secondary metabolism were extensively up-regulated. In particular, WRKY transcription factor genes were significantly enriched among the up-regulated genes. Overexpressing one of these WRKY genes, OsWRKY47, in transgenic rice plants conferred enhanced resistance against rice blast fungus. Our results revealed the sophisticated transcriptional reprogramming of signaling and metabolic pathways during rice early response to M. oryzae and demonstrated the critical roles of WRKY transcription factors in rice blast resistance.
Collapse
|
64
|
Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:287-96. [PMID: 23234404 DOI: 10.1094/mpmi-06-12-0152-r] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hormone crosstalk is pivotal in plant-pathogen interactions. Here, we report on the accumulation of cytokinins (CK) in rice seedlings after infection of blast fungus Magnaporthe oryzae and its potential significance in rice-M. oryzae interaction. Blast infection to rice seedlings increased levels of N(6)-(Δ(2)-isopentenyl) adenine (iP), iP riboside (iPR), and iPR 5'-phosphates (iPRP) in leaf blades. Consistent with this, CK signaling was activated around the infection sites, as shown by histochemical staining for β-glucuronidase activity driven by a CK-responsive OsRR6 promoter. Diverse CK species were also detected in the hyphae (mycelium), conidia, and culture filtrates of blast fungus, indicating that M. oryzae is capable of production as well as hyphal secretion of CK. Co-treatment of leaf blades with CK and salicylic acid (SA), but not with either one alone, markedly induced pathogenesis-related genes OsPR1b and probenazole-induced protein 1 (PBZ1). These effects were diminished by RNAi-knockdown of OsNPR1 or WRKY45, the key regulators of the SA signaling pathway in rice, indicating that the effects of CK depend on these two regulators. Taken together, our data imply a coevolutionary rice-M. oryzae interaction, wherein M. oryzae probably elevates rice CK levels for its own benefits such as nutrient translocation. Rice plants, on the other hand, sense it as an infection signal and activate defense reactions through the synergistic action with SA.
Collapse
Affiliation(s)
- Chang-Jie Jiang
- National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Balmer D, Planchamp C, Mauch-Mani B. On the move: induced resistance in monocots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1249-61. [PMID: 23028020 DOI: 10.1093/jxb/ers248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although plants possess an arsenal of constitutive defences such as structural barriers and preformed antimicrobial defences, many attackers are able to overcome the pre-existing defence layers. In response, a range of inducible plant defences is set up to battle these pathogens. These mechanisms, commonly integrated as induced resistance (IR), control pathogens and pests by the activation of specific defence pathways. IR mechanisms have been extensively studied in the Dicotyledoneae, whereas knowledge of IR in monocotyledonous plants, including the globally important graminaceous crop plants, is elusive. Considering the potential of IR for sustainable agriculture and the recent advances in monocot genomics and biotechnology, IR in monocots is an emerging research field. In the following, current facts and trends concerning basal immunity, and systemic acquired/induced systemic resistance in the defence of monocots against pathogens and herbivores will be summarized.
Collapse
Affiliation(s)
- Dirk Balmer
- Laboratory of Molecular and Cell Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | | | | |
Collapse
|
66
|
Sharma R, De Vleesschauwer D, Sharma MK, Ronald PC. Recent advances in dissecting stress-regulatory crosstalk in rice. MOLECULAR PLANT 2013; 6:250-60. [PMID: 23292878 DOI: 10.1093/mp/sss147] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and crosstalk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and proteomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUB1A, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-1-related protein kinase-1 (SnRK1), SUB1A binding protein 23 (SAB23), and several WRKY family transcription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.
Collapse
Affiliation(s)
- Rita Sharma
- Department of Plant Pathology and Genome Center, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
67
|
Li R, Afsheen S, Xin Z, Han X, Lou Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. PHYSIOLOGIA PLANTARUM 2013; 147:340-51. [PMID: 22694163 DOI: 10.1111/j.1399-3054.2012.01666.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 05/23/2023]
Abstract
NPR1 (a non-expressor of pathogenesis-related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore-induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as-npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI-LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as-npr1 plants increased the levels of herbivore-induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore-induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | |
Collapse
|
68
|
Matsushita A, Inoue H, Goto S, Nakayama A, Sugano S, Hayashi N, Takatsuji H. Nuclear ubiquitin proteasome degradation affects WRKY45 function in the rice defense program. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:302-13. [PMID: 23013464 PMCID: PMC3558880 DOI: 10.1111/tpj.12035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 05/18/2023]
Abstract
The transcriptional activator WRKY45 plays a major role in the salicylic acid/benzothiadiazole-induced defense program in rice. Here, we show that the nuclear ubiquitin-proteasome system (UPS) plays a role in regulating the function of WRKY45. Proteasome inhibitors induced accumulation of polyubiquitinated WRKY45 and transient up-regulation of WRKY45 target genes in rice cells, suggesting that WRKY45 is constantly degraded by the UPS to suppress defense responses in the absence of defense signals. Mutational analysis of the nuclear localization signal indicated that UPS-dependent WRKY45 degradation occurs in the nuclei. Interestingly, the transcriptional activity of WRKY45 after salicylic acid treatment was impaired by proteasome inhibition. The same C-terminal region in WRKY45 was essential for both transcriptional activity and UPS-dependent degradation. These results suggest that UPS regulation also plays a role in the transcriptional activity of WRKY45. It has been reported that AtNPR1, the central regulator of the salicylic acid pathway in Arabidopsis, is regulated by the UPS. We found that OsNPR1/NH1, the rice counterpart of NPR1, was not stabilized by proteasome inhibition under uninfected conditions. We discuss the differences in post-translational regulation of salicylic acid pathway components between rice and Arabidopsis.
Collapse
|
69
|
Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. PLANTA 2012; 236:1485-98. [PMID: 22798060 DOI: 10.1007/s00425-012-1698-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors are crucial regulatory components of plant responses to pathogen infection. In the present study, we report isolation and functional characterization of the pathogen-responsive rice WRKY30 gene, whose transcripts accumulate rapidly in response to salicylic acid (SA) and jasmonic acid (JA) treatment. Overexpression of WRKY30 in rice enhanced resistance to rice sheath blight fungus Rhizoctonia solani and blast fungus Magnaporthe grisea. The enhanced resistance in the transgenic lines overexpressing WRKY30 was associated with activated expression of JA synthesis-related genes LOX, AOS2 and pathogenesis-related (PR)3 and PR10, and increased endogenous JA accumulation under the challenge of fungal pathogens. WRKY30 was nuclear-localized and had transcriptional activation ability in yeast cells, supporting that it functions as a transcription factor. Together, our findings indicate that JA plays a crucial role in the WRKY30-mediated defense responses to fungal pathogens, and that the rice WRKY30 seems promising as an important candidate gene to improve disease resistance in rice.
Collapse
Affiliation(s)
- Xixu Peng
- School of Life Sciences, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
70
|
Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Höfte M, Gheysen G. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:73-82. [PMID: 22188265 DOI: 10.1111/j.1438-8677.2011.00524.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Complex defence signalling pathways, controlled by different hormones, are known to be involved in the reaction of plants to a wide range of biotic and abiotic stress factors. Here, we studied the differential expression of genes involved in stress and defence responses in systemic tissue of rice infected with the root knot nematode (RKN) Meloidogyne graminicola and the migratory root rot nematode Hirschmanniella oryzae, two agronomically important rice pathogens with very different lifestyles. qRT-PCR revealed that all investigated systemic tissues had significantly lower expression of isochorismate synthase, a key enzyme for salicylic acid production involved in basal defence and systemic acquired resistance. The systemic defence response upon migratory nematode infection was remarkably similar to fungal rice blast infection. Almost all investigated defence-related genes were up-regulated in rice shoots 3 days after root rot nematode attack, including the phenylpropanoid pathway, ethylene pathway and PR genes, but many of which were suppressed at 7 dpi. Systemic shoot tissue of RKN-infected plants showed similar attenuation of expression of almost all studied genes already at 3 dpi, with clear attenuation of the ethylene pathway and methyl jasmonate biosynthesis. These results provide an interesting starting point for further studies to elucidate how nematodes are able to suppress systemic plant defence mechanisms and the effect in multitrophic interactions.
Collapse
Affiliation(s)
- T Kyndt
- Department of Molecular Biotechnology, Ghent University (UGent), Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Collapse
|
72
|
The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr Biol 2012; 22:103-12. [PMID: 22244999 DOI: 10.1016/j.cub.2011.12.015] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/01/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Induction of plant immune responses involves significant transcription reprogramming that prioritizes defense over growth-related cellular functions. Despite intensive forward genetic screens and genome-wide expression-profiling studies, a limited number of transcription factors have been found that regulate this transition. RESULTS Using the endoplasmic-reticulum-resident genes required for antimicrobial protein secretion as markers, we identified a heat-shock factor-like transcription factor that specifically binds to the TL1 (GAAGAAGAA) cis element required for the induction of these genes. Surprisingly, plants lacking this TL1-binding factor, TBF1, respond normally to heat stress but are compromised in immune responses induced by salicylic acid and by microbe-associated molecular pattern, elf18. Genome-wide expression profiling indicates that TBF1 plays a key role in the growth-to-defense transition. Moreover, the expression of TBF1 itself is tightly regulated at both the transcriptional and translational levels. Two upstream open reading frames encoding multiple aromatic amino acids were found 5' of the translation initiation codon of TBF1 and shown to affect its translation. CONCLUSIONS Through this unique regulatory mechanism, TBF1 can sense the metabolic changes upon pathogen invasion and trigger the specific transcriptional reprogramming through its target genes expression.
Collapse
|
73
|
Delteil A, Blein M, Faivre-Rampant O, Guellim A, Estevan J, Hirsch J, Bevitori R, Michel C, Morel JB. Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. MOLECULAR PLANT PATHOLOGY 2012; 13:72-82. [PMID: 21726398 PMCID: PMC6638870 DOI: 10.1111/j.1364-3703.2011.00731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, gene expression studies and analysis of knock-out (KO) mutants have been instrumental in building an integrated view of disease resistance pathways. Such an integrated view is missing in rice where shared tools, including genes and mutants, must be assembled. This work provides a tool kit consisting of informative genes for the molecular characterization of the interaction of rice with the major fungal pathogen Magnaporthe oryzae. It also provides for a set of eight KO mutants, all in the same genotypic background, in genes involved in key steps of the rice disease resistance pathway. This study demonstrates the involvement of three genes, OsWRKY28, rTGA2.1 and NH1, in the establishment of full basal resistance to rice blast. The transcription factor OsWRKY28 acts as a negative regulator of basal resistance, like the orthologous barley gene. Finally, the up-regulation of the negative regulator OsWRKY28 and the down-regulation of PR gene expression early during M. oryzae infection suggest that the fungus possesses infection mechanisms that enable it to block host defences.
Collapse
Affiliation(s)
- Amandine Delteil
- UMR BGPI INRA/CIRAD/SupAgro, Campus International de Baillarguet, TA A 54/K, 34398 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Shimono M, Koga H, Akagi A, Hayashi N, Goto S, Sawada M, Kurihara T, Matsushita A, Sugano S, Jiang CJ, Kaku H, Inoue H, Takatsuji H. Rice WRKY45 plays important roles in fungal and bacterial disease resistance. MOLECULAR PLANT PATHOLOGY 2012; 13:83-94. [PMID: 21726399 PMCID: PMC6638719 DOI: 10.1111/j.1364-3703.2011.00732.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant 'activators', such as benzothiadiazole (BTH), protect plants from various diseases by priming the plant salicylic acid (SA) signalling pathway. We have reported previously that a transcription factor identified in rice, WRKY45 (OsWRKY45), plays a pivotal role in BTH-induced disease resistance by mediating SA signalling. Here, we report further functional characterization of WRKY45. Different plant activators vary in their action points, either downstream (BTH and tiadinil) or upstream (probenazole) of SA. Rice resistance to Magnaporthe grisea, induced by both types of plant activator, was markedly reduced in WRKY45-knockdown (WRKY45-kd) rice, indicating a universal role for WRKY45 in chemical-induced resistance. Fungal invasion into rice cells was blocked at most attempted invasion sites (pre-invasive defence) in WRKY45-overexpressing (WRKY45-ox) rice. Hydrogen peroxide accumulated within the cell wall underneath invading fungus appressoria or between the cell wall and the cytoplasm, implying a possible role for H(2)O(2) in pre-invasive defence. Moreover, a hypersensitive reaction-like reaction was observed in rice cells, in which fungal growth was inhibited after invasion (post-invasive defence). The two levels of defence mechanism appear to correspond to Type I and II nonhost resistances. The leaf blast resistance of WRKY45-ox rice plants was much higher than that of other known blast-resistant varieties. WRKY45-ox plants also showed strong panicle blast resistance. BTH-induced resistance to Xanthomonas oryzae pv. oryzae was compromised in WRKY45-kd rice, whereas WRKY45-ox plants were highly resistant to this pathogen. However, WRKY45-ox plants were susceptible to Rhizoctonia solani. These results indicate the versatility and limitations of the application of this gene.
Collapse
Affiliation(s)
- Masaki Shimono
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, Ishii N, Shimaya K, Nishimura T, Riemann M, Nick P, Hashimoto M, Komano T, Endo A, Okamoto T, Jikumaru Y, Kamiya Y, Terakawa T, Koshiba T. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. PLANT & CELL PHYSIOLOGY 2011; 52:1686-96. [PMID: 21828106 DOI: 10.1093/pcp/pcr105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant roots play important roles not only in the absorption of water and nutrients, but also in stress tolerance. Previously, we identified RSOsPR10 as a root-specific pathogenesis-related (PR) protein induced by drought and salt treatments in rice. Transcripts and proteins of RSOsPR10 were strongly induced by jasmonate (JA) and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while salicylic acid (SA) almost completely suppressed these inductions. Immunohistochemical analyses showed that RSOsPR10 strongly accumulated in cortex cells surrounding the vascular system of roots, and this accumulation was also suppressed when SA was applied simultaneously with stress or hormone treatments. In the JA-deficient mutant hebiba, RSOsPR10 expression was up-regulated by NaCl, wounding, drought and exogenous application of JA. This suggested the involvement of a signal transduction pathway that integrates JA and ET signals in plant defense responses. Expression of OsERF1, a transcription factor in the JA/ET pathway, was induced earlier than that of RSOsPR10 after salt, JA and ACC treatments. Simultaneous SA treatment strongly inhibited the induction of RSOsPR10 expression and, to a lesser extent, induction of OsERF1 expression. These results suggest that JA/ET and SA pathways function in the stress-responsive induction of RSOsPR10, and that OsERF1 may be one of the transcriptional factors in the JA/ET pathway.
Collapse
Affiliation(s)
- Kaoru Takeuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|